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Preface 

This book originates from notes used in teaching Electrical Circuit Theory courses at the 
third-year level of Electrical/Electronic Engineering Department, Federal Polytechnic, 
Oko, Anambra State, Nigeria. Along with other materials gathered by the author during 
his degree and post-degree years of academic pursuit, and over fifteen (15) years of 
teaching experience in accordance with course curriculum guidelines from the National 
Board for Technical Education (NBTE), this text, “CIRCUIT ANALYSIS Using Laplace 
Transform with Application”, was written. 

The content of each chapter was designed to accommodate Higher National Diploma 
(HND) and Bachelor of Science/Engineering (B.Sc./B.Eng.) undergraduate students as the 
materials presented were made comprehensive enough to cover both classes of 
programs at their mid-course levels. 

Chapter 1 covers the basic knowledge of Laplace Transform with its fundamental 
formula; chapter 2, partial fractions with different methods of resolving same. 

Chapter 3 discusses Laplace transforms in the reverse direction, i.e., Inverse-Laplace 
Transform. 

Chapter 4 covers solutions of differential equations by Laplace transform method, and 
how one can use it in solving time-domain equations by transforming to the frequency or 
s-domain.  

Chapters 5 and 6 cover electrical circuits using Laplace transform, and the various 
applications thereof. 

Chapter 7 is about Small Signal Transmission Lines, with primary and secondary 
constants. Chapter 8 covers Ultra High Frequency (UHF) transmission lines, along with 
the use of the Smith chart in solving small-signal problems. 

At the end of the chapters are enough review problems designed to help the students 
exercise their level of comprehension of the treated matters, and by so doing internalize 
the underlying principles of the lessons taught. 
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CHAPTER 1 

LAPLACE TRANSFORM 
 

1.0 The Concept of Complex Frequency  

Laplace transform is a tool or device conveniently utilized to transform time-domain 
functions (s-domain) for the purpose of circuit analysis. Experience has shown that while 
dealing with transient analysis, it was found to be rather tedious and cumbersome 
dealing in time domain with several steps, intermediate or otherwise, involved in order 
to determine the initial conditions etc. Laplace transform makes it possible to solving 
time-domain integer differential equations in s-domain by working algebraically. Here 
differentiation in time domain corresponds to multiplying by s in frequency domain, 
whereas integration in time domain is equivalent to division by same 𝒔.  

The identity of the transformed function has to be presented, and the exponential 
function comes in handy! This is because it is the only function in all of mathematics that 
has the unique character of retaining its identity upon differentiating or integrating 

(
𝑑𝑒𝑎𝑡

𝑑𝑡
= 𝑎𝑒𝑎𝑡 ⟺ ∫𝑒𝑎𝑡 𝑑𝑡 =

𝑒𝑎𝑡

𝑎
), [note how the function is reproduced (reappears) in 

the foregoing two operations in parenthesis].  

For a given function 𝑓(𝑡) in time domain, its Laplace transform is 

                              ℒ𝑓(𝑡) = 𝐹(𝑠) = ∫ 𝑓(𝑡)
∞

0−
𝑒−𝑠𝑡𝑑𝑡                                              1.0 

On the frequency domain (s domain). 

This is the article of faith, our working tool which is strictly a definition, so do not ask for 
a ‘’proof” since none is required for a defined relation. 

A given function, when Laplace transform, has a unique value, so the use of Laplace 
transform table is a perfectly valid method of getting the answer (response) back into the 
original time domain which by reason of habit is presumed to be more familiar. An 
analogous situation is the process of multiplication or division whereby the logarithm 
table (found as part of the four-figure table in use up until a few decades back when it 
got to be supplemented by the laziness-inducing handheld pocket “calculator”) is used to 
convert inconvenient numbers to simpler numbers equivalent to raising 10 to other 
numbers. Law of indices then allows the resulting index numbers to be added (or 
subtracted), and the result then determined by employing an antilog table.  
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Since a given function has a unique value when Laplace transformed, the use of an 
inverse transform table is a perfectly valid method of getting the transformed result (s 
domain) back into the original time domain.  

 For a given function 𝑓(𝑡), its two-sided Laplace transform is defined to be.  

                                       ℒ𝑓(𝑡) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡
∞

−∞

𝑑𝑡 = 𝐹(𝑠)                                  1.1  

Where the upper-case letter is used to designate the transformed function. Note once 
again, this purely a definition, so no “proof” is required. However, its validity would be 
established if we step back a bit and show how to traverse from time domain to 
frequency (s) domain by subsuming or suppressing an 𝑒𝑠𝑡 (exponential 𝑠𝑡) factor.  

A general damped sinusoidal (i.e. time varying) function, say a voltage signal can be 
written as: 𝑣(𝑡) = 𝑉𝑚 𝑒

𝜎𝑡 cos(𝜔𝑡 + 𝜃) (the cosine is the conventional trigonometric 
function employed in the analysis, not the sine),  where 𝑉𝑚 is the maximum value 
(amplitude), 𝑒𝜎𝑡 is the damping function (𝜎 the damping factor necessarily taken to be 
negative for positive time since any given signal must of necessity converge (ultimately to 
zero value) in the absence of reinforcing factor], 𝜔 (Greek alphabet omega, not “double-
u”) is the radian frequency in rad/s [𝜔 = 2𝜋𝑓],  𝑓 being the cyclic frequency in cycles per 
second (hertz); and 𝜃 is the phase angle of the given voltage signal with respect to the 
current assumed to have zero phase (angle). It can be written in degrees or radians, 
although the letter is more acceptable.  

By Euler’s identity: 

    𝑒𝑗𝛽 = cos 𝛽 + 𝑗 sin 𝛽     1.2 

The sinusoidal function cos(𝜔𝑡 + 𝜃) can be written as:  

cos(𝜔𝑡 + 𝜃) = 𝑅𝑒 {cos(𝜔𝑡 + 𝜃)  + 𝑗 sin(𝜔𝑡 + 𝜃)} 

= 𝑅𝑒 {𝑒𝑗(𝜔𝑡+𝜃) } 

So,    𝑣(𝑡) = 𝑉𝑚𝑒
𝜎𝑡 cos(𝜔𝑡 + 𝜃) = 𝑅𝑒 {𝑉𝑚𝑒

𝜎𝑡 𝑒𝑗(𝜔𝑡+𝜃)} 

                                            = 𝑅𝑒 {𝑉𝑚 𝑒
𝑗𝜃 𝑒(𝜎+𝑗𝜔𝑡)}                                                   1.3 

𝑠 = 𝜎 + 𝑗𝜔 is known as complex frequency, where 𝜎 is the neper frequency, and 𝜔 
(omega, not “w”) is radian frequency as previously mentioned 𝜎 is the real part, and 𝜔 
(not 𝑗𝜔) the imaginary part.  

𝑣(𝑡) can then be expressed as:  

𝑣(𝑡) = 𝑅𝑒 {𝑉𝑚 𝑒
𝑗𝜃𝑒𝑠𝑡} 
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For the general expression of 𝑣(𝑡) as a damped sinusoidal, if 𝑠 = 𝜎 + 𝑗𝜔 = 0, so that 
both 𝜎 and 𝜔 are zero, then we have simply:  

𝑣(𝑡) = 𝑉𝑚 𝑒
(0)𝑡 cos(0 + 𝜃) = 𝑉𝑚 cos 𝜃 = 𝑉0, 

A constant which means a d.c. (direct current) signal.  

With 𝑠 = 0 + 𝑗𝜔 (𝜎 − 0) 

𝑣(𝑡) = 𝑉𝑚 cos(𝜔𝑡 + 𝜃) 

A purely sinusoidal signal (with no damping factor).  

For 𝑠 = 𝜎 + 𝑗0 (𝜔 = 0),  

𝑣(𝑡) = 𝑉𝑚 𝑒
𝜎𝑡 cos 𝜃 = 𝑉0𝑒

𝜎𝑡, just a damped exponential signal with no sinusoidal factor.  

Example 1.1: Given that circuit in Fig. 1.1 takes us on a journey from time domain to 
frequency domain to get to a forced current response with a given input voltage.  

4 Ω 6 H

0.2 F
𝑣(𝑡) = 60𝑒−2𝑡 cos(4𝑡 + 20°) V 

i(t)

  

Figure 1.1 

 

The voltage source in Fig. 1.1 is a fully damped (exponential) sinusoidal signal and we 
desire to determine the series current as the forced response. 

We already know that in circuit analysis in time domain, that the forced response of a 
given signal assumes the same character as the input signal, it would have the same 
radian frequency and sinusoidal nature, differing only, perhaps in the amplitude and 
possibly the phase angle. Therefore, one needs only determine the amplitude and phase 
to be able to readily but down the expression for the forced response:  

𝑖(𝑡) = 𝐼𝑚 𝑒
−2𝑡 cos(4𝑡 + 𝜃)  𝑎𝑛𝑑 𝐼𝑚, the maximum current (amplitude) and phase (𝜃) 

are the only factors we need to determine from the input (nature).  

   𝑣(𝑡) = 𝑅𝑒 {60 𝑒−2𝑡𝑒𝑗(4𝑡 + 10°)} = 𝑅𝑒{60 𝑒𝑗10
°
𝑒(−2+𝑗4)𝑡 }                  1.4 

= 𝑅𝑒{𝑉⃗  𝑒𝑠𝑡} 

where 𝑣 = 60∠20° is the polar representation of the voltage vector, and 𝑠 = −2 + 𝑗4 



   
  Circuit Analysis with Laplace Transform 

4 
 

𝑅𝑒 ⟹ 60∠20°𝑒𝑠𝑡 merely for convenience.  

Similarly, 𝑖(𝑡) “equals” 𝐼 𝑒𝑠𝑡, where 𝐼 = 𝐼𝑚 ∠∅,  

KVL: 

                               𝑣(𝑡) = 4𝑖 + 6
𝑑𝑖

𝑑𝑡
+ 5∫ 𝑖 𝑑𝑡                                 (𝑅𝑒𝑚𝑎𝑟𝑘:

1

0.2
= 5) 

Substituting,  

60∠20°𝑒𝑠𝑡 = 4𝐼𝑒𝑠𝑡 + 6𝑠 𝐼𝑒𝑠𝑡 +
5

𝑠
𝐼𝑒𝑠𝑡 

60∠20° = 4𝐼 + 6𝑠𝐼 +
5

𝑠
𝐼 

𝐼 =  
60∠20°

4 + 6𝑠 +
5
𝑠

=
60∠20°

4 + 6(−2 + 𝑗4) + 
5

(−2 + 𝑗4)

 

=
60∠20°

4 − 12 + 𝑗24 + 5 ×
(−2 − 𝑗4)

20

=
60∠20°

−8.5 + 𝑗23
=
120∠20°

17 + 𝑗46
 

=
120∠20°

49.04∠110.28°
= 2.45∠−90.28° 

So, the two qualities that we set out to determine, namely, 𝐼𝑚 and ∅ are 2.45 A and 

−90.28°, respectively, and the time domain expression for 𝑖(𝑡) is:  

𝑖 (𝑡) = 2.45𝑒−2𝑡 cos(4𝑡 − 90. 28°) A 

In the foregoing Example 1.1, the extreme usefulness of Laplace transform was 
demonstrated as we shall soon see. Searchlight was also beamed on the exponential 
function as the pivotal factor in the definition of Laplace transform, albeit the negative 
factor.    

For first order and some second order differential equations in time domain, given the 
initial conditions one in the case of 1st-order equation, and two for 2nd-order the 
response can be determined in relatively straightforward manner working in time 
domain, but for higher order differential equations, the process can be rather tedious 
and/or cumbersome. So, here Laplace transform comes in handy, and possesses a further 
advantage of delivering the complete response in one fell swoop, considering the initial 
conditions, and the forced response. This contrast with the time domain analysis where 
the component parts of the complete response had to be delivered piecemeal!  
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1.1 Definition of Laplace Transform 

Because Laplace transform is valid only for positive values of time, its defining equations 
is as seen in Eq. 1.1:  

ℒ𝑓(𝑡) = ∫ 𝑓(𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡, 

The lower limit of integration being 0−rather than just 0, in order to consider any 
discontinuities and higher-order singularities that might occur at (exactly) time zero. 
Also, taking the lower limit of integration to be precisely zero might work for certain 
functions, but might get us in trouble with some peculiar or improper function 

For the purpose of comparing and contrasting let’s do one example before learning two 
sided  

Example 1.2: Determine the two-sided Laplace transform of the function  

𝑓(𝑡) = −2𝑒−3𝑡[𝑢 (𝑡 + 3) − 𝑢 (𝑡 − 2)] 

Solution: 

ℒ𝑓(𝑡) = −2∫ 𝑒−3𝑡
∞

−∞

[𝑢 (𝑡 + 3) − 𝑢(𝑡 − 2)]𝑒−𝑠𝑡𝑑𝑡  

   = −2 ∫ 𝑒−3𝑡
∞

−3
 𝑒−𝑠𝑡 𝑑𝑡 − ∫ 𝑒−3𝑡

∞

2
 𝑒−𝑠𝑡 𝑑𝑡  

𝑢(𝑡 + 3) = {
0, 𝑡 < −3
1, 𝑡 ≥ −3

  

𝑢 (𝑡 − 2) = {
0, 𝑡 < 2
1, 𝑡 ≥ 2

} 

ℒ𝑓(𝑡) = −2∫ 𝑒−(𝑠+3)𝑡
∞

−3

 𝑑𝑡 − ∫ 𝑒−(𝑠+3)𝑡 
∞

2

𝑑𝑡 

= −2(
𝑒−(𝑠+3)𝑡

−(𝑠 + 3)
|
−3

∞

−
𝑒−(𝑠+3)𝑡

−(𝑠 + 3)
|
2

∞

) 

= −2(0 −
𝑒−(𝑠+3)(−3)

−(𝑠 + 3)
+ 0 −

𝑒−(𝑠+3)(2)

(𝑠 + 3)
) 

=
−2

𝑠 + 3
× (𝑒3𝑠+9 − 𝑒−2𝑠−6) 
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=
−2

𝑠 + 3
× (𝑒−2𝑠−6 − 𝑒3𝑠+9) 

Example 1.3: Determine the one-sided Laplace Transform of Example 1.2.  

Solution:  

ℒ𝑓(𝑡) = −2(∫ 𝑒−(𝑠+3)𝑡 𝑑𝑡 − ∫ 𝑒−(𝑠+3)𝑡𝑑𝑡
∞

2

∞

0

) 

−2(∫ 𝑒−(𝑠+3)𝑡𝑑𝑡 − ∫ 𝑒−(𝑠+3)𝑡
∞

2

∞

0−

𝑑𝑡) 

= −2 [
𝑒−(𝑠+3)𝑡 

−(𝑠 + 3)
|
0

∞

−
𝑒−(𝑠+3)𝑡

−(𝑠 + 3)
|
2

∞

] 

= −2 [(0—
1

−(𝑠 + 3)
) + (0 −

𝑒−(𝑠+3)(2)

𝑠 + 3
)] =

2

𝑠 + 3
[𝑒−2𝑠−6 − 1] 

Note: the first (exponential) expressions are identical for both the two sided and one 
sided but the second terms differ because the limits of integration for the first integral 
expression are taken from 0− to ∞ for the one-sided ignoring from −3 to 0−, resulting in 
1

(𝑠+3)
, whereas these limits are included for the two-sided.  

 

1.2 Comparing Time Domain and S-Domain Analysis 

Example 1.4: Determine the response 𝑖(𝑡) for the circuit of Fig. 1.2. 

1

16
 F 

4Ω 

𝑢(𝑡) V  

+ 

𝒗𝒄(𝒕) 

-  
𝑣0(0

−) = 9 V  𝒊(𝒕) 

 

Figure 1.2 

Solution:  𝑢(𝑡) = 14𝑖 + 16∫ 𝑖 (𝑡)𝑑𝑡 
𝑡

−∞
(initial energy storage in the capacitor is 

accounted for, from time −∞ to 0)  

Differentiate across:   𝛿(𝑡) = 4
 𝑑𝑖(𝑡)

𝑑𝑡
+ 4𝑖(𝑡)                                                                      
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   ⟹               0 =
𝑑𝑖(𝑡)

𝑑𝑡 
+ 4𝑖(𝑡), 

and zero input here means that complete response is the same as the natural response 
since the forcing function is implicitly zero.  

                                      𝛿(𝑡) = 0,                        𝑡 ≠ 0 (i. e    t = 0+) 

𝑖(𝑡) = 𝐾𝑒−4𝑡  

𝑖(0) =
(1 − 9)𝑉

4Ω
= −2𝐴 = 𝐾𝑒𝑜 = 𝐾 

⟹    𝑖(𝑡) = 2𝑒−4𝑡 𝑢(𝑡) A 

By Laplace transform  

𝑢(𝑡) = 𝑖(𝑡) + 16 ∫ 𝑖 (𝑡)𝑑𝑡
𝑡

−∞

 

The limits of integration here have to be properly readjusted to apply the transform:  

𝑢(𝑡) = 4𝑖(𝑡) + 16 [∫ 𝑖(𝑡)𝑑𝑡 
0−

−∞

+∫ 𝑖 (𝑡)𝑑𝑡
𝑡

0−

] 

The second term on the right represent the initial capacitor voltage, 9 V  

𝑢(𝑡) = 4𝑖(𝑡) + 𝑣 (0−) + 16 ∫ 𝑖 (𝑡)𝑑𝑡
𝑡

0−

 

Laplace transforming:  

1

𝑠
= 4𝐼(𝑠) +

9

𝑠
+ 16

𝐼(𝑠)

𝑠
  

(Note: these Laplace transform will be derived later) 

4𝐼(𝑠) + 16𝐼(𝑠)
1

𝑠
=
1

𝑠
−
9

𝑠
= −

8

𝑠
 

𝐼(𝑠) + 4𝐼(𝑠)
1

𝑠
= −

2

𝑠
 

⟹ 𝐼(𝑠) = (−
2

𝑠
) × (

𝑠

𝑠 + 4
) 

= −
2

(𝑠 + 4)
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𝐼(𝑠) = −
2

(𝑠 + 4)
⟹ −2𝑒−4𝑡𝑢(𝑡) A = 𝑖(𝑡),               as before 

 

1.3 Laplace Transforms of Common Functions 

1. The Heaviside unit step function 𝒖(𝒕), already encountered earlier in 
examples:  

ℒ 𝑢(𝑡) =  ∫ 𝑒−𝑠𝑡
∞

0−

𝑢(𝑡)𝑑𝑡 = ∫ 𝑒−𝑠𝑡
∞

0

(1)𝑑𝑡                            1.5 

(Note: 𝑢(𝑡) takes on the value of unity from 𝑡 = 0)  

∫ 𝑒−𝑠𝑡
∞

0−

𝑑𝑡 =
𝑒−𝑠𝑡

−𝑠
|
0

∞

= 0 − −
1

𝑠
=
1

𝑠
= ℒ 𝑢(𝑡) 

2. The ramp function 𝒕 𝒖(𝒕) 

∫ 𝑒−𝑠𝑡
∞

0−

𝑡𝑢(𝑡)𝑑𝑡 = ∫ 𝑡𝑒−𝑠𝑡 𝑑𝑡
∞

0

 

Employing integration by parts:  [∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣 𝑑𝑢] 

𝑢 = 𝑡; 𝑑𝑣 = 𝑒−𝑠𝑡 𝑑𝑡 

𝑑𝑢 = 𝑑𝑡, 𝑣 = −
𝑒−𝑠𝑡

𝑠
 

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 

∫ 𝑡𝑒−𝑠𝑡𝑑𝑡
∞

0

=
−𝑡𝑒−𝑠

𝑠
|
0

∞

−∫ (−
𝑒−𝑠𝑡

𝑠
)

∞

0

𝑑𝑡 

= 0 − 0 +
1

𝑠
∫ 𝑒−𝑠𝑡
∞

0

𝑑𝑡 =
1

𝑠
(
1

𝑠
) =

1

𝑠
 

Addendum: differentiation in the frequency domain 

𝑑

𝑑𝑠
𝐹(𝑠) =

𝑑

𝑑𝑠
∫ 𝑒−𝑠𝑡
∞

0−
𝑓(𝑡)𝑑𝑡 = ∫ −𝑡𝑒−𝑠𝑡

∞

0−
𝑓(𝑡)𝑑𝑡 

= ∫ 𝑒−𝑠𝑡
∞

0−
[−𝑡𝑓(𝑡)]𝑑𝑡 = ℒ[−𝑡𝑓(𝑡)] 

This shows that differentiating with respect to 𝑠 in the frequency domain, is equivalent to 
multiplying by (−𝑡) in the time domain, or  

⟹  ℒ𝑡𝑓(𝑡) = −
𝑑

𝑑𝑠
𝐹(𝑠) = −𝐹′(𝑠) 
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Example 1.5: Find the  ℒ𝑡𝑢 (𝑡) 

 Solution  

If ℒ𝑡𝑢(𝑡) =
1

𝑠2
 , then  ℒ[𝑡2𝑢(𝑡)] = −

𝑑

𝑑𝑠
(
1

𝑠2
), 

Where 𝑓 (𝑡) = 𝑡2𝑢(𝑡) 

−
𝑑

𝑑𝑠
(
1

𝑠2
) = −

𝑑

𝑑𝑠
(𝑠2) = − − 2𝑠−3 =

2

𝑠3
 

Check:   ℒ𝑡[𝑡𝑢(𝑡)] = ℒ𝑡2𝑢 (𝑡) =
𝑛1

𝑠𝑛+1
|
𝑛=2

=
2

𝑠3
 

ℒ𝑡3𝑢(𝑡) = ℒ𝑡[𝑡2𝑢(𝑡)] = −
𝑑

𝑑𝑠
(
2

𝑠3
) = −

𝑑

𝑑𝑠
2(−3)𝑠−3−1 =

6

𝑠4
 

Check: ℒ𝑡3 =
3

𝑠3+1
=

6

𝑠4
 

ℒ𝑡4𝑢(𝑡) = ℒ𝑡[𝑡3𝑢(𝑡)] = −
𝑑

𝑑𝑠
(
6

𝑠4
) = −

𝑑

𝑑𝑠
(6(−4)𝑠−4−1) =

24

𝑠5
 

 

Check: 

ℒ 𝑡4𝑢(𝑡) =
4

𝑠4 + 1
=
24

𝑠5
 

⟹                                       ℒ𝑡𝑛𝑢(𝑡) =
𝑛!

𝑠𝑛+1
  earlier proven                                  

By replacing 𝑛 by 𝑛 − 1 (i.e, 𝑛 + 1 by 𝑛),  

                                        ℒ𝑡𝑛𝑢(𝑡) =
(𝑛 − 1)!

𝑠𝑛
                                            1.6 

Example 1.6:  Find the LT of  𝑡2𝑢(𝑡 − 3). 

Solution 

           𝑡2𝑢 (𝑡 − 3) = [(𝑡 − 3)2 + 6(𝑡 − 3) + 9]𝑢 (𝑡 − 3) 

                                   = (𝑡 − 3)2. 𝑢(𝑡 − 3) +  6(𝑡 − 3)𝑢 (𝑡 − 3) + 9 𝑢 (𝑡 − 3) 

            ℒ 𝑡2𝑢 (𝑡 − 3) = ℒ(𝑡 − 3)2. 𝑢(𝑡 − 3) +  6ℒ(𝑡 − 3). 𝑢(𝑡 − 3)  + 9ℒ𝑢(𝑡 − 3)   

= 𝑒−3𝑠 [
2

𝑠3
 +

6

𝑠2
+
9

𝑠
] 

            Alliteratively          ℒ 𝑡2𝑢 (𝑡 − 3) = 𝑒−3𝑠ℒ (𝑡 − 3)2 = 𝑒−3𝑠ℒ[𝑡2 + 6𝑡 + 9]         
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= 𝑒−3𝑠 [
2

𝑠3
+
6

𝑠2
+
9

𝑠
]        

 

Example 1.7:  Find the Laplace transform of cos 6t 

Solution 

ℒ cos 6𝑡 =
𝑠

𝑠2 + 36
 

 
Example 1.8:  Find the Laplace transform of cos2t. 

Solution                         

                                                                    cos 2𝑡 = 2 𝑐𝑜𝑠2𝑡 − 1 

              ∴                                                    𝑐𝑜𝑠2 𝑡 =
1

2
 [cos 2𝑡 + 1 ] 

ℒ(𝑐𝑜𝑠2𝑡) = ℒ [
1

2
(cos 2𝑡 + 1)] =

1

2
 [ℒ(cos 2𝑡) + ℒ(1)] 

=
1

2
[

2

𝑠2  +  (2)2 
+
1

𝑠
]  =

1

2
[

2

𝑠2  +  4 
+
1

𝑠
] 

 

3. The exponential function 𝒆𝒂𝒕 with a constant:  

∫ 𝑒−𝑠𝑡 𝑒𝑎𝑡
∞

0−
𝑑𝑡 = ∫ 𝑒−

𝑠−𝑎
𝑡

∞

0−
𝑑𝑡 =

𝑒−(𝑠−𝑎)𝑡

−(𝑠 − 𝑎)
|
0−

∞

 

= 0 − −
1

𝑠 − 𝑎
=

1

𝑠 − 𝑎
= ℒ𝑒𝑎𝑡 

The Implicitly, ℒ𝑒−𝑎𝑡 =
1

𝑠 + 𝑎
                                                                         

As an exercise break cos 𝑎𝑡 above into its “ruler parts”  
(𝑒𝑗 𝑎𝑡+𝑒−𝑗 𝑎𝑡)

2
  and then integrate 

procedure, to get the same answer as in (3) above. (It might necessitate complex 
numbers!) 

 

4. Laplace transform of a derivative time differentiating theorem  

ℒ 
𝑑𝑓 (𝑡)

𝑑𝑡
= ℒ 𝑓′(𝑡) = ∫ 𝑒−𝑠𝑡 𝑓′(𝑡)𝑑𝑡

∞

0−
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𝑢 = 𝑒−𝑠𝑡, 𝑑𝑢 = −𝑠𝑒−𝑠𝑡 𝑑𝑡, 𝑑𝑣 = 𝑓′(𝑡)𝑑𝑡, 𝑣 = 𝑓(𝑡) 

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 = 𝑒−𝑠𝑡𝑓(𝑡)|0−
∞ + 𝑠∫ 𝑒−𝑠𝑡

∞

0−

 𝑓 (𝑡) 

The integral term on the right is simply the Laplace transform of 𝑓(𝑡), which is 𝐹(𝑠) 

So, ℒ 𝑓′(𝑡) = 0 − 𝑒0𝑓(0−) + 𝑠𝐹(𝑠) 

    = 𝑠𝐹(𝑠) − 𝑓(0−) 

The transform of the second derivative of 𝑓(𝑡), that is 𝑓′(𝑡) =
𝑑2𝑓(𝑡)

𝑑𝑡2
, may be solved 

either by interpolation or by direct application of the defining formula for Laplace 
transform using integration by parts: 

By interpolation,  

ℒ 𝑓′′(𝑡) = 𝑠[𝑠𝐹(𝑠) − 𝑓(0−)] − 𝑓′(0−) 

ℒ 𝑓′′(𝑡) = 𝑠2𝐹(𝑠) − 𝑠𝑓 (0−) − 𝑓′(0) 

ℒ 𝑓′′′(𝑡) = 𝑠[𝑠2𝐹(𝑠) − 𝑠𝑓(0−) − 𝑓′(0−)] − 𝑓′′(0−) 

ℒ𝑓′′′(𝑡) = 𝑠3𝐹(𝑠) − 𝑠2𝑓 (0−) − 𝑠 𝑓′(0−) − 𝑓′′(0−) 

For with derivative  

ℒ𝑓𝑛(𝑡) = 𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0−) − 𝑠𝑛−2𝑓′(0−) − 𝑠𝑛−3 𝑓′′(0−)…

−𝑠𝑓𝑛−2 (0−) − 𝑓𝑛−1(0−)
 

Follow the pattern: from the second term on the indices of 𝑠 and 𝑓(0−) are homogenous 
in add up to  𝑛 − 1,  terminating where s takes up the zeroth index (𝑠0 = 1) and 𝑓(0−) 
therefore with (𝑛 − 1) index. 

 

5. Laplace transform of an integral: Time-integration theorem  

ℒ𝑓−1(𝑡) = ℒ [∫ 𝑓(𝑥)𝑑𝑥 
𝑡

0

] = ∫ 𝑒−𝑠𝑡  [∫ 𝑓(𝑥)𝑑𝑥
𝑡

0

]
∞

0

𝑑𝑡  

𝑢 = ∫ 𝑓(𝑥)𝑑𝑥 ⟹
𝑡

0

𝑑𝑢 = 𝑓(𝑡)𝑑𝑡 

𝑑𝑣 = 𝑒−𝑠𝑡 

⟹ 𝑣 = −
𝑒−𝑠𝑡

𝑠
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⟹                 ℒ𝑓−1(𝑡) = [∫ 𝑓 (𝑥)𝑑𝑥
𝑡

0

] (−
𝑒−𝑠𝑡

𝑠
) +

1

𝑠
∫ 𝑒−𝑠𝑡
∞

0−
 𝑓(𝑡)𝑑𝑡                   

Again, the integral expression on the far right in simply the Laplace transform of 𝑓(𝑡), the 

zeroth derivative, making that whole second term equal to 
𝐹(𝑠)

𝑠
. The first term is slightly 

tricky and must be evaluated carefully. Bear in mind that here, x is a dummy variable 
whereas t is the operating variable. 

[−𝑒−𝑠𝑡∫ 𝑓(𝑥)𝑑𝑥
𝑡

0

]
0

∞

= −0 −− [𝑒0∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
0−

0

0−

0

] 

And thus, is simply the integral of 𝑓(𝑡) evaluated at 0− 

                       ℒ ∫ 𝑓(𝑥)𝑑𝑥 = ℒ𝑓−1(𝑡) =
𝐹(𝑠)

𝑠
+
𝐹−1(0−)

𝑠

𝑡

0

                                   1.7 

Table 1.1 

Properties of the Laplace transform 

Property 𝑓(𝑡) 𝐹(𝑠) 

Linearity  𝑎1𝑓1(𝑡) + 𝑎2𝑓2(𝑡) 𝑎2𝑓2(𝑠) + 𝑎2𝐹2(𝑠) 

Scaling  𝑓(𝑎𝑡) 1

𝑎
𝐹 (
𝑠

𝑎
) 

Time shift  𝑓(𝑡 − 𝑎)𝑢(𝑡 − 𝑎) 𝑒−𝑎𝑠𝐹(𝑠) 

Frequency shift 𝑒∓𝑎𝑡𝑓(𝑡) 𝐹(𝑠 ± 𝑎) 

Time differentiation  𝑑𝑓

𝑑𝑡
 

𝑠𝐹(𝑠) − 𝑓(0−) 

 𝑑2𝑓

𝑑𝑡2
 

𝑠2𝐹(𝑠) − 𝑠𝑓′(0−) − 𝑓(0−) 

 𝑑3𝑓

𝑑𝑡3
 

𝑠3𝐹(𝑠) − 𝑠2𝑓(0−) − 𝑠𝑓′(0−)
− 𝑓" (0−)  

 𝑑"𝑓

𝑑𝑡"
 

𝑠𝑛𝐹(𝑠)
− 𝑠𝑛−1𝑓(0−)𝑠𝑛−2𝑓′(0−)

− ⋯− 𝑓(𝑛−1)(0−) 

Time integration  
∫ 𝑓(𝑡)𝑑𝑡
𝑡

0

 
1

𝑠
𝐹(𝑠) 
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Frequency differentiation 𝑡𝑓(𝑡) 
−
𝑑

𝑑𝑠
𝐹(𝑠) 

Frequency integration  𝑓(𝑡)

𝑡
 ∫ 𝐹(𝑠)

∞

𝑠

𝑑𝑠 

Time periodicity  𝑓(𝑡) = 𝑓(𝑡 + 𝑛𝑇) 𝐹1(𝑠)

1 − 𝑒−𝑠𝑇
 

Initial value  𝑓(0) lim
𝑠→∞

𝑠𝐹(𝑠) 

Final value  𝑓(∞) lim
𝑠→0

𝑠𝐹(𝑠) 

Convolution  𝑓1(𝑡) ∗ 𝑓2(𝑡) 𝐹1(𝑠) × 𝐹2(𝑠) 

 

Table 1.2 

Laplace transform pairs  

𝑓(𝑡) 𝐹(𝑠) 

𝛿(𝑡) 1 

𝑢(𝑡) 1

𝑠
 

𝑒∓𝑎𝑡 1

𝑠 ± 𝑎
 

𝑡 1

𝑠2
 

𝑡𝑛 𝑛!

𝑠𝑛+1
 

𝑡𝑒∓𝑎𝑡  1

(𝑠 ± 𝑎)2
 

𝑡𝑛𝑒∓𝑎𝑡 𝑛!

(𝑠 ± 𝑎)𝑛+1
 

sin𝜔𝑡 𝜔

𝑠2 + 𝜔2
 

cos𝜔𝑡 𝑠

𝑠2 + 𝜔2
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sin(𝜔𝑡 + 𝜃) 𝑠 sin 𝜃 +𝜔 cos 𝜃

𝑠2 + 𝜔2
 

cos(𝜔𝑡 + 𝜃) 𝑠 cos 𝜃 − 𝜔 sin 𝜃

𝑠2 + 𝜔2
 

𝑒∓𝑎𝑡 sin𝜔𝑡 𝜔

(𝑠 ± 𝑎)2 + 𝜔2
 

𝑒∓𝑎𝑡 cos𝜔𝑡 𝑠 + 𝑎

(𝑠 ± 𝑎)2 + 𝜔2
 

 

1.4 Laplace Transform Theorems 

1. Linearity Theorem: states that the transform the sum of functions is 
simply the sum of the transforms of the individual’s functions: 
Proof:  

ℒ [𝑓1(𝑡) + 𝑓2(𝑡)] = ∫ 𝑒−𝑠𝑡
∞

0−

[𝑓1(𝑡) + 𝑓2(𝑡)]𝑑𝑡                              1.8 

= ∫ 𝑒−𝑠𝑡 𝑓1(𝑡)𝑑𝑡 + ∫ 𝑒−𝑠𝑡𝑓2(𝑡)𝑑𝑡 = 𝑓1(𝑠) + 𝑓2(𝑠)
∞

0−

              
∞

0−

 

2. Homogeneity Property: LT of a product of a constant and a function is 
simply the product of that constant and the Laplace transform of that function:  

ℒ [𝑐𝑓 (𝑡)] = ∫ 𝑒−𝑠𝑡
∞

0−
𝑐𝑓(𝑡)𝑑𝑡 = 𝑐∫ 𝑒−𝑠𝑡

∞

0−
 𝑓(𝑡)𝑑𝑡 = 𝑐𝐹(𝑠)        1.9 

3. First-Shift (frequency shift) theorem: also called complex translation, 
states that multiplying a function by 𝑒𝑎𝑡 in the time domain, results in subtracting 
a form 𝑠 in the frequency domain after Laplacing the original unmultiplied 
function. 
Proof:  

                       ℒ[𝑒𝑎𝑡𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡
∞

0

 𝑒𝑎𝑡𝑓(𝑡)𝑑𝑡                                  1.10 

= ∫ 𝑒−(𝑠−𝑎)𝑡 𝑓 (𝑡)𝑑𝑡 
∞

0−
 

But,    

∫ 𝑒−𝑠𝑡
∞

0−
𝑓(𝑡)𝑑𝑡 = 𝐹(𝑠), so logically,                                    

∫ 𝑒−(𝑠−𝑎)𝑡 
∞

0−
𝑓(𝑡)𝑑𝑡 = 𝐹(𝑠 − 𝑎),                                                        

Where (𝑠 − 𝑎) has replaced 𝑠 in the exponential term. 
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4. Unit Step Function 
Laplace Transform of units’ step functions 

ℒ [𝑢(𝑡 − 𝑎)] =
𝑒−𝑎 𝑠

𝑠
 

       Proof.  

ℒ [𝑢(𝑡 − 𝑎)] = ∫ 𝑒−𝑠𝑡 𝑢(𝑡 − 𝑎) 𝑑𝑡 
∞

0

 

= ∫ 𝑒−𝑠𝑡 . 0  𝑑𝑡 
∞

0

+  ∫ 𝑒−𝑠𝑡 .  1  𝑑𝑡 
∞

𝑎

= 0 + [
𝑒−𝑠𝑡

𝑠
]
𝑎

∞

 

ℒ [𝑢(𝑡 − 𝑎)] =
𝑒−𝑎𝑠

𝑠
 

With the help of unit step functions, we can find the  

a
𝑤ℎ𝑒𝑟𝑒 𝑎 ≥ 0 

0

1

u(t-a)

                                                                                   

Figure 1.3 

 

Inverse transform of functions, which cannot be determined 

 with previous methods. 

          The unit step functions 𝑢 (𝑡 − 𝑎) is define as follows: 

𝑢(𝑡 − 𝑎) = {
𝑜   𝑤ℎ𝑒𝑛  𝑡 ≤ 𝑎
1  𝑤ℎ𝑒𝑛   𝑡 ≥ 𝑎

}                                        𝑤ℎ𝑒𝑟𝑒  𝑎 ≥ 0 

 

Example 1.9: Express the following in terms of unit step function and find its Laplace 

transform:                                         𝑓 (𝑡) = [
8,         𝑡 ≤ 2
6,          𝑡 ≥ 2

] 

          Solution:                 𝑓(𝑡) = [
8 + 0         𝑡 ≤ 2
8 − 2         𝑡 ≥ 2

] 

                                                = 8 + [
0          𝑡 ≤ 2
−2       𝑡 ≥ 2

] 

                                                 = 8 − 2 𝑢 (𝑡 − 2) 
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ℒ𝑓 (𝑡) = 8ℒ(1) − 2ℒ(𝑡 − 2) =
8

𝑠
−  2 

𝑒−2𝑠

𝑠
 

Example 1.10: Draw the graph of  𝑢(𝑡 − 𝑎) − 𝑢 (𝑡 − 𝑏) 

Solution: 

  The graph of 𝑢(𝑡 − 𝑎) is a straight line from A to ∞. Similarly, the graph of 𝑢(𝑡 − 𝑏) a 
straight line from B to ∞.                                                     

a0

1

b

A B

t

f(t)

 

Figure 1.4 

 

Hence, the graph of 𝑢[𝑡 − 𝑎] − 𝑢[𝑡 − 𝑏] is AB. 

Example 1.11: Express the following functions in terms of unit step function and find its 
Laplace transform: 

                                          𝑓 (𝑡) = [
𝐸        𝑎 ≤ 𝑡 ≤ 𝑏
0               𝑡 > 𝑏

] 

        Solution.                 𝑓 (𝑡) = [
𝐸        𝑎 ≤ 𝑡 ≤ 𝑏
0               𝑡 > 𝑏

] = 𝐸 [𝑢(𝑡 − 𝑎) − 𝑢(𝑡 − 𝑏)]  

ℒ𝑓 (𝑡) = 𝐸 [
𝑒−𝑎𝑠

𝑠
−
𝑒−𝑏𝑠

𝑠
]                                            

Example 1.12: Express the following function in terms step function: 

𝑓 (𝑡) = [
𝑡 − 1        1 ≤ 𝑡 ≤ 2
3 − 𝑡        2 ≤ 𝑡 ≤ 3
0               𝑡 > 3

]                          

 and find its Laplace transform 

Solution:     
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𝑓(𝑡) = [
𝑡 − 1        1 ≤ 𝑡 ≤ 2
3 − 𝑡        2 ≤ 𝑡 ≤ 3
0               𝑡 > 3

]                          

= (𝑡 − 1)[𝑢(𝑡 − 1) − 𝑢(𝑡 − 2)] + (3 − 𝑡)[𝑢(𝑡 − 2) − 𝑢(𝑡 − 3)] 

= (𝑡 − 1) 𝑢(𝑡 − 1) − (𝑡 − 1) 𝑢(𝑡 − 2) + (3 − 𝑡) 𝑢(𝑡 − 2) + (𝑡 − 3) 𝑢(𝑡 − 3) 

= (𝑡 − 1) 𝑢(𝑡 − 1) − 2(𝑡 − 2) 𝑢(𝑡 − 2) + (𝑡 − 3) 𝑢(𝑡 − 3) 

ℒ𝑓(𝑡) =
𝑒−𝑠

𝑠2
− 2

𝑒−2𝑠

𝑠2
+
𝑒−3𝑠

𝑠2
 

 

4. Second Shift (Time-Shift) Theorem: also called real translation, states that 
shifting a function by time c in the time domain and multiplying the result by an 
equally shifted unit step function, is equivalent to multiplying the Laplace 
transform of the original un-shifted function by the exponential of (−𝑐𝑠):   

Proof:  

        ℒ[𝑓(𝑡 − 𝑐)𝑢(𝑡 − 𝑐)] = ∫ 𝑒−𝑠𝑡
∞

0−
 𝑓(𝑡 − 𝑐)𝑢(𝑡 − 𝑐)𝑑𝑡                1.11 

But 𝑢(𝑡 − 𝑐)” switches on” at 𝑡 = 𝑐 to a value of simply unity resulting in the lower 
integral limit of c instead of 0- 

Let 𝑡′ = 𝑡 − 𝑐, where 𝑡 is known as a “dummy” variable. So 𝑑𝑡′ = 𝑑𝑡 − 0 = 𝑑𝑡,  

ℒ = ∫ 𝑒−𝑠(𝑡
′+𝑐)

∞

𝑐

 𝑓(𝑡′) 𝑑𝑡′are what after the change of variables results 

ℒ[ 𝑓(𝑡 − 𝑐)𝑢(𝑡 − 𝑐)] = 𝑒−𝑠𝑐 ∫ 𝑒−𝑠𝑡
∞

𝑐−
 𝑓(𝑡)𝑑𝑡′ not exactly in the “shape” of Laplace 

transform since the lower limit (of t, not t) is c instead if 0−. This lower limit c, has to 
be properly adjusted to 𝑐− to account for the fact that the lower limit for the 
transform expression is 0− and not 0.  

But 𝑡 = 𝑐− ⟹ 𝑡′ = 𝑡 − 𝑐 = 𝑐− − 𝑐 = 0− and so 𝑐− for 𝑡 variables correspond to 0− 
for 𝑡 variables we’re finally able to express.  

ℒ[𝑓(𝑡 − 𝑐)𝑢(𝑡 − 𝑐)] = 𝑒−𝑠𝑐∫ 𝑒−𝑠𝑡
∞

0−
 𝑓(𝑡′)𝑑𝑡′ 

And the integral expression is still a Laplace transform regardless of the name given 
to the variable of the moment! (The variable t is not sacrosanct but only seemed so 
on the account of the fact that ‘t’ is used to represent line a symbol!) 
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                       ℒ[𝑓(𝑡 − 𝑐)𝑢 (𝑡 − 𝑐)] = 𝑒−𝑠𝑐𝐹(𝑠)                                      1.12 

Example 1.13: A function 𝑓(𝑡) is defined by  𝑓(𝑡) = {
 4               0 ≤ 𝑡 ≤ 2
2𝑡 − 3              2 > 𝑡

} 

Sketch the graph of the function and determine its LT.  

Solution: We see that for 𝑡 = 0 to 𝑡 = 2, 𝑓(𝑡) = 4 

1 2 3

4

f(t)

t0

2

 
Figure 1.5 

 

Notice the discontinuity at 𝑡 = 2 

Expressing the function in unit step form:  

𝑓(𝑡) = 4𝑢(𝑡) − 4𝑢(𝑡 − 2) + 𝑢(𝑡 − 2) ∙ (2𝑡 − 3) 

Note that the second term cancels 𝑓(𝑡) = 4 at 𝑡 = 2 and that the third switches on 
𝑓(𝑡) = 2𝑡 − 3  at 𝑡 = 2 

 Before we can express this in Laplace transforms, (2𝑡 − 3) in the third term must 
be written as a function of (𝑡 − 2) to correspond to 𝑢(𝑡 − 2) . therefore, we write 2𝑡 − 3 
as 2(𝑡 − 2) + 1. 

Then  

𝑓(𝑡) = 4𝑢(𝑡) − 4𝑢(𝑡 − 2) + 𝑢(𝑡 − 2) ∙ {2(𝑡 − 2) + 1} 

= 4𝑢(𝑡) − 4𝑢(𝑡 − 2) + 𝑢(𝑡 − 2) ∙ 2(𝑡 − 2) + 𝑢(𝑡 − 2) 

= 4𝑢(𝑡) − 3𝑢(𝑡 − 2) + 𝑢(𝑡 − 2) ∙ 2(𝑡 − 2) 

ℒ{𝑓(𝑡)} =
4

𝑠
−
3𝑒−2𝑠

𝑠
+
2𝑒−2𝑠

𝑠2
 

 

Example 1.14: A function is defined by  𝑓(𝑡) = {
6          0 ≤ 𝑡 ≤ 1

8 − 2𝑡   1 ≤ 𝑡 ≤ 3    
4        𝑡 > 3       

} 

Sketch the graph and find the Laplace transform of the function. 
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Solution:  

1 2 3

4

f(t)

t0

2

6

 

Figure 1.6 

 

Expressing the graph in-unit step form we have:  

𝑓(𝑡) = 6𝑢(𝑡) − 6𝑢(𝑡 − 1) + 𝑢(𝑡 − 1) ∙ (8 − 2𝑡) 

−𝑢(𝑡 − 3) ∙ (8 − 2𝑡) + 4. 𝑢(𝑡 − 3) 

Where the second term switches off the first function 𝑓(𝑡) = 6 at 𝑡 = 1 and the third 
term switches on the second function 𝑓(𝑡) = 8 − 2𝑡,  which in turn is switched off by the 
fourth term at 𝑡 = 3 and replaced by 𝑓(𝑡) = 4 in the fifth term. 

 Before we can write down the transform of the third and fourth terms, we must 
express 𝑓(𝑡) = 8 − 2𝑡 in terms of (𝑡 − 1) and (𝑡 − 3) respectively.  

8 − 2𝑡 = 6 + 2 − 2𝑡 = 6 − 2(𝑡 − 1) 

8 − 2𝑡 = 2 + 6 − 2𝑡 = 2 − 2(𝑡 − 3) 

∴ 𝑓(𝑡) = 6𝑢(𝑡) − 6𝑢(𝑡 − 1) + 𝑢(𝑡 − 1) ∙ {6 − 2(𝑡 − 1)} − 𝑢(𝑡 − 3) ∙ {2 − 2(𝑡 − 3)}
+ 4𝑢(𝑡 − 3) 

= 6𝑢(𝑡) − 6𝑢(𝑡 − 1) + 6𝑢(𝑡 − 1) − 𝑢(𝑡 − 1) ∙ 2(𝑡 − 1) − 2𝑢(𝑡 − 3) + 𝑢(𝑡 − 3)
∙ 2(𝑡 − 3) + 4𝑢(𝑡 − 3) 

𝑓(𝑡) = 6𝑢(𝑡) − 𝑢(𝑡 − 1) ∙ 2(𝑡 − 1) + 𝑢(𝑡 − 3) ∙ 2(𝑡 − 3) + 2𝑢(𝑡 − 3) 

ℒ{𝑓(𝑡)} =
6

𝑠
−
2𝑒−𝑠

𝑠2
+
2𝑒−3𝑠

𝑠2
−
2𝑒−3𝑠

𝑠
 

Alternatively, if  
𝑓(𝑡) = 6𝑢(𝑡) − 6𝑢(𝑡 − 1) + 𝑢(𝑡 − 1) ∙ (8 − 2𝑡) − 𝑢(𝑡 − 3) ∙ (8 − 2𝑡) + 𝑢(𝑡 − 3). 4 

= 6𝑢(𝑡) − 6𝑢(𝑡 − 1) + 8𝑢(𝑡 − 1) − 2𝑡𝑢(𝑡 − 1) − 8𝑢(𝑡 − 3) + 2𝑡𝑢(𝑡 − 3) + 4𝑢(𝑡 − 3) 

= 6𝑢(𝑡) − 6𝑢(𝑡 − 1) + 8𝑢(𝑡 − 1) − 2(𝑡 + 1)𝑢(𝑡 − 1) − 8𝑢(𝑡 − 3) 
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  +2(𝑡 + 3)𝑢(𝑡 − 3) + 4𝑢(𝑡 − 3) 

ℒ{𝑓(𝑡)} =
6

𝑠
−
6

𝑠
𝑒−𝑠 +

8

𝑠
𝑒−𝑠 − 2(

1

𝑠2
+
1

𝑠
) 𝑒−𝑠 −

8

𝑠
 𝑒−3𝑠 + 2(

1

𝑠2
+
1

𝑠
) 𝑒−3𝑠 +

4

𝑠
𝑒−3𝑠 

ℒ{𝑓(𝑡)} =
6

𝑠
−
6

𝑠
𝑒−𝑠 +

8

𝑠
𝑒−𝑠 −

2

𝑠2
𝑒−𝑠 −

2

𝑠
𝑒−𝑠 −

8

𝑠
 𝑒−3𝑠 +

2

𝑠2
𝑒−3𝑠 +

2

𝑠
𝑒−3𝑠 +

4

𝑠
𝑒−3𝑠 

Collecting like terms,  

ℒ{𝑓(𝑡)} =
6

𝑠
+
1

𝑠
(−6 + 8 − 2)𝑒−𝑠 −

2

𝑠2
𝑒−𝑠 +

1

𝑠
(−8 + 2 + 4)𝑒−3𝑠 +

2

𝑠2
𝑒−3𝑠 

𝐹(𝑠) =
6

𝑠
−
2𝑒−𝑠

𝑠2
−
2𝑒−3𝑠

𝑠
+
2𝑒−3𝑠

𝑠2
 

THEOREM   ℒ[𝑓 (𝑡) 𝑢(𝑡 − 𝑎) = 𝑒−𝑠𝑎 ℒ [𝑓 (𝑡 + 𝑎)] 

          Proof:             ℒ [𝑓 (𝑡)𝑢(𝑡 − 𝑎)] = ∫ 𝑒−𝑠𝑡ℒ[𝑓 (𝑡) . 𝑢(𝑡 − 𝑎)
∞

0
] 𝑑𝑡 

= 0 +∫ 𝑒−𝑠𝑡 [𝑓(𝑡). 𝑢(𝑡 − 𝑎)
∞

0

] 𝑑𝑡 

= 0 +∫ 𝑒−𝑠𝑡. 𝑓 (𝑡)(1)𝑑𝑡
∞

0

 

= 0 +∫ 𝑒−𝑠(𝑦+𝑎) . 𝑓 (𝑦 + 𝑎) 𝑑𝑦
∞

0

= 𝑒−𝑎𝑠  ∫ 𝑒−𝑠𝑦 . 𝑓 (𝑦 + 𝑎)𝑑𝑦
∞

0

    𝑏𝑢𝑡    (𝑡 − 𝑎 = 𝑦) 

ℒ[𝑓 (𝑡)𝑢(𝑡 − 𝑎)] = 𝑒−𝑎𝑠∫ 𝑒−𝑠𝑡 𝑓(𝑡 + 𝑎)𝑑𝑡
∞

0

= 𝑒−𝑎𝑠ℒ𝑓(𝑡 − 𝑎)     𝐏𝐫𝐨𝐯𝐞𝐝. 

Example 1.15: Find the Laplace transform of 𝑡2𝑢(𝑡 − 3). 

Solution.           𝑡2. 𝑢 (𝑡 − 3) = [(𝑡 − 3)2 + 6(𝑡 − 3) + 9]𝑢 (𝑡 − 3) 

                                   = (𝑡 − 3)2 . 𝑢(𝑡 − 3) +  6(𝑡 − 3) 𝑢(𝑡 − 3) + 9 𝑢(𝑡 − 3) 

           ℒ𝑡2. 𝑢(𝑡 − 3) = ℒ(𝑡 − 3)2. 𝑢(𝑡 − 3) + 6ℒ(𝑡 − 3). 𝑢(𝑡 − 3)  + 9ℒ𝑢(𝑡 − 3)   

= 𝑒−3𝑠  [
2

𝑠3
 +

6

𝑠2
+
9

𝑠
]                                             

                  ℒ𝑡2𝑢(𝑡 − 3) = 𝑒−3𝑠ℒ (𝑡 − 3)2 = 𝑒−3𝑠ℒ[𝑡2 + 6𝑡 + 9]         

= 𝑒−3𝑠 [
2

𝑠3
 +

6

𝑠2
+
9

𝑠
]                                      
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Example 1.16: Represent 𝑓(𝑡) = 𝑠𝑖𝑛 2𝑡,   2 𝜋 < 𝑡 < 4 𝜋 and 𝑓(𝑡) = 0  otherwise, in 
terms of unit step function and then find its Laplace transform. 

           Solution: 

𝑓(𝑡) = [
sin 2𝑡         2𝜋 ≤ 𝑡 ≤ 4 𝜋
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

]          

𝑓(𝑡) = sin 2𝑡  [ 𝑢(𝑡 − 2 𝜋) − 𝑢(𝑡 − 4 𝜋)] 

                ℒ𝑓(𝑡) = ℒ sin 2 𝑡. 𝑢(𝑡 − 2 𝜋) − ℒ sin 2𝑡 . 𝑢(𝑡 − 4 𝜋) 

         = (𝑒− 2 𝜋𝑠  
1

𝑠 +   2
− 𝑒− 4 𝜋𝑠 ) 

2

𝑠3  +   4
 

= (𝑒− 2 𝜋𝑠 − 𝑒− 4 𝜋𝑠 ) 
2

𝑠3  +   4
 

5. Laplace of Polynomial Functions   

ℒ 𝑡𝑛 = ∫ 𝑡𝑛
∞

0−
 𝑒−𝑠𝑡 𝑑𝑡 

𝑣 = 𝑡𝑛, 𝑑𝑣 = 𝑛𝑡𝑛−1, 𝑑𝑣 = 𝑒−𝑠𝑡 𝑑𝑡 𝑢 =
𝑒−𝑠𝑡

𝑠
 

ℒ𝑡𝑛 =
𝑡𝑛  𝑒−𝑠𝑡

−𝑠
|
0−

∞

+
𝑛

𝑠
 ∫ 𝑡𝑛−1

∞

0−
 𝑒−𝑠𝑡 𝑑𝑡 

= 0 − −0 +
𝑛

𝑠
 ∫ 𝑡𝑛−1

∞

0−
 𝑒−𝑠𝑡 𝑑𝑡 =

𝑛

𝑠
 𝐼𝑛−1 

Where ℒ𝑡𝑛 has been conveniently designated as 𝐼𝑛, so that ∫ 𝑡𝑛−1
∞

0−
 𝑒−𝑠𝑡now 

becomes 𝐼𝑛 − 1 

Note: in evaluating the first term above, in taking the limits, the assumption has 
been made that the numerical value of s is sufficiently large to force the product 
𝑡𝑛 𝑒−𝑠𝑡 to tend to zero for the upper limit of the integral expression, as the term 
𝑒−𝑠𝑡 diminishes faster than the term 𝑡𝑛 is increasing, so that the product 
ultimately converges to zero. (The above assumption is justified on account of the 
law of energy conservation!) 

Continuing and replacing 𝑛 by 𝑛 − 1 (“mathematricks!”)  

𝐼𝑛−1 =
𝑛 − 1

𝑠
 𝐼𝑛−2 ⟹ 𝐼𝑛 = (

𝑛

3
) (
𝑛 − 1

𝑠
) 𝐼𝑛−2 

Repeating the process, and replacing 𝑛 by 𝑛 − 1,  
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𝐼𝑛−2 =
𝑛 − 2

𝑠
𝐼𝑛−3 ⟹ 𝐼𝑛 =

𝑛

3
(
𝑛 − 1

𝑠
) (

𝑛 − 2

𝑠
) 𝐼𝑛−3 

And so on. …… until, eventually, 

𝐼𝑛 =
𝑛

𝑠
(
𝑛 − 1

𝑠
) (

𝑛 − 2

𝑠
) (

𝑛 − 3

𝑠
)… . (

𝑖

𝑠
) 𝐼0 

But (do not break the rule!) 𝐼0 = ∫ 𝑡0
∞

0−
 𝑒−𝑠𝑡 𝑑𝑡 = ∫ 𝑒−𝑠𝑡

∞

0
 𝑑𝑡 =

1

𝑠
  

Which is the Laplace transform of unity earlier derived 

∴     𝐼𝑛 =
𝑛

𝑠
(
𝑛 − 1

𝑠
) (
𝑛 − 2

𝑠
) (
𝑛 − 3

𝑠
) ∙∙∙∙∙∙∙∙∙ (

1

𝑠
) (

1

2
) = (

𝑛1

𝑠𝑛
) (
1

𝑠
) 

Finally, (and mercifully), 

                                                           ℒ𝑡𝑛 =
𝑛!

𝑠𝑛+1
                                                1.13 

Example 1.17:  Find the Laplace transform of t−1/2 

              Solution: 

We know that  ℒ (𝑡𝑛) =
|𝑛 + 1

𝑠𝑛+1
                                                                     

Put  𝑛 = −
1

2
 , ℒ ( 𝑡−

1
2) =

|−
1
2 +   1

𝑠−
1
2
+1 

        =
|   
1
2

√𝑠
            =

√𝜋

√𝑠
          𝑤ℎ𝑒𝑟𝑒  |  

1

2
= √𝜋 

A very powerful tool, since functions such as constants, quadratic, parabola etc. are now 
ours for the taking as far as Laplace transforms are concerned! 

6. Multiplying a function by ‘t’:  

                           ℒ𝑡{𝑓 (𝑡)} = ∫ 𝑒−𝑠𝑡
∞

0−
 𝑡𝑓(𝑡)𝑑𝑡                                               1.14 

But 𝑡𝑒−𝑠𝑡 can be expressed as −
𝑑

𝑑𝑠
 𝑒−𝑠𝑡, with the variable now becoming 𝑠 instead of the 

more familiar 𝑡. (Take the derivative to ascertain this to be so)  

⟹ ℒ𝑡 {𝑓(𝑡)} = ∫ (−
𝑑

𝑑𝑠
 𝑒−𝑠𝑡) 𝑓(𝑡)𝑑𝑡                        

∞

0−

 

Because is once again the variable, the derivative −
𝑑

𝑑𝑠
   can now leave the integral sign, 

resulting in,  
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ℒ𝑡𝑓(𝑡) = −
𝑑

𝑑𝑠
∫ 𝑒−𝑠𝑡
∞

0−

𝑓(𝑡)𝑑𝑡.      

We once again recognize the integral expression as simply our old friend the Laplace 
transform of 𝑓(𝑡). 

                             ⟹ ℒ𝑡𝑓(𝑡) = −
𝑑

𝑑𝑠
𝐹(𝑠) = −𝐹′(𝑠)                                 1.15 

By the same reasoning, interpolating,  

ℒ𝑡2𝑓(𝑡) =
𝑑2

𝑑𝑠2
𝐹(𝑠)            ℒ𝑡3𝑓(𝑡) = −

𝑑2

𝑑𝑠2
𝐹(𝑠),                  

ℒ𝑡3𝑓(𝑡) = ℒ𝑡[𝑡2𝑓(𝑡)] = −
𝑑

𝑑𝑠
(
𝑑2𝐹(𝑠)

𝑑𝑠2
)  =

−𝑑3𝐹(𝑠)

𝑑𝑠3
 

                         ℒ𝑡𝑛𝑓(𝑡) = (−1)𝑛
𝑑𝑛𝐹(𝑠)

𝑑𝑠𝑛
= (−1)𝑛𝐹𝑛(𝑠)                                   1.16 

Example 1.18:   Find the Laplace transform of 𝑡2 cos 𝑎𝑡. 

Solution:  

ℒ(cos 𝑎𝑡) =
𝑠

𝑠2  −  𝑎2
 

ℒ(𝑡2 cos 𝑎𝑡) = (−1)2  
𝑑2

𝑑 𝑠2
  [

𝑠

𝑠2  −  𝑎2
] =

𝑑

𝑑𝑠
 
(𝑠2 – 𝑎2)1 –  𝑠  (2 𝑠)

(𝑠2 – 𝑎2)2
=
𝑑

𝑑𝑠
  
 𝑎2  −   𝑠2 

(𝑠2 – 𝑎2)2
 

=
(𝑠2 – 𝑎2)2 × (− 2 𝑠) −   (𝑎2  −   𝑠2) × 2(𝑠2 – 𝑎2)(2 𝑠)

(𝑠2 – 𝑎2)4
 

=
− 2 𝑠3  −   2  𝑎2  𝑠 − 4  𝑎2 𝑠 +   4 𝑠3 

(𝑠2 – 𝑎2)3
 

=
2 (𝑠2  −   3 𝑎2) 

(𝑠2 – 𝑎2)3
 

   The sinusoidal function cos 𝑎𝑡  

∫ 𝑒−𝑠𝑡
∞

0−

cos 𝑎𝑡 𝑑𝑡 = ℒ cos 𝑎𝑡 

(𝑢 = 𝑒−𝑠𝑡, 𝑑𝑢 = −𝑠𝑒−𝑠𝑡;   𝑑𝑣 = cos 𝑎𝑡 𝑑𝑡 ⟹ 𝑣 =
sin 𝑎𝑡

𝑎
 𝑖. 𝑒 𝑏𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛) 
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ℒ cos 𝑎𝑡 =
𝑒−𝑠𝑡𝑠𝑖𝑛 𝑎𝑡

𝑎
|
0−

∞

−−
𝑠

𝑎
∫ 𝑒−𝑠𝑡
∞

0−

sin 𝑎𝑡  𝑑𝑡 

Applying integration by parts a second time:  

ℒ cos 𝑎𝑡 = 0 − 0 +
𝑠

𝑎
[
−𝑒−𝑠𝑡 cos 𝑎𝑡

𝑎
|
0−

∞

−−
𝑠

𝑎
 ∫ (−𝑒−𝑠𝑡 cos 𝑎𝑡)𝑑𝑡 

∞

0−

] 

⟹                                 ℒ cos 𝑎𝑡 =
𝑠

𝑎
[(−0—

1

𝑎
) −

𝑠

𝑎
ℒ cos 𝑎𝑡]                                      

⟹                                  ℒ cos 𝑎𝑡 (1 +
𝑠2

𝑎2
) =

𝑠

𝑎2
                                               

⟹ ℒcos 𝑎𝑡 =
𝑠

𝑠2 + 𝑎2
 

Example 1.19:  Obtain the Laplace transform of  𝑡2𝑒𝑡 𝑠𝑖𝑛 4𝑡. 

         Solution:  

ℒ(sin 4𝑡) =
4

𝑠2  −   16
  

 ℒ (𝑡𝑒𝑡 sin 4𝑡)  =  
4

(𝑠 −   1)2  +   16
 

ℒ(𝑡𝑒𝑡 sin 4𝑡) = −
𝑑

𝑑𝑠
(

4

𝑠2  −   2  𝑠 +   17
)  =  

4(2 𝑠 −   2)

(𝑠2  −   2  𝑠 +   17)2
 

ℒ(𝑡2𝑒𝑡 sin 4𝑡) = −
𝑑

𝑑𝑠
(  

 2(𝑠 −   2)

(𝑠2  −   2  𝑠 +   17)2
) 

= −
2(𝑠2  −   2  𝑠 +   17)2   −   2( 𝑠 −   2) (𝑠2  −   2𝑠 +   17) (2𝑠 −   2) 

(𝑠2  −   2  𝑠 +   17)4
 

=
− 4 (2𝑠2  −   4𝑠 +   34 −   8𝑠2  +   16𝑠 −   8)  

(𝑠2  −   2  𝑠 +   17)3
 

=
− 4 (−6𝑠2  + 12𝑠 +   26)  

(𝑠2  −   2𝑠 +   17)3
=
8(3𝑠2 −   6𝑠  −   13)  

(𝑠2  −   2𝑠 +   17)3
 

7. Dividing a function by ‘t’:  

ℒ (
𝑓(𝑡)

𝑡
) = ∫ 𝐹 (𝜎)

∞

𝜎=𝑠

𝑑𝜎, in so far as lim
𝑡→0

[
𝑓(𝑡)

𝑡
] 𝑒𝑥𝑖𝑠𝑡 
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Starting from the right-hand side,  

∫ 𝐹(𝜎)𝑑𝜎 = ∫ [∫ 𝑓(𝑡)𝑒−𝜎𝑡 𝑑𝑡
∞

0−

] 𝑑𝜎
∞

𝜎=𝑠

∞

𝜎=𝑠

 

Where in the inner integral expression, the domain has been changed 𝑠 to 𝜎, in order to 
restore the final integral answer back to s after evaluation. Also, here the variable is 𝑡 

[∫ ] 
∞

𝑡=0−
 

Interchanging the integrals (allowed by law convolution), 

∫ ∫ 𝑓(𝑡)𝑒−𝜎𝑡
∞

𝜎=𝑠

∞

𝑡=0−
 𝑑𝜎 𝑑𝑡 

= ∫ 𝑓(𝑡)
∞

𝑡=0−
[∫ 𝑒−𝜎𝑡 𝑑𝜎

∞

𝜎=𝑠

] 𝑑𝑡 = ∫ {𝑓(𝑡) [
𝑒−𝜎𝑡

−𝑡
]
𝜎=𝑠

∞

}
∞

𝑡=0−
 𝑑𝑡 

= ∫ 𝑓(𝑡) [
0 − −𝑒−𝑠𝑡

𝑡
] 𝑑𝑡 = ∫

𝑓(𝑡)𝑒−𝑠𝑡

𝑡

∞

𝑡=0−

∞

𝑡=0−
 𝑑𝑡,  

And this is simply the Laplace transform of  
𝑓(𝑡)

𝑡
 So, by going backward we’ve been able to 

show:    

                                           ℒ𝑓(𝑡) = ∫ 𝐹(𝜎)𝑑𝜎
∞

𝜎=𝑠

                                                    1.17 

Example 1.20: Evaluate ℒ (
sin𝑎𝑡

𝑡
) 

Testing for the existence of limit:  lim
𝑡→0

sin𝑎𝑡

𝑡
=

0

0
 (division by zero is prohibited!) 

Applying L’ H𝑜̂pital’s rule, the derivatives of the numerator and denominator are taken:  

lim
𝑡→0

𝑑
𝑑𝑡
(sin 𝑎𝑡)

(
𝑑𝑡
𝑑𝑡
)

= lim
𝑡→0

𝑎 cos 𝑎𝑡

1
= 𝑎 

ℒ sin 𝑎𝑡 =
𝑎

𝑠2 + 𝑎2
  

ℒ 
sin 𝑎𝑡

𝑡
= ∫ [

𝑎

𝜎2 + 𝑎2
]

∞

𝜎=𝑠

𝑑𝜎 

To evaluate the integral, let’s use some geometry: 
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𝜃 

∅ 𝜎 

𝑎 
 

𝜎 = atan 𝜃 = a
sin 𝜃 

cos 𝜃
 

𝑑𝜎

𝑑𝜃
= 𝑎 (

cos2 𝜃 + sin2 𝜃

cos2 𝜃
) =

𝑎

cos2 𝜃
 

⟹ 𝜎2 + 𝑎2 = 𝑎2
sin2 𝜃

cos2 𝜃
+ 𝑎2 = 𝑎2 (

sin2 𝜃 + cos2 𝜃

cos2 𝜃
) =

𝑎2

cos2 𝜃
 

∫
𝑎

𝜎2 + 𝑎2

∞

𝜎=𝑠

𝑑𝜎 = ∫
(

𝑎
cos2 𝜃

 )

(
𝑎2

cos2 𝜃
)

∞

𝜎=𝑠

𝑑𝜃 = ∫ 𝑑𝜃
∞

𝜎=𝑠

 

= 𝜃|𝜎=𝑠
∞ = 𝑎𝑟𝑐 tan (

𝜎

𝑎
)|
𝜎=𝑠

∞

= 𝑎𝑟𝑐 tan∞ − 𝑎𝑟𝑐 tan
𝑠

𝑎
 

=
𝜋

2
− tan−1 (

𝑠

𝑎
) = tan−1 (

𝑎

𝑠
), 

Because     
𝜋

2
− arctan (

𝑠

𝑎
) =

𝜋

2
− 𝜃 = ∅ = arctan (

𝑎

𝑠
) 

So, finally (and mercifully too!), [90𝑜 − tan−1 (
𝑠

𝑎
) = tan−1 (

𝑎

𝑠
)] 

ℒ
𝑠𝑖𝑛𝑎𝑡 

𝑡
= tan−1

𝑎

𝑠
  

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟐𝟏: Find the Laplace transform  of the function: 
sin 2𝑡

𝑡
                                                                

          Solution: 

ℒ(sin 2𝑡) =
2

𝑠2  +   4
 

ℒ (
sin 2𝑡

𝑡
) = ∫

2

𝑠2  +   4

∞

𝑠

𝑑𝑠 = 2.
1

2
[𝑡𝑎𝑛−1

𝑠

2
]
𝑠

∞

 

= [𝑡𝑎𝑛−1∞− 𝑡𝑎𝑛−1
𝑠

2
] =

𝜋

2
− 𝑡𝑎𝑛−1

𝑠

2
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= 𝑐𝑜𝑡−1
𝑠

2
 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟐𝟐: Find the Laplace transform  of  the equation∫
sin 𝑡

𝑡

𝑡

0

 𝑑𝑡.                                           

          Solution: 

ℒ sin 𝑡 =  
2

𝑠2  +   1
 

ℒ
sin 𝑡

𝑡
=  ∫

2

𝑠2  +   1
ds 

∞

𝑠

= [𝑡𝑎𝑛−1 𝑠]𝑠
∞ =

𝜋

2
 −  𝑡𝑎𝑛−1 𝑠 

ℒ∫
sin 𝑡

𝑡

𝑡

0

  𝑑𝑡 =
1

𝑠
 [
𝜋

2
− 𝑡𝑎𝑛−1𝑠 ] 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟐𝟑: Find the Laplace transform  of  
1 −  cos 𝑡

𝑡2
                                                   

          Solution: 

ℒ(1 − cos 𝑡) = ℒ(1) − ℒ(cos 𝑡) =
1

𝑠
− 

𝑠

𝑠2  +   1
 

ℒ
(1 − cos 𝑡)

𝑡
= ∫ (

1

𝑠
− 

𝑠

𝑠2  +   1
)

∞

𝑠

 𝑑𝑠 =  [log 𝑠 −
1

2
 log(𝑠2  +   1)]

𝑠

∞

 

=
1

2
 [log 𝑠2  log(𝑠2  +   1)]𝑠

∞ =
1

2
  [ log

𝑠2

𝑠2  +   1
]
𝑠

∞

 

=
1

2
 [ log

𝑠2

𝑠2 (1 +
1
𝑠2
)
]

𝑠

∞

  =
1

2
 [0 − log

𝑠2

𝑠2  +   1
] = −

1

2
 log

𝑠2

𝑠2  +   1
 

Again, ℒ [
(1 – cos 𝑡)

𝑡2
] =  −

1

2
 ∫ log

𝑠2

𝑠2  +   1
 𝑑𝑠

∞

𝑠

= −
1

2
 ∫ (log

𝑠2

𝑠2  +   1
. 1)  𝑑𝑠

∞

𝑠

 

Integrating by parts, we have 

= −
1

2
[ log

𝑠2

𝑠2  +   1
 .  𝑠  ∫

𝑠2  +   1

𝑠2
 
(𝑠2  +   1) 2  𝑠 − 𝑠2  (2  𝑠)  

(𝑠2  +   1)2
   .  𝑠  𝑑𝑠]

𝑠

∞

 

= −
1

2
[ 𝑠 log

𝑠2

𝑠2  +   1
− 2  ∫

1

𝑠2  +   1
 𝑑𝑠]

𝑠

∞

= −
1

2
[ 𝑠 log

𝑠2

𝑠2  +   1
− 2𝑡𝑎𝑛−1 𝑠]

𝑠

∞
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= −
1

2
[ 0 − 2 (

𝜋

2
) − 𝑠 log

𝑠2

𝑠2  +   1
+ 2𝑡𝑎𝑛−1  𝑑𝑠]

𝑠

∞

= −
1

2
 [− 𝜋 − 𝑠 log

𝑠2

𝑠2  +   1
+ 2𝑡𝑎𝑛−1  𝑠]

𝑠

∞

 

=
𝜋

2
+
𝑠

2
log

𝑠2

𝑠2  +   1
− 𝑡𝑎𝑛−1 𝑠 

= (
𝜋

2
− 𝑡𝑎𝑛−1 𝑠) +

𝑠

2
 log

𝑠2

𝑠2  +   1
=  𝑐𝑜𝑡−1 𝑠 + 

𝑠

2
 log

𝑠2

𝑠2  +   1
 . 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟐𝟒:  Evaluate ℒ [𝑒−4𝑡  
sin 3𝑡

𝑡
].                                                                  

        Solution:  

ℒ sin 3𝑡 =
3

𝑠2  +   32
⟹ ℒ

sin 3𝑡

𝑡
= ∫

3

𝑠2  +   9
 

∞

𝑠

  𝑑𝑠 = [
3

3
 𝑡𝑎𝑛−1

𝑠

3
]
𝑠

∞

 

=
𝜋

2
− 𝑡𝑎𝑛−1

𝑠

3
= 𝑐𝑜𝑡−1

𝑠

3
 

ℒ [ 𝑒−4𝑡  
sin 3𝑡

𝑡
] = 𝑐𝑜𝑡−1  

𝑠  +   4

3
  

8. Time-Scaling theorem 

                                ℒ𝑓(𝑎𝑡) =
1

𝑎
𝐹 (
𝑠

𝑎
)                                             1.18 

Proof: Let at = 𝑣 ⟹ 𝑡 =
𝑣

𝑎
⟹ 𝑑𝑡 =

1

𝑎
𝑑𝑣  

  ⟹                                     ℒ𝑓 (𝑣) = ℒ𝑓(𝑎𝑡) = ∫ 𝑒−𝑠𝑡
∞

0−
𝑓(𝑎𝑡)𝑑𝑡                                          

=
∫ 𝑒−𝑠(

𝑛
𝑎
)∞

0−
𝑓(𝑛)1

𝑎
𝑑𝑣 =

1

𝑎
∫ 𝑒−(

𝑠
𝑎
)𝑣

∞

0−
𝑓(𝑣)𝑑𝑣, 

Where the integral quantity if 𝐹(
𝑠

𝑎
), the Laplace transform of 𝑓(𝑡) with 𝑠 replaced by 𝑠/𝑎 

since a change of variables from 𝑡 to 𝑣 makes no difference to the result of the theorem. 
This is known as “dummy” variables theorems continued.  

9. Initial value theorem: 
This states that if a function 𝑓(𝑡) and its first derivative 𝑓′(𝑡) are  
𝐹(𝑠) exists, then:  
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                         lim
𝑠→∞

𝑠𝐹(𝑠) = lim
𝑡→0

𝑓(𝑡)                                                 1.19 

The “initial” in the theorem is with respect to time domain(𝑡 → 0), and allows for the 
evaluation of the “final” value in the 𝑠 (frequency) domain by evaluating the initial value 
in the time domain, (and vice versa) when the former is too complicated is to be carried 
out directly in the frequency domain. (Note the slight modification by the multiplier 𝑠. do 
not forget to do this in examinations!). 

 

10. Final-value theorem:  

If a function and its first derivative are Laplace transformable, and the poles of 𝑠𝐹(𝑠) lie 
inside the left half of the s-plane, then:  

                                  lim
𝑠→0

𝑠𝐹(𝑠) = lim
𝑡→∞

𝑓(𝑡)                                                 1.20 

Proof: 

Employing time differentiation theorem, 

ℒ𝑓′(𝑡) = ∫ 𝑒−𝑠𝑡
∞

0−

𝑑𝑓(𝑡)

𝑑𝑡
𝑑𝑡 = 𝑠𝐹(𝑠) − 𝑓(0−) 

As earlier derived.  

Taking the limit 𝑠 → 0: 

lim
𝑠→0

∫ 𝑒−𝑠𝑡
∞

0−
𝑑𝑓(𝑡) = lim

𝑠→0
[𝑠𝐹(𝑠) − 𝑓(0−)] 

The limit of integral can be written as integral of limit, as long as the infinite integral on 
the left-hand side exists, and we have no reason to doubt its existence since we’re 
dealing with a practical situation! 

⟹  ∫ lim
𝑠→0

𝑒−𝑠𝑡
∞

0−
 𝑑𝑓(𝑡) = lim

𝑠→0
[𝑠𝐹(𝑠) − 𝑓(0−)] 

= lim
𝑠→0

𝑠𝐹(𝑠) − 𝑓(0−) 

Because 𝑓(0−) is a constant term as it is, so its unaffected by the limit 

⟹   𝑓(𝑡)|0−
∞ = lim

𝑠→0
𝑠𝐹(𝑠) − 𝑓(0−) 

𝑓(∞) − 𝑓(0−) = lim
𝑠→0

𝑠𝐹(𝑠) − 𝑓(0−) 
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⟹    𝑓(∞) = lim
𝑡→∞

𝑓(𝑡) = lim
𝑠→0

𝑠𝐹(𝑠)   

NB: proof of earlier initial value theorem in left as an exercise. 

 Again, the name tag, “final” is with reference to the time domain (𝑡 → ∞) and 
allows for the computation of the “initial” value of the products of s and the Laplace 
transform of the zeroth derivative of 𝑓(𝑡), by evaluating the final value in the time 
domain, and vice versa. [so, one can always be rescued from the time domain by 
resorting to the frequency domain after the necessary multiplication by s (again, do not 
forget this) has been carried out]. 

Let 𝑓(𝑡) = 𝑒−𝑎𝑡 ⟹ ℒ𝑓(𝑡) = 𝐹(𝑠) =
1

(𝑠+𝑎)
 where 𝑎 is necessarily assumed to be a 

positive quantity (as it should be since every realistic signal, if left unreinforced must 
eventually decay to zero). 

[ lim
𝑡→∞

𝑒−𝑎𝑡 = 0] 

The single pole of 𝑠𝐹(𝑠) =
𝑠

𝑠+𝑎
, which is −𝑎, lie inside the left half of the s-plane, 

therefore the final value theorem can be applied.  

Lim
𝑠→0

𝑠𝐹(𝑠) = lim
𝑠→0

𝑠 (
1

𝑠 + 𝑎
) = lim

𝑠→0

𝑠

𝑠 + 𝑎
 

= lim
𝑠→0

1

1 +
𝑎
𝑠

= lim
𝑠→0

𝑠

𝑎
= 0, 

After dividing throughout by s.  

Note once again the single pole (𝑠 = −𝑎) lies inside the left half of the s-plane as 
required by the theorem to be valid. 

By the same taken,  

lim
𝑠→∞

𝑠 𝐹(𝑠) = lim
𝑠→∞

𝑠

𝑠 + 𝑎
= 1, 

And   lim
𝑡→0

𝑓(𝑡) = lim
𝑡→0

𝑒−𝑎𝑡 = 1 = lim
𝑠→∞

𝑠𝐹(𝑠), 

Validating the initial-value theorem.  

Note, once again, that in each case, both 𝑒−𝑎𝑡 and its first derivative (−𝑎𝑒−𝑎𝑡) are 
Laplace transformable as required by the two theorems. 

Observations:  
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 The initial and final value theorems call to mind the duality principle encountered 
in an earlier course, and the two theorems could indeed be said to be the “duals” of each 
other (although not in the strictest sense of the principle). Similarly, the first and second 
shift theorems earlier treated resemble “duals” (not of each other, however), except that 
in the first shift theorem, multiplying a function by 𝑒𝑎𝑡 results in adding “−𝑎”, not “a” to 
the s of the frequency domain. The second-shift theorem by itself, is a more fulfilled 
“dual” because shifting time by c (i.e. adding (-c) results in multiplying the Laplace 
transform of the original unshifted function by 𝑒−𝑠𝑐 

1.5 Laplace Transform of Periodic Functions  

 Recall that a periodic function reseat itself after every cycle that is, it looks like 
itself during every period, say T. for a function 𝑓(𝑡) with the period T, then for the first 
cycle the function is described by:  

𝑓(̅𝑡) = {
𝑓(𝑡),                    0 ≤ 𝑡 < 𝑇
0,                     elsewhere 

 

With the bar at the top indicating that the function 𝑓(𝑡) is periodic. The second cycle is 
identical to the first, except shifted by time T (the period), and can therefore be 
described by the Heaviside unit step function: 

𝑓(̅𝑡 − 𝑇)𝑢(𝑡 − 𝑇) = {
𝑓(𝑡),               𝑇 ≤ 𝑡 3𝑇
0,                    elsewhere

 

For the third cycle:  

𝑓(̅𝑡 − 2𝑇)𝑢 (𝑡 − 2𝑇) = {
𝑓(𝑡), (𝑛 − 1)𝑇 ≤ 𝑡 < 𝑛𝑇
0,                         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Then, the nth cycle: 

𝑓[̅𝑡 − (𝑛 − 1)𝑇]𝑢[𝑡 − (𝑛 − 1)𝑇] = {
𝑓(𝑡),         (𝑛 − 1)𝑇 ≤ 𝑡 < 𝑛𝑇
0,                            elsewhere

 

So, generally for a periodic function  

𝑓(𝑡), 𝑓(𝑡) = 𝑓(̅𝑡)𝑢(𝑡) + 𝑓(̅𝑡 − 𝑇)𝑢 (𝑡 − 𝑇) + 𝑓(̅𝑡 − 2𝑇)𝑢(𝑡 − 2𝑇) + ⋯⋯
+ 𝑓[𝑡 − (𝑛 − 1)𝑇]𝑢 [𝑡 − (𝑛 − 1)𝑇] 

Laplace transform of 𝑓(̅𝑡) is then given by: 

ℒ 𝑓(̅𝑡) =  ∫ 𝑒−𝑠𝑡
∞

0−
 𝑓(̅𝑡)𝑢 (𝑡)𝑑𝑡 = ∫ 𝑒−𝑠𝑡

∞

0−
 𝑓(̅𝑡)𝑑𝑡 = 𝐹̅(𝑠),  

Since 𝑓(̅𝑡) = 0𝑜 for 𝑡 > 𝑇 as stated above.  

From second-shift (time-shift) theorem,  
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ℒ𝑓(𝑡) = ℒ𝑓(̅𝑡)𝑢 (𝑡) + ℒ𝑓(̅𝑡 − 𝑇)𝑢 (𝑡 − 𝑇) + ℒ𝑓(̅𝑡 − 2𝑇)𝑢 (𝑡 − 2𝑇) + ⋯
+ ℒ𝑓[̅𝑡 − (𝑛 − 1)𝑇]𝑢 [𝑡 − (𝑛 − 1)𝑇] 

= 𝐹̅(𝑠) + 𝑒−𝑠𝑇 𝐹̅(𝑠) + 𝑒−2𝑠𝑇 𝐹̅(𝑠)…+ 𝑒−(𝑛−1)𝑠𝑇𝐹̅(𝑠) 

From the sum 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯⋯+ 𝑥𝑛 =
1

1−𝑥
 , for a converging series (i.e |𝑥| < 1, 

and 𝑒−𝑠𝑇is obviously converging because T is necessarily positive),  

    ℒ𝑓(𝑡) =
1

1 − 𝑒−𝑠𝑇
𝐹̅(𝑠)                                                       1.21 

Where 𝐹̅(𝑠) = ∫ 𝑒−𝑠𝑡
𝑇

0

𝑓 (𝑡)𝑑𝑡                                                                      

Example 1.25: For the periodic function defined by:  

𝑓(𝑡) =
0, 0 ≤ 𝑡 < 1
0, 1 ≤ 𝑡 < 2

}  𝑓(𝑡 + 2) = 𝑓(𝑡)        (𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 2) 

Solution: 

2

1 2 3 4
t

f(t)

 

Figure 1.7 

 

ℒ 𝑓(𝑡) =
1

1 − 𝑒−2𝑠
 ∫ 𝑒−𝑠𝑡

∞

0

𝑓(𝑡)𝑢(𝑡)𝑑𝑡 =
1

1 − 𝑒−2𝑠
∫ 𝑒−𝑠𝑡
1

0

𝑓(𝑡)𝑑𝑡 

=
1

1 − 𝑒−2𝑠
∫ 𝑒−𝑠𝑡
1

0

2𝑑𝑡 =
2

1 − 𝑒−2𝑠
∫ 𝑒−𝑠𝑡
1

0

 𝑑𝑡 

Since 𝑓(𝑡) = 0, 1 ≤ 𝑡 < 2 

ℒ 𝑓(𝑡) =
2

1 − 𝑒−2𝑠
 
𝑒−𝑠𝑡

−𝑠
|
0

1

=
2

1 − 𝑒−2𝑠
(
1 − 𝑒−𝑠

𝑠
)

2(1 − 𝑒−𝑠)

𝑠 (1 + 𝑒−𝑠)(1 − 𝑒−𝑠)
 

ℒ 𝑓(𝑡) =
2

𝑠(1 + 𝑒−𝑠)
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Example 1.26: Determine the Laplace transform of the half-wave rectifier output wave 
from defined by: 

  𝑓(𝑡) = {4 sin 𝑡           
0 ≤ 𝑡 < 𝜋
𝜋 ≤ 𝑡 < 2𝜋

} ,           𝑓(𝑡 + 2) = 𝑓(𝑡) (Indicating a period of 2𝜋) 

4

t

f(t)

𝜋 0 2𝜋 3𝜋 

                                                            
Figure 1.8 

 

Solution: 

ℒ 𝑓(𝑡) =
1

1 − 𝑒−2𝜋𝑠
∫ 𝑒−𝑠𝑡
2𝜋

0

𝑓(𝑡)𝑑𝑡 =
1

1 − 𝑒−2𝜋𝑠
 ∫ 𝑒−𝑠𝑡

𝜋

0

4 sin 𝑡𝑑𝑡 

Exponential function From Euler’s identity, 𝑒𝑗𝑡 = cos 𝑡 + 𝑗 sin 𝑡 ⟹sin 𝑡 = 𝐼𝑚𝑒
𝑗𝑡 , with 𝐼𝑚 

“imaginary” part of 𝑒𝑗𝑡, not its maximum of current.  

⟹                     (1 − 𝑒−2𝜋𝑠)ℒ𝑓(𝑡) = 4𝐼𝑚 [∫ 𝑒−𝑠𝑡  𝑒𝑗𝑡 𝑑𝑡
𝜋

0

]                           

= 4𝐼𝑚  ∫ 𝑒−(𝑠−𝑗)𝑡
𝜋

0

 𝑑𝑡 = 4𝐼𝑚 [
𝑒−(𝑠−𝑗)𝑡 

−(𝑠 − 𝑗)
]
0

𝜋

 

= 4𝐼𝑚  
1

𝑠 − 𝑗
(1 − 𝑒−𝑠𝜋𝑒𝑗𝜋) = 4𝐼𝑚  

1

𝑠 − 𝑗
[1 − 𝑒−𝑠𝜋(cos 𝜋 + 𝑗 sin 𝜋)] 

= 4𝐼𝑚
1

𝑠 − 𝑗
[1 − 𝑒−𝑠𝜋 (−1)] = 4𝐼𝑚  

1

𝑠 − 𝑗
(1 + 𝑒−𝑠𝜋) 

= 4𝐼𝑚
(𝑠 + 𝑗)

(𝑠 − 𝑗) (𝑠 + 𝑗)
 (1 + 𝑒−𝑠𝜋) =

4𝐼𝑚 (𝑠 + 𝑗)(1 − 𝑒
−𝑠𝜋)

𝑠2 + 1
 

= 4
(1 + 𝑒−𝑠𝜋)

𝑠2 + 1
 

⟹  ℒ𝑓(𝑡) =
1

1−𝑒−2𝜋𝑠
×  4 (

1+𝑒−𝑠𝜋

𝑠2+1
) 

=
4(1 + 𝑒−𝑠𝜋)

(1 + 𝑒−𝑠𝜋)(1 − 𝑒−𝑠𝜋)(𝑠2 + 1)
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=
4

(1 − 𝑒−𝑠𝜋)(𝑠2 + 1)
 

The above result could have been obtained more directly (and easily) by noting that 

ℒ sin 𝑡 =
1

(𝑠2 + 1)
 

ℒ𝑓(𝑡) =
1

1 − 𝑒−2𝜋𝑠
∫ 𝑒−𝑠𝑡
𝜋

0

4 sin 𝑡 𝑑𝑡 =
4

1 − 𝑒−2𝜋𝑠
(
1 + 𝑒−𝑠𝜋

𝑠2 + 1
) 

And so on, where the 𝑒−𝑠𝜋 in the numerator is used to account for changing the upper 
limit of (transform) integration from ∞ to 𝜋.  

1.6 The Dirac Delta-Unit Impulse “Function” (𝜹𝒕) 

 The quotation marks above suggest that the Dirac delta is not a proper function in 
the strictest mathematical sense of the term “function”. A function is typically 
characterized by its inputs and the corresponding output(s). That means that a function 
should be able to tell a “story”. Implying a smooth transition from one point in space to 
the next (devoid of any abrupt or irregular behavior). The Dirac delta lacks this 
characteristic, the requirement above regarding functions are not obtainable with it. So, 
deprived of this tool, to treat the Dirac delta we have to resort to its effect on other 
functions (reminds one of the Holy Spirit who’s invisible to the naked eyes although this 
work is made manifest in our daily lives)! Please I am not preaching!! 

 This is what the Dirac delta 𝛿(𝑡) does to a given function 𝑓(𝑡): 

                         ∫ 𝑓(𝑡)
∞

−∞

𝛿(𝑡 − 𝑎)𝑑𝑡 = 𝑓(𝑎)                                         1.22 

By itself, δ(t − a) = {
0                   𝑓𝑜𝑟 𝑡 ≠ 𝑎
undefined       𝑓𝑜𝑟 𝑡 = 𝑎

 

 

Graphically,  

t

f(t) 𝛿(𝑡 − 𝑎) 

a                      
Figure 1.9 
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From the above integral expression relating the effect of the Dirac delta on other 

function, (𝑡) = 1 ⟹ ∫ 1
∞

−∞
𝛿(𝑡 − 𝑎)𝑑𝑡 = 𝑓(𝑎) = 1 , because 𝑓(𝑡) is identically a 

constant, 1 (i.e. for all 𝑡′𝑠)  

for 𝑚 < 𝑎 < 𝑛, 

∫ 𝛿
∞

−∞

(𝑡 − 𝑎)𝑑𝑡 = ∫ 𝛿(𝑡 − 𝑎)
𝑚

−∞

𝑑𝑡 + ∫ 𝛿(𝑡 − 𝑎)𝑑𝑡
𝑛

𝑚

+∫ 𝛿(𝑡 − 𝑎)𝑑𝑡
∞

𝑛

 

= 0 +∫ 𝛿(𝑡 − 𝑎)𝑑𝑡 + 0
𝑛

𝑚

 

The zeros result because the limits of integration do not include 𝑡 = 𝑎 as required by the 
above specification for 𝛿(𝑡 − 𝑎), since 𝛿(𝑡 − 𝑎) is zero at t below m and above n.  

⟹        ∫ 𝛿
∞

−∞

(𝑡 − 𝑎)𝑑𝑡 = 1 = ∫ 𝛿(𝑡 − 𝑎)𝑑𝑡,
𝑛

𝑚

𝑚 < 𝑎 < 𝑛 

So, 𝛿(𝑡 − 𝑎)  is a horizontally axis with a vertical line of infinite length at 𝑡 = 𝑎, that is, its 
an impulse at time 𝑡 = 𝑎. From the integral expression involving the Dirac delta, it can be 
visualized as a “rectangle” of zero width but infinite length with an area of unity! 

              ∫ 𝑓(𝑡)𝛿
𝑛

𝑚

(𝑡 − 𝑎)𝑑𝑡 = 𝑓(𝑎)                                            1.23 

As long as ‘a’ lies between 𝑚 and 𝑛. (This is an ultimately very important provisor) 

 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟐𝟕:  ∫ (𝑡2 + 5)
6

1

𝛿(𝑡 − 4)𝑑𝑡 = 𝑓(4) = 42 + 5 = 21                                   

   valid because 1 < 4 < 6. 

∫ sin 3𝑡 𝛿 (𝑡 −
𝜋

6
) 𝑑𝑡 = 𝑓 (

𝜋

6
) = sin (

3𝜋

6
) =

sin 𝜋

2

𝜋

0

= 1 

   Valid because  0 <
𝜋

6
< 𝜋 

∫ 𝑒−3𝑡
4

1

𝛿(𝑡 − 𝑎)𝑑𝑡 = 𝑓(2) = 𝑒−3𝑡𝑡 = 2 = 𝑒−6 

    Valid because 1 < 2 < 4 

∫ cos 3𝑡𝛿
𝜋

0

 (𝑡 −
𝜋

3
) 𝑑𝑡 = 𝑓 (

𝜋

3
) = cos 3 (

𝜋

3
) = cos 𝜋 = −1 
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    Valid because 0 <
𝜋

3
< 𝜋 

Laplace transform of 𝛿(𝑡 − 𝑎) 

ℒ 𝛿(𝑡 − 𝑎) =  ∫ 𝑒−𝑠𝑡
∞

0−

𝛿(𝑡 − 𝑎)𝑑𝑡,  

From the definition of Laplace transform.  

Here, 𝑒−𝑠𝑡 represent 𝑓(𝑡), per the effect of the Dirac delta on other function:  

⟹  ∫ 𝑒−𝑠𝑡
∞

0−
𝛿(𝑡 − 𝑎)𝑑𝑡 = ∫  𝑓(𝑡)𝛿

∞

0−

(𝑡 − 𝑎)𝑑𝑡 

                        ⟹     ℒ𝛿(𝑡 − 𝑎) = 𝑓(𝑎) = 𝑒−𝑠𝑡|𝑡=𝑎 = 𝑒
−𝑠𝑎                       1.24 

[Note: we did a little manipulation, readjustment Eq. 1.23, albeit a legal one, by 
extending redundantly, the lower limit of the integral from 0− (for Laplace transform) 
down to −∞. As mentioned, this is indeed a redundant operation that has no effect 
whatsoever on the result but only allows us to have the expression in the form we want 
it in order to apply the foregoing effect of the Dirac delta on other functions] 

  

At 𝑡 = 0 (i.e, at the origin), 𝑎 = 0 ⟹ ℒ𝛿(𝑡)𝑡 = 𝑎 = 𝑒0 = 1 

Hurray! The Laplace transform of the impulse is a constant (1) where has the factor of 𝑠 
gone?!) 

Laplace transform of the product of a given function and the unit impulse  

[ℒ[𝑓(𝑡)𝛿(𝑡 − 𝑎)] = ∫ 𝑒−𝑠𝑡 
∞

0−
𝑓(𝑡)𝛿(𝑡 − 𝑎)𝑑𝑡] 

At  𝑡 = 𝑎 ⟹ 𝑒−𝑠𝑡 = 𝑒−𝑠𝑎, 

Then,  𝑓(𝑡) ⟹ 𝑓(𝑎) 

⟹            ℒ[𝑓(𝑡) 𝛿(𝑡 − 𝑎)] = 𝑓(𝑎)𝑒−𝑎𝑠∫ 𝛿(𝑡 − 𝑎)𝑑𝑡
∞

0−
 

= 𝑓(𝑎)𝑒−𝑎𝑠 × 1 = 𝑓(𝑎)𝑒−𝑎𝑠 

 

 

Example 1.28: ℒ [4𝛿(𝑡 − 2)] = 𝑓(2)𝑒−2𝑠 = 4𝑒−2𝑠 
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Here because 𝑓(𝑡) is identically equal to 4 

ℒ[𝑡2𝛿(𝑡 − 3)] = 𝑓(3)𝑒−3𝑠 = 32𝑒−3𝑠 = 9𝑒−3𝑠 

ℒ [sin 3𝑡𝛿 (𝑡 −
𝜋

2
)] = 𝑓 (

𝜋

2
) 𝑒−

𝜋𝑠
2  = (sin

3𝜋

2
) 𝑒−

𝜋𝑠
2 = −1. 𝑒−

𝜋
𝑠 = −𝑒−

𝜋𝑠
2  

 

Example 1.29: To find the Laplace transform of 𝑓(𝑡) in Fig. 1.10 

t

f(t)

2𝛿(𝑡 − 1) 
6𝛿(𝑡 − 4) 

−4𝛿(𝑡 − 3) 

1 2 3 4

     

Figure 1.10 

Solution ℒ 𝑓(𝑡) = ℒ[2𝛿(𝑡 − 1) − 4𝛿(𝑡 − 3) + 6𝛿(𝑡 − 4)] = 2𝑒−𝑠 − 4𝑒−3𝑠 + 6𝑒−4𝑠 

Relating the unit step function and the unit impulse 

Let 𝑓(𝑡) = 0 for 𝑡, < 𝑎 and 𝑡 > 𝑏 

i.                                  ⟹  ∫ [𝑢(𝑡)𝑓(𝑡)]′
∞

−∞

𝑑𝑡 = [𝑢(𝑡)𝑓(𝑡)]−∞
∞ = 0 − 0 = 0               

because of the conditions imposed above with respect to the function 𝑓(𝑡), leading 
𝑓(∞) = 0 = 𝑓(−∞).  

However, by the product rule, [(𝑢𝑓)′ = 𝑢𝑓 + 𝑢𝑓′] where both 𝑢 and 𝑓 are functions of 
time,  

⟹∫ [𝑢(𝑡)𝑓(𝑡)]
∞

−∞

′

𝑑𝑡 

⟹∫ 𝑢′(𝑡)𝑓(𝑡)𝑑𝑡 + ∫ 𝑢(𝑡)𝑓′(𝑡)𝛿𝑡
∞

−∞

∞

−∞

= 0             1.25 

Because of Eq (1.25). 

ii. ∫ 𝑢′(𝑡)𝑓(𝑡)𝑑𝑡 = −∫ 𝑢(𝑡)𝑓′(𝑡)𝑑𝑡 = −∫ 𝑓′(𝑡)𝑑𝑡 
∞

0

∞

−∞

∞

−∞
 

due to the fact that 𝑢(𝑡) factor forces the expression inside the integral sign to be zero 
up until time zero, from when 𝑢(𝑡) then takes on the value of unity. 
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−∫ 𝑓′(𝑡)𝑑𝑡 = −𝑓(∞)
∞

0

+ 𝑓(0) = 𝑓(0), 

Since 𝑓(𝑡) = 0 for 𝑓(∞) as originally imposed upon for 𝑡 > 𝑏 

iii. But 𝑓(0) = ∫ 𝑓(𝑡)𝛿
∞

−∞
 (𝑡 0)𝑑𝑡 = ∫ 𝛿(𝑡)𝑓(𝑡)𝑑𝑡

∞

−∞
, (according to the effect of 

𝛿(𝑡 − 𝑎) on the other function).  

Comparison of equations (ii) and (iii), shows that 𝑢′(𝑡)corresponds (indeed is equal) to 
𝛿(𝑡)! This we have through the back door, established a very important and interesting 
relationship, stating:  

                              𝑢′(𝑡) =
𝑑𝑢(𝑡)

𝑑𝑡
= 𝛿(𝑡)                                                       1.26 

         

i.e. the Dirac delta “function” is simply the derivative of the Heaviside unit step function. 

Test: does this make any physical sense? (After all we’re dealing with applied 
mathematics, to unit, engineering!) Recall that strictly speaking, whereas the unit step 
“function” 𝑢(𝑡 − 𝑎) is identically zero up to 𝑡 = 𝑎−, and unit from 𝑡 = 𝑎+, its values at 
exactly 𝑡 = 𝑎 is undefined. It makes sense, therefore, that vividly speaking, impulse 
𝛿(𝑡 − 𝑎) ought to be related to ir! 

 Recall also that: 

ℒ 𝑢′(𝑡) = ∫ 𝑒−𝑠𝑡
∞

0−

𝑑𝑢(𝑡)

𝑑𝑡
𝑑𝑡 = 𝑠𝐹(𝑠) − 𝑓(0−) 

    = 𝑠 (
1

𝑠
) − 𝑢(0−) = 1 − 0 = 1, 

And we have already determined that the Laplace transform of 𝛿(𝑡) is 1. So, since each 
of them is equal to 1, they must then be equal to each other! (This is by way of text of 
the fundamental proof performed above.)  

 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟑𝟎: Evaluate ∫ (𝑡2 + 4)
3

1

∙ 𝛿(𝑡 − 2)𝑑𝑡                                                         

Solution: 

The factor 𝛿(𝑡 − 2) shows that the impulse occurs at 𝑡 = 2, i.e 𝑎 = 2 

𝑓(𝑡) = 𝑡2 + 4    
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𝑓(𝑎) = 𝑓(2) = 4 + 4 = 8 

     ∫ (𝑡2 + 4)
3

1

∙ 𝛿(𝑡 − 2)𝑑𝑡 = 𝑓(2) = 8 

 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟑𝟏: To evaluate ∫ cos 6𝑡 ∙ 𝛿 (𝑡 −
𝜋

2
) 𝑑𝑡

𝜋

0

                                                          

∫ cos 6𝑡
𝜋

0

∙ 𝛿 (𝑡 −
𝜋

2
)𝑑𝑡 = 𝑓 (

𝜋

2
) = cos 3𝜋 = −1 

And in the same way  

 (a) ∫ 5 ∙ 𝛿(𝑡 − 3)𝑑𝑡 = 5 × 1 = 5
6

0
 

 (b) ∫ 𝑒−2𝑡
5

2
∙ 𝛿(𝑡 − 4)𝑑𝑡 = 𝑓(4) = [𝑒−2𝑡]𝑡=4 = 𝑒−8 

 (c) ∫ (3𝑡2 − 4𝑡 + 5)
∞

0
. 𝛿(𝑡 − 2)𝑑𝑡 = 12 − 8 + 5 = 9 

Nothing could be easier. It all rests on the fact that, provided 𝑚 < 𝑎 < 𝑛 

  Therefore, if 𝑚 = 0 and 𝑛 = ∞ 

∫ 𝑓(𝑡)
∞

0

∙ 𝛿(𝑡 − 𝑎)𝑑𝑡 = 𝑓(𝑎) 

  Hence, if 𝑓(𝑡) = 𝑒−𝑠𝑡, this becomes  

∫ 𝑒−𝑠𝑡
∞

0

∙ 𝛿(𝑡 − 𝑎)𝑑𝑡 = ℒ{𝛿(𝑡 − 𝑎)} 

= 𝑒−𝑎𝑠 

i.e. the value of 𝑓(𝑡), i.e 𝑒−𝑠𝑡, at 𝑡 = 𝑎 

ℒ{𝛿(𝑡 − 𝑎)} = 𝑒−𝑎𝑠 

It follows from this that the Laplace transform of the impulse function at the origin is 1 

Because, for 𝑎 = 0, ℒ{𝛿(𝑡 − 𝑎)} = ℒ{𝛿(𝑡)} = 𝑒0 = 1 

        ℒ{𝛿(𝑡)} = 1 

Finally, let us deal with the more general case of ℒ{𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑎)}.  
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We have ℒ{𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑎) = ∫ 𝑒−𝑠𝑡
∞

0
∙ 𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑎)𝑑𝑡}. Now the integrand 𝑒−𝑠𝑡 ∙

𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑎) = 0 for all values of t except at 𝑡 = 𝑎 which point 𝑒−𝑠𝑡 = 𝑒−𝑎𝑠, and 
𝑓(𝑡) = 𝑓(𝑎) 

  ℒ{𝑓(𝑡) ∙ (𝑡 − 𝑎)} = 𝑓(𝑎) ∙ 𝑒−𝑎𝑠∫ 𝛿(𝑡 − 𝑎)
∞

0

𝑑𝑡 

      = 𝑓(𝑎) ∙ 𝑒−𝑎𝑠(1) 

  ℒ{𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑎)} = 𝑓(𝑎)𝑒−𝑎𝑠 

 we have ℒ{𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑎)} = 𝑓(𝑎) ∙ 𝑒−𝑎𝑠 

Therefore  

a. ℒ{6. 𝛿(𝑡 − 4)}   𝑎 = 4   
 ℒ{6 ∙ 𝛿(𝑡 − 4)} = 6𝑒−4𝑠 
b. ℒ{𝑡2 ∙ 𝛿(𝑡 − 2)} 𝑎 = 2      
 ℒ{𝑡3 ∙ 𝛿(𝑡 − 2)} = 8𝑒−2𝑠 

Similarly  

c. ℒ {sin 3𝑡 ∙ 𝛿 (𝑡 −
𝜋

2
)} = −𝑒−𝜋𝑠/2 

Because  

ℒ {sin 3𝑡 ∙ 𝛿 (𝑡 −
𝜋

2
)} = [sin 3𝑡]𝑡=𝜋/2 ∙ 𝑒

−
𝜋𝑠
2 = −𝑒−𝜋𝑠/2 

And  

d. ℒ {cosh 2𝑡 ∙ 𝛿(𝑡)} = ⋯ 1  

Because  

ℒ {cosh 2𝑡 ∙ 𝛿(𝑡)} = [cosh 2𝑡]𝑡=0 ∙ 𝑒
0 = cosh 0. (1) = 1 

So, our main conclusion so far are as follows  

 1. ∫ 𝛿(𝑡 − 𝑎)𝑑𝑡 =
𝑚

𝑛
 1  Provided 𝑚 < 𝑎 < 𝑛 

2. ∫ 𝑓(𝑡)
𝑚

𝑛
∙ 𝛿(𝑡 − 𝑎)𝑑𝑡 = 𝑓(𝑎) provided 𝑚 < 𝑎 < 𝑛 

4. ℒ{𝛿(𝑡 − 𝑎)} = 𝑒−𝑎𝑠 

5. ℒ{𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑎)} = 𝑓(𝑎) ∙ 𝑒−𝑎𝑠 

 



   
  Circuit Analysis with Laplace Transform 

41 
 

Example 1.32: Impulses of 1,4,7 units occur at 𝑡 = 1, 𝑡 = 3 and 𝑡 = 4 respectively, in the 
directions shown. Write down an expression for 𝑓(𝑡) and determine its Laplace 
transform. 

Solution: We have 𝑓(𝑡) = 1 ∙ 𝛿(𝑡 − 1) − 4 ∙ 𝛿(𝑡 − 3) + 7 ∙ 𝛿(𝑡 − 4) 

ℒ{𝑓(𝑡)} = 𝑒−𝑠 − 4𝑒−3𝑠 + 7𝑒−4𝑠 

 

1.7 Further Problems with Solutions 

1. Given ℒ cos 4𝑡 =
𝑠

(𝑠2+16)
 , determine the Laplace transform of  𝑒3𝑡 cos 4𝑡. 

 
Solution: 
Since from ℒ𝑒−𝑎𝑡𝑓(𝑡) = 𝐹(𝑠 + 𝑎) 
⟹ ℒ(𝑒3𝑡 cos 4𝑡)  

⟹
𝑠 − 3

((𝑠 − 3)2 + 16)
 

 
2. Without first finding 𝑓(𝑡) determine 𝑓(0+), 𝑓(∞) for each of 𝐹(𝑠) equal to 

 (𝑖)
4𝑒3𝑠(2𝑠+30)

𝑠
  (𝑖𝑖) 

(𝑠2−8)

𝑠(𝑠2+9)
 

 Solution: 

 (i)                 𝑓(0+) = lim
𝑠→∞

𝑠4𝑒−3𝑠

(2𝑠 + 30)𝑠
= 0;  

   𝑓(∞) = lim
𝑠→0

4𝑒−3𝑠

(2𝑠 + 30)
=
4

30
=
2

15
 

(ii)             𝑓(0+) =
lim
𝑠→∞

𝑠(𝑠2 − 8)

(𝑠2 + 9)𝑠
=
𝑠2

𝑠2
= 1; 

   𝑓(∞) =
lim
𝑠→0

(𝑠2 − 8)

(𝑠2 + 9)
=
−8

9
       

3. (a) Given a magnitude of 10 V, phase angle of 100, complex frequency of 
   𝑠 = −12 + 𝑗9 put down the expression for the voltage in the time  
  domain. 
 b) For the circuit of Fig.1.11, determine the forced response 
   𝑖(𝑡) = 𝐼𝑚𝑒

𝜎𝑡 cos(𝜔𝑡 + 𝜃).  
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6 Ω 9 H

0.2 F𝑣(𝑡) = 80𝑒−3𝑡 cos(5𝑡 + 10°) V 

i(t)

 
Figure 1.11 

 

 Solution: 

              (a) 𝑣(𝑡) = 10𝑒−12𝑡 cos(9𝑡 + 10𝑜) V 

 (b) 𝑣(𝑡) = 80𝑒−3𝑡 cos(5𝑡 + 10𝑜) 

= 6𝑖(𝑡) + 9
𝑑𝑖(𝑡)

𝑑𝑡
+
1

0.2
∫ 𝑖(𝑡)𝑑𝑡
𝑡

0

 

80∠10𝑜 𝑒𝑠𝑡 = 6𝐼(𝑠)𝑒𝑠𝑡 + 9𝑠𝐼(𝑠)𝑒𝑠𝑡 +
5

𝑠
𝐼(𝑠)𝑒𝑠𝑡 

𝐼(𝑠) =
80∠10𝑜

[6 + 9𝑠 +
5
𝑠]

 

=
80∠10𝑜

[6 + 9(−3 + 𝑗5) +
5(−3 − 𝑗5)
(9 + 25)

]
 

=
80∠10𝑜

(6 − 27 + 𝑗45 − 0.44 − 0.74)
 

=
80∠10𝑜

(−21.44 − 𝑗45.74)
 

=
80∠10𝑜

50∠ − 115.4𝑜
 

= 1.6∠−125.4𝑜 

𝑖(𝑡) = 1.6𝑒−3𝑡 cos(5𝑡 − 125.4𝑜) A 

 

4. Evaluate (i) ∫ (2𝑡2 + 4)
−2

−6
𝛿(𝑡 + 5)𝑑𝑡 (ii) ∫ (cos 2𝑡)

𝜋

1
𝛿(𝑡 − 𝜋/2)𝑑𝑡, indicating 

 time validity in each  
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 Solution:  

(i)   𝑓(−5) = 2(−5)2 + 4 = 54   

(ii)   𝑓 (
𝜋

2
) = cos [2 (

𝜋

2
)] = cos 𝜋 = −1 

∴   1 <
𝜋

2
< 𝜋 

5.  Obtain the Laplace transform of 𝑓(𝑡) = 𝛿(𝑡) + 2𝑢(𝑡) − 3𝑒−2𝑡𝑢(𝑡) 

 Solution:  

By the linearity property 

𝐹(𝑠) = ℒ[𝛿(𝑡)] + 2ℒ[𝑢(𝑡)] − 3ℒ[𝑒−2𝑡𝑢(𝑡)] 

= 1 + 2
1

𝑠
− 3

1

𝑠 + 2
=
𝑠2 + 𝑠 + 4

𝑠(𝑠 + 2)
 

6. Determine the Laplace transform of 𝑓(𝑡) = 𝑡2 sin 2𝑡 𝑢(𝑡) 

 Solution:  

We know that  

ℒ[sin 2𝑡] =
2

𝑠2 + 22
 

Using frequency differentiation in Eq. (1.26)  

𝐹(𝑠) = ℒ[𝑡2 sin 2𝑡] = (−1)2
𝑑2

𝑑𝑠2
(

2

𝑠2 + 4
) 

=
𝑑

𝑑𝑠
(

−4𝑠

(𝑠2 + 4)2
) =

12𝑠2 − 16

(𝑠2 + 4)3
 

7.  Find the Laplace transform of the gate function in Fig.1.12 
 

0 1 2 3

10

g(t)

t

 
Figure 1.12 Gate function  
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 Solution: 

We can express the gate function in Fig.1.12 as 

𝑔(𝑡) = 10[𝑢(𝑡 − 2) − 𝑢(𝑡 − 3)] 

Since we know the Laplace transform of 𝑢(𝑡), we apply the time-shift property and 
obtain 

𝐺(𝑠) = 10(
𝑒−2𝑠

𝑠
−
𝑒−3𝑠

𝑠
) =

10

𝑠
(𝑒−2𝑠 − 𝑒−3𝑠) 

8.  Calculate the Laplace transform of the periodic function in Fig. 1.13. 

0 1 2

2

f(t)

43 5 t

 

Figure 1.13 

 Solution  

The period of the function is 𝑇 = 2.  

We first obtain the transform of the first period of the function. 

𝑓1(𝑡) = 2𝑡[𝑢(𝑡) − 𝑢(𝑡 − 1)] = 2𝑢(𝑡) − 2𝑢(𝑡 − 1) 

= 2𝑡𝑢(𝑡) − 2(𝑡 − 1 + 1)𝑢(𝑡 − 1) 

= 2𝑡𝑢(𝑡) − 2(𝑡 − 1)𝑢(𝑡 − 1) − 2𝑢(𝑡 − 1) 

Using the time shift property  

𝐹1(𝑠) =
2

𝑠2
− 2 

𝑒−𝑠

𝑠2
−
2

𝑠
𝑒−𝑠 =

2

𝑠2
(1 − 𝑒−𝑠 − 𝑠𝑒−𝑠) 

𝐹(𝑠) =
𝐹1(𝑠)

1 − 𝑒−𝑇𝑠
=

2

𝑠2(1 − 𝑒−2𝑠)
(1 − 𝑒−𝑠 − 𝑠𝑒−𝑠) 

 

9.  Find the initial and final values of the function whose Laplace transform is 
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𝐻(𝑠) =
20

(𝑠 + 3)(𝑠2 + 8𝑠 + 25)
 

 Solution:  

Applying the initial-value theorem 

ℎ(0) = lim
𝑠→0

𝑠𝐻(𝑠) = lim
𝑠→∞

20𝑠

(𝑠 + 3)(𝑠2 + 8𝑠 + 25)
 

= lim
𝑠→∞

20
𝑠2

(1 +
3
𝑠) (1 +

8
𝑠 +

25
𝑠2
)
=

0

(1 + 0)(1 + 0 + 0)
= 0 

                               

0 1 2

2

3

3

1

-1-2-3-4

-1

-2

-3

𝑗𝜔 

𝜎 

   

Figure 1.14 

To be sure that the final-value theorem is applicable, we check where the poles of H(s) 
are located. The poles of 𝐻(𝑠) are 𝑠 = −3,−4 ± 𝑗3, which all have negative real parts: 
they are all located on the left half of the s plane (Fig.1.14). Hence, the final-value 
theorem applies and 

ℎ(∞) = lim
𝑠→0

𝑠𝐻(𝑠) = lim
𝑠→0

20𝑠

(𝑠 + 3)(𝑠2 + 8𝑠 + 25)
 

=
0

(0 + 3)(0 + 0 + 25)
= 0 

1.8 Exercise  

1. a. (i) Given ℒ cos 6𝑡 = 𝑠(𝑠2 + 36), determine 

  (ii) the laplace transform of 𝑒3𝑡 cos 6𝑡; 
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(ii) The Laplace transform of cos 4(𝑡 − 3)𝑢(𝑡 − 3) 

 b.(i). State and prove the final value theorem. 

  (ii) State and prove the initial value theorem  

2. (i) Determine the initial value of 𝑦(𝑡), given 𝑌(𝑠) =
(3𝑠2+2)

(𝑠3+7𝑠2+12𝑠)
  

  (ii) Evaluate ∫ (sin2)
0

−1
𝛿(𝑡 +

𝜋

4
)𝑑𝑡, stating the validity thereof  

3. By Laplace transform, determine 𝑦(𝑡), given: 

𝑑2𝑦(𝑡)

𝑑𝑡2
−
3𝑑𝑦(𝑡)

𝑑𝑡
− 10𝑦(𝑡) = 𝑒−𝑡                  𝑦(0−) = 2                𝑦(0−) = 1 

4. (a) Given a magnitude of 20 V, phase angle of 300, complex frequency of 

  𝑠 = −10 + 7𝑗 put down the expression for the voltage in the time domain. 

    (b) For the circuit of Fig. A, determine the forced response: 

   𝑖(𝑡) = 𝐼𝑚𝑒
𝜎𝑡 cos(𝜔𝑡 + 𝜃).  

6 Ω 9 H

0.2 F𝑣(𝑡) = 100𝑒−5𝑡 cos(8𝑡 + 30°) V 

i(t)

 

Figure A 

c). Give the geometrical interpretation of the Heaviside (unit) impulse function  

5. a) Sketch and determine the Laplace transform of the function given by: 

𝑖(𝑡) =

{
 
 

 
 𝐼0 (

𝑡

𝑡0
− 1),   𝑡0 ≤ 𝑡 ≤ 2𝑡0

𝐼0,                  2𝑡0 ≤ 𝑡 ≤ 3𝑡0
0,                          𝑡 > 3𝑡0

  

 

 b) Prove the time integration theorem  

6. a (i). State the initial theorem. without first finding 𝑓(𝑡) determine 𝑓(0+), 
 𝑓(∞) for each of 𝐹(𝑠) equal to (1) 4𝑒3𝑠(2𝑠 + 60)/𝑠  (2)  (𝑠2 − 10)/(𝑠2 + 9)𝑠 
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7. Evaluate (i) ∫ (2𝑡2 + 4)
−2

−6
𝛿(𝑡 + 5)𝑑𝑡  (ii)  ∫ (cos 2𝑡)

𝜋

1
𝛿(𝑡 − 𝜋/2)𝑑𝑡, indicating 

 time validity in each  

8. Determine the Laplace transform of the periodic signal in Fig. B 

0 2 4 6 8 t

4

v(t)

 

Figure B 

9. Determine the Laplace transform of the wave form of Fig. C 

0 2 t

v(t)

V0

                                            
Figure C 

 

10. (a) For the second-order differential equation: 
𝑑2𝑦(𝑡)

𝑑𝑡2
−
7𝑑𝑦(𝑡)

𝑑𝑡
+ 12𝑦(𝑡) = 4𝑒−2𝑡 

 [𝑦(0) = 2, 𝑦(0) = 5], determine the response 𝑦(𝑡) 

 b) Evaluate (i) ∫ (2𝑡2 + 4)
−2

−6
𝛿(𝑡 + 5)𝑑𝑡 (ii) ∫ (cos 2𝑡)

𝜋

1
𝛿(𝑡 − 𝜋/2)𝑑𝑡,   

 indicating time validity in each  

11. (a) Given magnitude of 80 V, phase angle of 300, complex frequency of 

  𝑠 = −6 + 𝑗8, put down the expression for the voltage in the time domain for 
 the.  

 b) For the circuit of Fig. D, determine the forced response 
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  𝑖(𝑡) = 𝐼𝑚𝑒
𝜎𝑡 cos(𝜔𝑡 + 𝜃). (Hint: just determine 𝐼𝑚, 𝜎 and 𝜃) 

3 Ω 8 H

0.2 F𝑣(𝑡) = 45𝑒−3𝑡 cos(2𝑡 + 50°) V 

i(t)

 

Figure D 

 

 (c) What is the rationale behind the lower limit of the one-sided Laplace 
 transform. (State the lower limit). 

12. (a) Find the two-side Laplace transformation of the function  

𝑓(𝑡) = −3𝑒−2𝑡{𝑢(𝑡 + 3) − 𝑢(𝑡 − 2)} 

 (b) also determine its one-sided Laplace transformation. 

13. State and prove the final-value and initial-value theorem. 

14.  Determine the step response of a system with unit impulse response of    
 −4𝑒−𝑡6𝑒−2𝑡, 𝑡 ≥ 0 

15. A first order linear system is initially relaxed for a unit step signal u(t). The 
 response is 𝑣1(𝑡) = (1 − 𝑒

−3𝑡) for 𝑡 > 0. If a signal 3𝑢(𝑡) + 𝛿(𝑡) is applied to 
 the same initial relax system, what is the response? 

16. The response of initially relaxed linear circuit to a signal 𝑣𝑠 is 𝑒−3𝑡𝑢(𝑡). 

 Determine the response if the signal is changed to (𝑣𝑠 + 2
𝑑𝑣𝑠

𝑑𝑡
). 

17. The response of a network for 𝑡 > 0 is 𝑣(𝑡) = 𝐾𝑡𝑒−𝛼𝑡, with 𝛼 real and 
 positive. What is the value of t that results in maximum value of 𝑣(𝑡). 

18. By working backwards, determine the Laplace transform of  
𝑓(𝑡)

𝑡
 

19. Sketch and determine the Laplace transform of the function given by:  

𝑓 = {
   6,              0 ≤ 𝑡 ≤ 1
8 − 2𝑡,     1 ≤ 𝑡 ≤ 3
2,                     𝑡 > 3
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20. The delta impulse function can be thought of as a rectangle with zero width and 
 infinite length, with an area of unity. Use the (integral) effect of 𝛿(𝑡) on other 
 functions to show this to be the case 

21. The unit step response of a network is (2 − 3𝑒−𝛼𝑡). What is the unit impulse 
 response? 

22. Determine the Laplace transform of the wave form of Fig. K 

0 2 t

v(t)

V0

                                        

Figure K 

 

23. What is the Laplace transform of (𝑡2 − 2𝑡)𝑢(𝑡 − 1) 

24. prove that 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝛿(𝑡). (Do not Laplace) 

25. Find the Laplace of the following functions: 

 (𝑖) sin 2𝑡 +
𝑡

2
cos 2𝑡   

(𝑖𝑖) 
1

4
sin 2𝑡 +

𝑡

2
cos 2𝑡    

(𝑖𝑖𝑖) 
1

4
sin 2𝑡 +  𝑡 cos 2𝑡      

 (𝑖𝑣) 
1

4
sin 2𝑡 +

𝑡

4
cos 2𝑡    

26. Evaluate the Laplace transform of the following functions: 

(i) ∫  𝑒−3𝑡𝛿(𝑡 − 4) 𝑑𝑡 
∞

0
                                                   Ans. 𝑒−12 

(ii) ∫ sin 2𝑡 𝛿 (𝑡 −
𝜋

4
)  

∞

−∞
                                               Ans. 1 

(iii) ∫  𝑒−3𝑡𝛿(𝑡 − 2)᾽  
∞

−∞
                                                Ans. 3𝑒−6 

(iv)  
𝛿(𝑡−4)

𝑡
                                                                               Ans. 

𝑒−4𝑠

4
 

(v) Laplace transform of  cos 𝑡 log 𝑡 𝛿(𝑡 − 𝜋)                     Ans. −𝑒−𝜋 𝑠 log 𝜋 

(vi) 𝑒−4𝑡 𝛿(𝑡 − 3)                                                                      Ans. 𝑒−3  (𝑠 + 4) 

27. Evaluate the Laplace transform of the following functions: 
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(a)  𝑓(𝑡) = [
𝑡 − 1        1 < 𝑡 < 2
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

]                                                            Ans. 
𝑒− 𝑠−𝑒− 2𝑠

𝑠3
− 

𝑒− 2𝑠

𝑠
 

(b) 𝑒𝑡 𝑢(𝑡 − 1)                                                                                               Ans.  
𝑒− (𝑠 − 1)

𝑠 −  1)
        

28. Evaluate the Laplace transform of the following functions: 

a. 𝑡 𝑢2(𝑡)                                                                     Ans. (
1

𝑠2
+
1

𝑠
) 𝑒− 2𝑥 

b. 
1− 𝑒2𝑡 

5
+ 𝑡𝑢(𝑡) + cosh 𝑡. cos 𝑡                            Ans.  

𝑠 −  2

𝑠
+ 

1

𝑠2
+

𝑠3

𝑠4 +  4
 

c. 𝑡2𝑢(𝑡 − 2)                                                            Ans.  
𝑒−4𝑠

𝑠4 +  1
(4𝑠2 + 4𝑠 + 2) 

d. sin 𝑡. 𝑢 (𝑡 − 4)                                                      Ans.  
𝑒−2𝑠

𝑠3
[cos 4 + 𝑠 sin 4] 

e.  𝑓 (𝑡) = 𝐾(𝑡 − 2)[𝑢(𝑡 − 2) − 𝑢(𝑡 − 3)]    Ans.  
𝐾

𝑠2
 {𝑒−2𝑠 − (𝑠 + 1)𝑒−3𝑠} 

 𝑓 (𝑡) =
𝐾 sin𝜋 𝑡

𝑇
 [𝑢(𝑡 − 2𝑇) − 𝑢(𝑡 − 3𝑇)]           Ans. 

𝐾 𝜋 𝑇

𝑠2 𝑇2+ 𝜋2
 (𝑒−2𝑠𝑇 − 𝑒−3𝑠𝑇) 

29. Express the following in terms of unit step functions and obtain Laplace transform   

(i) 𝑓 (𝑡) {
𝑡        0 < 𝑡 < 2
0                           

}            Ans. 𝑢(𝑡) − 𝑢(𝑡 − 2),
1 −  2 (2𝑠 +  1)𝑒−2𝑠

𝑠2
 

(ii)  𝑓 (𝑡) {
𝑡        0 < 𝑡 < 2
0                           

}            Ans.  𝑢(𝑡) − 𝑢(𝑡 − 2),
1 −  2 (2𝑠 +  1)𝑒−2𝑠

𝑠2
 

(iii)   𝑓 (𝑡) {
   4        0 < 𝑡 < 1
−2        1 < 𝑡 < 3
  5                  𝑡 > 3

}                           Ans. 
4 −  6𝑒−𝑠 +  7𝑒−3𝑠

𝑠
 

(iv) The Laplace transform 𝑡𝑢2(𝑡) is 

 (𝑎) (
1

𝑠2
+
2

𝑠
) 𝑒−2𝑠          (𝑏) 

1

𝑠2
 𝑒−2𝑠       (𝑐) (

1

𝑠2
−
2

𝑠
) 𝑒−2𝑠     (𝑑)

𝑒−2𝑠

𝑠2
      Ans.  (𝑎) 

 
30. Find the Laplace Transform of the following: 

     i.  
1

𝑡
(1 − 𝑒𝑡)                                                                                    Ans. log

𝑠  −  1

𝑠
                 

     ii.  
1

𝑡
(𝑒− 𝑎𝑡 − 𝑒− 𝑏𝑡)                                                                          Ans. log

𝑠  +  𝑏

𝑠  +  𝑎
    

     iii.  
1

𝑡
(1 − cos 𝑎𝑡)                                                                         Ans. –

1

2
 log

𝑠2

𝑠2  +  𝑎2
        

     iv.  
1

𝑡
(cos 𝑎𝑡 − cos 𝑏𝑡)                                                                Ans. –

1

2
 log

𝑠2  +  𝑎2

𝑠2  +  𝑏2
     

     v.  
1

𝑡
 𝑠𝑖𝑛2 𝑡                                                                                     Ans. 

1

4
 log

𝑠2  +  4

𝑠2
    

     vi.  
1

𝑡
 sinh 𝑡                                                                                    Ans. –

1

2
 log

𝑠  −  1

𝑠  +  1
 

     vii.  
1

𝑡
(𝑒− 𝑡 sin 𝑡)                                                                           Ans. 𝑐𝑜𝑡−1 (𝑠 + 1) 
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    viii.  
1

𝑡
(1 − cos 𝑡)                                                                     Ans. 

1

2
 log(𝑠2 + 1) − log 𝑠    

    ix.  ∫ 𝑡 𝑒− 2𝑡  sin 𝑡   𝑑𝑡 
∞

0
                                                                Ans. 

4

25
      

 x.  ∫
𝑒− 𝑡− 𝑒− 3𝑡

𝑡
  𝑑𝑡 

∞

0
                                                                          Ans. log 3 

31.   Find the Laplace transform of the following: 

 a. 𝑡 sin 2𝑡                                                                                            Ans. 
4 𝑠  

(𝑠2 −  4)2
    

 b.  𝑡 sin 𝑎𝑡                                                                                           Ans. 
2  𝑎𝑠  

(𝑠2 + 𝑎2)2
 

 c.  𝑡 cosh 𝑎 𝑡                                                                                        Ans. 
𝑠2 + 𝑎2  

(𝑠2 − 𝑎2)2
              

 d.  𝑡 cos 𝑡                                                                                              Ans. 
𝑠2 − 1  

(𝑠2 + 1)2
 

 e.  𝑡 cosh 𝑡                                                                                            Ans. 
𝑠2 + 1  

(𝑠2− 1)2
           

 f.  𝑡2 sin 𝑡                                                                                              Ans. 
2 (3 𝑠2 – 1)  

(𝑠2 + 1)3
 

 g.  𝑡3𝑡−3 𝑡                                                                                              Ans. 
6  

(𝑠  +   3)4
     

 h.  𝑡𝑠𝑖𝑛2 3 𝑡                                                                                       Ans. 
1  

2
 [
1

𝑠2
−

𝑠2 − 36  

(𝑠2 + 36)2
 ]   

 i.  𝑡𝑡𝑎𝑡 sin 𝑎 𝑡                                                                                         Ans. 
2 𝑎 (𝑠 −  𝑎)  

(𝑠2 – 2 𝑎𝑠 +  2 𝑎2 )2
 

 j.  ∫ 𝑒−2𝑡 𝑡 
𝑡

0
𝑠𝑖𝑛3 𝑡 𝑑𝑡.                                    Ans. 

3  (𝑠 +  2)

2  𝑠
[

1

[(𝑠 + 2)2 + 9]2 
−

1

[(𝑠 + 2)2 + 1]2 
]  

 k.  𝑡  𝑒−𝑡 cosh 𝑡                                                         Ans.   
𝑠2 + 2𝑠 +  2  

(𝑠2 + 2𝑠)2
 

l.  𝑡2𝑒−2𝑡 cos 𝑡                                                           Ans.   
2(𝑠3 +  10 𝑠2 +  25𝑠 +  2)   

(𝑠2 +  4𝑠 +  5)2
 

m. Laplace transform  𝑡𝑛𝑒−𝑎𝑡 is  

      (𝑖)  
|𝑛

(𝑠 + 𝑎)𝑛
                     (𝑖𝑖) 

|𝑛+1

(𝑠 + 𝑎)𝑛 + 1
              (𝑖𝑖𝑖)

|𝑛

(𝑠 + 𝑎)𝑛
            (𝑖𝑣) 

|𝑛 + 1

(𝑠 + 𝑎)𝑛 + 1
      

32. Find the Laplace transform of the following: 

a. 𝑡 + 𝑡2 + 𝑡3                                                                      Ans. 
1

𝑠2 
+

2

𝑠3
+

6

𝑠4
.     
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b. sin 𝑡 cos 𝑡                                                                         Ans. 
1

𝑠2+ 4 
. 

c. 𝑡3 𝑒− 2 𝑡                                                                            Ans. 
6

(𝑠 +  2)4 
    

d. 𝑠𝑖𝑛3 2 𝑡                                                                            Ans. 
48

(𝑠2+ 4) (𝑠2+ 36) 
. 

e. 𝑒−𝑡 𝑐𝑜𝑠2                                                                          Ans. 
1

2  𝑠 +  2 
+

𝑠 +1

2 𝑠2+ 4 𝑠+10 
    

f. sin 2 t cos 3 t                                                                    Ans. 
2 (𝑠2−  5) 

(𝑠2+ 1) (𝑠2+ 25) 
.    

g. sin 2 t cos 3 t                                                                   Ans. 
12 𝑠 

(𝑠2+ 1) (𝑠2+ 25) 
 

i. cos at sinh at                                                                    Ans. 
1

2
  [

𝑠 −  𝑎

(𝑠 −  𝑎)2+  𝑎2
−

𝑠 +  𝑎

(𝑠 + 𝑎)2+  𝑎2
] 

j. 𝑠𝑖𝑛ℎ3 𝑡                                                                              Ans. 
6

(𝑠2 – 1) (𝑠2 −  9) 
 

k.  cos t cos 2 t                                                                    Ans. 
2 (𝑠2−  5) 

(𝑠2+ 1) (𝑠2+ 9) 
 

l.  cosh at sin at                                                                  Ans. 
𝑎 (𝑠2− 2𝑎2 ) 

𝑠2 +  4𝑎4 
 

m.  𝑓 (𝑡) {
𝑡2            0 < 𝑡 < 2
𝑡 − 1       2 < 𝑡 < 3
7               𝑡 > 3       

}                        Ans. 
2

𝑠3
−
𝑒−2𝑠

𝑠2
 (2 + 3𝑠 + 3𝑠2) 

𝑒−3𝑠

𝑠2
(5𝑠 − 1)   

n.  𝑓 (𝑡) = {
cos (𝑡 −

2𝜋

3
)  𝑡 >

2𝜋

3

0                        𝑡 <
2𝜋

3

}                                 Ans. 
𝑒−2𝜋𝑠

3
.

𝑠

𝑠2 +  1
 

33. Determine the Laplace transform of the ramp function in Fig. L. 

0 1 2 3 4

v(t)

t

4

 

Figure L 

33. The step response of a system is given by 𝑓(𝑡) = 𝑡2 + 𝑡 + 1. Determine its impulse 
response. 
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34. Determine the Laplace transform of the ramp function in Fig. M. 

0 1 2 3 4

v(t)

t

2

4

 

Figure M 

35. Determine the Laplace transform of the function in Fig. N 

0 1 2 3 4

v(t)

t

2

4

5 6 7

  

Figure N 

36. Find the Laplace transform of 𝑓(𝑡) = (cos(3) + 𝑒−5𝑡)𝑢(𝑡) Ans. 
2𝑠2+5𝑠+9

(𝑠+5)(𝑠2+9)
 

37. Find the Laplace transform of 𝑓(𝑡) = 𝑡2 cos 3𝑡 𝑢(𝑡)  Ans.  
2𝑠(𝑠2−27)

(𝑠2+9)3
 

38. Find the Laplace transform of the function ℎ(𝑡) in Fig. O. 

0 4 8

10

h(t)

t

5

                    

 Figure O 

        Ans.  
5

𝑠
(2 − 𝑒−4𝑠 − 𝑒−8𝑠)  
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CHAPTER 2 

PARTIAL FRACTIONS 
 

2.0 Introduction 

By the use of transform table 1.1 & 1.2, inverse transform of s-domain functions can be 
determined, to get the corresponding time domain functions. But oftentimes, the s-
domain functions can be so complex that it would be necessary to break them into 
(simpler) partial fractions so that their corresponding time domain equivalent can be 
readily and easily put down. 

 Given a typical s-based quotient:  

               𝐹(𝑠) =
𝑎𝑚

𝑠 𝑠𝑚 + 𝑎𝑚−1𝑠
𝑚−1 + 𝑎𝑚−2𝑠

𝑚−2 +⋯𝑎0
𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + 𝑎𝑛−2𝑠𝑛−2 +⋯𝑎0

                      2.0 

From the above expression might take various forms, whether the numerator and/or the 
denominator can be factorized or not. The coefficients, i.e., the 𝑎′𝑠, both at the 
numerator and denominator, are constants with the 𝑎0 (at top) and 𝑎’𝑠 (at bottom) 
generally unequal. For this quotient to be breakable into partial fractions, 𝐹(𝑠)must be a 
proper function which means that the degree of the numerator, m, must be less than 

that of the denominator, n. (For instance 
4

3
 is an improper fraction, whereas 

3

4
 is a proper 

function!) if the two are either of the same order, or that of the numerator is greater 
than that of the denominator, then a long division must first be performed in order to 
break the original given polynomial into a divided (“whole number”) plus a quotient that 

is now a proper fraction (
4

3
= 1 +

1

3
), and the quotient can now be reduced into its 

partial fractions employing any of various methods:  

2.1 Method of Comparing Coefficient ‘s’ 

2

𝑠 + 1
+

3

𝑠 + 2
=
2 (𝑠 + 2) + 3(𝑠 + 1)

(𝑠 + 1)(𝑠 + 2)
 

=
2𝑠 + 4 + 3𝑠 + 3

𝑠2 + 3𝑠 + 2
=

5𝑠 + 7

𝑠2 + 3𝑠 + 2
 

Example 2.1: But suppose that we initially were given 
5𝑠+7

𝑠2+3𝑠+12
 , and we’ve required to 

break it into partial fractions. We know that there would be two, since the denominator 
has two roots and therefore two factors:  

Solution:  
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5𝑠 + 7

𝑠2 + 3𝑠 + 12
=

𝐴

𝑠 + 1
+

𝐵

𝑠 + 2
 

⟹    
𝐴 (𝑠 + 2) + 𝐵(𝑠 + 1)

(𝑠 + 1)(𝑠 + 2)
≡

5𝑠 + 7

(𝑠 + 1)(𝑠 + 2)
 

This is an identity (hence the three stripes), so that this equality is valid for all values of 
𝑠, −∞ < 𝑠 < ∞, open-ended interval.  

Gathering terms 

𝐴𝑠 + 2𝐴 + 𝐵𝑠 + 𝐵 = (𝐴 + 𝐵)𝑠 + (2𝐴 + 𝐵 = 5𝑠 + 7) 

Comparing coefficients: 

𝐴 + 𝐵 = 5
2𝐴 + 𝐵 = 7

} ⟹ 𝐴 = 2, 𝐵 = 3  

After solving the simultaneous equations. [this agrees with the original given values of A 
and B] 

Generally, given the quotient 
𝑎

(𝑠−𝑏)(𝑠−𝑐)
 , where the degree of the numerator is zero 

(𝑎 = 𝑎𝑠𝑜) and that of the denominator is 2 [(𝑠 − 𝑏)(𝑠 − 𝑐) = 𝑠2 − (𝑏 + 𝑐)𝑠 + 𝑏𝑐], 
𝑎

(𝑠−𝑏)(𝑠−𝑐)
 can be written as: 

𝐴

𝑠−𝑏
+

𝐵

𝑠−𝑐
 , where A, B are constant (although they generally are complex numbers). Our 

task is to determine their values which would then enable us to write the corresponding 
time domain expression of the inverse transform. 

𝐴

𝑠 − 𝑏
+

𝐵

𝑠 − 𝑐
=
𝐴(𝑠 − 𝑐) + 𝐵(𝑠 − 𝑏)

(𝑠 − 𝑏)(𝑠 − 𝑐)
≡

𝑎

(𝑠 − 𝑏)(𝑠 − 𝑐)
 

The two numerators are necessarily equal regardless of the values that s takes on, since 
this relationship is an identity.  

⟹ (𝐴 + 𝐵)𝑠 − (𝐴𝑐 + 𝐵𝑏) = 𝑎 

𝐴 + 𝐵 = 0 ⟹ 𝐴 = −𝐵 

−(𝐴𝑐 + 𝐵𝑏) = 𝑎 ⟹ −(𝐴𝑐 − 𝐴𝑏) = 𝑎 

⟹ 𝐴 =
𝑎

𝑏 − 𝑐
 

  We notice that, on comparing the coefficient, on the left the coefficient of s is 𝐴 + 𝐵,  
but is zero on the right. Also, the constant term (sum of terms) on the left is −(𝐴𝑐 + 𝐵𝑏) 
which must then equate to 𝑎  on the right side. So, finally,  
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𝑎

(𝑠 − 𝑏)(𝑠 − 𝑐)
=

𝑎
𝑏 − 𝑐
𝑠 − 𝑏

−

𝑎
𝑏 − 𝑐
𝑠 − 𝑐

 

And the inverse transform would give  

𝑎

(𝑠 − 𝑏)(𝑠 − 𝑐)
⟺

𝑎

𝑏 − 𝑐
𝑒𝑏𝑡 −

𝑎

𝑏 − 𝑐
𝑒𝑐𝑡 

=
𝑎

𝑏 − 𝑐
(𝑒𝑏𝑡 − 𝑒𝑐𝑡)𝑢(𝑡) 

With the requisite unit step attached depending on the type of signal under 
consideration.  

2.2 Method 2: “Cover Up” (Method of Residues) 

This works best when the denominator of the polynomial in question has non-repeats, 
linear factors. With repeated factors, the “cover-up” rule can be used to determine the 
coefficients of the non-repeated portions as well as that of the highest-index repeated 
one. Then the method of comparing coefficients or successive differentiation can be used 
to determine the lower order repeated portions.  

Example 2.2: To repeat the above generic example using the rule:  

5𝑠 + 7

𝑠2 + 3𝑠 + 12
=

5𝑠 + 7

(𝑠 + 1)(𝑠 + 2)
 

=
𝐴

𝑠 + 1
+

𝐵

𝑠 + 2
 

Solution:  

To determine A, for instance, we proceed to isolate it by “disappearing” B whether it’s 
actually A or B that’s being “covered-up” depends on subjective judgment!). 

 Multiplying through by (𝑠 + 1), the factor lying below A: 

(5𝑠 + 7)(𝑠 + 1)

𝑠2 + 3𝑠 + 2
=
𝐴 (𝑠 + 1)

(𝑠 + 1)
+
𝐵 (𝑠 + 1)

(𝑠 + 2 )
 

⟹   
5𝑠 + 7

𝑠 + 2
= 𝐴 +

𝐵(𝑠 + 1)

(𝑠 + 2)
 

Now, to “disappear B” thereby leaving ‘A’ all alone, we simply let s assume the value of 
−1 

5𝑠 + 7

𝑠 + 2
|
𝑠=−1

=
−5 + 7

−1 + 2
= 3 
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as previously determined! 

[Note: any finite value other than -1 could have been chosen for 𝑠 since the equation is 
an identity. But that would entail closing two different values thereby ending up with a 
simultaneous linear equation before aiming at the result. This is an entirely unnecessary 
rigmarole!]     

By the same token  

𝐵 =
5𝑠 + 7

𝑠 + 1
|
𝑠=−2

=
−10 + 7

−2 + 1
= 3 

Also, as previously gotten. 

 Is this method (which by the way, I highly recommend for most situations) not 
much more straightforward than the previous one, the method of comparing coefficient? 
Furthermore, it’s less prone to error!   

2.2.1 The Procedure: 

1. Factorized the given polynomial if possible   
2. To determine the unknown constant for instance A above remove the 
 factor “under” A in the polynomial function.   
3. Set s equal to the root (−1) in the polynomial to determine A  

Respect the above procedure for B taking cognizance of the factor under it and the 
associated root (-2 now taking the place of the previous -1 in step 3 above). It should be 
noted that these steps are to be repeated for polynomials with more than two factors 
until all the unknown numerators are exhausted. 

Caveat to my earlier caution and advice about choosing values other than the roots. It’s 
no sin, and may aid in determining the two unknowns at once with simultaneous linear 
equations. But how about when three or more unknown are involved?) 

 So, for a generic polynomial 

                       
𝑎

(𝑠 − 𝑏)(𝑠 − 𝑐)
=

𝐴

(𝑠 − 𝑏)
+

𝐵

(𝑠 − 𝑐)
                                          2.1 

𝐴 =
𝑎

(𝑠 − 𝑐)
|
𝑠=𝑏

, 𝐵 =
𝑎

(𝑠 − 𝑏)
|
𝑠=𝑐

 

 

2.2.2 The Fast Placed Using this Method is as Follows 

1. Factorized the denominator of the given quotient (or polynomial)  
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2. From the denominator, remove the factor on top of which is the unknown 
constant (or by the way, complex number) to be determined. 

3. For the remaining partial fractions, let’s assume the value of the root (or 
pole) of the factor under consideration, after multiplying throughout by 
that factor.  

4. Whatever value so realized (real or complex) is then the constant 
representing the numerator of the partial fractions under consideration.   

2.3 Types of Partial Fractions  

1. Linear factor: non-repeated factors: 
𝐴

𝑠−𝑎
+

𝐵

𝑠−𝑏
+

𝐶

𝑠−𝑐
 

2. Repeated factor (𝑠 − 𝑎)2 leads to  
𝐴

𝑠−𝑎
+

𝐵

(𝑠−𝑎)2
;  (𝑠 − 𝑎)3 leads to  

𝐴

𝑠−𝑎
+

𝐵

(𝑠−𝑎)2
+

𝐶

(𝑠−𝑎)3
;  (𝑠 − 𝑎)4 leads to  

𝐴

𝑠−𝑎
+

𝐵

(𝑠−𝑎)2
+

𝐶

(𝑠−𝑎)3
+

𝐷

(𝑠−𝑎)4
, etc  

3. A quadratic factor (𝑠2 + 𝑎𝑠 + 𝑏) leads to  
𝐴𝑠+𝐵

𝑠2+𝑎𝑠+𝑏
  and  

4. Repeated quadratic factor (𝑠2 + 𝑎𝑠 + 𝑏)2 leads to 

𝐴𝑠 + 𝐵

𝑠2 + 𝑎𝑠 + 𝑏
+

𝐶𝑠 + 𝐷

(𝑠2 + 𝑎𝑠 + 𝑏)2
 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟐. 𝟑: Resolve into partial fraction:  
𝑠2 − 15𝑠 + 41

𝑠3 − 4𝑠2 − 3𝑠 + 18
                                          

Solution: 

Factorize the denominator of this proper quotient (“fraction”) (numerator has degree 2, 
while and denominator, has degree 3) by noting that both -2 and +3 are its roots, by 
inspection:  

[(−2)3 − 4(−2)2 − 3(−2) + 18 = 0],  

[32 − 4 (32) − 3(3) + 18 = 0] 

Dividing 𝑠3 − 4𝑠2 − 3𝑠 + 18 by the factor (𝑠 + 2) leads to 𝑠2 − 6𝑠 + 9 and further 
dividing 𝑠2 − 6𝑠 + 9 by 𝑠 − 3, leads to 𝑠 − 3  

So,                                           
(𝑠2 − 15𝑠 + 41)

𝑠3 − 4𝑠2 − 3𝑠 + 18
=
𝑠2 − 15𝑠 + 41

(𝑠 + 2)(𝑠 − 3)2
                                    

=
𝐴

𝑠 + 2
+

𝐵

(𝑠 − 3)
+

𝐶

(𝑠 − 3)2
 

⟹     𝐴 =
(𝑠2 − 15𝑠 + 41)

(𝑠 − 3)2
|
𝑠=−2

=
[(−2)2 − 15(−2) + 41]

(−5)2
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=
75

25
= 3 

𝐶 =
(𝑠2 − 15𝑠 + 41)

(𝑠 + 2)
|
𝑠=3

=
[32 − 15(3) + 41]

𝑠
=
5

5
= 1 

 

3

𝑠 + 2
+

𝐵

𝑠 − 3
+

1

(𝑠 − 3)2
=
3(𝑠 − 3)2 + 𝐵(𝑠 + 2)(𝑠 − 3) + 1(𝑠 + 2)

(𝑠 + 2)(𝑠 − 3)2
 

=
(𝑠2 − 15𝑠 + 41)

(𝑠3 − 4𝑠2 − 3𝑠 + 18)
 

3(𝑠 − 3)2 + 𝐵(𝑠 + 2)(𝑠 − 3) ≡ 𝑠2 − 15𝑠 + 41 

Setting 𝑠 = 3 or 𝑠 = −2 would “disappear” B that we’re trying to evaluate! So, we 
choose numbers other than those two: 

𝑠 = 0 ⟹ 3(−3)2 + 𝐵(2)(−3) + 2 ≡ 41 

⟹ 𝐵 = −2.  

Finally,                              
𝑠2 − 15𝑠 + 41

𝑠3 − 4𝑠2 − 3𝑠 + 18
≡

3

𝑠 + 2
−

2

𝑠 − 3
+

1

(𝑠 − 3)2
                      

To get back to the time domain, the inverse transform [
3

(𝑠+2)
−

2

(𝑠−3)
+

1

(𝑠−3)2
] 

= (3𝑒−2𝑡 − 2𝑒3𝑡 + 𝑡𝑒3𝑡)𝑢(𝑡) 

 (Note: remember the first-shift theorem with respect to the third term above, or viewed 
from another dimension, the effect of multiplying a function by t: 

[
−𝑑

𝑑𝑠
(
1

𝑠 − 3
) =

1

(𝑠 − 3)2
] 

 An alternative, more straight forward approach to determining B is to multiply the 

quotient by (𝑠 − 3)2, leading to 
(𝑠2−15𝑠+41) (𝑠−3)2

(𝑆+2) (𝑠−3)2
=

𝑠2−15𝑠+41

𝑠+2
, then differentiating once 

with respect to s, and then evaluating the resulting quotient at 𝑠 = 3. If the pole is 
repeated twice (that is, a total of 3 times), the third numerator term, 𝑎𝑛−2 is evaluated 
by again multiplying the quotient under consideration by (𝑠 − 𝑝)𝑛, differentiating the 
result twice with repeat to 𝑠, and then dividing by 2 (or 2!). 

 In general, given a quotient (of polynomials in s): 

 𝐹(𝑠) =
𝑎𝑛

(𝑠 − 𝑝)𝑛
+

𝑎𝑛−1
(𝑠 − 𝑝)𝑛−1

+
𝑎𝑛−2

(𝑠 − 𝑝)𝑛−2
+⋯+

𝑎1
(𝑠 − 𝑝)

                  2.2 
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With n repeated ratios (each root is p,) to evaluate the 𝑎𝑛−𝑘 term [that is, the (𝐾 + 1) 
the numerator term], we first multiply F(s) by (𝑠 − 𝑝)𝑛, differentiate the result k times 
with respect to 𝑠, and then divide by L! (K factorial) after (or before) evaluating the result 
at 𝑠 = 𝑃. 

              𝑎𝑛−𝑘 =
1

𝑘!
 {
𝑑𝑘

𝑑𝑠𝑘
[{(𝑠 − 𝑝)𝑛}𝐹(𝑠)]}|

𝑠=𝑝

                                               2.3 

For the last example, B represent the 𝑎𝑛−1 term, that is the numerator of the second 
repeated root (written in descending order of indices).  

𝑎𝑛−1 =
1

1!
{
𝑑

𝑑𝑠
[(𝑠 − 3)2 {

𝑠2 − 15𝑠 + 41

(𝑠 + 2)(𝑠 − 3)2
}]}

𝑠=3

 

=
𝑑

𝑑𝑠
 
𝑠2 − 15𝑠 + 41

𝑠 + 2
|
𝑠=3

 

= 
(𝑠 + 2)(2𝑠 − 15) − (𝑠2 − 15𝑠 + 41)

(𝑠 + 2)2
|
𝑠=3

 

=
(5) (−9) − (9 − 54 + 41) 

25
=
−45 − 9 + 45 − 41

25
 

=
−50

25
= −2, 

With practice, it could be seen that the above procedure is much quicker and less subject 
to errors, than the method of comparing coefficients.  

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟐. 𝟒: Find the inverse transform of 
1

𝑠2  −  5𝑠 +   6
 .                                            

           Solution:   Let us convert the given function into partial fractions. 

ℒ−1 [
1

𝑠2  −  5𝑠 +   6
 ] = ℒ−1 [

1

𝑠  −    3
−

1

𝑠  −   2
] 

= ℒ−1 (
1

𝑠  −    3
) − ℒ−1 (

1

𝑠  −    2
) = 𝑒3𝑡 − 𝑒2𝑡 

Note: We shall discourse the inverse Laplace transform in details in the proceeding 
chapter.              

Example 2.5: Find the inverse Laplace transform of 

𝑠 −  1

𝑠2  −   6𝑠  +   25
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        Solution:          ℒ−1 [
𝑠 −  1

𝑠2 − 6𝑠 +  25
 ] = ℒ−1 [

𝑠 −  1

( 𝑠 −  3 )2 + (4)2 
] = ℒ−1 [

𝑠 −  3  +   2

( 𝑠 −  3 )2 + (4)2 
]  

= ℒ−1 [
𝑠 −   3

( 𝑠 −   3 )2  +  (4)2 
] +

1

2
 ℒ−1 [

4

( 𝑠 −   3 )2  +  (4)2 
] 

= 𝑒3𝑡 cos 4𝑡 +
1

2
 𝑒3𝑡 sin 4𝑡 

Example 2.6: Find the inverse Laplace transform of    

𝑠  +   4

𝑠 ( 𝑠 −   1 )  +  (𝑠2  +   4) 
 . 

Solution:   Let us first resolve 
𝑠  +   4

𝑠 ( 𝑠  +   1 )  +  (𝑠2  +   4) 
 in partial fractions. 

  

𝑠  +   4

𝑠 ( 𝑠 −  1 ) + (𝑠2  +   4) 
≡
𝐴

𝑠
+

𝐵

𝑠 −  1
+
𝐶𝑠 +   𝐷

𝑠2  +   4
 

𝑠 + 4 ≡ 𝐴 (𝑠 − 1) (𝑠2  +   4) +  𝐵𝑠 (𝑠2  +   4) + (𝐶𝑠 + 𝐷)𝑠 (𝑠 − 1)      (*) 

      Putting  𝑠 = 0, 𝑤𝑒  𝑔𝑒𝑡  4 = −4 𝐴    𝑜𝑟    𝐴 = −1 

      Putting  𝑠 = 1, 𝑤𝑒 𝑔𝑒𝑡 5 = 𝐵. 1 . (1 + 4) 𝑜𝑟  𝐵 = 1 

      Equating the coefficients of 𝑠3  on both sides of (*), we have 

                                                 0 = 𝐴 + 𝐵 + 𝐶      𝑜𝑟     0 = −1 + 1 + 𝐶    𝑜𝑟   𝐶 = 0. 

      Equating the coefficients of 𝑠  on both sides of (1), we get 

                                      1 = 4𝐴 + 4𝐵 − 𝐷     𝑜𝑟     1 = −4 + 4 − 𝐷   𝑜𝑟     𝐷 = −1 

      On putting the values of A, B, C, D in (*), we get 

𝑠  +   4

𝑠 ( 𝑠 −   1 )  +  (𝑠2  +   4) 
= −

1

𝑠
+

1

𝑠 −   1
+

1

𝑠2  +   4
 

∴                               ℒ−1 [ 
𝑠  +   4

𝑠 ( 𝑠 −  1 ) + (𝑠2  +   4)
] =  ℒ−1 [−

1

𝑠
+

1

𝑠 −   1
+

1

𝑠2  +   4
] 

= − ℒ−1 (
1

𝑠
) + ℒ−1 (

1

𝑠 −   1
) −

1

2
  ℒ−1  (

2

𝑠2  +   4
) 

= −1 + 𝑒𝑡 −
1

2
sin 2𝑡 . 

Example 2.7: Find the Laplace inverse of 
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𝑠2

 (𝑠2   +   𝑎2 )  +  (𝑠2  +   𝑏2) 
 

           Solution: Let us convert the given into partial fractions. 

ℒ−1 [
𝑠2

 (𝑠2   +   𝑎2 ) +  (𝑠2  +  𝑏2)
] 

= ℒ−1 [
𝑎2

𝑎2  −   𝑏2
 .

1

𝑠2   +   𝑏2
−

𝑏2

𝑎2  −   𝑏2
 .

1

𝑠2   +   𝑏2
] 

=
1

𝑎2  −   𝑏2
 ℒ−1 [

𝑎2

𝑠2   +   𝑎2
−

𝑏2

𝑠2  −   𝑏2
] 

=
1

𝑎2  −   𝑏2
[ 𝑎2 ( 

1

𝑎
 sin 𝑎𝑡) − 𝑏2 ( 

1

𝑏
sin 𝑏𝑡)] 

=
1

𝑎2  −   𝑏2
[𝑎 sin 𝑎𝑡 − 𝑏 sin 𝑏𝑡].                  

2.4 Repeated Poles 

Suppose 𝐹(𝑠) has 𝑛 repeated poles at 𝑠 = −𝑝. Then we may represent 𝐹(𝑠) as 

𝐹(𝑠) =
𝑘𝑛

(𝑠 + 𝑝)𝑛
+

𝑘𝑛−1
(𝑠 + 𝑝)𝑛−1

+⋯+
𝑘2

(𝑠 + 𝑝)2
+

𝑘1
𝑠 + 𝑝

+ 𝐹1(𝑠)       2.4 

where 𝐹1(𝑠) is the remaining part of 𝐹(𝑠) that does not have a pole at 𝑠 =
−𝑝. We determine the expansion coefficient 𝑘𝑛 as 

    𝑘𝑛 = (𝑠 + 𝑝)𝑛 + 𝐹(𝑠)|𝑠=−𝑝    2.5 

as we did above. To determine 𝑘𝑛−1, we multiply each term in Eq. (2.4) by (𝑠 + 𝑝)𝑛 and 
differentiate to get rid of 𝑘𝑛, then evaluate the result at 𝑠 = −𝑝 to get rid of the other 
coefficients except 𝑘𝑛−1 Thus, we obtain 

                                           𝑘𝑛−1 =
𝑑

𝑑𝑠
[(𝑠 + 𝑝)𝑛𝐹(𝑠)]|𝑠=−𝑝                                    2.6 

Repeating this gives 

                                          𝑘𝑛−2 =
1

2!

𝑑2

𝑑𝑠2
[(𝑠 + 𝑝)𝑛 𝐹(𝑠)]|𝑠=−𝑝                             2.7 

The 𝑚th term becomes 

                                       𝑘𝑛−𝑚 =
1

𝑚!

𝑑𝑚

𝑑𝑠𝑚
[(𝑠 + 𝑝)𝑛𝐹(𝑠)]|𝑠=−𝑝                               2.8 
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where 𝑚 = 1,2,… , 𝑛 − 1. One can expect the differentiation to be difficult to handle as 
m increases. Once we obtain the values of 𝑘1, 𝑘2… . 𝑘𝑛 by partial fraction expansion, we 
apply the inverse transform 

                             ℒ−1 [
1

(𝑠 + 𝑎)𝑛
] =

𝑡𝑛−1𝑒−𝑎𝑡

(𝑛 − 1)!
𝑢(𝑡)                                                  2.9 

to each term on the right-hand side of Eq. (2.4) and obtain 

𝑓(𝑡) = (𝑘1𝑒
−𝑝𝑡 + 𝑘2𝑡𝑒

−𝑝𝑡 +
𝑘3
2!
𝑡2𝑒−𝑝𝑡 +⋯+

𝑘𝑛
(𝑛 − 1)!

𝑡𝑛−1𝑒−𝑝𝑡)𝑢(𝑡) + 𝑓1(𝑡)       2.10 

 

2.5 Complex Poles 

A pair of complex poles is simple if it is not repeated; it is a double or multiple pole if 
repeated. Simple complex poles may be handled the same way as simple real poles, but 
because complex algebra is involved the result is always cumbersome. An easier 
approach is a method known as completing the square. The idea is to express each 
complex pole pair (or quadratic term) in 𝐷(𝑠) as a complete square such as (𝑠 + 𝛼)2 +
𝛽2 and then use Table 1.2 to find the inverse of the term. 

 Since 𝑁(𝑠) and 𝐷(𝑠) always have real coefficients and we know that the complex 
roots of polynomials with real coefficients must occur in conjugate pairs, 𝐹(𝑠) may have 
the general form 

             𝐹(𝑠) =
𝐴1𝑠 + 𝐴2
𝑠2 + 𝑎𝑠 + 𝑏

+ 𝐹1(𝑠)                                                                          2.11 

where 𝐹1(𝑠) is the remaining part of 𝐹(𝑠) that does not have this pair of complex poles. 
If we complete the square by letting 

   𝑠2 + 𝑎𝑠 + 𝑏 = 𝑠2 + 2𝛼𝑠 + 𝛼2 + 𝛽2 = (𝑠 + 𝛼)2 + 𝛽2 2.12 

we also let 

   𝐴1𝑠 + 𝐴2 = 𝐴1(𝑠 + 𝛼) + 𝐵1𝛽    2.13 

then Eq. (2.12) becomes 

               𝐹(𝑠) =
𝐴1(𝑠 + 𝛼)

(𝑠 + 𝛼)2 + 𝛽2
+

𝐵1𝛽

(𝑠 + 𝛼)2 + 𝛽2
+ 𝐹1(𝑠)                                        2.14 

From Table 1.2, the inverse transform is 

   𝑓(𝑡) = (𝐴1𝑒
−𝛼𝑡 cos 𝛽𝑡 + 𝐵1𝑒

−𝛼𝑡 sin 𝛽𝑡)𝑢(𝑡) + 𝑓1(𝑡) 2.15 
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 Whether the pole is simple, repeated, or complex, a general approach that can 
always be used in finding the expansion coefficients is the method of algebra. To apply 

the method, we first set 𝐹(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
  equal to an expansion containing unknown 

constants. We multiply the result through by a common denominator. Then we 
determine the unknown constants by (i.e., by algebraically solving a set of simultaneous 
equations for these coefficients at like powers of s). 

 Another general approach is to substitute specific, convenient values of s to 
obtain as many simultaneous equations as the number of unknown coefficients, and 
then solve for the unknown coefficients. We must make sure that each selected value of 
s is not one of the poles of F(s).  

Example 2.8: Find the inverse Laplace transform of 

𝐹(𝑠) =
3

𝑠
−

5

𝑠 + 1
+

6

𝑠2 + 4
 

Solution: 

The inverse transform is given by 

𝑓(𝑡) = ℒ−1[𝐹(𝑠)] = ℒ−1 (
3

𝑠
) − ℒ−1 (

5

𝑠 + 1
) + ℒ−1 (

6

𝑠2 + 4
) 

= (3 − 5𝑒−𝑡 + 3 sin 2𝑡)𝑢(𝑡), 𝑡 ≥ 0 

where Table 1.2 has been consulted for the inverse of each term. 

 

Example 2.9: Find 𝑓(𝑡) given that 

𝐹(𝑠) =
𝑠2 + 12

𝑠(𝑠 + 2)(𝑠 + 3)
 

Solution: 

Unlike in the previous example where the partial fractions have been provided, we first 
need to determine the partial fractions. Since there are three poles, we let 

                                
𝑠2 + 12

𝑠(𝑠 + 2)(𝑠 + 3)
=
𝐴

𝑠
+

𝐵

𝑠 + 2
+

𝐶

𝑠 + 3
                                2.16 

where A, B, and C are the constants to be determined, we can find the constants using 
two approaches 
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Residue method: 

𝐴 = 𝑠𝐹(𝑠)|𝑠=0 =
𝑠2 + 12

(𝑠 + 2)(𝑠 + 3)
|
𝑠=0

=
12

(2)(3)
= 2 

𝐵= (𝑠 + 2)𝐹(𝑠)|𝑠=−2 =
𝑠2 + 12

𝑠(𝑠 + 3)
|
𝑠=−2

=
4 + 12

(−2)(1)
= −8 

𝐶= (𝑠 + 3)𝐹(𝑠)|𝑠=−3 =
𝑠2 + 12

𝑠(𝑠 + 2)
|
𝑠=−3

=
9 + 12

(−3)(1)
= −7 

  

Algebraic method:  

multiplying both sides of Eq. (2.17) by 𝑠(𝑠 + 2)(𝑠 + 3) gives  

𝑠2 + 12 = 𝐴(𝑠 + 2)(𝑠 + 3) + 𝐵𝑠(𝑠 + 3) + 𝐶𝑠(𝑠 + 2) 

Or 

𝑠2 + 12 = 𝐴(𝑠2 + 5𝑠 + 6) + 𝐵(𝑠2 + 3𝑠) + 𝐶(𝑠2 + 2𝑠) 

Equating the coefficient of like powers of 𝑠 gives  

Constant: 12 = 6𝐴   ⟹    𝐴 = 2 

 𝑠:  0 = 5𝐴 + 3𝐵 + 2𝐶   ⟹     3𝐵 + 2𝐶 = −10 

 𝑠2:  1 = 𝐴 + 𝐵 + 𝐶      ⟹    𝐵 + 𝐶 = −1 

Thus, 𝐴 = 2, 𝐵 = −8, 𝐶 = 7 and Eq. (2.17) becomes  

𝐹(𝑠) =
2

𝑠
−

8

𝑠 + 2
+

7

𝑠 + 3
 

By finding the inverse transform of each term, we obtain  

𝑓(𝑡) = (2 − 8𝑒−2𝑡 + 7𝑒−3𝑡)𝑢(𝑡) 

Example 2.10: Calculate 𝑣(𝑡) given that  

𝑉(𝑠) =
10𝑠2 + 4

𝑠(𝑠 + 1)(𝑠 + 2)2
 

Solution:  

While the previous example is on simple roots, this example is on repeated roots. Let  
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𝑉(𝑠) =
10𝑠2 + 4

𝑠(𝑠 + 1)(𝑠 + 2)2
 

=
𝐴

𝑠
+

𝐵

𝑠 + 1
+

𝐶

(𝑠 + 2)2
+

𝐷

𝑠 + 2
                                2.17 

Residue method: 

𝐴 = 𝑠𝑉(𝑠)|𝑠=0 =
10𝑠2 + 4

(𝑠 + 1)(𝑠 + 2)2
|
𝑠=0

=
4

(1)(2)2
= 1 

𝐵 = (𝑠 + 1)𝑉(𝑠)|𝑠=−1 =
10𝑠2 + 4

𝑠(𝑠 + 2)2
|
𝑠=0

=
14

(−1)(1)2
= 14 

𝐶 = (𝑠 + 2)2𝑉(𝑠)|𝑠=−2 =
10𝑠2 + 4

𝑠(𝑠 + 1)
|
𝑠=−2

=
44

(−2)(−1)
= 22 

𝐷 =
𝑑

𝑑𝑠
[(𝑠 + 2)2𝑉(𝑠)]|

𝑠=−2
=
𝑑

𝑑𝑠
(
10𝑠2 + 4

𝑠2 + 𝑠
)|
𝑠=−2

 

=
(𝑠2 + 𝑠)(20𝑠) − (10𝑠2 + 4)(2𝑠 + 1)

(𝑠2 + 𝑠)2
|
𝑠=−2

=
52

4
= 13 

 

Algebraic method:  

Multiplying Eq. (2.17) by 𝑠(𝑠 + 1)(𝑠 + 2)2, we obtain  

10𝑠2 + 4 = 𝐴(𝑠 + 1)(𝑠 + 2)2 + 𝐵𝑠(𝑠 + 2)2 

= 𝐶𝑠(𝑠 + 1) + 𝐷𝑠(𝑠 + 1)(𝑠 + 2) 

Or 

10𝑠2 + 4 = 𝐴 (𝑠3 + 5𝑠2 + 8𝑠 + 4) + 𝐵(4𝑠2 + 4𝑠) 

𝐶(𝑠2 + 𝑠) + 𝐷(𝑠3 + 3𝑠2 + 2𝑠) 

Equating coefficients,  

Constant: 4 = 4𝐴  ⟹    𝐴 = 1 

𝑠:  0 = 8𝐴 + 4𝐵 + 𝐶 + 2𝐷   ⟹   4𝐵 + 𝐶 + 2𝐷 = −8 

𝑠2:  10 = 5𝐴 + 4𝐵 + 𝐶 + 3𝐷  ⟹   4𝐵 + 𝐶 + 3𝐷 = 5 

𝑠3:  0 = 𝐴 + 𝐵 + 𝐷   ⟹    𝐵 + 𝐷 = −1 
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Solving these simultaneous equations gives 𝐴 = 1, 𝐵 = −14, 𝐶 = 22, 𝐷 = 13, so that 

𝑉(𝑠) =
1

𝑠
=

14

𝑠 + 1
+

13

𝑠 + 2
+

22

(𝑠 + 2)2
 

Taking the inverse transform of each term, we get  

𝑣(𝑡) = (1 − 14𝑒−𝑡 + 13𝑒−2𝑡 + 223−2𝑡)𝑢(𝑡) 

 

Example 2.11: Find the inverse transform of the frequency-domain function of: 

𝐻(𝑠) =
20

(𝑠 + 3)(𝑠2 + 8𝑠 + 25)
 

Solution: 

In this example, 𝐻(𝑠) has a pair of complex poles at 𝑠2 + 8𝑠 + 25 = 0 or 𝑠 = −4 ± 𝑗3. 
We let 

𝐻(𝑠) =
20

(𝑠 + 3)(𝑠2 + 8𝑠 + 25)
=

𝐴

𝑠 + 3
+

𝐵𝑠 + 𝐶

(𝑠2 + 8𝑠 + 25)
      2.18          

We now determine the expansion coefficient in two ways 

 

Combination of Methods: 

 we can obtain A using the method of residue method 

𝐴 = (𝑠 + 3)𝐻(𝑠)|𝑠=−3 =
20

𝑠2 + 8𝑠 + 25
|
𝑠=−3

=
20

10
= 2 

Although B and C can be obtained using the method of residue, we will not do so, to 
avoid complex algebra. Rather, we can substitute two specific values of 𝑠 [say 𝑠 = 0,1, 
which are not poles of 𝐹(𝑠)] into Eq. (2.18). This will give us two simultaneous equations 
from which to find B and C. If we let 𝑠 = 0 in Eq. (2.18), we obtain 

20

75
=
𝐴

3
+
𝐶

25
 

Or 

     20 = 25𝐴 + 3𝐶    2.18.1 

Since 𝐴 = 2, Eq. (2.18.1) gives 𝐶 = −10. Substituting 𝑠 = 1 into Eq. (2.18) gives 
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20

(4)(34)
=
𝐴

4
+
𝐵 + 𝐶

34
 

Or 

     20 = 34𝐴 + 4𝐵 + 4𝐶    2.18.2 

But 𝐴 = 2, 𝐶 = −10, so that Eq. (2.28.2) gives 𝐵 = −2 

Algebraic method: 

 Multiplying both sides by Eq (2.18) by (𝑠 + 3)(𝑠2 + 8𝑠 + 25) yields  

20 = 𝐴(𝑠2 + 8𝑠 + 25) + (𝐵𝑠 + 𝐶)(𝑠 + 3) 

= 𝐴(𝑠2 + 8𝑠 + 25) + 𝐵(𝑠2 + 3𝑠) + 𝐶(𝑠 + 3)   2.18.3  

Equating coefficient gives  

𝑠2:  0 = 𝐴 + 𝐵    ⟹    𝐴 = −𝐵 

𝑠:  0 = 8𝐴 + 3𝐵 + 𝐶 = 5𝐴 + 𝐶  ⟹ 𝐶 = −5𝐴 

Constant: 20 = 25𝐴 + 3𝐶 = 25𝐴 − 15𝐴   ⟹   𝐴 = 2 

That is, 𝐵 = −2, 𝐶 = −10 thus, 

𝐻(𝑠) =
2

𝑠 + 3
−

2𝑠 + 10

(𝑠2 + 8𝑠 + 25)
=

2

𝑠 + 3
−
2(𝑠 + 4) + 2

(𝑠 + 4)2 + 9
 

=
2

𝑠 + 3
−

2(𝑠 + 4)

(𝑠 + 4)2 + 9
−
2

3
 

3

(𝑠 + 4)2 + 9
 

Taking the inverse of each term, we obtain  

   ℎ(𝑡) = (2𝑒−3𝑡 − 2𝑒−4𝑡 cos 3𝑡 −
2

3
𝑒−4𝑡 sin 3𝑡) 𝑢(𝑡) 2.18.4 

It is alright to leave the result this way. However, we can combine the cosine and sine 
terms as 

   ℎ(𝑡) = (2𝑒−3𝑡 − 𝑅𝑒−4𝑡 cos(3𝑡 − 𝜃))𝑢(𝑡)   2.18.5 

To obtain Eq. (2.18.5) from Eq. (2.18.4). 

 Next, we determine the coefficient R and the phase angle 𝜃: 

   𝑅 = √22 + (
2

3
)
2

= 2.108,    𝜃 = tan−1
2

3

2
=14.43𝑜 

Thus 
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ℎ(𝑡) = (2𝑒−3𝑡 − 2.108𝑒−4𝑡 cos(3𝑡 − 18.43𝑜))𝑢(𝑡) 

 

2.6 Exercise  

Solve the following partial fraction  

1.  
𝑠2  +  2𝑠 +  6

𝑠2
              

2.  
1

𝑠2 −  7𝑠 +  12
           

3.  
𝑠 −  2

𝑠2 − 4 𝑠 +  13
                                        

4.  
3𝑠 +  1

(𝑠 −  1) (𝑠2 +  1)
                                                         

5.  
11 𝑠2 − 2𝑠 +  5

2𝑠3 −  3𝑠2 −  3𝑠 +  2
                                                

6.  
2𝑠2 −  6𝑠 +  5

 (𝑠−1)(𝑠−2) (𝑠 −3)
            

7. 
3𝑠 +  1

 (𝑠 −  4)2 +  9
               

8.  
16

 (𝑠2  +   2𝑠  +  5)2
       

 9.  
 1

 (𝑠 −3) (𝑠2  +  2𝑠  +  2)
         

10.  
 1

 (𝑠 −2) (𝑠2  +  )
       

11.  
 𝑠2 − 6𝑠 +  7

(𝑠3 −  4𝑠  +   3)2
 

12. 
2𝑠+3

𝑠2+5𝑠+4
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CHAPTER 3 

INVERSE LAPLACE TRANSFORMS 
 

3.0     Introduction 

         Now we obtain 𝑓(𝑡)   𝑤ℎ𝑒𝑛    𝐹(𝑠) is given, then we say that inverse Laplace 
transform of 𝐹 (𝑠)  𝑖𝑠  𝑓(𝑡). 
        If ℒ [𝑓(𝑡)] = 𝐹(𝑠), 𝑡ℎ𝑒𝑛 ℒ−1 [𝐹(𝑠)] =  𝑓(𝑡).   3.1 
 
where ℒ−1 is called the inverse Laplace transform operator. 
        From the application point of view, the inverse Laplace transform is very useful. 
 

3.1    Important Formulas 

(1)  ℒ−1  {
1

𝑠
} = 1                                                 

(2)  ℒ−1 {
1

𝑠𝑛
} =

𝑡𝑛 −  1

𝑛 −  1
  

(3)  ℒ−1 {
1

𝑠 −  𝑘
} = 𝑒𝑘𝑡                                            

(4)  ℒ−1 {
1

𝑠2  −   𝑘2
} = cosh 𝑘𝑡 

(5)  ℒ−1  {
1

𝑠2  −   𝑘2
} =

1

𝑘
 cos 𝑘𝑡    

(6)  ℒ−1  {
1

𝑠2 + 𝑘2
} =

1

𝑘
sin 𝑘𝑡 

 (7)  ℒ−1 {
𝑠

𝑠2 + 𝑘2
} = cos 𝑘𝑡    

(8)   ℒ−1 {𝐹 (𝑠 − 𝑘)} = 𝑒𝑘𝑡 𝑓 (𝑡) 

(9)  ℒ−1 {
1

(𝑠 −  𝑚2)2 +  𝑛2
} =

1

𝑛
 𝑒𝑚𝑡 sin 𝑛𝑡   

(10)  ℒ−1 {
𝑠 −  𝑚

(𝑠 + 𝑚2)2 +  𝑛2
} =  𝑒𝑚𝑡 cosh 𝑛𝑡        

(11)   ℒ−1 { 
1

(𝑠 −  𝑚2)2 −  𝑛2
} =

1

𝑛
 𝑒𝑚𝑡 sinh 𝑛𝑡  

(12)  ℒ−1  {
𝑠  −  𝑚

(𝑠 −  𝑚2)2 −  𝑛2
} =

1

𝑛
 𝑒𝑚𝑡 cosh 𝑛𝑡     

 (13)   ℒ−1  {
1

(𝑠2 −  𝑚2)2 
} =

1

2𝑚3  (sin𝑚𝑡 − 𝑚𝑡 cos𝑚𝑡)  

(14)   ℒ−1  {
𝑠

(𝑠2  +  𝑚2)2 
} =

1

2𝑚
𝑡 sin𝑚𝑡    

 (15)   ℒ−1  {
𝑠2 −  𝑚2

(𝑠2  +  𝑚2)2 
} = 𝑡 cos𝑚𝑡    

(16)  ℒ−1  {1} = 𝛿 (𝑡) 

(17)   ℒ−1  {
𝑠2

(𝑠2  +  𝑚2)2 
} =

1

2𝑚
 [sin𝑚𝑡 + 𝑚𝑡 cos𝑚𝑡]       
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Example 3.1: Find the inverse Laplace Transform of the following 

(i) 
1

s −   2
     

(ii)
1

s2  −   9
   

(iii) 
s

s2  −   16
  

(iv) 
1

s2  −   25
     

(v) 
s

s2 −  9
               

 (vi) 
1

(s −  2)2 +  1 
        

 (vii)  
s −   1

(s −   2)2  +   4 
  

 (viii)  
1

(s −   2)2   −   4 
    

   (ix)  
s +   2

(s −   2)2   −   25 
  

   (x)  
1

2s −  7
         

       
 Solutions: 

(i) ℒ−1
1

𝑠 −  2
= 𝑒2𝑡            

(ii)   ℒ−1
1

𝑠2 −  9
= ℒ−1

1

3
  .  

3

𝑠2 −  (3)2
=

1

3
 sinh 3𝑡      

(iii)   ℒ−1
𝑠

𝑠2 −  16
= ℒ−1  

𝑠

𝑠2 −  (4)2
= cosh 4𝑡     

(iv)   ℒ−1
1

𝑠2 +  25
=

1

5
  

5

𝑠2 −  (5)2
=

1

5
 sin 𝑠𝑡        

(v)   ℒ−1
1

𝑠2 +  9
= 

𝑠

𝑠2 −  (3)2
= cos 3𝑡                      

(vi)     ℒ−1
2

(𝑠  −  2)2 +  1
= 𝑒2𝑡𝑠𝑖𝑛 𝑡   

(vii)  ℒ−1
𝑠 −  1

(𝑠  −  1)2 +  4
= 𝑒𝑡 cos 2𝑡  

(viii) ℒ−1  
1

(𝑠  −  3)2  −  4
=  

1

2
 

2

(𝑠  −  3)2  −  (2)2
=

1

2
𝑒−3𝑡 sinh 2𝑡      

(𝑖𝑥)       
1

2𝑠  −  7
=

1

2
 𝑒

7

2
 𝑡                                                                

(x)        [ℒ−1 𝐹(𝑠) =
1

𝑚
𝑓 (

1

𝑚
)]   
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Example 3.2: Find the inverse Laplace transform of 

 (𝑖)  
𝑠2  + 𝑠 + 2

𝑠
3
2

 

 

(𝑖𝑖)   
2𝑠 −   5

9𝑠2   −   25
   

 (𝑖𝑖𝑖)   
𝑠 −   2

6𝑠2  +    20
  

     
    
 
Solution: 

(𝑖)       ℒ−1
𝑠2  + 𝑠 + 2

𝑠
3
2

= ℒ−1 𝑠
1
2 + ℒ−1𝑠−

1
2 + ℒ−1

2

𝑠
3
2

 

⟹ ℒ−1
1

𝑠−
1
2

+ ℒ−1
1

𝑠
1
2

+ ℒ−1
2

𝑠
3
2

 

⟹
𝑡−

1
2
 −1

−
1
2

+
𝑡
1
2
 −1

1
2

+
2 𝑡

3
2
 −1

3
2

 

⟹   
1

−
1
2 𝑡

3
2

+
1

√𝜋 𝑡
=
4√𝑡

√𝜋
 

(𝑖𝑖)     ℒ−1  [
2𝑠 −   5

9𝑠2   −   25
] 

⟹ ℒ−1 [
2𝑠

9𝑠2  −   25
−

5

9𝑠2  −   25
] 

⟹ ℒ−1  

[
 
 
 
 

2𝑠

9 [𝑠2 − (
5
3)

2

]

−
5

9 [𝑠2 − (
5
3)

2

]
]
 
 
 
 

 

                         ⟹
2

9
cosh

5

3
 𝑡 −

1

3
  ℒ−1  [

5

3

𝑠2−(
5

3
)
2 ] 

⟹
2

9
cosh

5𝑡

3
−
1

3
sin

5𝑡

3
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(𝑖𝑖𝑖)  ℒ−1   [
𝑠 −   2

6 𝑠2  +    20
]  = ℒ−1  [

𝑠

6𝑠2  +   20
] − ℒ−1 [ 

2

6𝑠2  +   20
]

=
1

6
 ℒ−1  

[
 
 
 
 

𝑠

𝑠2  + (√
10
3 )

2

]
 
 
 
 

−
1

3
ℒ−1

[
 
 
 
 

1

𝑠2  + (√
10
3 )

2

]
 
 
 
 

 

⟹
1

6
cos√

10

3
  𝑡 −

1

3
 × √

3

10
ℒ−1

[
 
 
 
 

√10
3

𝑠2  +  (√
10
3 )

2

]
 
 
 
 

 

⟹
1

6
cos√

10

3
 𝑡 −

1

√30 
 sin√

10

3
 𝑡 

3.2   Multiplication by s 

ℒ−1[𝑠𝐹 (𝑠)] =
𝑑

𝑑𝑡
𝑓(𝑡) + 𝑓(0)𝛿(𝑡) 

Example 3.3: Find the inverse Laplace transform of 

(𝑖) 
𝑠

𝑠2 + 1
              (𝑖𝑖) 

𝑠 

4𝑠2 − 25
           (𝑖𝑖𝑖) 

3𝑠

2𝑠 + 9
 

       

 Solution: 

(i)          ℒ−1  
1

𝑠2  +   1
= sin 𝑡 

ℒ−1  
1

𝑠2  +   1
=
𝑑

𝑑𝑡
(sin 𝑡) + sin(0) 𝛿(𝑡) 

= cos 𝑡 

(ii)  ℒ−1  
1

4𝑠2 − 25
=
1

4
  ℒ−1  

1

𝑠2 −
25
4

=
1

4
 .
2

5
  ℒ−1  

5
2

𝑠2 – (
5
2)

2 =
1

10
sinh

5

2
 𝑡 

(iii)  ℒ−1
3

2𝑠   +   9
=
3

2
  ℒ−1  

1

𝑠  +   
9
2

=
3

2
𝑒−

9
2
𝑡                                                            
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ℒ−1
3𝑠

2𝑠   +   9
=
3

2
×
𝑑

𝑑𝑡
 (𝑒−

9
2
𝑡) +

3

2
 𝑒−

9
2
(0) = 

3

2
 (−

9

2
) 𝑒−

11
2
 𝑡 +

3

2
 

= −𝑒−
11
2
 𝑡 +

3

2
                                            

 

3.3     Division by s (multiplication by 
𝟏

𝒔
) 

ℒ−1 [
𝐹 (𝑠)

𝑠
] = ∫ ℒ−1[𝐹 (𝑠)] 𝑑𝑡

𝑡

0

= ∫ 𝑓(𝑡) 𝑑𝑡
𝑡

0

 

Example 3.4: Find the inverse Laplace transform of 

 (𝑖) 
1

𝑠 (𝑠 +  𝑚)
     

 (𝑖𝑖) 
1

𝑠 (𝑠2  +   1)
    

(𝑖𝑖𝑖)   
𝑠2 +  3

𝑠 (𝑠2 +  9)
            

           Solution: 

 (𝑖)   ℒ−1  (
1

𝑠  +   𝑚
) = 𝑒−𝑚𝑡 

ℒ−1  [
1

𝑠 (𝑠  +    𝑚)
] = ∫ ℒ−1  (

1

𝑠  +    𝑚
)  𝑑𝑡

𝑡

0

= ∫ 𝑒−𝑚𝑡 𝑑𝑡
𝑡

0

= [
𝑒−𝑚𝑡

−𝑚
]
𝑜

𝑡

 

=
𝑒−𝑚𝑡

−𝑚
+
1

𝑚
=
1

𝑚
  [1 − 𝑒−𝑚𝑡] 

(𝑖𝑖)   ℒ−1  
1

𝑠2  +   1
= sin 𝑡   

ℒ−1
1

𝑠
  (

1

𝑠2   +    1
) = ∫ ℒ−1  (

1

𝑠2   +    1
)  𝑑𝑡

𝑡

0

= ∫ sin 𝑡  𝑑𝑡
𝑡

0

= [− cos 𝑡]𝑜
𝑡 = −cos 𝑡 + 1 

(𝑖𝑖𝑖)     ℒ−1
𝑠2   +    3

𝑠(𝑠2   +    9)
= ℒ−1 [

𝑠2   +    9 −   6

𝑠(𝑠2   +    9)
] = ℒ−1 [

1

𝑠
−

6

𝑠(𝑠2   +    9)
]

⟹ 1 −∫ ℒ−1
3

𝑠2   +    9
 𝑑𝑠

𝑡

0

= 1 − 2 ∫ sin 3𝑡 𝑑𝑡
𝑡

0

= 1 + 2 x 
1

3
  [cos 3𝑡]0

𝑡

= 1 +
2

3
cos 3𝑡 −

2

3
 =

2

3
 [cos 3𝑡 − 1] 
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3.4     First Shifting Property 

                     ℒ−1𝐹 (𝑠) =  𝑓(𝑡),   then    ℒ−1𝐹 (𝑠 + 𝑚) = 𝑒−𝑚𝑡 ℒ−1[𝐹 (𝑠)]    

 

Example 3.5: Find the inverse transform of 

   (𝑖) 
1

 (𝑠 +  2)5
  

(𝑖𝑖)  
𝑠

𝑠2  +   4𝑠 +   13
   

 (𝑖𝑖𝑖)  
3

9𝑠2  +    6𝑠 +   1
 

Solution: 

  (𝑖)   ℒ−1  
1

𝑠5
=

𝑡4

4
  

Then        

ℒ−1
1

 (𝑠 +  2)5
= 𝑒−2𝑡

𝑡4

4
                                                 

(𝑖𝑖)       ℒ−1 ( 
𝑠

𝑠2  +   4𝑠 +   13
 ) = ℒ−1

𝑠 +   2

 (𝑠 +   2)2  +  (3)2

= ℒ−1  
𝑠 +   2

 (𝑠 +   2)2  +   (3)2
 −  ℒ−1

𝑠 +   2

 (𝑠 +   2)2  +  32
 

⟹ 𝑒−2𝑡ℒ−1
𝑠

 𝑠2  +  32
− 𝑒−2𝑡ℒ−1  

2

3
 (

𝑠

 𝑠2  +  32
) 

⟹ 𝑒−2𝑡 cos 3𝑡 −
2

3
 𝑒−2𝑡 sin 3𝑡                               

(𝑖𝑖𝑖)           ℒ−1
𝑠

9𝑠2  +   6𝑠  +   1
 = ℒ−1

1

 (3𝑠  +   1 )2
=
1

9
 ℒ−1

1

(𝑠 + 
1
3) 

2

=
1

9
 𝑒−

𝑡
3 ℒ−1  

1

𝑠2
 =

1

9
 𝑒−

𝑡
3 =

𝑡

9
𝑒−

𝑡
3 

 

3.5     Second Shifting Property 

 ℒ−1  [𝑒−𝑚𝑠 𝐹 (𝑠)] = 𝑓 (𝑡 − 𝑚) 𝑢 (𝑡 − 𝑚) 

Example 3.6: Obtain inverse Laplace transform of 
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(𝑖)  
𝑒−𝜋 𝑠

(𝑠 +   3)
     

 (𝑖𝑖)  
𝑒−𝑠

(𝑠 +   1)3
 

Solution: 

  (𝑖)   ℒ−1   
1

𝑠 +  3
= 𝑒−3𝑡 

                       ℒ−1   
𝑒−𝜋 𝑠

𝑠 +  3
= 𝑒−3(𝑡 –𝜋) 𝑢(𝑡 − 𝜋)                                       

(𝑖𝑖)    ℒ−1  
1

𝑠3
 =

𝑡2

2
 

                                          ℒ−1  
1

(𝑠 +  1)3
= 𝑒−𝑡  

𝑡2

2
   

                                          ℒ−1   
𝑒−𝑠

(𝑠 +  1)3
= 𝑒−(𝑡 −  1).

(𝑡 −  1)2

2
. 𝑢 (𝑡 − 1)                           

 

Example 3.7:  Find the inverse Laplace transform of  

𝑠𝑒−
𝑠
2  +   𝜋𝑒−𝑠

𝑠2  +   𝜋2
 

    in terms of unit step functions. 

Solution: 

ℒ−1     
𝜋 

𝑠2  +   𝜋2
 sin 𝜋(𝑡 − 1) . 𝑢 (𝑡 − 1) 

ℒ−1  [𝑒−𝑠    
𝜋 

𝑠2 +  𝜋2
] =  sin(𝜋 𝑡) . 𝑢 (𝑡 − 1)                        * 

and                              

ℒ−1  
𝜋 

𝑠2  +   𝜋2
= sin 𝜋𝑡 

ℒ−1  [𝑒−𝑠/2    
𝑠 

𝑠2  +  𝜋2
] = cos 𝜋 (𝑡 −

1

2
) . 𝑢 (𝑡 −

1

2
)   

      = sin 𝜋 𝑡 . 𝑢 (𝑡 −
1

2
)       **                      

          On adding (*) and (**), we get 
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            = sin 𝜋 𝑡 . 𝑢 (𝑡 −
1

2
)−= sin (𝜋 𝑡) . 𝑢 (𝑡 − 1)  

          = sin 𝜋 𝑡 [𝑢 (𝑡 −
1

2
) − 𝑢(𝑡 − 1)]           

        

3.6     Inverse Laplace Transform of Periodic Functions 

 Since the transforms are obtained from integration over one cycle, instead of 
from zero to infinity as required by the definition of Laplace transform, a simple inverse 
transform table is not obtainable as in the transform of non-periodic functions. 

Example 3.8: Determine 𝑓(𝑡) for ℒ𝑓(𝑡) = 𝐹(𝑠) =
2𝑒−4𝑠

𝑠(1−𝑒−4𝑠)
 

Solution: 

 𝐹(𝑠) =
2

𝑠
𝑒−4𝑠(1 − 𝑒−4𝑠)1 =

2

𝑠
𝑒−4𝑠(1 + 𝑒−4𝑠 + 𝑒−8𝑠 + 𝑒−12𝑠 +⋯) 

(By binomial expansion)   

= (
2

𝑠
) 𝑒−4𝑠 + (

2

𝑠
) 𝑒−8𝑠 + (

2

𝑠
) 𝑒−12𝑠 + (

2

𝑠
) 𝑒−16𝑠 

⟹  𝑓(𝑡) =  ℒ−1𝐹(𝑠) = 2𝑢(𝑡 − 4) + 2𝑢(𝑡 − 8) + 2𝑢(𝑡 − 12) + ⋯ 

By second-shift (time shift) theorem. 

 

3.7     Inverse Laplace Transforms of Derivatives 

ℒ−1  [ 
 𝑑

𝑑𝑠
𝐹(𝑠)] = 𝑡 ℒ−1 [ 𝐹 (𝑠)] = −𝑡 𝑓(𝑡)    

𝑜𝑟    ℒ−1[ 𝐹(𝑠) ] = − ℒ−1 [ 
 𝑑

𝑑𝑠
𝐹(𝑠) ] 

Example 3.9: Find inverse Laplace transform of 𝑡𝑎𝑛−1
1

𝑠
 . 

             Solution:   

            ℒ−1 (𝑡𝑎𝑛−1
1

𝑠
) = −

1

𝑡
 ℒ−1 [ 

 𝑑

𝑑𝑠
𝑡𝑎𝑛−1

1

𝑠
 ] 

= −
1

𝑡
 ℒ−1 [

1

1  +    
1
𝑠2

 (−
1

𝑠2
)] = −

1

𝑡
 ℒ−1 [

1

1  +  𝑠2
] =

sin 𝑡

𝑡
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Example 3.10: Obtain the inverse Laplace transform of log
𝑠2 −  1

𝑠2
. 

            Solution:         

ℒ−1 [log
𝑠2  −   1

𝑠2
] = −

1

𝑡
 ℒ−1 [

𝑑

𝑑𝑠
 log

𝑠2  −   1

𝑠2
] 

= −
1

𝑡
 ℒ−1 [

𝑑

𝑑𝑠
  {log(𝑠2 − 2) − 2 log 𝑠}] = −

1

𝑡
 ℒ−1 [

2𝑠2

𝑠2
−
2

𝑠
] =  −

1

𝑡
[2 cosh 𝑡 − 2] 

=
2

𝑡
 [1 − cosh 𝑡] 

Example 3.11: Find ℒ−1[ 𝑐𝑜𝑡−1(1 + 𝑠)] . 

Solution: 

ℒ−1 [ 𝑐𝑜𝑡−1(1 + 𝑠)] = −
1

𝑡
 ℒ−1  [

𝑑

𝑑𝑠
𝑐𝑜𝑡−1(1 + 𝑠)] 

= −
1

𝑡
 ℒ−1 [

−1

1  +    (𝑠  +   1)2
] = −

1

𝑡
 ℒ−1 [

1

(𝑠  +   1)2  +   1
] 

=
1

𝑡
 𝑒−𝑡 sin 𝑡 

 

3.8    Inverse Laplace Transform of Integrals 

ℒ−1  [∫ 𝐹(𝑠)𝑑𝑠
∞

𝑡

] =
𝑓(𝑥)

𝑡
=
1

𝑡
ℒ−1[𝐹(𝑠)]      𝑜𝑟   ℒ−1[𝐹(𝑠)] = 𝑡ℒ−1  [∫ 𝐹(𝑠)𝑑𝑠

∞

𝑡

] 

 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑. 𝟏𝟐. Obtain ℒ−1
2𝑠

( 𝑠2   +   1 )2
 .                                                                                   

    Solution: 

ℒ−1
2𝑠

( 𝑠2   +   1 )2
= 𝑡ℒ−1∫

2𝑠   𝑑𝑠

( 𝑠2   +   1 )2

∞

𝑠

= 𝑡ℒ−1 [−
1

𝑠2   +   1
 ]
𝑠

∞

 

= 𝑡ℒ−1 [−0 +
1

𝑠2   +   1
] 

= 𝑡 sin 𝑡 
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𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑. 𝟏𝟑. Obtain ℒ−1
1

𝑠(𝑠2  − 𝑚2) 
 .                                                                                   

         Solution: 

ℒ−1
1

𝑠
= 1    𝑎𝑛𝑑  ℒ−1

1

 𝑠2  −  𝑚2 
=
sin𝑚𝑡

𝑚
 

         Hence by the convolution theorem 

ℒ∫ {1 .
sin𝑚 (𝑡 –  𝑥)

𝑚
 𝑑𝑥}

𝑡

0

= (
1

𝑠
) (

1

 𝑠2  +   𝑚2 
) 

ℒ−1 {
1

𝑠  (𝑠2  +  𝑚2)
} = ∫

sin𝑚 (𝑡 –  𝑥)

𝑚

𝑡

0

 𝑑𝑥 = [
− cos(𝑚𝑡 −   𝑚𝑥)

−𝑚2 
]
0

𝑡

 

=
1

𝑚2
[1 − cos𝑚𝑡] 

                                     

3.9   Exercise 

1. Find the inverse Laplace transform of the following: 

(a). 
3𝑠 −  8

4𝑠2 +  25
                                     Ans. 

3

4
cos

5𝑡

2
−
4

5
sin

5𝑡

2
            

(b). 
3 (𝑠2 −  2)2

2𝑠2 
                                 Ans. 

3

2
− 3𝑡2 +

1

2
 𝑡4 

(c). 
3𝑠 −  8

4𝑠2 +  25
+ 

4𝑠 −  18

9 −  𝑠2
                   Ans. 

1

2
 cos

5𝑡

2
−
1

2
sin

5𝑡

2
− 4 cosh 3𝑡 + 6 sinh 3𝑡     

(d).  
5𝑠 −  10

9𝑠2 − 16
                                  Ans. 

5

9
 cosh

4

3
 𝑡 −

5

6
sinh

4

3
 𝑡     

(e). 
1

4𝑠
+

16

1 − 𝑠2
                              Ans. 

1

4
 − 16 sinh 𝑡 

2.  Find the inverse Laplace transform of the following: 

(i).  
𝑠

𝑠   +  5
                                      Ans. 1 − 5 𝑒−5𝑡 

(ii). 
2𝑠

3𝑠   +  6
                                    Ans. 

2

3
 −

4

3
𝑒−2𝑡 

(iii).  
𝑠

2𝑠2 −1
                                   Ans. 

1

2
 cosh

𝑡

2
 

(iv). 
𝑠2

𝑠2   +  𝑎2
                                 Ans. 1 −  𝑎 sin 𝑎𝑡 

(v).  
𝑠2

𝑠2   +  𝑎2
                                Ans. 1 − 

5

3
sin 3𝑡 
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(vi). 
1

(𝑠 −  3)2
                                 Ans. 𝑡𝑒3𝑡 

(vii).  ℒ−1
𝑠2 

(𝑠2 +  4)2
 

3. Solve the following partial fraction 

(i).  
1

2𝑠(𝑠 −  3)
                                Ans. 

1

2
[
𝑒3𝑡

3
− 1]            

(ii).  
1

𝑠(𝑠  +  2)
                               Ans. 

1 −  𝑒−2𝑡

3
     

(iii).  
1

(𝑠2 −  16)
                             Ans. 

1

16
 [cosh 4𝑡 − 1]         

(iv).  
1

𝑠(𝑠2 −  𝑎2)
                           Ans. 

1 − 𝑐𝑜𝑠 𝑎𝑡

𝑎2
   

(v).  
𝑠2  +  2

𝑠(𝑠2  +  4)
                             Ans.  𝑐𝑜𝑠2 𝑡              

 (vi).  
1

𝑠2(𝑠  +  1) 
                          Ans. 𝑡 − 𝑒−𝑡    

(vii).  
1

𝑠3(𝑠2  +  1) 
                        Ans. 

𝑡2

2
+ cos 𝑡 − 1     

(viii).  ℒ−1
𝑠2

𝑠 (𝑠2  −   1)
 is 

  (𝑎)  1 − cos 𝑡          (𝑏)  1 + cos 𝑡      (𝑐)  1 − sin 𝑡      (𝑑)   1 + sin 𝑡               Ans. (𝑎) 

4. Obtain the inverse Laplace transform of the following: 

a.  
𝑠 +  8

𝑠3+ 4𝑠 +  5
                                  Ans. 𝑒−2𝑡 (cos 𝑡 +  6 sin 𝑡)     

b.  
𝑠 +  8

𝑠3+ 4𝑠 +  5
                                  Ans. 𝑒−3𝑡 (cos 2𝑡 −  1.5 sin 2𝑡)    

c.  
𝑠

(𝑠 +  7)2
                                      Ans. 𝑒−7𝑡

𝑡2

6
 (3 − 7𝑡)        

  d.  
𝑠 +  2

𝑠2 −  2𝑠 −  8
                               Ans. 𝑒𝑡(𝑐𝑜𝑠ℎ 3𝑡 + 𝑠𝑖𝑛ℎ 3𝑡)   

e.  
𝑠

𝑠2  +  6𝑠 +  25
                              Ans.  𝑒−3𝑡  [cos 4𝑡

3

4
sin 4𝑡]         

f.  
1

2 (𝑠 −1)2 +  32 
                             Ans. 

𝑒𝑡

8
sin 4𝑡    

g.  
𝑠  −  4

4 (𝑠 −  3)2 +  16
                            Ans. 

1

4
𝑒3𝑡 cos 2𝑡 −

1

8
 𝑒3𝑡 sin 2𝑡     
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5. Obtain inverse Laplace transform of the following: 

(a) 
𝑠 𝑒−𝑠/2   +   𝜋 𝑒−𝑠   

𝑠2 +  𝜋2
                           Ans. [𝑢 (𝑡 −

1

2
) − 𝑢(𝑡 − 1)] sin 𝜋 𝑡                   

(b) 
 𝑒−𝑠   

(𝑠 +  2)3 
                                         Ans. 𝑒−(𝑡−2)

(𝑡 −  2)2

2
𝑢(𝑡 − 2)    

(c) 
 𝑒−2𝑠   

(𝑠 +  1) (𝑠2 +  2𝑠 +  2)
                       Ans. 𝑒−(𝑡−2){1 − cos((𝑡 − 2)}𝑢(𝑡 − 2)       

(d) 
 𝑒−𝑠   

√𝑠 +  1
                                             Ans. 

 𝑒−(𝑡  −  1)   

√𝜋(𝑡 −  1)
𝑢(𝑡 − 1)                   

(e)  
 𝑒
−
𝜋
2
 𝑠
   +   𝑒

−
3𝜋
2
 𝑠
   

𝑠2 +  1
                            Ans. cot 𝑡 [𝑢 (𝑡 −

3𝜋

2
) − 𝑢 (𝑡 −

𝜋

2
)]                  

(f)  
 𝑒−4𝑠  (𝑠 +  2)   

𝑠2  +   4𝑠  +   5
                                 Ans. 𝑒−2(𝑡  −  𝑢) cos(𝑡 − 𝑢) 𝑢(𝑡 − 4)                  

(g)  
 𝑒−𝑎𝑠  

𝑠2  
                              Ans. 𝑓(𝑡) = {

𝑡 − 𝑎           𝑤ℎ𝑒𝑛  𝑡 ≥ 𝑎     
0                𝑤ℎ𝑒𝑛  𝑡 ≥ 𝑎     

                

(h)   
 𝑒−𝜋 𝑠  

𝑠2+ 1 
                                             Ans. – sin 𝑡 𝑢 (𝑡 − 𝜋)  

(i) The inverse Laplace transform of (𝑒−3 𝑠)/𝑠3 , is            
 (𝐴)  (𝑡 − 3)𝑢3 (𝑡)      (𝐵)   (𝑡 − 3)

2 𝑢3 (𝑡)     (𝐶)  (𝑡 − 3)
2𝑢3 (𝑡)     

(𝐷)   (𝑡 − 3)𝑢3 (𝑡).                                       Ans. (𝐷) 
(j) If Laplace transform of a function 𝑓 (𝑡)  equals    (𝑒−2𝑠 − 𝑒−𝑠)/𝑠 , then 

                (𝐴) 𝑓(𝑡) = 1,   𝑡 ≥ 1; 

                      (𝐵) 𝑓(𝑡) = 1,   𝑤ℎ𝑒𝑛  1 ≤ 𝑡 ≤ 2,    𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ; 

                      (𝐶) 𝑓(𝑡) = −1,   𝑤ℎ𝑒𝑛  1 ≤ 𝑡 ≤ 3,    𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ; 

                  (𝐷) 𝑓(𝑡) = −1,   𝑤ℎ𝑒𝑛  1 ≤ 𝑡 ≤ 2,    𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

                                                                                       Ans. (𝐷) 

        (𝑘)    The Laplace inverse  ℒ−1 [ 
 2

𝑠
 (𝑒−2𝑠  +   𝑒−4𝑠 ]  equal 

                (𝐴) 2, 𝑖𝑓 0 ≤ 𝑡 ≤ 4 ;   0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                      (𝐵)  2, 𝑖𝑓 𝑡 ≥ 0 

                      (𝐶)  2, 𝑖𝑓 0 ≤ 𝑡 ≤ 2 ;    0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ; 

                      (𝐷)  2, 𝑖𝑓 0 ≤ 𝑡 ≤ 4 ;     0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                                                      Ans. (𝐷)    

        (𝑙)    The Laplace transform of 𝑡 𝑢2 (𝑡) 

           (𝐴)  (
1

𝑠2
+
2

2
) 𝑒−2𝑠         (𝐵)   

1

𝑠2
𝑒−2𝑠   (𝐶) (

1

𝑠2
− 

2

𝑠
) 𝑒−2𝑠            (𝐷)   

1

𝑠2
𝑒−2𝑠. 

                                                                                         Ans. (𝐴) 
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   (𝑚)    The inverse Laplace transform of 
𝑘𝑒−𝑎𝑠

𝑠2 +  𝑘2
 is 

    (𝐴) sin 𝑘𝑡      (𝐵)  cos 𝑘𝑡    (𝐶) 𝑢 (𝑡 − 𝑎) sin 𝑘𝑡    (𝐷)   𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒  Ans. (𝐷) 

   (𝑛)    The inverse Laplace transform of 1 is: 

           (𝐴) 1             (𝐵)  𝛿 (𝑡)              (𝐶) 𝛿(𝑡 − 1)              (𝐷)   𝑢(𝑡)     Ans. (𝐵) 

6. Obtain inverse Laplace transform of the following: 

a. log (1 +
𝜔2

𝑠2
)                                                           Ans. 

2

𝑡
−
2

𝑡
cos𝜔 𝑡 

b. 
𝑠

1 +  𝑠2+  𝑠4
                                                               Ans. 

2

√3
 sin

3

√2
 𝑡 sinh

𝑡

2
   

c. 
𝑠 +  1

( 𝑠2 + 6𝑠 +13 )2
                                            Ans. 

𝑒−3𝑡

8
 [2𝑡 sin 2𝑡 + 2𝑡 cos 2𝑡 − sin 2𝑡] 

d. 
𝑠

( 𝑠2  +  𝑎2 )2
                                                               Ans. 

𝑡 sin𝑎𝑡

2𝑎
            

e.  
1

2
  log {

𝑠2 +  𝑏2

(𝑠 −  𝑎)2 
}                                                   Ans. 

𝑒−𝑎𝑡 − cos𝑏𝑡

𝑡
   

f.   𝑡𝑎𝑛−1 (𝑠 + 1)                                                    Ans. −
1

𝑡
𝑒−𝑡 sin 𝑡 

g.   log (1 +
1

𝑠2
)                                                       Ans. 

2

𝑡
 [1 − cos𝜔 𝑡] 

h. 𝑠 log
𝑠

√𝑠2 +  1
+ 𝑐𝑜𝑡−1 𝑠                                       Ans. 

1−cos𝑡

𝑡2
 

7. Find the inverse transform of: 

i.  
𝑠2  +  2𝑠 +  6

𝑠2
                                                       Ans.  1 + 2𝑡 + 3𝑡2          

 ii.  
1

𝑠2 −  7𝑠 +  12
                                                    Ans.  𝑒4𝑡 − 𝑒3𝑡 

iii.  
𝑠 −  2

𝑠2 − 4 𝑠 +  13
                                                    Ans.  𝑒3𝑡 cos 3𝑡 +

4

3
 𝑒2𝑡 sin 3𝑡 

iv.  
3𝑠 +  1

(𝑠 −  1) (𝑠2 +  1)
                                                Ans.  𝑒𝑡 − 2 cos 𝑡 + sin 𝑡 

v.  
11 𝑠2 − 2𝑠 +  5

2𝑠3 −  3𝑠2 −  3𝑠 +  2
                                            Ans.  2𝑒−𝑡 + 5𝑒2𝑡 −

3

2
 𝑒𝑡/2 

vi.  
2𝑠2 −  6𝑠 +  5

 (𝑠−1)(𝑠−2) (𝑠 −3)
                                             Ans.  

1

2
 𝑒𝑡 − 𝑒2𝑡 +

5

2
 𝑒3𝑡       

vii. 
3𝑠 +  1

 (𝑠 −  4)2 +  9
                                                      Ans.  𝑒4𝑡 cos 3𝑡 
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viii.  
16

 (𝑠2  +   2𝑠  +  5)2
                                               Ans.  𝑒−𝑡(sin 2𝑡 − 2𝑡 cos 2𝑡)      
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CHAPTER 4 

SOLUTION OF DIFFERENTIAL EQUATIONS BY LAPLACE 

TRANSFORMS 
 

4.0 Solving Differentials Equation Using Laplace Method  

        Ordinary linear differential equations with constant coefficients can be easily solved 
by the Laplace Transform method, without finding the general solution and the arbitrary 
constants. 

      The method will be clear from the following examples: 

Example 4.1: Using Laplace transforms find the solution of the initial value problem 

                                              𝑦′′ − 4𝑦′ + 4𝑦 = 64 sin 2𝑡 

                                            𝑦(0) = 0, 𝑦′(0) = 1. 

Solution:        

                                                𝑦′′ − 4𝑦′ + 4𝑦 = 64 sin 2𝑡                                                   4.1  

                                                 𝑦(0) = 0, 𝑦′(0) = 1 

        Taking Laplace transform of both sides of (4.1), we have 

[𝑠2 𝑦̅ − 𝑠𝑦 (0) − 𝑦᾽(0)] − 4[𝑠2 𝑦̅ − 𝑦 (0)] + 4𝑦̅ =
64 × 2

𝑠2 + 4
                         4.2 

         On putting the values of y (0) and 𝑦′(0) into Eq. (4.2), we get 

𝑠2𝑦̅ − 1 − 4𝑠𝑦̅ + 4 𝑦̅ =
128

𝑠2 + 4
 

(𝑠2 −  4𝑠 + 4) 𝑦̅ = 1 + 
128

𝑠2 + 4
,   𝑜𝑟   (𝑠 − 2)2 𝑦̅ = 1 +

128

𝑠2  +   4
 

𝑦̅ =
1

(𝑠 − 2)2
+

128

(𝑠 − 2)2 (𝑠2 +  4)
=

1

(𝑠 −  2)2
−

8

𝑠 −  2
+

16

(𝑠 −  2)2
+

8𝑠

𝑠2  +   4
 

𝑦 = ℒ−1  [−
8

𝑠  −   2
+

17

(𝑠 –  2)2
+

8𝑠

𝑠2 + 4
] 

𝑦 = −8 𝑒2𝑡 + 17𝑒2𝑡 + 8 cos 2𝑡 
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Example 4.2:  Applying convolution, solve the following initial value problem 

𝑦′′ + 𝑦 = sin 3  𝑡 

                                                𝑦 (0) = 0,   𝑦′(0) = 0. 

Solution:  

      𝑦′′ + 𝑦 = sin 3  𝑡       

          Taking Laplace transform of both the sides, we have 

               [𝑠2 𝑦̅ − 𝑠𝑦 (0) − 𝑦′(0)] + 𝑦̅ =
3

𝑠2  +   9
                                              4.3 

          On putting the values of 𝑦 (0), 𝑦′(0) into Eq. (4.3) we get  

𝑠2 𝑦̅ +  𝑦̅ =
3

𝑠2  +   9
   𝑜𝑟   (𝑠2 + 1) 𝑦̅ =

3

𝑠2  +   9
 

𝑦̅ =
3

(𝑠2  +   1) (𝑠2  +   9)
=
3

8
 [

1

𝑠2  +   1
−

1

𝑠2 + 9
] 

           Taking the inversion, we get 

𝑦 =
3

8
  ℒ−1

1

𝑠2  +   1
−
3

8
  ℒ−1

1

𝑠2  +   9
 

𝑦 =
3

8
sin 𝑡 −

3

8
 × 

1

3
 sin 3 𝑡 

𝑦 =
3

8
sin 𝑡 −

1

8
sin 3 𝑡 

 Example 4.3: Solve [𝑡𝐷2 + (1 − 2𝑡)𝐷 − 2] 𝑦 = 0.            𝑤ℎ𝑒𝑟𝑒 𝑦(0) = 1, 

  𝑦′(0) = 2 

Solution:  

 Here, 𝑡𝐷2 + (1 − 2𝑡)𝐷𝑦 − 2𝑦 = 0    

⟹       𝑡𝑦′′ + 𝑦′ − 2𝑡𝑦′ − 2 𝑦 = 0 

            Taking Laplace transform of given differential equation, we get 

  ℒ(𝑡𝑦′′) + ℒ(𝑦′) − 2ℒ(𝑡𝑦′) − 2ℒ(𝑦) = 0  

 ⇒  −
𝑑

𝑑𝑠
ℒ {𝑦′′} + {𝑦′} + 2

𝑑

𝑑𝑠
ℒ(𝑦′) − 2ℒ(𝑦) = 0   
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−
𝑑

𝑑𝑠
   [𝑠2 𝑦̅ − 𝑠 𝑦 (0) − 𝑦′(0)] + [𝑠 𝑦̅ − 𝑦 (0)] +  2

𝑑

𝑑𝑠
[𝑠 𝑦̅ − 𝑦 (0)] − 2 𝑦̅ = 0 

            Putting the values of 𝑦 (0) and 𝑦᾽(0), we get 

−
𝑑

𝑑𝑠
  (𝑠2 𝑦̅ − 𝑠 − 2) + (𝑠2 𝑦̅ − 1) + 2

𝑑

𝑑𝑠
 (𝑠2 𝑦̅ − 1) = 2  𝑦̅ = 0   

[∵  𝑦 (0) = 1, 𝑦′(0) = 2]  

⟹−𝑠2
𝑑

𝑑𝑠
𝑦̅ − 2 𝑦̅ + 1 + 𝑦̅ − 1 + 2 (𝑠  

𝑑 𝑦̅

𝑑 𝑠
+ 𝑦̅) − 2 𝑦̅ = 0 

⟹  −(𝑠2 − 2 𝑠) 
𝑑 𝑦̅

𝑑 𝑠
− 𝑠 𝑦̅ = 0 

⟹−
 𝑑 𝑦̅

𝑦̅
+

1

𝑠  −   2
𝑑𝑠 = 0                                                               

⟹∫
 𝑑 𝑦̅

𝑦̅
+ ∫

1

𝑠  −   2
= 0   ⟹ log 𝑦̅ + log(𝑠 − 2) = log 𝐶 

⟹ 𝑦̅ (𝑠 − 2) = 𝐶 ⟹   𝑦̅ =
𝐶

𝑠 − 2
⟹  𝑦 = 𝐶 ℒ−1 {

1

𝑠 −  2
} ⟹ 𝑦 = 𝐶 𝑒2 𝑡    4.4 

            Putting 𝑦 (0) = 1 into Eq. (4.4), we get              1 = 𝐶 𝑒0         ⟹              𝐶 = 1   

            Putting  𝐶 = 1 into Eq. (4.4), we get  𝑦 =  𝑒2 𝑡                            

    This is the required solution.                                                                         

Example 4.4. Using Laplace transform technique solve the following initial value problem 

𝑑2𝑦

𝑑𝑡2
+ 2

𝑑𝑦

𝑑𝑡
+ 2𝑦 = 5 sin 𝑡 ,                           𝑤ℎ𝑒𝑟𝑒 𝑦 (0) = 𝑦′(0) = 0               4.5 

Solution:   

    𝑦′′ + 2𝑦′ + 2𝑦 = 5 sin 𝑡 

                                                  𝑦 (0) = 𝑦′(0) = 0 

              Take the Laplace Transform of both sides, we have 

              [𝑠2𝑦̅ − 𝑠𝑦 (0) − 𝑦′(0)] + 2[𝑠𝑦̅ − 𝑦 (0)] + 2𝑦̅ = 5 ×
1

𝑠2  +   1
        4.6 

              On substituting the value 𝑦 (0), 𝑎𝑛𝑑 𝑦᾽(0)  into Eq. (4.5), we get 

𝑠2𝑦̅ + 2 𝑠𝑦̅ +  2𝑦̅ =
5

𝑠2  +   1
    𝑜𝑟    [𝑠2 + 2 𝑠 + 2]𝑦̅ =

5

𝑠2  +   1
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𝑦̅ =
5

(𝑠2 + 2𝑠 + 2)(𝑠2 + 1)
 

Resolving into partial fractions, 𝑦 =
2𝑠 +   3

𝑠2  +   2𝑠 + 2
+
−2𝑠  +  1

𝑠2  +   1
 

               Taking the inverse transform, we get   

𝑦 =  ℒ−1 (
2𝑠 +   3

𝑠2  +   2𝑠  +   2
) + ℒ−1 (

−2 𝑠  +  1

𝑠2  +   1
) 

= ℒ−1 [ 
2(𝑠  +   1)

(𝑠 +   1)2  +   1
] + ℒ−1 (

−2 𝑠  +  1

𝑠2  +   1
) + ℒ−1 (

 1

𝑠2  +   1
) 

= ℒ−1 [ 
2(𝑠  +   1)

(𝑠 +   1)2  +   1
] + ℒ−1 [ 

1

(𝑠 +   1)2  +   1
] − 2 cos 𝑡 + sin 𝑡 

= 2 𝑒−𝑡 cos 𝑡 + 𝑒−𝑡 sin 𝑡 − 2 cos 𝑡 + sin 𝑡 

 

Example 4.5. Solve the initial value problem 

                            2𝑦′′ + 5𝑦′ + 2 𝑦 = 𝑒−2 𝑡,           𝑦 (0) = 1, 𝑦′(0) = 1            

using the Laplace transforms. 

 

Solution:  

2 𝑦′′ + 5𝑦′ + 2 𝑦 = 𝑒−2 𝑡,    𝑦 (0) = 1, 𝑦′(0) = 1 

              Taking the Laplace Transform of both the sides, we get 

2[𝑠2𝑦̅ − 𝑠𝑦 (0) − 𝑦′(0)] + 5[𝑠𝑦̅ − 𝑦 (0)] + 2𝑦̅ =
1

𝑠 +   2
 

             On putting the values of 𝑦 (0)  𝑎𝑛𝑑  𝑦′(0) in (1), we get 

2[𝑠2𝑦̅ − 𝑠 − 1] + 5[𝑠𝑦̅ − 1] + 2𝑦̅ =
1

𝑠 +   2
 

[2𝑠2 + 5 𝑠 + 2]𝑦̅ − 2𝑠 − 2 − 5 =
1

𝑠 +   2
 

𝑦̅ =
1 + (𝑠 +   2)(2𝑠 + 7)

(2 𝑠2   +   5𝑠  +   2)(𝑠 +   2)
=
2𝑠2   +   11𝑠  +   15

(2𝑠 +  1)  (𝑠 +   2)2
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=

4
9

2𝑠 +   1
−

11
9

𝑠 +   2
−

1
3

(𝑠 +   2)2
=
4

9
 
1

2
  

1

𝑠 + 
1
2

−
11

9
 

1

𝑠 +   2
−
1

3
 

1

(𝑠 +   2)2
 

𝑦 =
2

9
𝑒−

1
2
 𝑡 −

11

9
𝑒−2 𝑡 −

1

3
𝑡𝑒−2 𝑡 

 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟒. 𝟔: Solve 
𝑑2 𝑦

𝑑 𝑥2
+ 2

𝑑𝑦

𝑑𝑥
+  5𝑦 = 𝑒−𝑥 sin 𝑥   𝑓𝑜𝑟  𝑦 (0) = 0, 𝑦′(0) = 1   

Solution:  

𝑑2 𝑦

𝑑 𝑥2
+  2

𝑑𝑦

𝑑𝑥
+  5𝑦 = 𝑒−𝑥 sin 𝑥 

              Taking the Laplace Transform of both the sides, we get 

[𝑠2𝑦̅ − 𝑠𝑦 (0) − 𝑦′(0)] + 2[𝑠𝑦̅ − 𝑦 (0)] + 5𝑦̅ = ℒ (𝑒−𝑥 sin 𝑥) 

                 [𝑠2𝑦̅ − 𝑠𝑦 (0) − 𝑦′(0)] + 2[𝑠𝑦̅ − 𝑦 (0)] + 5𝑦̅ =  
1

(𝑠 +  2)2+  1
                4.7 

   

             On substituting the values of   𝑦 (0)  𝑎𝑛𝑑  𝑦᾽(0) into Eq. (4.7), we get 

(𝑠2𝑦̅ − 1) + 2 (𝑠𝑦̅) + 5𝑦̅ =
1

𝑠2  +   2 𝑠 +   2
 

(𝑠2 +  2 𝑠 +  5) 𝑦̅ = 1 +
1

𝑠2  +   2 𝑠 +   2
=
𝑠2  +   2 𝑠 +   3

𝑠2  +   2 𝑠 +   2
 

𝑦̅ =
𝑠2  +   2 𝑠 +   3

(𝑠2  +   2 𝑠 +   5) (𝑠2  +   2 𝑠 +   2)
 

             On resolving the R.H.S. into partial fractions, we get 

𝑦̅ =
2

3
 

1

𝑠2  +   2 𝑠 +   5
+
1

3

1

𝑠2  +   2 𝑠 +   2
 

            On inversion, we obtain 

𝑦 =
2

3
 ℒ−1  

1

𝑠2  +   2 𝑠 +   5
+
1

3
 ℒ−1

1

𝑠2  +   2 𝑠 +   2
 

Or 

𝑦 =
1

3
 ℒ−1  

2

(𝑠  +    1)2  +  (2)2
+
1

3
 ℒ−1

1

(𝑠  +    1)2  +   (2)2
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𝑦 =
1

3
 𝑒−𝑥 sin 2  𝑥 +

1

3
 𝑒−𝑥 sin 𝑥      𝑜𝑟     𝑦 =

1

3
 𝑒−𝑥 (sin 𝑥 + sin 2  𝑥) 

 

Example 4.7. Using Laplace transforms, find the solution of the initial value problem: 

𝑦′′ + 9𝑦 = 9𝑢(𝑡 − 3),   𝑦 (0) = 𝑦′(0) = 0 

where 𝑢 (𝑡 − 3) is the unit step function. 

    Solution: 

𝑦′′ + 9𝑦 = 9𝑢 (𝑡 − 3).                                              4.8 

           Taking Laplace transform of Eq. (4.8), we have 

                 𝑠2𝑦̅ − 𝑠𝑦 (0) − 𝑦′(0) + 9 𝑦̅ = 9
𝑒−3𝑠

𝑠
                                     4.9 

           Putting the values of  𝑦 (0)  𝑎𝑛𝑑  𝑦′(0) = 0 into Eq. (4.9), we get 

𝑠2𝑦̅ + 9 𝑦̅ =
9 𝑒−3𝑠

𝑠
 

(𝑠2 + 9)𝑦̅ =
9 𝑒−3𝑠

𝑠
 

𝑦̅ =
9 𝑒−3𝑠

𝑠 (𝑠2 +  9)
  ⟹  𝑦 = ℒ−1  

9 𝑒−3𝑠

𝑠 (𝑠2 +  9)
 

ℒ−1
3

𝑠2 +  9
= sin 3𝑡 

3 ℒ−1
3

𝑠 (𝑠2 +  9)
⟹ 3 ∫ sin 3𝑡

𝑡

0

 𝑑𝑡 = − [cos 3𝑡]0
𝑡 = 1 − cos 3𝑡 

𝑦 = ℒ−1
9 𝑒−3𝑠

𝑠 (𝑠2 +  9)
 

𝑦 = [1 − cos 3 (𝑡 − 3)]𝑢(𝑡 − 3) 

4.1   Solution of Simultaneous Differential Equations by Laplace Transform 

Simultaneous differential equations can also be solved by Laplace Transform method. 
 

Example 4.8: Solve   
𝑑𝑥

𝑑𝑡
+ 𝑦 = 0   𝑎𝑛𝑑  

𝑑𝑦

𝑑𝑡
− 𝑥 = 0   𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

                       𝑥(0) = 0, 𝑦 (0) = 0 
Solution:           
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                                 𝑥′ + 𝑦 =   0                                                                   4.10 
                                               𝑦′ − 𝑥 = 0                                                                    4.11   
           Taking the Laplace transform of Eqs. (4.10) and (4.11) we get 
                              [𝑠 𝑥̅ − 𝑥(0)] + 𝑦̅ = 0                                                                   4.12     
                              [𝑠 𝑦̅ − 𝑦(0)] − 𝑥̅ = 0                                                                   4.13       
  
           On substituting the values of 𝑥(0) and 𝑦(0)  into Eqs. (4.12) and (4.11) we get 

𝑠 𝑥̅ − 1 + 𝑦̅ = 0                                                                                      4.14 
𝑠 𝑦̅ − 𝑥̅ = 0                                                                                              4.15 

          Solving Eqs. (4.14) and (4.15) for 𝑥̅  and 𝑦̅ we get 

𝑥̅ =
𝑠

𝑠2   +   1
 , 𝑦̅ =

𝑠

𝑠2   +   1
 

          On inversion, we obtain         𝑥 =  ℒ−1  (
𝑠

𝑠2  +  1
)  ,     𝑦 = ℒ−1  (

𝑠

𝑠2  +  1
)  

                                       𝑥 = cos 𝑡 , 𝑦 = sin 𝑡             
                                 
 

Example 4.9: Solve  
𝑑𝑥

𝑑𝑡
 − 𝑦 = 𝑒𝑡 ,       

𝑑𝑦

𝑑𝑡
 + 𝑥 = sin 𝑡       given:  𝑥(0) = 1,   𝑦(0) = 0 

Solution: 
                          𝑥′ − 𝑦 = 𝑒𝑡                                                               4.16 
                          𝑦′ + 𝑥 = sin 𝑡                                                           4.17 

 Taking the Laplace Transform of Eqs. (4.17) and (4.17), we get 

[𝑠 𝑥̅ − 𝑥(0)] − 𝑦̅ =
1

𝑠  −    1
                                                           4.18 

[𝑠 𝑦̅ − 𝑦(0)] + 𝑥̅ =
1

𝑠2   +    1
                                                          4.19 

           On substituting the values of 𝑥(0) and 𝑦(0) into Eqs. (4.18) and (4.19) we get 

      𝑠 𝑥̅ − 1 − 𝑦̅ =
1

𝑠 − 1
                                                                        4.20 

           𝑠 𝑦̅  + 𝑥 =
1

𝑠2   +    1
                                                                              4.21     

                   
          On solving Eqs. (4.20) and (4.21), we get 

𝑥̅ =
𝑠4  +   𝑠2  +   𝑠 −   1

(𝑠 −   1) (𝑠2  +   1 )2
=
1

2
 

1

𝑠  −    1
+
1

2
 
𝑠  +    1

𝑠2   +    1
 +

1

(𝑠2  +   1 )2
      4.22           

𝑦̅ =
−𝑠3  +   𝑠2 −  2 𝑠

(𝑠 −   1) (𝑠2  +   1 )2
= −

1

2
 

1

𝑠  −    1
+
1

2
 
𝑠  +    1

𝑠2   +    1
 +

𝑠

(𝑠2  +   1 )2
    4.23          

          On inversion Eq. (4.23), we get 
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𝛾 =
1

2
  ℒ−1

1

𝑠  −    1
 +  

1

2
  ℒ−1

1

𝑠2   +    1
 +  

1

2
  ℒ−1

1

𝑠2   +    1
 ℒ−1

𝑠

(𝑠2  +   1 )2
 

=
1

2
 𝑒𝑡 +

1

2
cos 𝑡 +

1

2
sin 𝑡 +

1

2
  (sin 𝑡 − 𝑡 cos 𝑡) =

1

2
 [𝑒𝑡 + cos 𝑡 + 2 sin 𝑡 − 𝑡 cos 𝑡] 

          On inverse we get                      

𝑦 = −
1

2
  ℒ−1

1

𝑠  −    1
 +  

1

2
  ℒ−1

𝑠

𝑠2   +    1
− 
1

2
  ℒ−1

1

𝑠2   +    1
+ ℒ−1

𝑠

(𝑠2  +   1 )2
 

𝑦 = −
1

2
 𝑒𝑡 +

1

2
cos 𝑡 −

1

2
sin 𝑡 +

1

2
 𝑡 sin 𝑡 

𝑦 =
1

2
[−𝑒𝑡 − sin 𝑡 + cos 𝑡 +  𝑡 sin 𝑡] 

 

Example 4.10: Using the Laplace transform solve the initial value problem 

𝑦1
′′ = 𝑦1 + 3𝑦2 

𝑦2
′′ = 4𝑦1 − 4𝑒

𝑡 

𝑦1(0) = 2, 𝑦1
′  (0) = 3, 𝑦2 (0) = 1, 𝑦2

′  (0) = 2 

 

 

Solution:              

                          𝑦1
′′ = 𝑦1 + 3𝑦2                                                                                       4.24 

                     𝑦2
′′ = 4𝑦1 − 4𝑒

𝑡                                                                                           4.25 

Taking the Laplace transform of Eqs. (4.24) and (4.25) we get 

                          𝑠2𝑦̅1 = 𝑠𝑦1(0) − 𝑦1
′  (0) = 𝑦̅1 + 3 𝑦̅2                                   4.26 

                         𝑠2𝑦̅1 = 𝑠𝑦2(0) − 𝑦2
′  (0) = 4 𝑦̅1 −

4

𝑠  +   1
                                   4.27 

         Putting the values of 𝑦1
′  (0), 𝑦2(0), 𝑦2

′  (0) into Eqs. (4.25) and (4.26), we get 
             𝑠2 𝑦̅1 −  2 𝑠 − 3 = 𝑦̅1  +  3 𝑦̅2    𝑜𝑟   (𝑠

2 − 1)𝑦̅1 −  3 𝑦̅2 = 2𝑠 + 3           4.28 

           𝑠2 𝑦̅2 − 𝑠 − 2 = 4 𝑦̅1 −
4

𝑠 −   1
    𝑜𝑟   4𝑦̅1 − 𝑠𝑦̅2 =

4

𝑠 −   1
− 𝑠 − 2                 4.29 

         On solving Eqs. (4.28) and (4.29), we get 

𝑦̅1 =
(2 𝑠 −   3) (𝑠2  +   3) (𝑠 +   2)

(𝑠 −   1) (𝑠2  +   3) (𝑠 +   4)
=

2 𝑠  −   3

(𝑠 −   1)(𝑠 −   2)
−

1

𝑠 −   1
+

1

𝑠 −   2
 

𝑦1 = 𝑒
𝑡 + 𝑒2𝑡 
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𝑦̅2 =
(𝑠 −   2) (𝑠2  +   3) 

(𝑠2  +   3) (𝑠2 +   4)
=

1

𝑠 −   2
 ,      ⟹   𝑦2 = 𝑒2𝑡 

 
 
4.2 Application to Integro Differential Equations 

The Laplace transform is useful in solving linear integro differential equations. Using the 
differentiation and integration properties of Laplace transforms, each term in the 
integrodifferential equation is transformed. 

Initial conditions are automatically taken into account. We solve the resulting algebraic 
equation in the s-domain. We then convert the solution back to the time domain by 
using the inverse transform. The following examples illustrate the process. 

 

Example 4.11: Use the Laplace transform to solve the differential equation 

𝑑2𝑣(𝑡)

𝑑𝑡2
+ 6

𝑑𝑣(𝑡)

𝑑𝑡
+ 8𝑣(𝑡) = 2𝑢(𝑡) 

Subject to 𝑣(0) = 1, 𝑣′(0) = −2 

 

Solution: 

We take the Laplace transform of each term in the given differential equation and obtain 

[𝑠2𝑉(𝑠) − 𝑠𝑣(0) − 𝑣′(0)] + 6[𝑠𝑉(𝑠) − 𝑣(0)] + 8𝑉(𝑠) =
2

𝑠
 

Substituting 𝑣(0) = 1, 𝑣(0) = −2 

𝑠2𝑉(𝑠) − 𝑠 + 2 + 6𝑠𝑉(𝑠) − 6 + 8𝑉(𝑠) =
2

𝑠
 

Or 

(𝑠2 + 6𝑠 + 8)𝑉(𝑠) = 𝑠 + 4 +
2

𝑠
=
𝑠2 + 4𝑠 + 2

𝑠
 

Hence, 

𝑉(𝑠) =
𝑠2 + 4𝑠 + 2

𝑠(𝑠 + 2)(𝑠 + 4)
=
𝐴

𝑠
+

𝐵

𝑠 + 2
+

𝐶

𝑠 + 4
 

Where 



   
  Circuit Analysis with Laplace Transform 

93 
 

𝐴 = 𝑠𝑉(𝑠)|𝑠=0 =
𝑠2 + 4𝑠 + 2

(𝑠 + 2)(𝑠 + 4)
|
𝑠=0

=
2

(2)(4)
=
1

4
 

𝐵 = (𝑠 + 2)𝑉(𝑠)|𝑠=−2 =
𝑠2 + 4𝑠 + 2

𝑠(𝑠 + 4)
|
𝑠=2

=
−2

(−2)(2)
=
1

2
 

𝐶 = (𝑠 + 4)𝑉(𝑠)|𝑠=−4 =
𝑠2 + 4𝑠 + 2

𝑠(𝑠 + 2)
|
𝑠=−4

=
2

(−4)(−2)
=
1

4
 

Hence, 

𝑉(𝑠) =

1
4
𝑠
+

1
2
𝑠
+

1
4

𝑠 + 4
 

By the inverse Laplace transform  

𝑣(𝑡) =
1

4
(1 + 2𝑒−2𝑡 + 𝑒−4𝑡)𝑢(𝑡) 

 

Example 4.12: Solve for the response 𝑦(𝑡) in the following integro differential equation. 

𝑑𝑦

𝑑𝑡
+ 5𝑦(𝑡) + 6∫ 𝑦(𝜏)

𝑡

0

= 𝑢(𝑡), 𝑦(0) = 2 

 

Solution  

Taking the Laplace transform of each term, we get 

[𝑠𝑌(𝑠) − 𝑦(0)] + 5𝑌(𝑠) +
6

𝑠
𝑌(𝑠) =

1

𝑠
 

Substituting 𝑦(0) = 2 and multiplying through by s, 

𝑌(𝑠)(𝑠2 + 5𝑠 + 6) = 1 + 2𝑠 

Or 

𝑌(𝑠) =
2𝑠 + 1

(𝑠 + 2)(𝑠 + 3)
=

𝐴

𝑠 + 2
+

𝐵

𝑠 + 3
 

Where 

𝐴 = (𝑠 + 2)𝑌(𝑠)|𝑠=−2 =
𝑠2 + 1

𝑠 + 3
|
𝑠=−2

=
−3

1
= −3 
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𝐵 = (𝑠 + 3)𝑌(𝑠)|𝑠=−3 =
2𝑠 + 1

𝑠 + 2
|
𝑠=−3

=
−5

−1
= 5 

Thus 

𝑌(𝑠) =
−3

𝑠 + 2
+

5

𝑠 + 3
 

Its inverse transform is 

𝑦(𝑡) = (−3𝑒−2𝑡 + 5𝑒−3𝑡)𝑢(𝑡) 

 
 

4.3    Exercise  

Solve the following differential equations: 

1.
𝑑2𝑦

𝑑𝑥2
 + 𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 1  𝑎𝑛𝑑  

𝑑𝑦

𝑑𝑥
 = −1  𝑎𝑡  𝑥 = 0   

                                                                         Ans. 𝑦 = cos 𝑥 − sin 𝑥 

2.  
𝑑2𝑦

𝑑𝑥2
− 4𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 0  𝑎𝑛𝑑  

𝑑𝑦

𝑑𝑥
 = −6  𝑎𝑡  𝑥 = 0.     

                                                                             Ans. 𝑦 = −
3

2
 𝑒2 𝑥 +

3

2
 𝑒−2 𝑥 

3.  
𝑑2𝑦

𝑑𝑥2
 + 𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 1,

𝑑𝑦

𝑑𝑥
 = 1  𝑎𝑡  𝑥 = 0.          

                                                                                Ans. 𝑦 = sin 𝑥 + cos 𝑥 

4.  
𝑑2𝑦

𝑑𝑥2
 +  2 

𝑑𝑦

𝑑𝑥
 + 5 𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 2,

𝑑𝑦

𝑑𝑥
 = −4  𝑎𝑡  𝑥 = 0 

                                                                                        Ans. 𝑦 = 𝑒  𝑥(2 cos 2  𝑥 − sin 2  𝑥) 

5. 
𝑑3𝑦

𝑑𝑥3
 +  2 

𝑑2𝑦

𝑑𝑥2
− 

𝑑𝑦

𝑑𝑥
− 2 𝑦 = 0, 𝑔𝑖𝑣𝑒𝑛 𝑦 =

𝑑𝑦

𝑑𝑥
 = 0,

𝑑2𝑦

𝑑𝑥2
= 6 𝑎𝑡  𝑥 = 0  

                                                                                      Ans. 𝑦 = 𝑒  𝑥 − 3𝑒− 𝑥 +  2𝑒− 𝑥 

6.  
𝑑2𝑦

𝑑𝑥2
 +  𝑦 = 3 cos 2 𝑥 , 𝑤ℎ𝑒𝑟𝑒  𝑦 =

𝑑𝑦

𝑑𝑥
= 0 𝑎𝑡  𝑥 = 0.   Ans. 𝑦 = cos 𝑥 − cos 2 𝑥. 

7.  
𝑑3𝑦

𝑑𝑥3
 + 

𝑑𝑦

𝑑𝑥
− 2 𝑦 = 1 − 2 𝑥, 𝑔𝑖𝑣𝑒𝑛 𝑦 = 0,

𝑑𝑦

𝑑𝑥
 = 4 𝑎𝑡  𝑥 = 0   

                                                                                               Ans. 𝑦 = 𝑒  𝑥 − 𝑒− 2𝑥 +  𝑥 

8.  
𝑑3𝑦

𝑑𝑥3
− 3 

𝑑𝑦

𝑑𝑥
+ 2 𝑦 = 4𝑒−2𝑥, 𝑔𝑖𝑣𝑒𝑛 𝑦 = −3, 𝑎𝑛𝑑

𝑑𝑦

𝑑𝑥
= 5 𝑎𝑡 𝑥 = 0.  

                                                                                     Ans. 𝑦 = −7𝑒  𝑥 + 4𝑒−2𝑥 +  4 𝑥𝑒2 𝑥 

9.  
𝑑3𝑦

𝑑𝑥3
− 3 

𝑑𝑦

𝑑𝑥
+ 2 𝑦 = 4𝑥 + 𝑒−2𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑦 = 1,

𝑑𝑦

𝑑𝑥
= −1 𝑎𝑡 𝑥 = 0.     

                                                                                          Ans. 𝑦 = 3 + 2 𝑥 +
1

2
𝑒  3𝑥 −

1

2
𝑒𝑥 

10.  
𝑑3𝑦

𝑑𝑥3
 +  2 

𝑑2𝑦

𝑑𝑥2
− 

𝑑𝑦

𝑑𝑥
− 2 𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑦 = 1,

𝑑𝑦

𝑑𝑥
 = 2,

𝑑2𝑦

𝑑𝑥2
= 2 𝑎𝑡  𝑥 = 0.   

                                                                                          Ans. 𝑦 =
5

3
𝑒  𝑥 − 𝑒− 𝑥 +

1

3
𝑒−2𝑥 

11.  (𝐷2 − 𝐷 − 2)𝑥 = 20 sin 2 𝑡 , 𝑥0 = −1, 𝑥1 = 2       
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                                                                Ans. 𝑥 = 2𝑒  2 𝑡 − 4𝑒− 𝑡 + cos 2 𝑡 − 3 sin 2 𝑡 

12.  (𝐷3 + 𝐷2)𝑥 = 6𝑡2 + 4. 𝑥 (0) = 0, 𝑥᾽(0) = 2, 𝑥"(0) = 0  

                                                                           Ans. 𝑥 =
1

2
𝑡4 − 2𝑡3 + 8 𝑡2 − 16𝑡 − 16𝑒−𝑡 

13.  
𝑑2𝑦

𝑑𝑥2
− 2 

𝑑𝑦

𝑑𝑥
+ 𝑥 = 𝑒𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑥(0) = 2,

𝑑𝑦

𝑑𝑥
= −1 𝑎𝑡 𝑡 = 0.   

                                                                                  Ans. 𝑥 = 2𝑒𝑡 − 3 𝑡𝑒𝑡 + 
1

2
𝑡2𝑒𝑡 

14.  (𝐷2 − 𝑛2)𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼)  𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝐷     𝑥 = 0   𝑎𝑡   𝑡 = 0       

                                          Ans. 𝑥 = 𝑎𝑛 𝑐𝑜𝑠 𝛼 (𝑠𝑖𝑛 𝑛𝑡 − 𝑛𝑡 𝑐𝑜𝑠 𝑛𝑡) +
𝑎 sin2  𝛼

2 𝑛
 (𝑡 sin 𝑛𝑡) 

15.  𝑦′′ + 2𝑦′ + 𝑦 = 𝑡𝑒−𝑡   𝑖𝑓 𝑦(0) = 1, 𝑦′(0) = −2      

                                                                     Ans. 𝑦 = (1 − 𝑡 +
𝑡3

6
) 𝑒−𝑡 

16.  
𝑑2𝑦

𝑑𝑥2
+ 𝑦 = 𝑥 cos 2 𝑥 , 𝑤ℎ𝑒𝑟𝑒  𝑦 =  

𝑑𝑦

𝑑𝑥
= 0 𝑎𝑡 𝑡 = 0.   

                                                   Ans. 𝑦 =
4

9
 𝑠𝑖𝑛 2 𝑥 −

5

9
 𝑠𝑖𝑛 𝑥 −

𝑥

3
 𝑐𝑜𝑠 2 𝑥 

17.  
𝑑3𝑦

𝑑𝑥3
− 3 

𝑑2𝑦

𝑑𝑥2
− 3 

𝑑𝑦

𝑑𝑥
−  𝑦 = 𝑥2𝑥2 𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑦 = 1,

𝑑𝑦

𝑑𝑥
 = 0,

𝑑2𝑦

𝑑𝑥2
= −2 𝑎𝑡  𝑥 = 0   

                                                    Ans. 𝑦 = 𝑒  2𝑥(𝑥2 − 6 𝑥 + 12) − 𝑒𝑥(15 𝑥2 + 7 𝑥 + 11) 
18.  𝑦′′ + 4𝑦′ + 3𝑦 = 𝑡, 𝑡 > 0;  𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑦(0) = 0 𝑎𝑛𝑑  𝑦′(0) = 1   

                                                                                             Ans. 𝑦 = −
4

9
+

𝑡

6
+ 𝑒−𝑡 −

5

9
 𝑒−3𝑡 

19.  𝑦′′ + 2𝑦 = 𝑟 (𝑡), 𝑦(0) = 0,   𝑦′(0) = 0 𝑤ℎ𝑒𝑟𝑒   𝑟 (𝑡) = {
0,              𝑡 ≥ 𝑙
1,       0 ≤ 𝑡 < 𝑙

}     

                                                                                            Ans. 𝑣 =
1

2
−
1

2
 𝑐𝑜𝑠 √2 𝑡. 

20.  
𝑑2𝑦

𝑑𝑥2
+ 4𝑦 = 𝑦(𝑡 − 2),  where u is unit step function    𝑦(0) = 0 𝑎𝑛𝑑 𝑦᾽(0) = 1  

                                                                                            Ans. 𝑦 =
1

2
sin 2𝑡  𝑓𝑜𝑟 𝑡 < 2 

21.  
𝑑2𝑦

𝑑𝑥2
+ 𝑦 − 𝑢 (𝑡 − 𝜋) − 𝑢 (𝑡 − 2𝜋), 𝑦(0) = 𝑦′(0) = 0 

                                                       Ans. 𝑦 = (1 + cos 𝑡)𝑢(𝑡 − 𝜋) − (1 − cos 𝑡)𝑢 (𝑡 − 𝜋) 
22.  A condenser of capacity C is charged to potential E and discharged at t = 0 through  
       an inductance L and resistance R. The charge q at time t is governed by the  
       differential equation 

𝐿 
𝑑2𝑞

𝑑𝑡2
+ 𝑅

𝑑𝑞

𝑑𝑡
+
𝑞

𝐶
= 𝑞(𝑡) 

𝑞(𝑡) = {

𝐸
𝐸𝑒−𝛼𝑡

𝐸𝑠𝑖𝑛𝛽𝑡
𝐸𝑐𝑜𝑠𝛽𝑡

 

        
Using Laplace transforms, show that the charge q is given by 

𝑞 =
𝐶𝐸

𝑛
 𝑒−𝑘𝑡 [𝑘 sin 𝑛𝑡 + 𝑛 cos 𝑛𝑡] 𝑤ℎ𝑒𝑟𝑒 𝑘 =

𝑅

2𝐿
 𝑎𝑛𝑑 𝜂2 =

1

𝐿𝐶
−
𝑅2

𝐿2
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23. Determine the final value of 𝑦(𝑡), Given 
𝑑2𝑦(𝑡)

𝑑𝑡2
−
3𝑑𝑦

𝑑𝑡
− 10𝑦(𝑡) = 4 

𝑦(0−) = 2, 𝑦′(0−) = 1 

24. For the second-order differential equation 
𝑑2𝑦(𝑡)

𝑑𝑡2
−
7𝑑𝑦(𝑡)

𝑑𝑡
+ 12𝑦(𝑡) 

 [𝑦(0) = 2, 𝑦(0) = 5], determine the response 𝑦(𝑡) solve the following simultaneous 
differential equations by Laplace transform 

25. 
𝑑𝑥

𝑑𝑡
+  4𝑦 = 0,

𝑑𝑦

𝑑𝑡
− 9𝑥 = 0.         𝑔𝑖𝑣𝑒𝑛 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 1 𝑎𝑡 𝑡 = 0.              

                                              Ans. 𝑥 = −
2

3
 𝑠𝑖𝑛 6𝑡 + 2 cos 6𝑡 , 𝑦 = cos 6𝑡 + 3 sin 6𝑡 

26.  4
𝑑𝑦

𝑑𝑡
 +

𝑑𝑥

𝑑𝑡
+  3𝑦 = 0, 3

𝑑𝑥

𝑑𝑡
+  2𝑥 +

𝑑𝑦

𝑑𝑡
= 1      under the condition: 

                                                       𝑥 = 𝑦 = 0 𝑎𝑡 𝑡 = 0 

                                          Ans. 𝑥 =
1

2
−
1

5
 𝑒−𝑡 −

3

10
 𝑒−

6

11
 𝑡, 𝑦 =

1

5
 𝑒−𝑡 −

1

5
 𝑒−

6

11
 𝑡 

27.  
𝑑𝑥

𝑑𝑡
+ 5 𝑥 − 2 𝑦 = 𝑡,

𝑑𝑦

𝑑𝑡
+ 2𝑥 + 𝑦 = 0, being given when 𝑥 = 𝑦 = 0  𝑤ℎ𝑒𝑛 𝑡 = 0. 

        Ans. 𝑥 = −
1

27
(1 + 6 𝑡)𝑒−3𝑡 +

1

27
 (1 + 3 𝑡), 𝑦 −

2

27
 (2 + 3 𝑡) 𝑒−3𝑡 −

2 𝑡

9
+

4

27
 

28.  
𝑑𝑥

𝑑𝑡
+ 𝑦 = sin 𝑡 ,   

𝑑𝑦

𝑑𝑡
+ 𝑥 = cos 𝑡 given that 𝑥 = 2, 𝑎𝑛𝑑  𝑦 = 0  𝑤ℎ𝑒𝑛 𝑡 = 0. 

                                                                           Ans. 𝑥 = 𝑒𝑡 + 𝑒−𝑡, 𝑦 = 𝑒−𝑡 − 𝑒𝑡 + sin 𝑡                  

29.   3
𝑑𝑥

𝑑𝑡
+  3

𝑑𝑦

𝑑𝑡
+  5 𝑥 = 25 cos 𝑡 ,    2

𝑑𝑥

𝑑𝑡
− 3

𝑑𝑦

𝑑𝑡
= 5 sin 𝑡  𝑤𝑖𝑡ℎ 𝑥 (0) = 2, 𝑦(0) = 3 

                                                       Ans. 𝑥 = 2 cos 𝑡 + 3 sin 𝑡 ,   𝑦 = 3 cos 𝑡 +  2 sin 3  𝑡 

30. By Laplace transformation method, determine the response 𝑦(𝑡) for 𝑡 ≥ 0 

𝑑2𝑦(𝑡)

𝑑𝑡2
+ 3

𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦(𝑡) = 5𝑢(𝑡) 

 

31. By Laplace transform, Solve the differential equation: 

                                                 
𝑑𝑥

𝑑𝑡
− 4𝑥 = 8, 𝑥(0−) = 𝑥(0+) = 2 

32.  Determine the final value of 𝑦(𝑡), given  
𝑑2𝑦(𝑡)

𝑑𝑡2
−
3𝑑𝑦

𝑑𝑡
− 10𝑦(𝑡) = 4 

𝑦(0−) = 2, 𝑦′(0−) = 1 
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33.  By Laplace transform, determine 𝑦(𝑡), given: 
𝑑2𝑦(𝑡)

𝑑𝑡2
− 3

𝑑𝑦(𝑡)

𝑑𝑡
− 10𝑦(𝑡) = 𝑒−𝑡 

𝑦(0−) = 2, 𝑦′(0−) = 1 

34.  For the second-order differential equation: 
𝑑2𝑦(𝑡)

𝑑𝑡2
− 7

𝑑𝑦(𝑡)

𝑑𝑡
+ 12𝑦(𝑡) = 6𝑒−4𝑡  

   𝑦(0) = 2, 𝑦′(0) = 5, determine the response 𝑦(𝑡) 

35.  For the second-order differential equation: 
𝑑2𝑦

𝑑𝑡2
− 7

𝑑𝑦

𝑑𝑡
+ 12𝑦 = 2𝑠𝑖𝑛4𝑡  

 𝑦(0) = 2, 𝑦′(0) = 5, determine the response 𝑦(𝑡) 

36.  Solve the following differential equation using the Laplace transform method.        

  If    𝑣′(0) = 𝑣(0) = 2,     
𝑑2𝑣(𝑡)

𝑑𝑡2
+ 4

𝑑𝑣(𝑡)

𝑑𝑡
+ 4𝑣(𝑡) = 2𝑒−𝑡 

  Ans: (2𝑒−𝑡 + 4𝑒−2𝑡)𝑢(𝑡) 

37. Use the Laplace transform to solve the integro differential equation 

𝑑𝑦

𝑑𝑡
+ 3𝑦(𝑡) + 2∫ 𝑦(𝜏)

𝑡

0

𝑑𝜏 = 2𝑒−3𝑡  𝑦(0) = 0 

 Ans: (−𝑒−𝑡 + 4𝑒−2𝑡 − 3𝑒−3𝑡)𝑢(𝑡) 
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CHAPTER 5 

CIRCUIT ANALYSIS BY LAPLACE TRANSFORM 
 

5.0 Introduction  

This chapter is dedicated to solving electrical circuit or networks analysis in frequency 
domain or s-domain which is known as Laplace Transformation method. Laplace method 
is linear in nature which makes its use very easy and a useful tool in circuit analysis. 
Consider for example Fig. 5.1 is a series R-L circuit containing a voltage source made up 
of a combination of a (trice-scaled-up) impulse “function” and a (twice-scaled-up) unit 
step function (a combination d.c voltage)  

 

4 Ω 

𝑖(𝑡) 

𝑣𝑠(𝑡) = 3𝛿(𝑡)+ 2𝑢(𝑡) V 
0.4 H

 

Figure 5.1 

 

We are required to determine the current as the response (output)  

Taking 𝐾𝑉𝐿 of the loop: 

We have  3𝛿(𝑡) + 2𝑢(𝑡) = 4𝑖(𝑡) + 0.4
𝑑𝑖(𝑡)

𝑑𝑡
                              5.1 

Taking the Laplace transform of both sides of the Eq. 5.1. 

3 +
2

𝑠
= 4𝐼(𝑠) + 0.4[𝑠𝐼(𝑠) − 𝑖(0−)] 

A little observation on the initial condition 𝑖(0−): the source voltage, 𝑣𝑠(𝑡), is a sum of 
impulse and step signals, the former being non-zero only at 𝑡 = 0. So, at 𝑡 = 0−, the sum 
is zero since 𝑢(𝑡) takes up non-zero value from 𝑡 = 0. Because an inductor presents a 
short circuit in a steady-state, which in this case is the one prior to 𝑡 = 0− (assuming the 
circuit has been in this condition for a long time), applying Ohm’s law (always applicable 
at any point in time) simply gives Eq. 5.2:  
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            𝑖(0−) =
(0 − 0)

4
= 0 A = 𝑖(0+)                                        5.2 

Because a current through an inductor cannot change in zero time (instantaneously). 
Even if the time was not “long” enough for the inductor to present a short circuit, the 
impedance would have a reactive component by 𝑖(0−)  is still zero because the source 
voltage 𝑣𝑠(0

−) = 0 on account of the step function which takes on value of 2 only from 
𝑡 = 0 (or 0+). Getting back to Eq. 5.2 for 𝑖(0+) = 0 A, we have: 

3 +
2

𝑠
= 4𝐼(𝑠) + 0.4 [𝑠 𝐼 (𝑠) − 0] 

        ⟹ 𝐼(𝑠) =
(3 +

2
𝑠)

(4 + 0.4𝑠)
                                                             5.3 

Resolving Eq. 5.3 into partial fraction  

=
3𝑠 + 2

𝑠(0.4𝑠 + 4)
=
(
30𝑠
4 ) + (

20
4 )

(𝑠 + 10) 
 

=
𝐴

𝑠
+

𝐵

𝑠 + 10
 

𝐴 =
(
15𝑠
2 ) + 5

𝑠 + 10
|

𝑠=0

=
1

2
 

𝐵 =
(
15𝑠
2 ) + 5

𝑠
|

𝑠=−10

=
−75 + 5

−10
= 7 

                        𝐼(𝑠) =

1
2
𝑠
+

7

𝑠 + 10 
                                                 5.4 

Finding the inverse Laplace transform of Eq. 5.4 we have: 

   (𝑡) = ℒ−1 𝐼(𝑠) = (0.5 + 7𝑒−10𝑡)𝑢(𝑡) A                                5.5 

The first term in Eq.  5.5 i.e.  0.5, is known as the d.c component because for this term, 
the root (pole) and hence frequency is zero (making the period which is its reciprocal, 
“infinite” hence, which is its reciprocal, “infinite” hence direct current). So, the time 
domain expression for this component explicably written as 0.5𝑒0𝑡 = 0.5𝑒0 = 0.5 A. this 
portion is what remains after the transient portion 7𝑒−10𝑡 has died off as time tends to 
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infinity. A simple application of Ohm’s law in the steady state (inductor is short) gives 
(0+2)−0

4
= 0.5 A, to be consistent with the foregoing observation! 

Example 5.1: A resistance R in series with inductance L is connected with e.m.f 𝐸(𝑡). The 
current 𝑖(𝑡) is given by 

𝐿
𝑑𝑖

𝑑𝑡
+  𝑅𝑖 = 𝐸(𝑡). 

         If its switch is closed at t = 0 and disconnect at t = a, find the current I in terms of 
it. 

          Solution:  

 Condition under which current I flows are i = 0  at  t = 0, 

𝐸 (𝑡) = {𝐸          0 ≤ 𝑡 ≤ 𝑎} 

Given equation is          𝐿
𝑑𝑖

𝑑𝑡
+  𝑅𝑖 = 𝐸 (𝑡)                                   5.6 

        Taking Laplace transform of Eq. 5.6, we have 

                       ℒ [𝑠𝑖̅ − 𝑖(0)] 𝑅𝑖̅̅̅ =  ∫ 𝑒−𝑠𝑡
∞

0
𝐸 (𝑡) 𝑑𝑡 

ℒ 𝑠𝑖̅ + 𝑅𝑖̅̅̅ =  ∫ 𝑒−𝑠𝑡
∞

0

𝐸 (𝑡)  𝑑𝑡                                                [𝑖 (0) = 0] 

(𝐿𝑠 + 𝑅)𝑖 = ∫ 𝑒−𝑠𝑡
∞

0

𝐸 𝑑𝑡 = ∫ 𝑒−𝑠𝑡
∞

0

𝐸 𝑑𝑡 + ∫ 𝑒−𝑠𝑡
∞

𝑎

𝐸 𝑑𝑡 

= 𝐸 [
𝑒−𝑠𝑡

−𝑠
]
0

𝑎

+ 0 =
𝐸

𝑠
(1 − 𝑒−𝑎𝑠] =

𝐸

𝑠
−
𝐸

𝑠
 𝑒−𝑎𝑠 

𝑖̅ =
𝐸

𝑠(𝐿𝑠 + 𝑅)
−

𝐸𝑒−𝑎𝑠

𝑠(𝐿𝑠 + 𝑅)
 

         On inversion, we obtain 

𝑖 = ℒ−1 [
𝐸

𝑠(𝐿𝑠 + 𝑅)
] − ℒ−1 [

𝐸𝑒−𝑎𝑠

𝑠(𝐿𝑠 +  𝑅)
]                          5.7 

         Now we have to find the value of  ℒ−1  [
𝐸

𝑠 (𝐿𝑠 + 𝑅)
] 

ℒ−1 [
𝐸

𝑠(𝐿𝑠 +  𝑅)
] =

𝐸

𝐿
ℒ−1 [

1

𝑠 (𝑠 + 
𝑅
𝐿)
]     (Resolving into partial fractions) 
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=
𝐸

𝐿
.
𝐿

𝑅
 ℒ−1 [

1

𝑠
 −

1

𝑠 + 
𝑅
𝐿

] =
E

R
 [1 − 𝑒−

𝑅
𝐿
 𝑡] 

and                       ℒ−1  [
𝐸𝑒−𝑎𝑠

𝑠 (𝐿𝑠 + 𝑅)
] =

E

R
 [1 − 𝑒−

𝑅
𝐿
(𝑡 − 𝑎)] 𝑢 (𝑡 − 𝑎)  

                                                             [By the second shifting theorem] 

            On substituting the values of the inverse transforms into Eq. 5.7, we have 

𝑖 =
E

R
 [1 − 𝑒−

𝑅
𝐿
 𝑡] −

E

R
 [1 − 𝑒−

𝑅
𝐿
(𝑡 − 𝑎)] 𝑢 (𝑡 − 𝑎) 

                   Hence, 𝑖 =
E

R
  [1 − 𝑒−

𝑅

𝐿
 𝑡]   for   0 ≤ 𝑡 ≤ 𝑎,      [𝑢 (𝑡 − 𝑎) = 0] 

𝑖 =
E

R
  [1 − 𝑒−

𝑅
𝐿
 𝑡] –

E

R
 {1 − 𝑒−

𝑅
𝐿
(𝑡 – 𝑎)}                           𝑓𝑜𝑟  𝑡 > 𝑎 

                                             [𝑢 (𝑡 − 𝑎) = 1] 

=
𝐸

𝑅
  [1 − 𝑒−

𝑅
𝐿
(𝑡 − 𝑎)  − 𝑒−

𝑅
𝐿
 𝑡] ⟹ 𝑖(𝑡) =

𝐸

𝑅
− 𝑒−

𝑅
𝐿
 𝑡  [𝑒

𝑅𝑎
𝐿
 − 1]   𝑨𝒏𝒔. 

 

Example 5.2: Using the Laplace transform, find the current 𝑖(𝑡) in Fig. 5.2. 

L

C

v(t)

iCoil 

 

Figure 5.2 

 

Assuming L = 1 henry, C = 1 farad, zero                  

initial current and charge on the capacitor, and 

      

                         𝑣 (𝑡) = 𝑡      𝑤ℎ𝑒𝑛     0 ≤ 𝑡 ≤ 1 = 0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 
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            Solution: 

 The differential equation for L and C circuit is given by 

                               
𝑑2𝑞

𝑑𝑡2
+
𝑞

𝐶
= 𝐸                                                       5.8 

            Putting 𝐿 = 1, 𝐶 = 1, 𝑒 = 𝑣 (𝑡)   into Eq. 5.8, we get 

                                
𝑑2𝑞

𝑑𝑡2
+ 𝑞 = 𝑣 (𝑡)                                                 5.9 

            
 Taking Laplace Transform of Eq. 5.9 we have  

𝑠2𝑞̅ − 𝑠𝑞′(0) − 𝑞᾽(0) + 𝑞̅ = ∫ 𝑣 (𝑡)
∞

0

 𝑒−𝑠𝑡 𝑑𝑡 

             Substituting 𝑞′(0) = 0, 𝑖 (0) = 𝑞᾽(0) = 0,𝑤𝑒 𝑔𝑒𝑡  

𝑠2𝑞̅ + 𝑞̅ = ∫ 𝑡𝑒−𝑠𝑡  𝑑𝑡
1

0

+ ∫ 0
∞

0

 𝑒−𝑠𝑡𝑑𝑡 

(𝑠2 + 1)𝑞̅ = [𝑡
𝑒−𝑠𝑡

− 𝑠
]
0

𝑡

−∫
𝑒−𝑠𝑡

− 𝑠
 𝑑𝑡

1

0

=
𝑒−𝑠

−𝑠
− [
𝑒−𝑠𝑡

𝑠2
]
0

1

= −
𝑒−𝑠

− 𝑠
−
𝑒−𝑠

𝑠2
+
1

𝑠2
 

𝑞̅ =
1

𝑠2  +   1
[−
𝑒−𝑠

− 𝑠
−
𝑒−𝑠

𝑠2
+
1

𝑠2
] 

𝑞̅ =  
−𝑒−𝑠

𝑠(𝑠2  +   1)
−

𝑒−𝑠

𝑠2(𝑠2  +   1)
+

1

𝑠2 (𝑠2  +   1)
 

             Taking inverse Laplace transform, we get 

𝑞̅ = ℒ−1
−𝑒−𝑠

𝑠 (𝑠2  +   1)
− ℒ−1  

𝑒−𝑠

𝑠2 (𝑠2  +   1)
+ ℒ−1  

1

𝑠2 (𝑠2  +   1)
     5.10          

             We know that  
                                   ℒ−1[𝑒−𝑠 𝑓(𝑠)] = 𝑓(𝑡 − 𝑎)𝑢 (𝑡 − 𝑎) 

ℒ−1
1

𝑠(𝑠2  +   1)
= ∫ sin 𝑡  𝑑𝑡

𝑡

0

= [− cos 𝑡 ]0
𝑡 = 1 − cos 𝑡 

ℒ−1  
1

𝑠2(𝑠2  +   1)
= ∫ (1 − cos 𝑡)

𝑡

0

 𝑑𝑡 = 𝑡 − sin 𝑡 

          In view of this, we have 

ℒ−1  [
−𝑒−𝑠

𝑠2(𝑠2 + 1)
] = −[1 − cos(𝑡 − 1)]𝑢 (𝑡 − 1) 

ℒ−1  
𝑒−𝑠

𝑠2(𝑠2  +   1)
= [(𝑡 − 1) − sin(𝑡 − 1)]𝑢 (𝑡 − 1) 

         Putting into Eq. 5.10 we get 
𝑞 = −[1 − cos(𝑡 − 1)]𝑢 (𝑡 − 1) − [(𝑡 − 1) − sin(𝑡 − 1)]𝑢 (𝑡 − 1) +  𝑡 − sin 𝑡 
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5.1 Further Examples on Frequency Domain Circuit Analysis 

Example 5.3: In the circuit of Fig. 5.3 the coil has 10 Ω resistance and a 6 H inductance. If 
𝑅 = 14 Ω and the source voltage is 24 V and the switch is open at  𝑡 = 0. Determine 𝑖(𝑡) 
using the Laplace transform method. 

10 Ω R
6 H

coil

24 V

i

t=0

                                                                                  
Figure 5.3 

Taking the KVL  @      𝑡 =  0, 

                                  𝑖0 =
24

10
= 2.4 A                                            5.11 

              24 = 10𝑖(𝑡) + 14𝑖(𝑡) + 6
𝑑𝑖(𝑡)

𝑑𝑡
                                 5.12 

Laplacing Eq. 5.12, we have 

        
24

𝑠
+ 𝐿 𝑖(0) = 𝐼𝑠 (6𝑠 + 10 + 14)                                       5.13 

24

𝑠
+ 6(2.4) = 𝐼𝑠(6𝑠 + 24) 

24 + 14.4𝑠

𝑠
= 𝐼𝑠(6𝑠 + 24) 

𝐼𝑠 =
14.4𝑠 + 24

𝑠(6𝑠 + 24)
 

                       𝐼𝑠 =
2.4𝑠 + 4

𝑠(𝑠 + 4)
                                                        5.14 

Resolving Eq. 5.14 into partial fraction, we have: 

2.4𝑠 + 4

𝑠(𝑠 + 4)
=
𝐴

𝑠
+

𝐵

𝑠 + 4
 

Using Cover Up-Rule  
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𝐴 = lim
𝑠→0

[
2.4𝑠 + 4

𝑠 + 4
] =

4

4
= 1 

𝐵 = lim
𝑠→−4

[
2.4𝑠 + 4

𝑠
] =

−5.6

−4
= 14 

                               𝐼𝑠 = 
1

𝑠
+

1.4

𝑠 + 4
                                               5.15 

Taking the inverse Laplace transform of Eq. 5.15, i.e. 

𝑖(𝑡) = ℒ−1𝐼𝑠 = ℒ−1 [
1

𝑠
+

1.4

𝑠 + 4
] 

𝑖(𝑡) = 1 + 1.4𝑒−4𝑡u(t) A 

 

Example 5.4:  Find 𝑖(𝑡) i.e., the current across 12 Ω resistor at 𝑡 > 0 in Fig. 5.4 by first 
Laplacing the circuit and then use the Laplace transform method to fine the current as 
stated. 

24 V 12 Ω 

4 Ω 

8 H

i2(t)

i1(t)

i(t)

                                       

 Figure 5.4 

 

 

Solution: 

KVL LOOP 1:                         24 = 12(𝑖1(𝑡) − 𝑖2(𝑡))                                              5.16           

KVL L00P 2:                     0 = 8
𝑑𝑖2(𝑡)

𝑑𝑡
+ 4𝑖2 + 12(𝑖2(𝑡) − 𝑖1(𝑡))                      5.17          

Laplacing Fig. 5.4a we have Fig. 5.4b  
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12Ω 

4Ω 

8s

I2(s)

I1(s)

24

𝑠
 

i(t)

                                                    

Figure 5.4b 

Using MESH analysis  

For mesh 1 

                                                       
24

𝑠
= 12I1 − 12𝐼2                                         5.18 

12𝐼1 =
24

𝑠
+ 12𝐼2 

𝐼1 =
12𝐼2 + 24

12𝑠
=
𝑠𝐼2 + 2

𝑠
 

                               𝐼1 =
𝑠𝐼2 + 2

𝑠
                                                               5.19 

For mesh 2 

    12𝐼2 − 12𝐼1 + 4𝐼2 + 8𝑠𝐼2 = 0    5.20 

Substituting Eq. 5.18 into Eq. 5.20 we have: 

16𝐼2 − 12 (
𝐼2 𝑠 + 2

𝑠
) + 8 𝑠𝐼2 = 0 

16𝐼2 −
12 𝑠𝐼2 − 24

𝑠
+ 8  𝑠𝐼2 = 

16𝑠𝐼2 − 12𝑠𝐼2 − 24 + 8𝑠
2𝐼2 = 0 

8𝑠2𝐼2 + 16𝑠𝐼2 − 12𝑠𝐼2 = 24 

𝐼28𝑠
2 + 4𝑠𝐼2 = 24 

𝐼2 (8𝑠
2 + 4𝑠) = 24 

𝐼2 =
24

𝑠(8𝑠 + 4)
=

3

𝑠(𝑠 + 0.5)
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                   𝐼2 =
3

𝑠 (𝑠 + 0.5)
                                                                  5.21 

Resolving Eq. 5.21 into partial fraction we have that  

3

𝑠(𝑠 + 0.5)
=
𝐴

𝑠
+

𝐵

𝑠 + 0.5
 

𝐴 = lim
𝑠→0

[
3

𝑠 + 0.5
] =

3

0.5
= 6 

𝐵 = lim
𝑠→0.5

[
3

𝑠
] =

3

−0.5
= −6 

𝐼2 = [
6

𝑠
+

6

𝑠 + 0.5
] 

     𝑖2(𝑡) = ℒ−1 𝐼2 

    𝑖2(𝑡) = 6 − 6𝑒
−0.5𝑡𝐴    5.22 

𝑖2(𝑡) = 6(1 − 𝑒−0.5𝑡)𝑢(𝑡) A 

Substituting Eq. 5.22 into Eq. 5.16 

     24 = 12(𝑖1(𝑡) − 6 + 6𝑒
−0.5𝑡) 

24

12
= 𝑖1(𝑡) − 6 + 6𝑒

−0.5𝑡 

𝑖1(𝑡) = 2 + 6 − 6𝑒
−0.5𝑡 

     𝑖1(𝑡) = 8 − 6𝑒−0.5𝑡A   5.23 

But        𝑖(𝑡) = 𝑖1(𝑡) − 𝑖2(𝑡) 

𝑖(𝑡) = 8 − 6𝑒−0.5𝑡 − 6 + 6𝑒−0.5𝑡 

𝑖(𝑡) = 2 A 

 

Example 5.5: The circuit shown in Fig. 5.5a is under steady state with the switch at 
position 1. At 𝑡 = 0 the switch, is moved to position 2. Find 𝑖(𝑡) using the Laplace 
transform method. 
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2

1 40Ω 

20mH

10V50V

i(t)

                                                             
Figure 5.5a 

Solution: 

Laplacing Fig. 5.5a, we have Fig. 5.5b 

40Ω 

0.02s
I(s)

10

𝑠
 

                                                                                                      
Figure 5.5b 

 

   

                        𝑖(0) =
50

40
= 1.25𝐴                                                          5.24 

 

              
10

𝑠
= 40I + 0.02(sI − 𝑖(0))                                                 5.5 

Substituting Eq. 5.24 into Eq. 5.25 we have: 

10

𝑠
= 40I + 0.02 (sI − 1.25) 

Solving for I(s) 
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10

𝑠
= 40I + 0.02sI − 0.025 

10 + 0.025𝑠

𝑠
= I (0.025 + 40) 

                             I =
0.025𝑠 + 10

𝑠(0.02𝑠 + 40)
                                                   5.26 

Resolving Eq. 5.26 into partial fraction we have Eq. 5.27 

𝐼 =
0.025𝑠 + 10

𝑠(0.02𝑠 + 40)
=
1.25𝑠 + 500

𝑠(𝑠 + 2000)
 

𝐼 =
1.25𝑠 + 500

𝑠 + (𝑠 + 2000)
=
𝐴

𝑠
+

𝐵

𝑠 + 2000
 

𝐴 = lim
𝑠→0

[
1.25 + 500

𝑠 + 2000
] =

500

2000
= 0.25 

𝐵 = lim
𝑠→−2000

[
1.25𝑠 + 1000

𝑠
] =

−2000

−2000
= 1 

                                   𝐼 =
0.25

𝑠
+

1

𝑠 + 2000
                                       5.27 

𝑖(𝑡) = ℒ−1[I] = ℒ−1 (
0.25

𝑠
+

1

𝑠 + 2000
) 

𝑖(𝑡) = 0.25 + 𝑒−2000𝑡u(t) A 

 

 

Example 5.6: Express the voltage of the circuit of Fig. 5.6 in the s-domain if 𝑣(0+) = 0 
and hence solve for 𝑣(𝑡) using the Laplace transform method. Hence obtains the steady 
state condition using final the value theorem. 



   
  Circuit Analysis with Laplace Transform 

109 
 

1

2
 F 

iR
iC

u(t) A
1

2
Ω 

v(t)

                                                                          
Figure 5.6 

 

Solution: 

Applying KCL into Fig. 5.6 at Node V(t), we have Eq. 5.28 

                                          𝑖 = 𝑖𝑅 + 𝑖𝐶                                                     5.28 

                          𝑢(𝑡) =
𝑉

0.5
+ 0.5

𝑑𝑣

𝑑𝑡
                                                  5.29 

                            𝑢(𝑡) = 2𝑉 + 0.5
𝑑𝑣

𝑑𝑡
                                                  5.29a 

Taking the Laplace transform of Eq. 5.9a 

                               
1

𝑠
= 2𝑉 + 0.5 (𝑠𝑉 − 𝑣(0+)                                   5.30 

Substituting 𝑣 (0+) = 0𝑉 into Eq. 5.30 

                             
1

𝑠
= 2𝑉 + 0.5𝑠𝑉                                                      5.31 

Solving for 𝑉(𝑠) we have Eq. 5.32 

𝑉(2 + 0.5𝑠) =
1

𝑠
 

𝑉 =
1

𝑠(0.5𝑠 + 2)
 

                                        𝑉(𝑠) =
2

𝑠(𝑠 + 4)
                                           5.32 

Resolving Eq. 5.32 into partial fraction we have Eq. 5.33 
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𝑉 =
2

𝑠(𝑠 + 4)
=
𝐴

𝑠
+

𝐵

𝑠 + 4
 

𝐴 = lim
𝑠→0

[
2

𝑠 + 4
] =

2

4
= 0.5 

𝐵 = lim
𝑠→−4

[
2

𝑠
] =

2

4
= −0.5 

                                 𝑉 =
0.5

𝑠
+

0.5

𝑠 + 4
                                                      5.33 

Taking the inverse Laplace transform of Eq. 5.33 we have Eq. 5.34 

𝑣(𝑡) = ℒ−1[𝑉] = ℒ−1 (
0.5

𝑠
−

0.5

𝑠 + 4
) 

    𝑣(𝑡) = (0.5 − 0.5𝑒−4𝑡)𝑢(𝑡) V              5.34 

∴        𝑣(𝑡) = 0.5 (1 − 𝑒−4𝑡)𝑢(𝑡) V 

 

Furthermore, we can apply final value theorem to find the steady state condition in 
example 5.6. 

Fundamentally, the final value theorem states that:  

𝑓(∞) = lim
𝑠→0

𝑠 𝐹(𝑠) 

Applying the theorem to Example 5.6 to obtain steady state value of 𝑉(𝑠) 

𝑉𝑠𝑠 = lim
𝑠→0

𝑉(𝑠) 

From Eq. 5.32,  𝑉𝑠 = 𝑉 =
2

𝑠(𝑠+4)
 

𝑉𝑠𝑠 = lim
𝑠→0

[
2𝑠

𝑠(𝑠 + 4)
] =

2

4
= 0.5 V 

 

Example 5.7: The current (in the s-domain) through a circuit is given by:  

𝐼(𝑠) =
6

𝑠(𝑠 + 2)(𝑠 + 3)
  

What is  𝑖(0)? 

Solution: 
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Applying the final value theorem, recall  

𝑖(∞) = lim
𝑠→0

𝑠𝐼(𝑠) = 𝑖𝑠𝑠 

𝑖(∞) = lim
𝑠→0

[
6𝑠

𝑠(𝑠 + 2)(𝑠 + 3)
] =

6

2 × 3
=
6

6
 

𝑖(∞) = 1 A 

Example 5.8: In the RL circuit of Fig. 5.7, the switch is in position 1 long enough to 
establish steady state-state conditions and at 𝑡 = 0 it is switched to position 2. Find the 
resulting current 𝑖(𝑡) using the Laplace transform method. 

21

25 Ω 

10 mH
100 V50 V

i(t)

                                                              
Figure 5.7 

 

Solution  

When the switch is at point 1,    

                                                            𝑖(0) =
50

25
= −2𝐴                                                     5.35 

            

At point 2 

Taking the KVL of Fig. 5.7 

                                                   100 = 25𝑖 + 0.01
𝑑𝑖

𝑑𝑡
                                                        5.36 

Taking the Laplace transform of Eq. 5.36 we have Eq. 5.37 

                                                           
100

𝑠
= 25𝐼 + 0.01 [𝑠𝐼 − 𝑖(0) ]                               5.37 

Substituting Eq. 5.35 into Eq. 5.37, we have Eq. 5.38 



   
  Circuit Analysis with Laplace Transform 

112 
 

                                       
100

𝑠
= 25𝐼 + 0.01 [𝑠𝐼 + 2]                                                    5.38 

 

Solving for 𝐼(𝑠) in Eq. 5.38 we have Eq. 5.39 

100

𝑠
= 25𝐼 + 0.01𝑠𝐼 + 0.02 

100 = 25 𝑠𝐼 + 0.01𝑠2 𝐼 − 0.02𝑠 

𝐼(0.01𝑠2 + 25𝑠) = 100 − 0.025 

                                          𝐼 =
−0.02𝑠 + 100

0.01𝑠2 + 25𝑠
                                                                     5.39 

Resolving Eq. 5.39 into partial fraction we have Eq. 5.40 

𝐼 =
−2𝑠 + 10000

𝑠(𝑠 + 2500)
=
𝐴

𝑠
+

𝐵

(𝑠 + 2500)
 

𝑖(𝑡) = ℒ−1[𝐼𝑠] 

𝐴 = lim
𝑠→0

[
−25 + 10000

𝑠 + 2500
] =

10000

2500
= 4 

𝐵 = lim
𝑠→−2500

[
−2𝑠 + 10000

𝑠
] =

−2(−2000) + 10000

−2500
 

𝐵 =
15000

−2500
= −6 

                                                 𝐼 =
4

𝑠
−

6

𝑠 + 2000
                                                   5.40 

𝑖(𝑡) = ℒ−1𝐼𝑠 

Taking the Laplace inverse of Eq. 5.40 we have Eq. 5.41 

𝑖(𝑡) = ℒ−1 (
4

𝑠
−

6

𝑠 + 2000
) 

   𝑖(𝑡) = 4 − 6𝑒−2500𝑡𝑢(𝑡) A        5.41 

 

Example 5.9: In the two-mesh network in Fig. 5.8, find the currents which result when 
the switch is closed using the Laplace transform method.  
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10 Ω 

5 Ω i1

i2

20 mH

t=0

100 V

                                                                 

Figure 5.8 

 

Applying KVL for mesh 1  

At LOOP 1: 10𝑖1 + 0.02 (
𝑑𝑖1
𝑑𝑡

−
𝑑𝑖2
𝑑𝑡
) = 100                                                 5.42                   

Applying KVL for mesh 2  

At LOOP 2:       10𝑖1 + 0.02
𝑑𝑖1
𝑑𝑡

− 0.02
𝑑𝑖2
𝑑𝑡

= 100                                        5.43                  

0.02 (
𝑑𝑖2
𝑑𝑡

−
𝑑𝑖1
𝑑𝑡
) + 5𝑖2 = 0 

0.02
𝑑𝑖2
𝑑𝑡

− 0.02
𝑑𝑖1
𝑑𝑡

+ 5𝑖2 = 0                                          5.43a           

Taking the Laplace transform of Eqs. 5.42 & 5.43a  

10𝐼1 + 0.02𝑠𝐼 − 0.02𝑠𝐼2 =
100

𝑠
                                             5.44              

0.02𝑠𝐼2 − 0.02𝑠𝐼1 + 5𝐼2 = 0                                             5.45     

Solving for 𝐼2 in equation Eq. 5.45 we have Eq. 5.46 

0.02𝑠𝐼2 − 0.02𝑠𝐼1 + 5𝐼2 = 0 

𝑠𝐼2 − 𝑠𝐼1 + 250𝐼2 = 0 

𝐼2(𝑠 + 250) = 𝑠𝐼1 

                         𝐼2 =
𝑠𝐼1

𝑠 + 250
                                            5.46    

 

Substitute the value of Eq. 5.46 in equations recall Eq. 5.44 we have Eq. 5.47 
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𝐼1(10 + 0.02𝑠) =
100

𝑠
+ 0.02𝑠𝐼2 =

100

𝑠
+ 0.02𝑠 (

𝑠𝐼1
𝑠 + 250

) 

𝐼1(10 + 0.02𝑠) =
100

𝑠
+
0.02𝑠2𝐼1
𝑠 + 250

 

𝐼1(10 + 0.02𝑠) −
0.02𝑠2𝐼1
(𝑠 + 250)

=
100

𝑠
 

𝐼1 [(10 + 0.02𝑠) −
0.02𝑆2

(𝑠 + 250)
] =

100

𝑠
 

𝐼1  (
(𝑠 + 250)(10 + 0.2𝑠) − 0.02𝑠2

𝑠 + 250
) =

100

𝑠
 

𝐼1 =
100(𝑠 + 250)

[𝑠(𝑠 + 250)(10 + 0.02𝑠) − 0.02𝑠2]
 

𝐼1 =
100(𝑠 + 250)

𝑠(10𝑠 + 0.02𝑠2 + 2500 + 5𝑠 − 0.02𝑠2)
 

𝐼1 =
100(𝑠 + 250)

𝑠(15𝑠 + 2500)
=
6.667(𝑠 + 250)

𝑠(𝑠 + 166.667)
 

                                                𝐼1 =
6.667(𝑠 + 250)

𝑠(𝑠 + 166.667)
                                          5.47  

Resolving Eq. 5.47 into partial fraction, we have Eq. 5.48 

𝐼1 =
6.667𝑠 + 1666.75

𝑠(𝑠 + 166.667)
=
𝐴

𝑠
+

𝐵

(𝑠 + 166.667)
 

𝐴 = lim
𝑠→0

[
6.667𝑠 + 1666.75

𝑠 + 166.667
] =

1666.77

166.667
 

𝐴 = 10 

𝐵 = lim
𝑠→−166.667

[
6.667𝑠 + 1666.75

𝑠
] =

6.667(−166.667) + 1666.75

−166.667
= −3.33 

                               𝐼1 =
10

𝑠
−

3.33

(𝑠 + 166.667 )
                                   5.48 

∴     𝑖1(𝑡) = ℒ
−1 [𝐼1] 

           𝑖1(𝑡) = 10 − 3.33𝑒
−166.667𝑡u(t) A                                                5.49 

Substituting Eq. 5.47 into Eq. 5.46 we have Eq. 5.50 
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𝐼2 =
𝑠 𝐼1

(𝑠 + 250)
= 𝐼1 ×

𝑠

𝑠 + 250
=
6.667(𝑠 + 200)

𝑠(𝑠 + 166.667)
×

𝑠

(𝑠 + 250)
 

                            𝐼2 =
6.667

𝑠 + 166.667
                                                        5.50 

𝑖2 = ℒ
−1[𝐼2] 

Taking the Laplace inverse of Eq. 5.50, we have Eq. 5.50a 

                                     𝑖2(𝑡) = 6.667𝑒
−166.667u(t) A                                   5.50a 

 

Example 5.10: In the two-mesh network of Fig. 5.9, there is no initial charge on the 
capacitor. Find the loop circuit currents  𝑖1 and 𝑖2 which result when the switches close at 
𝑡 = 0 using the Laplace transform method. 

10 Ω 

50 V

i2

40 Ω 
0.2 Fi1

                                                                 
Figure 5.9 

 

For LOOP 1: 10(𝑖1 + 𝑖2) +
1

𝐶
∫ 𝑖1 𝑑𝑡 = 5                                                 5.51                      

10𝑖1  + 10𝑖2 + 5∫ 𝑖1𝑑𝑡 = 50                                  5.51a                

For LOOP  2: 10(𝑖1 + 𝑖2) + 40𝑖2 = 50                                                           5.52  
     

   10𝑖1 + 10𝑖2 + 40𝑖2 = 50      

10𝑖1 + 50𝑖2 = 50                              5.52a 

Taking the Laplace transform of Eqs. 5.51a and 5.52a respectively  

10𝐼1 + 10𝐼2 + 5
𝐼1
𝑠
=
50

𝑠
                                          5.53 
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                     10𝐼1 + 50𝐼2 =
50

𝑠
                                              5.54                       

From Eq. 5.54, solving for 𝐼2, we have Eq. 5.54a 

50𝐼2 =
50

𝑠
= 10𝐼1 

50𝐼2 =
50 − 10𝑠𝐼1

𝑠
 

                                                          𝐼2 =
−0.2𝑠𝐼1 + 1

𝑠
                                 5.54a         

Substituting into Eq. 5.54a into Eq. 5.53, we have Eq. 5.55 

10𝐼1 − 10 [
0.2𝑠 𝐼1 + 1

𝑠
] +

5𝐼1
𝑠
=
50

𝑠
 

10𝐼1 −
2𝑠𝐼1 + 10

𝑠
+
5𝐼1
𝑠
=
50

𝑠
 

10 𝑠𝐼1 − 2𝑠 𝐼1 + 10 + 5𝐼1
𝑠

=
50

𝑠
 

8𝑠 𝐼1 + 5𝐼1 = 50 

𝐼1(8𝑠 + 5) = 50 − 10 

𝐼1 =
40

(8𝑠 + 5)
= 

                                    𝐼1 =
5

(𝑠 +  0.625)
                                            5.55 

Taking the Laplace inverse of Eq. 5.55, we have Eq. 5.56 

𝑖1 = ℒ−1(𝐼1) 

𝑖1 = ℒ−1 [
5

𝑠 + 0.625
] 

                                             𝑖1 = 5𝑒
−0.625𝑡𝑢(𝑡) A                                              5.56                     

Substitute the value of 𝐼1 in Eq. 5.55 into Eq. 5.54, we have Eq. 5.57 

10 [
𝑠

𝑠 + 0.625
] + 50𝐼1 =

50

𝑠
 

50

𝑠 + 0.625
+ 50𝐼2 =

50

𝑠
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50𝐼2 =
50

𝑠
−

50

𝑠 + 0.625
=
50(𝑠 + 0.625) − 50𝑠

𝑠 (𝑠 + 0.625)
 

50𝐼2 =
50𝑠 + 31.25 − 50𝑠

𝑠(𝑠 + 0.625)
 

                               𝐼2 =
0.625

𝑠(𝑠 + 0.625)
                                                5.57 

Resolving Eq. 5.57 into partial fraction, we have Eq. 5.58 

𝐼2 =
0.625

𝑠(𝑠 + 0.625)
=
𝐴

𝑠
+

𝐵

𝑠 + 0.625
 

𝐴 = lim
𝑠→0

[
0.625

𝑠 + 0.625
] =

0.625

0.625
= 1 

𝐴 = 1 

𝐵 = lim
𝑠→0.625

[
0.625

𝑠
] =

0.625

−0.625
= −1 

                                      𝐼2 =
1

𝑠
−

1

𝑠 + 0.625
                                       5.58 

𝑖2 = ℒ
−1𝐼2 

𝑖2 = 1 − 𝑒−0.625𝑡u(t) A 

 

Example 5.11: Find 𝑖(𝑡) using Laplace transform method by first Laplacing the circuit and 
then taking the loop equation in the circuit of Fig. 5.10 if the initial conditions are all zero 
and the switch is closed at 𝑡 = 0  

10 Ω 

50 V 5 Ω 

1 F 0.5 F

5 Ω 

t=0 i(t)

                                                                
Figure 5.10 

 

Transforming to s-domain, we have circuit of Fig. 5.10a 
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10 Ω 

5 Ω 5 Ω 

I(s) 1

𝑠
 

2

𝑠
 

50

𝑠
 

                                                                     
Figure 5.10a 

 

                                            𝑉𝑠 = 𝐼𝑠𝑍                                                       5.59 

                                                𝑍 =
𝑉𝑠
𝐼𝑠
                                                         5.59a 

Parallel Impedances:  𝑍𝑞 = 10 + (5 +
1

𝑠
) // (

2

𝑠
+ 5)                           5.60  

  

= 10 + (
(5 +

1
𝑠) × (

2
𝑠 + 5)

5 +
1
𝑠 +

2
𝑠 + 5

) 

𝑍𝑞 = 10 + (

2
𝑠2
+
5
𝑠 +

10
𝑠 + 25

10 𝑠 + 3
𝑠

) 

= 10 + ([
2

𝑠2
+
15

𝑠
+ 25] ÷

10𝑠 + 3

𝑠
) = 10 + ([

2 + 15𝑠 + 25𝑠2

𝑠2
] ×

𝑠

10𝑠 + 3
) 

 

= 10 +
(25𝑠2 + 15𝑠 + 2)𝑠

𝑠2 (10𝑠 + 3)
= 10 +

25𝑠2 + 15𝑠 + 2

𝑠(10𝑠 + 3)
 

 

=
100𝑠2 + 30𝑠 + 15𝑠 + 25𝑠2 + 2

𝑠(10𝑠 + 3)
 

                                          𝑍𝑞 =
125𝑠2 + 45𝑠 + 2

𝑠(10𝑠 + 3)
                                                5.60a 
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But  𝐼(𝑠) =
𝑉𝑠

𝑍𝑞
 

𝐼(𝑠) =
50

𝑠
×

𝑠(10𝑠 + 3)

125𝑠2 + 45𝑠 + 2
 

                                                    𝐼(𝑠) =
50 (10𝑠 + 3)

(125𝑠2 + 45𝑠 + 2)
                                             5.61     

Resolving Eq. 5.61 into partial fraction, we have Eq. 5.62 

𝐼(𝑠) =
500𝑠 + 150

(125𝑠2 + 45𝑠 + 2)
 

𝐼(𝑠) =
4(𝑠 = 0.3)

(𝑠 + 0.308)(𝑠 + 0.052)
 

=
4 (𝑠 + 0.3)

(𝑠 + 0.308)(𝑠 + 0.002)
=

𝐴

(𝑠 + 0.308)
+

𝐵

(𝑠 + 0.052)
 

𝐴 = lim
𝑠→−0.308

[
4(𝑠 + 0.3)

(𝑠 + 0.054)
] =

4(−0.308 + 0.3)

−0.308 + 0.052
 

𝐴 =
−0.032

−0.256
= 0.125 

𝐵 = lim
𝑠→0.052

[
4(𝑠 + 0.3)

𝑠 + 0.308
] 

𝐵 =
4 (−0.052 + 0.3)

−0.0052 + 0.308
=
0.992

0.256
 

𝐵 = 3.875 

                 𝐼(𝑠) =
0.125

𝑠 + 0.308
+

3.875

(𝑠 + 0.052)
                                      5.62 

Taking the inverse Laplace transform of Eq. 5.62 we have Eq. 5.63 

𝑖 (𝑡) = ℒ−1[𝐼𝑠] 

              𝑖(𝑡) = 0.125 𝑒−0.308𝑡 + 3.875𝑒−0.052𝑡                              5.63 

𝑖(𝑡) = 0.125𝑒−0.308𝑡 + 3.875𝑒−0.052𝑡 A 

 

Example 5.12: In the circuit of the Fig. 5.11, obtain the differential equation for 𝑖1 and 𝑖2. 
Find the current 𝑖1 and 𝑖2 at 𝑡 = 0 using Laplace transform.  
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50 Ω 

100 Ω 

0.1 H 0.2 H
240 V

i1

i2

t=0

                                                         

   Figure 5.11 

 

Note: To find the Laplace transform first Laplace the circuit assuming all initial conditions 
as shown in Eq. 5.64 

𝑖1(0
+) = 𝑖1(0

−) = 0,   𝑖2(0
+) = 𝑖2(0

−) = 0,   
𝑑𝑖1(0

+)

𝑑𝑡
=
𝑉

𝐿1
              5.64             

Applying KVL at each of the loops: 

For LOOP 1:        240 = 50𝑖1 + 50𝑖2 + 0.1
𝑑𝑖1
𝑑𝑡
                                        5.65                      

For LOOP 2:           240 = 50𝑖1 + 50𝑖2 + 100𝑖2 + 0.2
𝑑𝑖2

𝑑𝑡
                      5.66                       

Laplacing the circuit of Fig. 5.11 we have Fig.  5.11a  

50 Ω 

100 Ω 

0.1s 0.2sI1

I2240

𝑠
 

                                                           
Figure 5.11a     

 

 

           Laplacing Eq.  5.65 we have Eq. 5.67               

                                    
240

𝑠
= 50(𝐼1 + 𝐼2) + 0.1𝑠𝐼1                                       5.67              
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Solving for 𝐼1in Eq. 5.67 we have Eq. 5.68 

240 = 50𝑠(𝐼1 + 𝐼2) + 0.1𝑠
2 𝐼1 

240 = 50𝑠𝐼1 + 50 𝑠𝐼2 + 0.1𝑠
2 𝐼1 

240 = 𝐼1 (0.1𝑠
2 + 50𝑠) + 50𝑠𝐼2 

𝐼1 =
2400 − 500 𝑠𝐼2
𝑠2 + 500𝑠

                                           5.68     

Laplacing Eq. 5.66 we have Eq. 5.69 

                                
240

𝑠
= 50 (𝐼1 + 𝐼2) + 100𝐼2 + 0.2𝑠𝐼2                             5.69           

240 = 50𝑠(𝐼1 + 𝐼2) + 100𝑠𝐼2 + 0.2𝑠
2 𝐼2 

1200 = 250𝑠(𝐼1 + 𝐼2) + 500 𝑠𝐼2 + 𝑠
2 𝐼2 (Dividing through by 0.2) 

                          1200 = 250 𝑠𝐼1 + 750 𝑠𝐼2 + 𝑠
2𝐼2                                       5.70a             

Substituting the value of Eq. 5.68 into Eq. 5.70a, we have Eqs. 5.70b and 5.71 

1200 = 250𝑠 (
2400 − 500 𝑠𝐼2
𝑠2 + 500𝑠

) + 750𝑠𝐼2 + 𝑠
2𝐼2 

1200 =
600000𝑠 − 125000𝑠2𝐼2

𝑠2 + 500𝑠
+ 750 𝑠𝐼2 + 𝑠

2𝐼2 

1200 (𝑠2 + 500𝑠) = 600000𝑠 − 125000𝑠2𝐼2 + (750𝑠𝐼2 + 𝑠
2𝐼2)(𝑠

2 + 500𝑠) 

1200 (𝑠2 + 500𝑠) = 600000𝑠 − 125000𝑠2𝐼2 + 750𝑠𝐼2(𝑠
2 + 500𝑠) + 𝑠2𝐼2(𝑠

2 + 500𝑠) 

𝐼2(−12500 𝑠
2 + 750𝑠(𝑠2 + 500𝑠) + 𝑠2(𝑠2 + 500𝑠)) = 1200(𝑠2 + 500𝑠) − 600000 

𝐼2 =
1200 (𝑠2 + 500𝑠) − 600000

𝑠2(𝑠2 + 500𝑠) + 750𝑠(𝑠2 + 500𝑠) − 125000𝑠2
 

𝐼2 =
𝑠[1200 (𝑠 + 500) − 600000]

[𝑠(𝑠2 + 500𝑠) + 750(𝑠2 + 500𝑠) − 125000𝑠]
 

𝐼2 =
1200𝑠 + 600000 − 600000

𝑠 [(𝑠2 + 500𝑠) + 750 (𝑠 + 500) − 125000]
 

=
1200𝑠

𝑠[(𝑠2 + 500𝑠) + 750 (𝑠 + 500) − 125000]
 

𝐼2 =
1200

𝑠2 + 500𝑠 + 750𝑠 + 375000 − 125000
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                            𝐼2 =
1200

𝑠2 + 1250𝑠 + 250000
                                       5.70𝑏     

                        𝐼2 =
1200

(𝑠 + 1000)(𝑠 + 250)
                                       5.71 

Resolving Eq. 5.71 into partial fraction we have Eq. 5.72 

𝐼2 =
1200

(𝑠 + 1000)(𝑠 + 250)
 

𝐼2 =
1200

(𝑠 + 1000)(𝑠 + 250)
=

𝐴

(𝑠 + 1000)
+

𝐵

(𝑠 + 250)
 

𝐴 = lim
𝑠→−1000

[
1200

𝑠 + 250
] =

1200

−1000 + 250
=
1200

−750
= −1.6 

𝐴 = −1.6 

𝐵 = lim
𝑠→−250

1200

𝑠 + 1000
=

1200

−250 + 1000
=
1200

750
= 1.6 

                                𝐼2 =
1.6

𝑠 + 250
−

1.6

𝑠 + 1000
                                 5.72 

𝑖2(𝑡) = ℒ
−1[𝐼2] 

𝑖2(𝑡) = ℒ−1 (
1.6

𝑠 + 250
−

1.6

𝑠 + 1000
) = 1.6𝑒−250𝑡 − 1.6𝑒−1000𝑡 A 

𝑖2(𝑡) = 1.6(𝑒
−250𝑡 − 𝑒−1000𝑡)u(t) A 

To find 𝑖1(𝑡), let us substitute Eq. 5.71 into Eq. 5.69, then we will have Eq. 5.73 

𝐼1 =
2400 − 500 𝑠𝐼2
𝑠2 + 500𝑠

 

𝐼1 =
2400 − 500 𝑠 [

1200
(𝑠 + 1000)(𝑠 + 250)

]

𝑠2 + 500𝑠
 

𝐼1 =
2400

𝑠(𝑠 + 500)
−

500 × 1200

(𝑠 + 500)(𝑠 + 1000)(𝑠 + 250)
 

                               𝐼1 =
2400(𝑠 + 1000)(𝑠 + 250) − 600000𝑠

𝑠(𝑠 + 500)(𝑠 + 1000)(250)
                     5.73                  

Resolving Eq. 5.73 into partial fraction we have Eq. 5.74 
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2400(𝑠 + 1000)(𝑠 + 250) − 600000𝑠

𝑠(𝑠 + 500)(𝑠 + 1000)(250)
=
𝐴

𝑠
+

𝐵

(𝑠 + 500)
+

𝐶

(𝑠 + 1000)
+

𝐷

(𝑠 + 250)
 

𝐴 = lim
𝑠→0

[
2400 × 1000 × 250

500 × 1000 × 250
] = 4.8 

𝐵 = lim
𝑠→−500

[
2400 × 500 × (−250) − 600000 × (−500)

(−500) × 500 × (−250)
] = 0 

𝐶 = lim
𝑠→−1000

[
−600000 × (−10000)

(−1000) × (−500) × (−750)
] = −1.6 

𝐷 = lim
𝑠→−250

[
−600000 × (−250)

(−250) × (250) × (750)
] = −3.2 

                                        𝐼1 =
4.8

𝑠
−

1.6

𝑠 + 1000
−

3.2

𝑠 + 250
                            5.74               

𝑖1(𝑡) = ℒ−1 [𝐼1] 

𝑖1(𝑡) = (4.8 − 1.6𝑒−1000𝑡 − 3.2𝑒−250𝑡)u(t) A 

 

 

Example 5.13: For the two-mesh network of Fig. 5.12, determine the values of the loop 
current 𝑖1 & 𝑖2 using Laplace transform and hence, write the s-domain equation in matrix 
form. Taking 𝑄0 = 0. 

10 Ω 

10 Ω 

4 H
i1

i2

4 F100 V

+ 

𝑄0 

     - 

 

                                                                                            
Figure 5.12 

For LOOP 1:  10𝑖1 +
1

4
(𝑄𝑜 +∫ (𝑖(𝑡)𝑑𝑡)

𝑡

0

) + 10𝑖2 = 100                      5.75                      
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For LOOP 2:       20𝑖2 + 4
𝑑𝑖2

𝑑𝑡
+ 10𝑖1 = 100                                              5.76                      

10 Ω 

10 Ω 

4s
I1

I2+ 

𝑄0

𝑠
 

     - 

 

1

4𝑠
 

100

𝑠
 

                                                      

 Figure 5.12a 

Laplacing Eqs. 5.75 and 5.76 respectively we have Eqs. 5.77 and 5.78 

                  10𝐼1 +
𝐼1
4𝑠
+ 10𝐼2 =

100

𝑠
                                                5.77 

𝐼1 +
𝐼1
40𝑠

+ 𝐼2 =
100

𝑠
 

𝐼1(40𝑠 + 1)

40𝑠
+ 𝐼2 =

10

𝑠
                                       5.77a         

                20𝐼2 + 4𝑠𝐼2 + 10𝐼1 =
100

𝑠
                                              5.78 

2𝐼2 + 0.4𝑆𝐼2 + 𝐼1 =
10

𝑠
 

                         𝐼1 + 𝐼2 (2 + 0.4𝑠) =
10

𝑠
                                            5.78a 

Putting Eqs. 5.77a and 5.78a into matrix form, we have Eq. 5.79 

[

(40𝑠 + 1)

40𝑠
1

1 (0.4𝑠 + 2)
] [
𝐼1
𝐼2
] = [

10

𝑠
10

𝑠

]                                          5.79 

Solving Eq. 5.79 matrix using determinant method, we have Eqs.  5.79a, 5.79b and 5.79c  
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∆= |

40𝑠 + 1

40𝑠
1

1 (0.4𝑠 + 2)
| =

(40𝑠 + 1)(0.4𝑠 + 2)

40𝑠
− 1 

∆=
16𝑠2 + 80𝑠 + 0.4𝑠 + 2

40𝑠
 

                                   ∆=
16𝑠2 + 0.4𝑠 + 2

40𝑠
                                       5.79a 

∆𝐼1 = |

10

𝑠
1

10

𝑠
(0.4𝑠 + 2)

| =
10

𝑠
(0.4𝑠 + 2) −

10

𝑠
 

∆𝐼1 = 4 +
20

𝑠
−
10

𝑠
=
4𝑠 + 10

𝑠
 

                                       ∆𝐼1 =
4𝑠 + 10

𝑠
                                                5.79b 

∆𝐼2 = |

40𝑠 + 1

40𝑠

10

𝑠

1
10

𝑠

| =
10

𝑠
(
40𝑠 + 1

40𝑠
) −

10

𝑠
=
40𝑠 + 10

40𝑠2
−
10

𝑠
 

∆𝐼2 =
400𝑠 + 10 − 400𝑠

40𝑠
=

10

40𝑠2
 

                                  ∆𝐼2 =
1

4𝑠2
                                                               7.79c    

Solving for 𝐼1and 𝐼2 we have Eqs.  5.80 and 5.81 respectively.  

𝐼1 =
∆𝐼1
∆
=

(4𝑠 + 10)40𝑠 

𝑠(16𝑠2 + 40.4𝑠 + 2)
=

40(4𝑠 + 10)

16𝑠2 + 40.4𝑠 + 2
 

𝐼1 =
160𝑠 + 400

16𝑠2 + 40.4𝑠 + 2
=

160𝑠

16𝑠2 + 40.4𝑠 + 2
+

400

16𝑠2 + 40.4𝑠 + 2
 

𝐼1 =
10𝑠

𝑠2 + 2.53𝑠 + 0.125
+

25

𝑠2 + 2.53𝑠 + 0.125
 

   𝐼1 =
10𝑠

(𝑠 + 1.263)2 − (√1.469)
2 +

25

(𝑠 + 1.263)2 − (√1.469)
2             5.80                    

Taking the inverse Laplace of Eqs. 5.80 we have 5.80a,  
𝑖1 = ℒ

−1[𝐼1] 
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𝑖1 = 10𝑒
−1.263𝑡 cosh√1.469𝑡 +

25

√1.469
𝑒−1.263𝑡 sinh√1.496  𝑡 

= 5𝑒−1.263𝑡(𝑒1.213𝑡 + 𝑒−1.212𝑡) + 10.3 + 𝑒−1.263(𝑒1.212𝑡 − 𝑒−1.212𝑡) 

= 5𝑒−0.05𝑡 + 5𝑒−2.475𝑡 + 10.31𝑒−0.05𝑡 − 10.31𝑒−2.475𝑡 

           𝑖1 = 15.31𝑒−0.05𝑡 − 5.31𝑒−2.475𝑡𝑢(𝑡) A                                        5.80a 

But                           𝐼2 =
∆𝐼2
∆
=

1

4𝑠2
÷
16𝑠2 + 40.4𝑠 + 2

40𝑠
                                 

𝐼2 =
40𝑠

4𝑠2(16𝑠2 + 40.4𝑠 + 2)
 

                             𝐼2 =
10

𝑠 (16𝑠2 + 40.4𝑠 + 2)
                                    5.81 

 

Resolving Eq. 5.81 into partial fraction we have Eq. 5.82 

𝐼2 =
10

𝑆 (16𝑠2 + 40.4𝑠 + 2)
=
𝐴

𝑠
+

𝐵𝑠 + 𝐶

16𝑠2 + 40.4𝑠 + 2
 

10 = 𝐴 (16𝑠2 + 40.4𝑠 + 2) + (𝐵𝑠 + 𝐶)𝑠 

10 = 2𝐴, 

𝐴 =
10

2
= 5 

Taking 𝑠2: 

0 = 16𝐴 + 𝐵 ⟹   𝐵 = −16𝐴, 𝐴 = −16 × 5 = −80 

Taking 𝑠: 

40.4𝐴 + 𝐶 = 0;   ⟹ 𝐶 = −40.4𝐴     𝐶 = −40.4 × 5 = −202 

Therefore  

                               𝐼2 =
5

𝑠
− [

80𝑠 + 202

16𝑠2 + 40.4𝑠 + 2
]                             5.82 

𝐼2 =
5

𝑠
− [

5𝑠 + 12.63

𝑠2 + 2.525𝑠 + 0.125
] 

𝐼2 =
5

𝑠
− [

5𝑠 + 12.63

(𝑠 + 1.263)2 − (√1.469)
2] 
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𝐼2 =
5

𝑠
− [

5𝑠

(𝑠 + 1.263)2 − (√1.469)
2 +

12.63

(𝑠 + 1.263)2 − (√1.469)
2]         5.82                  

a 

Taking the Laplace inverse of Eq. 5.82 we have Eq. 5.83 

𝑖2 = ℒ
−1[𝐼2] 

𝑖2 = 5 − 5𝑒
−1.263𝑡 [

𝑒1.212𝑡 + 𝑒−1.212𝑡

2
] − 10.42𝑒−1.263𝑡 [

𝑒1.212𝑡 − 𝑒−1.212𝑡

2
] 

𝑖2 = 5 − 2.5𝑒−0.05𝑡 − 2.5𝑒−2.475𝑡 − 5.21𝑒−0.05𝑡 + 5.21𝑒−2.475𝑡 

        𝑖2 = 5 − 7.71𝑒
−0.05𝑡 + 2.71𝑒−2.475𝑡u(t) A                                      5.83 

 

Example 5.14: By the use of Laplace transform, determine the response 𝑣(𝑡) in the 
circuit of Fig 5.13 given 𝑣(0−) = 4 V 

5 Ω 

+ 

𝑣(𝑡) 

        - 

0.1 F2u(t) V

 

Figure 5.13 

Solution: 

Taking the Laplace of the Loop KVL we lave Eq. 5.84 

                      ℒ [2𝑢(𝑡)] = ℒ[5𝑖𝑐(𝑡) + 𝑣(𝑡)]                                          5.84 

                                         𝑖𝑐 = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
                                                    5.85 

Applying Eq. 5.85 into Eq. 5.84 gives Eq. 5.86 

       ℒ [2𝑢(𝑡)] = ℒ [5(0.1)
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑣(𝑡)]                                           5.86 
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2

𝑠
= 0.5 [𝑠𝑉(𝑠) − 𝑣(0−)] + 𝑉(𝑠) 

𝑉(𝑠) =
2

𝑠(0.5𝑠 + 1)
 

                                         𝑉(𝑠) =
4

𝑠(𝑠 + 2)
                                             5.87 

Resolving Eq. 5.87 into partial fraction gives Eq. 5.88 

4

𝑠(𝑠 + 2)
=
𝐴

𝑠
+

𝐵

(𝑠 + 2)
 

𝐴 = lim
𝑠→0

4

(0 + 2)
=
4

2
= 2 

𝐵 = lim
𝑠→−2

4

(−2)
= =

4

(−2)
= −2 

                                   𝑉(𝑠) =
2

𝑠
−

2

(𝑠 + 2)
                                           5.88 

𝑣(𝑡) = ℒ−1𝑉(𝑠) 

⟹ 𝑣(𝑡) = (2 − 2𝑒−2𝑡)𝑢(𝑡) V 

 

5.2 Exercise  

1. By the use of Laplace transform, determine the response 𝑣(𝑡) in the circuit of Fig. 
A given 𝑣(0−) = 8 V 

5 Ω 

+ 

𝑣(𝑡) 

        - 

0.25 F6u(t) V

                                                                                       
Figure A 

 
2. By Laplace transform, determine the current 𝑖1𝑎𝑛𝑑 𝑖2 in the circuit of Fig. B  
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10 Ω 

t=0

100 V

i1(t)

0.2 H 5 Ω 

i2(t)

 
Figure B 

 
3. For the circuit Fig. C, determine 𝑖(𝑡) as the response, by means of Laplace 
transform. 

10 Ω 

0.5 F6u(t) V

i(t)

                                                                          
Figure C  

 
4. For the circuit of Fig. D, determine 𝑖(𝑡) as the response by means of Laplace 
transform. What is its steady-state value? 

10 Ω 

6u(t) V

i(t)

2 H

                                                                    
  Figure D 

 
5. For the circuit to Fig. E, determine the force response. 

6 Ω 

i(t)

𝑣(𝑡) = 80 cos 5𝑡V 

9 H

0.2 F

                     
Figure E 
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6. Determine the current response 𝑖(𝑡) for the circuit of Fig. F, by Laplace 
 transformation. 

6 Ω 

 

i(t)

3𝛿(𝑡)+ 2𝑢(𝑡) V 

 

2 H

                                                
Figure F 

 
 

7. What is the current response 𝑖(𝑡) for the network shown in Fig. G. Indicate 
 time validity. 

4Ω 

i(t)

2𝑢(𝑡 − 5) V 

8H

                                              
Figure G 

 
 

8. For the two-mesh network of Fig. H, determine the values of the loop current 
 𝑖1&𝑖2 using Laplace transform and hence, write the s-domain equation in matrix 
 form. 

5Ω 

8Ω 

3H
i1

i2

2F

50V

+ 

𝑄0 

     - 

 

                                                 
Figure H 
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9. For the two-mesh network of Fig. I, determine the values of the loop current 
 𝑖1&𝑖2 using Laplace transform and hence, write the s-domain equation in matrix 
 form. 

+ 

𝑄0 

     - 

 

10Ω 10Ω 

100V

5H 5F

i2i1

                                  

Figure I 

 

Taking the initial conditions as follows: 

𝑖1(0
+) = 𝑖1(0

−) = 0   𝑖2(0
+) = 𝑖2(0

−) = 0,        
𝑑𝑖1(0

+)

𝑑𝑡
=
𝑉

𝐿
 

 

10. Without first finding 𝑓(𝑡) determine 𝑓(0+), 𝑓(∞) for each of 𝐹(𝑠)  
  equal to 

i. 
4𝑒3𝑠(2𝑠+30)

𝑠
 

ii.  
(𝑠2−8)

𝑠(𝑠2+9)
    

11. Determine the initial value of 𝑦(𝑡), given 𝑌(𝑠) =
(3𝑠2+2)

𝑠3+7𝑠2+12𝑠
  

12. Without first finding 𝑓(𝑡), determine 𝑓(0+), 𝑓(∞) for each of 𝐹(𝑠)  
  equal to  

(i)  
5𝑒−2𝑠(𝑠+60)

𝑠
   

(ii)   
(𝑠2+5)

𝑠(𝑠2+10)
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CHAPTER 6 

APPLICATIONS OF THE LAPLACE TRANSFORM 
 

6.0 Introduction 

Now that we have introduced the Laplace transform, let us see what we can do with it. 
Please keep in mind that with the Laplace transform we actually have one of the most 
powerful mathematical tools for analysis, synthesis, and design. Being able to look at 
circuits and systems in the s-domain can help us to understand how our circuits and 
systems really function. In this chapter we will take an in-depth look at how easy it is to 
work with circuits in the s-domain. In addition, we will briefly look at physical systems. 
We are sure you have studied some mechanical systems and may have used the same 
differential equations to describe them as we use to describe our electric circuits. 
Actually that is a wonderful thing about the physical universe in which we live; the same 
differential equations can be used to describe any linear circuit, system, or process. The 
key is the term linear. 

 A system is a mathematical model of a physical process relating the input to the 
output.  

 It is entirely appropriate to consider circuits as systems. Historically, circuits have 
been discussed as a separate topic from systems, so we will actually talk about circuits 
and systems in this chapter realizing that circuits are nothing more than a class of 
electrical systems. 

The most important thing to remember is that everything we discussed in the last 
chapter and in this chapter applies to any linear system. In the last chapter, we saw how 
we can use Laplace transforms to solve linear differential equations and integral 
equations. In this chapter, we introduce the concept of modeling circuits in the s-domain. 
We can use that principle to help us solve just about any kind of linear circuit. We will 
take a quick look at how state variables can be used to analyze systems with multiple 
inputs and multiple outputs. Finally, we examine how the Laplace transform is used in 
network stability analysis and in network synthesis. 

6.1 Circuit element models  

Having mastered how to obtain the Laplace transform and its inverse, we are now 
prepared to employ the Laplace transform to analyze circuits. This usually involves three 
steps. 

Steps in Applying the Laplace transform: 

1. Transform the circuit from the time domain to the s-domain. 
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2. Solve the circuit using nodal analysis, mesh analysis, source 
transformation, superposition, or any circuit analysis technique which we are 
familiar with. 

3. Take the inverse transform of the solution and thus obtain the solution in 
the time domain. 

Only the first step is new and will be discussed here. As we did in phasor analysis, we 
transform a circuit in the time domain to the frequency or s-domain by Laplace 
transforming each term in the circuit. 

              

L
sL

+ 

 

V(s) 

 

 

- 

+ 

 

v(t) 

 

 

- 

 

 

I(s) 

 

 

 

 

 

i(t) 

 

 

 

 

 

i(0) 

 

 

 

(a) (b)          

                           

+ 

 

 

V(s) 

 

 

- 

 

𝑖(0−)

𝑠
 

 

 

 

I(s)

sL

(c)                                          

Figure 6.1 Representation of an inductor: (a) time-domain, (b, c) s-domain equivalents 

For a resistor, the voltage-current relationship in the time domain is 

                                                     𝑣(𝑡) = 𝑅𝑖(𝑡)                                               6.1 

Taking the Laplace transform, we get 

                                        𝑉(𝑠) = 𝑅𝐼(𝑠)                                                                       6.2 

For an inductor, 

                                      𝑣(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
                                                                         6.3 

Taking the Laplace transform of both sides gives 

                               𝑉(𝑠) = 𝐿[𝑠𝐼(𝑠) − 𝑖(0−)] = 𝑠𝐿𝐼(𝑠) − 𝐿𝑖(0−)                         6.4 

Or 
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                                          𝐼(𝑠) =
1

𝑠𝐿
𝑉(𝑠) +

𝑖(0−)

𝑠
                                                     6.5 

The s-domain equivalents are shown in Fig. 6.1, where the initial condition is modeled as 
a voltage or current source. 

 For a capacitor, 

                                                   𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
                                                             6.6 

which transforms into the s-domain as 

   𝐼(𝑠) = 𝐶[𝑠𝑉(𝑠) − 𝑣(0−)] = 𝑠𝐶𝑉(𝑠) − 𝐶𝑣(0−)      6.7 

Or 

                                         𝑉(𝑠) =
1

𝑠𝐶
𝐼(𝑠) +

𝑣(0−)

𝑠
                                                   6.8 

The s-domain equivalents are shown in Fig. 6.2. With the s-domain equivalents, the 
Laplace transform can be used readily to solve first- and 

Representation of a capacitor: (a) time-domain (b,c) s-domain equivalent second-order 
circuits such as those we considered in Chapters 4 and 5, We should observe from Eqs. 
(6.3) to (6.8) that the initial conditions are part of the transformation. This is one 
advantage of using the Laplace transform in circuit analysis. Another advantage is that a 
complete response-transient  and steady-state of a network is obtained. We will 
illustrate this with Examples 6.2 and 6.3. Also, observe the duality of Eqs. (6.5) and (6.8), 
confirming what we already know from the fact that 𝐿 and 𝐶, 𝐼(𝑠) and 𝑉(𝑠), and 𝑣(0) 
and 𝑖(0) are dual pairs. 

If we assume zero initial conditions for the inductor and the capacitor, the above 
equations reduce to: 

                                       

Resistor: V(s) = RI(s)

Inductor: V(s) = sLI(s)

Capacitor: V(s) =
1

sC
 I(s)

}                                           6.9 
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C

+ 

 

V(s) 

 

 

- 

+ 

 

v(t) 

 

 

- 

+ 

 

 

V(s) 

 

 

- 

 

 

I(s) 

 

 

 

 

 

i(t) 

 

 

 

I(s)

(a) (b)

(c)

+ 

v(0) 

- 

 

𝑣(0)

𝑠
 

 

 

 

+ 

 
1

𝑠𝐶
 

- 

 

 

 

𝐶𝑣(0) 

 

 

 

+ 

 
1

𝑠𝐶
 

- 

 

 

 

Figure 6.2 Time domain and s-domain representations of passive elements under zero 
initial  conditions 

The s-domain equivalents are shown in Fig. 6.3. 

 We define the impedance in the s-domain as the ratio of the voltage transform to 
the current transform under zero initial conditions; that is, 

                                               𝑍(𝑠) =
𝑉(𝑠)

𝐼(𝑠)
                                                               6.10             

Thus, the impedances of the three circuit elements are 

   Resistor: 𝑍(𝑠) = 𝑅 

   Inductor: 𝑍(𝑠) = 𝑠𝐿      6.11 

   Capacitor: 𝑍(𝑠) =
1

𝑠𝐶
  

Table 6.1 summarizes these. The admittance in the s-domain is the reciprocal of the 
impedance, or 

                                   𝑌(𝑠) =
1

𝑍(𝑠)
=
𝐼(𝑠)

𝑉(𝑠)
                                                              6.12 

 The use of the Laplace transform in circuit analysis facilitates the use of various 
signal sources such as impulse, step, ramp, exponential, and sinusoidal. 
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 The models for dependent sources and op amps are easy to develop drawing 
from the simple fact that if the Laplace transform of 𝑓(𝑡) is 𝐹(𝑠), then the Laplace 
transform of 𝑎𝑓(𝑡) is 𝑎𝐹(𝑠)—the linearity property. The dependent source model is a 
little easier in that we deal with a single value. The dependent source can have only two 
controlling values, a constant times either a voltage or a current. Thus, 

    ℒ[𝑎𝑣(𝑡)] = 𝑎𝑉(𝑠)                    6.13 

    ℒ[𝑎𝑖(𝑡)] = 𝑎𝐼(𝑠)     6.14 

 The ideal op amp can be treated just like a resistor. Nothing within an op amp, 
either real or ideal, does anything more than multiply a voltage by a constant. Thus, we 
only need to write the equations as we always do using the constraint that the input 
voltage to the op amp has to be zero and the input current has to be zero. 

 

Example  6.1: Find 𝑣𝑜(𝑡) in the circuit of Fig. 6.3, assuming zero initial conditions 

u(t)

+ 

𝑣0(𝑡) 

- 

1 H1

3
 F 

1 Ω 5 Ω 

                         

Figure 6.3 

Solution:  

We first transform the circuit from the time domain to the s-domain. 

𝑢(𝑡)    ⟹  
1

𝑠
 

1 H    ⟹   𝑠𝐿 = 𝑠 

1

3
F   ⟹   

1

𝑠𝐶
=
3

𝑠
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+ 

𝑣0(𝑡) 

- 

s

3

𝑠
 

1Ω 5Ω 

1

𝑠
 

𝐼1(𝑠) 𝐼2(𝑠) 

 

Figure 6.4 Mesh analysis of the frequency-domain equivalent of the same circuit in Fig. 
6.3 

 

The resulting s-domain circuit is in Fig 6.4. We now apply mesh analysis. For mesh 1, 

                                    
1

𝑠
= (1 +

3

𝑠
) 𝐼1 −

3

𝑠
𝐼2                                                 6.15 

 For mesh 2, 

0 = −
3

𝑠
𝐼1 + (𝑠 + 5 +

3

𝑠
) 𝐼2 

Or 

                                    𝐼1 =
1

3
(𝑠2 + 5𝑠 + 3)𝐼2                                               6.16 

Substituting this into Eq. (6.15), 

                           
1

𝑠
= (1 +

3

𝑠
) ×

1

3
(𝑠2 + 5𝑠 + 3)𝐼2 −

3

𝑠
𝐼2                            6.16𝑏 

Multiplying Eq 6.16a by 3s gives 

3 = (1 +
3

𝑠
) × 𝑠(𝑠2 + 5𝑠 + 3)𝐼2 − 9𝐼2  = (𝑠

3 + 8𝑠2 + 18𝑠)𝐼2      

⟹   𝐼2 =
3

𝑠3 + 8𝑠2 + 18𝑠
 

𝑉𝑜(𝑠) = 𝑠𝐼2 =
2

𝑠2 + 8𝑠 + 18
=
3

√2
×

√2

(𝑠 + 4)2 + (√2)
2 

Taking the inverse transform yields 

                                 𝑣𝑜(𝑡) =
3

√2
𝑒−4𝑡 sin√2𝑡  V,                                            t ≥ 0 
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Example 6.2: Find 𝑣𝑜(𝑡) in the circuit of Fig. 6.6. Assume 𝑣𝑜(0) = 5 V 

+ 

𝑣0(𝑡) 

- 

0.1 F 

10 Ω 

10 Ω 
2𝛿(𝑡) A 10𝑒−𝑡𝑢(𝑡) V 

 

Figure 6.5 

Solution  

We transform the circuit to the s-domain as shown in Fig. 6.6. The initial condition is 
included in the form of the current source 𝐶𝑣𝑜(0) = 0.1(5) = 0.5 A. [See Fig. 6.2(c).] We 
apply nodal analysis. At the top node, 

10
(𝑠 + 1)

− 𝑉𝑜

10
+ 2 + 0.5 =

𝑉𝑜
10
+
𝑉𝑜
10
𝑠

 

Or 

1

𝑠 + 1
+ 2.5 =

2𝑉𝑜
10

+
𝑠𝑉𝑜
10

=
1

10
𝑉𝑜(𝑠 + 2) 

10 Ω 

10

𝑠
 

2 A 
10

𝑠 + 1
 V 

 

10 Ω 
0.5 A 

𝑉0(𝑠) 

 

Figure 6.6 

 

Nodal analysis of the equivalent of the circuit in Fig 6.5 

 

Multiplying through by 10, 
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10

𝑠 + 1
+ 25 = 𝑉𝑜(𝑠 + 2) 

Or 

𝑉𝑜 =
25𝑠 + 35

(𝑠 + 1)(𝑠 + 2)
=

𝐴

𝑠 + 1
+

𝐵

𝑠 + 2
 

Where 

𝐴 = (𝑠 + 1)𝑉𝑜(𝑠)|𝑠=−1 =
25𝑠 + 35

(𝑠 + 2)
|
𝑠=−1

=
10

1
= 10 

𝐵 = (𝑠 + 2)𝑉𝑜(𝑠)|𝑠=−2 =
25𝑠 + 35

(𝑠 + 1)
|
𝑠=−2

=
−15

−1
= 15 

Thus, 

𝑉𝑜(𝑠) =
10

𝑠 + 1
+

15

𝑠 + 2
 

Taking the inverse Laplace transform, we obtain 

𝑣𝑜(𝑡) = (10𝑒−𝑡 + 15𝑒−2𝑡)𝑢(𝑡) V 

 

Example 6.3: In the circuit of Fig. 6. 7(a), the switch moves from position a to position b 
at 𝑡 = 0. Find 𝑖(𝑡) for 𝑡 > 0. 

t=0

b

a

(a)

R

L

𝑉0

𝑠
 

𝐼0 

𝑉0 

i(t)

𝐼(𝑠) 
𝐿𝐼0 

𝑠𝐿 
R

(b)                                                                                               
Figure 6.7 
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 Solution:   

The initial current through the inductor is 𝑖(0) = 𝐼𝑜. For 𝑡 > 0, Fig. 6.7(b) shows the 
circuit transformed to the s-domain. The initial condition is incorporated in the form of a 
voltage source as 𝐿𝑖(0) = 𝐿𝐼𝑜. Using mesh analysis, 

                           𝐼(𝑠)(𝑅 + 𝑠𝐿) − 𝐿𝐼𝑜 −
𝑉𝑠
𝑠
= 0                                   6.17 

Or 

𝐼(𝑠) =
𝐿𝐼𝑜

𝑅 + 𝑠𝐿
+

𝑉𝑜
𝑠(𝑅 + 𝑠𝐿)

=
𝐼𝑜

𝑠 +
𝑅
𝐿

+

𝑉𝑜
𝑅

𝑠 (𝑠 +
𝑅
𝐿)

                   6.18 

Applying partial fraction expansion on the second term on the right hand side of Eq. 
(6.18) yields 

𝐼(𝑠) =
𝐼𝑜

𝑠 +
𝑅
𝐿

+

𝑉𝑜
𝑅
𝑠
−

𝑉𝑜
𝑅

(𝑠 +
𝑅
𝐿)
                                               6.19 

The inverse Laplace transform of this gives 

                    𝑖(𝑡) = (𝐼𝑜 −
𝑉𝑜
𝑅
) 𝑒−

𝑡
𝜏 +

𝑉𝑜
𝑅
   𝑡 ≥ 0                                6.20 

Where 𝜏 =
𝑅

𝐿
. The term in parentheses is the transient response, while the second term is 

the steady-state response. In other words, the final value is 𝑖(∞) =
𝑉𝑜

𝑅
, which we could 

have predicted by applying the final-value theorem on Eq. (6.18) or (6.19); that is,  

       lim
𝑠→0

𝑠𝐼(𝑠) = lim
𝑠→0

[
𝑠𝐼𝑜

𝑠 +
𝑅
𝐿

+

𝑉𝑜
𝐿

𝑠 +
𝑅
𝐿

] =
𝑉𝑜
𝑅
                              6.21 

Equation (6.20) may also be written as 

                    𝑖(𝑡) = 𝐼𝑜𝑒
−
𝑡
𝜏 +

𝑉𝑜
𝑅
(1 − 𝑒−

𝑡
𝜏)       𝑡 ≥ 0                       6.22 

The first term is the natural response, while the second term is the forced response. If 
the initial condition 𝐼𝑜 = 0, Eq. (6.22) becomes 

                      𝑖(𝑡) =
𝑉𝑜
𝑅
(1 − 𝑒−

𝑡
𝜏 ) ,     𝑡 ≥ 0                                         6.23 
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which is the step response, since it is due to the step input Vo with no initial energy. 

 

6.2 Circuit Analysis 

Circuit analysis is again relatively easy to do when we are in the s-domain. We merely 
need to transform a complicated set of mathematical relationships in the time domain 
into the s-domain where we convert operators (derivatives and integrals) into simple 
multipliers of s and 1/s. This now allows us to use algebra to set up and solve our circuit 
equations. The exciting thing about this is that all of the circuit theorems and 
relationships we developed for dc circuits are perfectly valid in the s-domain. 

Remember, equivalent circuits, with capacitors and inductors, only exist in the s-
domain; they cannot be transformed back into the time domain. 

Example 6.4: Consider the circuit in Fig. 6.8(a). Find the value of the voltage across the 
capacitor assuming that the value of 𝑣𝑠(𝑡) = 10𝑢(𝑡) V and assume that at 𝑡 = 0,−1 A 
flows through the inductor and +5 V is across the capacitor. 

(a)

10

𝑠
  

𝑣𝑠(𝑡) 

10

3
 Ω 

(b)

0.1 F
5 H

𝑖(0)

𝑠
 5s 𝑣(0)

𝑠
 

10

𝑠
 10 Ω

3
 

𝑉1 

                                                            

Figure 6.8 
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Solution: 

Fig. 6.8(b) represents the entire circuit in the s-domain with the initial conditions 
incorporated. We now have a straightforward nodal analysis problem. Since the value of 
𝑉1 is also the value of the capacitor voltage in the time domain and is the only unknown 
node voltage, we only need to write one equation. 

                            
𝑉1 −

10
𝑠

10
3

+
𝑉1 − 0

5𝑠
+
𝑖(0)

𝑠
+
𝑉1 − [

𝑣(0)
𝑠 ]

1
(0.1𝑠)

= 0                6.24             

Or 

                                              0.1 (𝑠 + 3 +
2

𝑠
)𝑉1 =

3

𝑠
+
1

𝑠
+ 0.5                          6.25                

Where  𝑣(0) = 5 V and 𝑖(0) = −1 A. Simplify we get  

(𝑠2 + 3𝑠 + 2)𝑉1 = 40 + 5𝑠 

Or 

             𝑉1 =
40 + 5𝑠

(𝑠 + 1)(𝑠 + 2)
=

35

𝑠 + 1
−

30

𝑠 + 2
                         6.26              

Taking the inverse Laplace transform yields 

           𝑣1(𝑡) = (35𝑒
−𝑡 − 30𝑒−2𝑡)𝑢(𝑡) V                          6.27 

 

Example 6.5: For the circuit shown in Fig. 6.8, and the initial conditions used in Example 
6.4, use superposition to find the value of the capacitor voltage. 

Solution:  

10

𝑠
 5s

10

𝑠
 

10

3
 Ω 

𝑉1 

0
0

 

Figure 6.9a 
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𝑖(0)

𝑠
 5s

10

𝑠
 

10Ω

3
 

𝑉2 

0 0

  

Figure 6.9b 

 

                                                              

5s 𝑣(0)

𝑠
 

10

𝑠
 

10Ω

3
 

𝑉3 

0 0

 

 Figure 6.9c 

 

Since the circuit in the s-domain actually has three independent sources, we can look at 
the solution one source at a time. Fig. 6.9 presents the circuits in the s-domain 
considering one source at a time. We now have three nodal analysis problems. First, let 
us solve for the capacitor voltage in the circuit shown in Fig. 6.9(a). (a) 

                 
𝑉1 −

10
𝑠

10
3

+
𝑉1 − 0

5𝑠
+ 0 +

𝑉1 − 0

1
(0.1𝑠)

= 0                                    6.28        

Or 

0.1 (𝑠 + 3 +
2

𝑠
)𝑉1 =

3

𝑠
 

Simplifying we get 
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(𝑠2 + 3𝑠 + 2)𝑉1 = 30 

                                    𝑉1 =
30

(𝑠 + 1)(𝑠 + 2)
=

30

𝑠 + 1
−

30

𝑠 + 2
                         6.28.1         

Or 

𝑣1(𝑡) = (30𝑒−𝑡 − 30𝑒−2𝑡)𝑢(𝑡) V 

For Fig. 6.9(b) we get, 

𝑉2 − 0

10
3

+
𝑉2 − 0

5𝑠
−
1

𝑠
+
𝑉2 − 0

1
(0.1𝑠)

= 0 

Or 

0.1 (𝑠 + 3 +
2

𝑠
)𝑉2 =

1

𝑠
 

This leads to  

𝑉2 =
10

(𝑠 + 1)(𝑠 + 2)
=

10

𝑠 + 1
−

10

𝑠 + 2
 

Taking the inverse Laplace transform, we get 

                𝑣2(𝑡) = (10𝑒
−𝑡 − 10𝑒−2𝑡)𝑢(𝑡) V      6.28.2 

For Fig. 6.9(c), 

𝑉3 − 0

10
3

+
𝑉3 − 0

5𝑠
− 0 + (𝑉3 −

5

𝑠
) ÷

1

(0.1𝑠)
= 0 

Or 

0.1 (𝑠 + 3 +
2

𝑠
)𝑉3 = 0.5 

𝑉3 =
5𝑠

(𝑠 + 1)(𝑠 + 2)
=

−5

𝑠 + 1
+

10

𝑠 + 2
 

This leads to 

    𝑣3(𝑡) = (−5𝑒−𝑡 + 10𝑒−2𝑡)𝑢(𝑡) V     6.28.3 

Now all we need to do is to add Eqs. (6.28.1), (6.28.2), and (6.28.3): 

𝑣(𝑡) = 𝑣1(𝑡) + 𝑣2(𝑡) + 𝑣3(𝑡) 
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= {(30 + 10 − 5)𝑒−𝑡 + (−30 + 10 − 10)𝑒−2𝑡}𝑢(𝑡) V 

Or 

𝑣(𝑡) = (35𝑒−𝑡 − 30𝑒−2𝑡)𝑢(𝑡) V 

 

Example 6.6:  Assume that there is no initial energy stored in the circuit of Fig 6.10 at 𝑡 =
0 and that 𝑖𝑠 = 10𝑢(𝑡) A. (a) Find 𝑉𝑜(𝑠) using Thevenin’s theorem. (b) Apply the initial 
and final value theorems to find 𝑣𝑜(0

+) and 𝑣𝑜(∞). (c) Determine 𝑣𝑜(𝑡) 

𝑖𝑠 2𝑖𝑥  

𝑖𝑥  

5Ω 

+ 

𝑣0(𝑡) 

- 

5Ω 

2 H

                                                             

Figure 6.10 

 

Solution:  

Since there is no initial energy stored in the circuit, we assume that the initial inductor 
current and initial capacitor voltage are zero at 𝑡 = 0 

 (a) To find the Thevenin equivalent circuit, we remove the 5 Ω resistor and then 
find 𝑉𝑜𝑐 (𝑉𝑇ℎ) and 𝐼𝑠𝑐. To find 𝑉𝑇ℎ, we use the Laplace transformed circuit in Fig 6.11(a). 
Since 𝐼𝑥 = 0, the dependent voltage source conditions no effect, so 

𝑉𝑜𝑐 = 𝑉𝑇ℎ = 5(
10

𝑠
) =

50

𝑠
 

To find 𝑉𝑇ℎ, we consider the circuit in Fig. 6.11(b), where we first find 𝐼𝑠𝑐. We can use 

nodal analysis to solve for 𝑉1 which then leads to (𝐼𝑠𝑐 = 𝐼𝑥 =
𝑉1

2𝑠
) 

−
10

𝑠
+
(𝑉1 − 2𝐼𝑥) − 0

5
+
𝑉1 − 0

2𝑠
= 0 
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10

𝑠
 2𝐼𝑥  

𝑖𝑥  
+ 

 

 

 

𝑉𝑇ℎ  

 

 

 

- 

5Ω 

2s

a

b

10

𝑠
 2𝐼𝑥  

𝐼𝑥  

𝐼𝑆𝐶  

5Ω 

2s
a

b

(a)

(b)

𝑉1 

                                                   

Figure 6.11 (a) Finding VTH, (b) Determining ZTH 

 

Along with  

𝐼𝑥 =
𝑉1
2𝑠

 

leads to 

𝑉1 =
100

2𝑠 + 3
 

Hence, 

𝐼𝑠𝑐 =
𝑉1
2𝑠
=

100
(2𝑠 + 3)

2𝑠
=

50

𝑠(2𝑠 + 3)
 

and 

𝑍𝑇ℎ =
𝑉𝑜𝑐
𝐼𝑠𝑐

=

50
𝑠
50

[𝑠(2𝑠 + 3)]

= 2𝑠 + 3 
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 The given circuit is replaced by its Thevenin equivalent at terminals a-b as shown 
in Fig. 6.12. From Fig. 6.12, 

5Ω 

a

b

𝑍𝑇ℎ  

𝑉𝑇ℎ  

+ 

𝑉0 

- 

                                                      

 Figure 6.12 The Thevenin Equivalent of the circuit in Fig. 6.10 in s-domain 

 

𝑉𝑜 =
5

5 + 𝑍𝑇ℎ
× 𝑉𝑇ℎ =

5

5 + 2𝑠 + 3
× (

50

𝑠
) =

250

𝑠(2𝑠 + 8)
=

125

𝑠(𝑠 + 4)
 

 

(b) Using the initial-value theorem we find 

𝑣𝑜(0) = lim
𝑠→∞

𝑠𝑉𝑜(𝑠) = lim
𝑠→∞

[
125

𝑠 + 4
] = lim

𝑠→∞
[

125
𝑠

1 +
4
𝑠

] =
0

1
= 0 

Using the final-value theorem we find 

𝑣𝑜(∞) = lim
𝑠→0

𝑠𝑉𝑜(𝑠) = lim
𝑠→0

[
125

𝑠 + 4
] =

125

4
= 31.25 V 

(c) By partial fraction, 

𝑉𝑜 =
125

𝑠(𝑠 + 4)
=
𝐴

𝑠
+

𝐵

𝑠 + 4
 

𝐴 = 𝑠𝑉𝑜(𝑠)|𝑠=0 =
125

𝑠 + 4
|
𝑠=0

= 31.25 

𝐵 = (𝑠 + 4)𝑠𝑉𝑜(𝑠)|𝑠=−4 =
125

𝑠
|
𝑠=−4

= −31.25 

𝑉𝑜 =
31.25

𝑠
−
31.25

𝑠 + 4
 

Taking the inverse Laplace transform gives 
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𝑣𝑜(𝑡) = 31.25(1 − 𝑒−4𝑡)𝑢(𝑡) V 

Notice that the values of 𝑣𝑜(0) and 𝑣𝑜(∞) obtained in part (b) are confirmed. 

 

6.3 Transfer Functions  

The transfer function is a key concept in signal processing because it  indicates how a 
signal is processed as it passes through a network. It is a fitting tool for finding the 
network response, determining (or designing for) network stability, and network 
synthesis. The transfer function of a network describes how the output behaves with 
respect to the input. It specifies the transfer from the input to the output in the s-
domain, assuming no initial energy. 

The transfer function H(s) is the ratio of the output response Y(s) to the input 
excitation X(s), assuming all initial conditions are zero. 

Thus, 

                                             𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
                                                 6.29 

The transfer function depends on what we define as input and output. Since the input 
and output can be either current or voltage at any place in the circuit, there are four 
possible transfer functions: 

  𝐻(𝑠) = Voltage gain =
𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
                                       6.30𝑎 

   𝐻(𝑠) = Current gain =
𝐼𝑜(𝑠)

𝐼𝑖(𝑠)
                                      6.30𝑏  

  𝐻(𝑠) = Impedance =
V(s)

𝐼(𝑠)
                                         6.30𝑐 

  𝐻(𝑠) = Admittance =
I(s)

𝑉(𝑠)
                                         6.30𝑑 

Thus, a circuit can have many transfer functions. Note that H(s) is dimensionless in Eqs. 
(6.30a) and (6.30b). 

 Each of the transfer functions in Eq. (6.30) can be found in two ways. One way is 
to assume any convenient input X(s), use any circuit analysis technique (such as current 
or voltage division, nodal or mesh analysis) to find the output Y(s), and then obtain the 
ratio of the two. The other approach is to apply the ladder method, which involves 
walking our way through the circuit. By this approach, we assume that the output is 𝐼𝑉 as 
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appropriate and use the basic laws of Ohm and Kirchhoff (KCL only) to obtain the input. 
The transfer function becomes unity divided by the input. This approach may be more 
convenient to use when the circuit has many loops or nodes so that applying nodal or 
mesh analysis becomes cumbersome. In the first method, we assume an input and find 
the output; in the second method, we assume the output and find the input. In both 
methods, we calculate H(s) as the ratio of output to input transforms. The two methods 
rely on the linearity property, since we only deal with linear circuits in this book. Example 
6.8 illustrates these methods. 

 Eq. (6.29) assumes that both X(s) and Y(s) are known. Sometimes, we know the 
input X(s) and the transfer function H(s). We find the output Y(s) as 

    𝑌(𝑠) = 𝐻(𝑠)𝑋(𝑠)       6.31 

and take the inverse transform to get 𝑦(𝑡). A special case is when the input is the unit 
impulse function, 𝑥(𝑡) = 𝛿(𝑡) so that 𝑋(𝑠) = 1. For this case 

   𝑌(𝑠) = 𝐻(𝑠)  or 𝑦(𝑡) = ℎ(𝑡)     6.32 

where 

    ℎ(𝑡) = ℒ−1[𝐻(𝑠)]        6.33 

The term ℎ(𝑡) represents the unit impulse response—it is the time-domain response of 
the network to a unit impulse. Thus, Eq. (6.33) provides a new interpretation for the 
transfer function: 𝐻(𝑠) is the Laplace transform of the unit impulse response of the 
network. Once we know the impulse response ℎ(𝑡) of a network, we can obtain the 
response of the network to any input signal using Eq. (6.31) in the s-domain or using the 
convolution integral in the time domain. 

Example 6.7: The output of a linear system is 𝑦(𝑡) = 10𝑒−𝑡 cos 4𝑡 𝑢(𝑡) when the input is 
𝑥(𝑡) = 𝑒−𝑡𝑢(𝑡). Find the transfer function of the system and its impulse response. 

Solution:    If 𝑥(𝑡) = 𝑒−𝑡𝑢(𝑡) and 𝑦(𝑡) = 10𝑒−𝑡 cos 4𝑡 𝑢(𝑡), then  

𝑋(𝑠) =
1

𝑠 + 1
  𝑎𝑛𝑑   𝑌(𝑠) =

10(𝑠 + 1)

(𝑠 + 1)2 + 42
                         

Hence, 

𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

10(𝑠 + 1)2

(𝑠 + 1)2 + 16
=
10(𝑠2 + 2𝑠 + 1)

𝑠2 + 2𝑠 + 17
  

To find ℎ(𝑡), we write 𝐻(𝑠) as 

𝐻(𝑠) = 𝐴 + 𝐵 ×
4

(𝑠 + 1)2 + 42
=
10(𝑠2 + 2𝑠 + 1)

𝑠2 + 2𝑠 + 17
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⇒ 𝐴[(𝑠 + 1)2 + 42] + 4𝐵 = 𝐴(𝑠2 + 2𝑠 + 17) + 4𝐵 ≡ 10(𝑠2 + 2𝑠 + 1) 

Constants:    17𝐴 + 4𝐵 = 10;  and   Coefficients of  𝑠2:   𝐴 = 10 

𝐵 =
10 − 170

4
= −40    ⇒ 𝐻(𝑠) = 10 − 40 ×

4

(𝑠 + 1)2 + 42
 

From Table 1.2, we obtain    ℎ(𝑡) = 10𝛿(𝑡) − 40𝑒−𝑡 sin 4𝑡𝑢(𝑡) 

Example 6.8: Determine the transfer function 𝐻(𝑠) =
𝑉𝑜(𝑠)

𝐼𝑜(𝑠)
 of the circuit in Fig. 6.13. 

2Ω 

𝐼0 

𝑉(𝑠) 

+ 

𝑉0 

- 

s

4Ω 

1Ω 

𝐼1 

𝐼2 

1

2𝑠
 

                                                            

Figure 6.13 

 

Solution  

METHOD 1 By current division  

𝐼2 =
(𝑠 + 4)𝐼𝑜

𝑠 + 4 + 2 +
1
2𝑠

 

But 

𝑉𝑜 = 2𝐼2 =
2(𝑠 + 4)𝐼𝑜

𝑠 + 6 +
1
2𝑠

 

Hence, 

𝐻(𝑠) =
𝑉𝑜(𝑠)

𝐼𝑜(𝑠)
=

4𝑠(𝑠 + 4)

2𝑠2 + 12𝑠 + 1
 

METHOD 2 We can apply the ladder method. We let 𝑉𝑜 = 1 V. By Ohm’s law 

 𝐼2 =
𝑉𝑜

2
=

1

2 
A. The voltage across the (2 +

1

2𝑠
) impedance is 
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𝑉1 = 𝐼2 (2 +
1

2𝑠
) = 1 +

1

4𝑠
=
4𝑠 + 1

4𝑠
 

This is the same as the voltage across the (𝑠 + 4) impedance. Hence, 

𝐼1 =
𝑉1
𝑠 + 4

=
4𝑠 + 1

4𝑠(𝑠 + 4)
 

Applying KCL at the top node yields 

𝐼𝑜 = 𝐼1 + 𝐼2 =
4𝑠 + 1

4𝑠(𝑠 + 4)
+
1

2
=
2𝑠2 + 12𝑠 + 1

4𝑠(𝑠 + 4)
 

Hence, 

𝐻(𝑠) =
𝑉𝑜
𝐼𝑜
=
1

𝐼𝑜
=

4𝑠(𝑠 + 4)

2𝑠2 + 12𝑠 + 1
 

As before  

 

Example 6.9: For the s-domain circuit in Fig. 6.14, find: (a) the transfer function 𝐻(𝑠) =
𝑉𝑜/𝑉𝑖 (b)  the impulse response, (c) the response when 𝑣𝑖(𝑡) = 𝑢(𝑡) V, (d) the response 
when 𝑣𝑖(𝑡) = 8 cos 2𝑡 V. 

1Ω 
𝑉𝑖  

+ 

𝑉0 

- 

s

Ω 

1Ω 
a

b                                                           

Figure 6.14 

 

Solution  

(a) Using voltage division, 

                                                  𝑉𝑜 =
1

𝑠 + 1
𝑉𝑎𝑏                                              6.32 

 



   
  Circuit Analysis with Laplace Transform 

152 
 

But 

𝑉𝑎𝑏 =
1 ∥ (𝑠 + 1)

1 + 1 ∥ (𝑠 + 1)
× 𝑉𝑖 =

(𝑠 + 1)
(𝑠 + 2)

1 +
(𝑠 + 1)
(𝑠 + 2)

× 𝑉𝑖 

Or 

                                   𝑉𝑎𝑏 =
𝑠 + 1

2𝑠 + 3
𝑉𝑖                                                            6.32.1 

Substituting Eq. (6.32.1) into Eq. (6.32) results in 

𝑉𝑜 =
𝑉𝑖

2𝑠 + 3
 

Thus, the transfer function is 

𝐻(𝑠) =
𝑉𝑜
𝑉𝑖
=

1

2𝑠 + 3
 

(b) We may write 𝐻(𝑠) as 

𝐻(𝑠) =

1
2

𝑠 +
3
2

 

Its inverse Laplace transform is the required impulse response: 

ℎ(𝑡) =
1

2
𝑒−

3
2
𝑡𝑢(𝑡) 

(c) When 𝑣𝑖(𝑡) = 𝑢(𝑡), 𝑉𝑖(𝑠) =
1

𝑠
, and 

𝑉𝑜(𝑠) = 𝐻(𝑠)𝑉𝑖(𝑠) =
1

2𝑠 (𝑠 +
3
2)
=
𝐴

𝑠
+

𝐵

𝑠 +
3
2

 

Where 

𝐴 = 𝑠𝑉𝑜(𝑠)|𝑠=0 =
1

2 (𝑠 +
3
2)
|

𝑠=0

=
1

3
 

𝐵 = (𝑠 +
3

2
)𝑉𝑜(𝑠)|

𝑠=−
3
2

=
1

2𝑠
|
𝑠=−

3
2

= −
1

3
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Hence, for 𝑣𝑖(𝑡) = 𝑢(𝑡), 

𝑉𝑜(𝑠) =
1

3
(
1

𝑠
−

1

𝑠 +
3
2

) 

and its inverse Laplace transform is 

𝑣𝑜(𝑡) =
1

3
(1 − 𝑒−

3
2
𝑡) 𝑢(𝑡) V 

(d) When 𝑣𝑖(𝑡) = 8 cos 2𝑡, then 𝑉𝑖(𝑠) =
8𝑠

𝑠2+4
 and 

𝑉𝑜(𝑠) = 𝐻(𝑠)𝑉𝑖(𝑠) =
4𝑠

(𝑠 +
3
2)
(𝑠2 + 4)

 

=
𝐴

𝑠 +
3
2

+
𝐵𝑠 + 𝐶

𝑠2 + 4
                                              6.32.2 

Where 

𝐴 = (𝑠 +
3

2
)𝑉𝑜(𝑠)|

𝑠=−
3
2

=
4𝑠

𝑠2 + 4
|
𝑠=−

3
2

= −
24

25
 

To get B and C, we multiply Eq. (6.32.2) by (𝑠 +
3

2
) (𝑠2 + 4). We get 

4𝑠 = 𝐴(𝑠2 + 4) + 𝐵 (𝑠2 +
3

2
𝑠) + 𝐶 (𝑠 +

3

2
) 

Equating coefficients, 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠:                 0 = 4𝐴 +
3

2
𝐶     ⟹    𝐶 = −

8

3
𝐴                                                           

𝑠:  4 =
3

2
𝐵 + 𝐶 

𝑠2:  0 = 𝐴 + 𝐵     ⟹ 𝐵 = −𝐴 

Solving these gives  𝐴 = −
24

25
, 𝐵 =

24

25
, 𝐶 =

64

25
. Hence, for 𝑣𝑖(𝑡) = 8 cos 2𝑡  V 

𝑉𝑜(𝑠) = −
24

25
×

1

𝑠 +
3
2

+
24

25
×

𝑠

𝑠2 + 4
+
32

25
×

2

𝑠2 + 4
 

and its inverse is 
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𝑣𝑜(𝑡) =
24

25
(−𝑒−

3𝑡
2 + cos 2𝑡 +

4

3
sin 2𝑡) 𝑢(𝑡) V 

 

 

6.4 Exercise  

1. Determine 𝑣𝑜(𝑡) in the circuit of Fig 6.15, assuming zero initial conditions 

4 Ω 
1

4
F 

+ 

𝑣0(𝑡) 

- 

1 H

5𝑢(𝑡) A 

                                                
 Figure 6.15 

 
Answer: 20(1 − 𝑒−2𝑡 − 2𝑡𝑒−2𝑡)𝑢(𝑡) V 

 

 

2. Find 𝑣𝑜(𝑡) in the circuit shown in Fig. 6.16. Note that, since the voltage 
 input is multiplied by 𝑢(𝑡), the voltage source is a short for all 𝑡 < 0 and 
 𝑖𝐿(0) = 0. 

2Ω 

+ 

𝑣0(𝑡) 

- 

2 H30𝑒−2𝑡𝑢(𝑡) V 

1 Ω 

                                         
Figure 6.16 

 

Answer: (24𝑒−2𝑡 − 4𝑒−
𝑡

3) 𝑢(𝑡) V 

 

3. The switch in Fig. 6.17 has been in position b for a long time. It is moved to 
position a at 𝑡 = 0. Determine 𝑣(𝑡) for 𝑡 > 0. 
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t=0

b

a

R C
𝐼0 

𝑉0 

+ 

𝑣(𝑡) 

- 

                                   
Figure 6.17 

 

Answer: 𝑣(𝑡) = (𝑉𝑜 − 𝐼𝑜𝑅)𝑒
−
𝑡

𝜏 + 𝐼𝑜𝑅, 𝑡 > 0, where 𝜏 = 𝑅𝐶 

 

4. For the circuit shown in Fig. 6.17 with the same initial conditions, find the 
current through the inductor for all time 𝑡 > 0.                         
    Ans: 𝑖(𝑡) = (3 − 7𝑒−𝑡 + 3𝑒−2𝑡)𝑢(𝑡) A 
 
5. For circuit shown in Fig. 6.18: The initial energy in the circuit of Fig. 6.13 is 
zero at 𝑡 = 0. Assume that 𝑣𝑠 = 15𝑢(𝑡) V.  
 

2Ω 

+ 

𝑣0(𝑡) 

- 

𝑣𝑠 

1Ω 1F𝑖𝑥  

4𝑖𝑥  

                                                            
Figure 6.18 

 
(a) Find 𝑉𝑜(𝑠) using the Thevenin theorem.  
(b) Apply the initial- and final-value theorems to find 𝑣𝑜(0) and 𝑣𝑜(∞)  
(c) Obtain 𝑣𝑜(𝑡) 

  Ans: (a) 𝑉𝑜(𝑠) =
12(𝑠+0.25)

𝑠(𝑠+0.2)
, (b) 12 V, 10 V 

 

6. Rework Example 6.9 for the circuit shown in Fig. 6.19. 
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1Ω 

+ 

𝑣0(𝑡) 

- 
𝑣𝑖  

1Ω 

2

𝑠
 

 
Figure 6.19 

 Answer: 

 (a) 
2

(𝑠+4)
   (b) 2𝑒−4𝑡𝑢(𝑡),  (c) 

1

2
(1 − 𝑒−4𝑡)𝑢(𝑡) V 

 (d) 3.2 (−𝑒−4𝑡 + cos 2𝑡 +
1

2
sin 2𝑡) 𝑢(𝑡) V  

7. The open circuit voltage ratio 
𝑉2(𝑠)

𝑉1(𝑠)
 of the network shown in Fig.  6.20 is? 

 (a)  1 + 2𝑠2  

(b)  
1

(1+𝑠2)
 

 (c)  1 + 2𝑠  

(d)  
1

(1+2𝑠)
 

𝑉1(𝑠) 
𝑉2(𝑠) 4Ω 1F

1H

                                         

 Figure 6.20 

8. The transfer function of a linear system is 

𝐻(𝑠) =
2𝑠

𝑠 + 6
 

Find the output 𝑦(𝑡) due to the input 5𝑒−3𝑡𝑢(𝑡) and its impulse response. 

Answer: −10𝑒−3𝑡 + 20𝑒−6𝑡, 𝑡 ≥ 2, 2𝛿(𝑡) − 12𝑒−6𝑡𝑢(𝑡) 
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CHAPTER 7 

TRANSMISSION LINES 
 

7.0 Introduction 

There are means of relaying signals (also power) from one point to another, usually a pair 
of electrical conductors, with coaxial cables and twisted pair cable being some of the 
examples. Having said this, I must point out that the lines are not merely “wire” or cables 
in their simplest form, but rather are intricate cascades of electrical circuits! Bearing in 
mind costs, convenience and ease of calculations that involve the properties of the 
transmission line, they are then arranged in definite geometric patterns. 

 The goal of the transmission is to transport a typical signal with minimal loss. Loss 
there must be when we’re dealing with physical realities, but the idea behind any design 
is to minimize such. 

 Up to this point in your circuit theory series, we’ve dealt with the more familiar 
low-frequency circuit where the wires that connect devices are justifiably assumed to 
have zero resistance, and phase delays are absent across wires. Furthermore, short 
circuited lines always yield zero resistance. Not so in high frequency transmission lines 
where the above does not obtain and we have to expect the unexpected! For example, 
short circuits can actually possess infinite impedance, and open circuits (the idealized 
model of an infinite impedance) can actually behave like short circuited wires!   

 For low frequency signals and d.c signals, transportation normally involves very 
low losses, but high frequency ones in the range of radio waves, losses are quite 
pronounced and the objective of the design engineer is to eliminate or minimize such. 
So, here, attention is focused on high frequency applications whereby the length of the 
line is of at least the same order of magnitude as the least the same order of magnitude 
as the wavelength of the signal under consideration. This is strictly with regard to 
systems of conductors having a forward and return path.  

 Areas of application include communication engineering where study is made to 
determine the most efficient use of power and equipment available to transfer for 
example, as much power as possible from the feeder line into the antenna. To avoid 
power wastage, a receiving antenna must be correctly matched to the line that connects 
it to the receiver.  

 To eliminate losses, we resort to “matching” the line to the load, by making the 
factor known as the characteristic impedance of the line, designated 𝑍0, equal or very 
close to the load impedance (𝑍𝐿). In d.c and low frequency a.c circuits earlier referred to, 
the characteristic impedance of parallel wires is usually insignificant and can therefore be 
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ignored in analyzing circuit behavior. Here the phase difference between the sending and 
the receiving and is negligible, the period of propagation is very small compared to the 
period of the waveform under consideration. It can be practically assumed that the 
voltage along all the respective points (of a low frequency, two conductor line) are equal 
and in-phase with each other at any given point in time.  

 An idealized transmission line has an “infinite” length, this way all the energy is 
absorbed and more is reflected back to the source, because the characteristic (natural) 
impedance of the line is now matched to the frictions load impedance (𝑍𝐿) 

 To investigate low voltage or current changes along transmission lines, the 
following assumptions are made and the following parameters must be borne in mind, so 
that circuit analysis can be employed.  

 The line is made up of continuous conductors with constant cross-sectional 
configuration, and therefore indicating even distribution of the parameters, the problem 
is tracked by considering a very short length of the line that would imply a very discreet 
distribution of the parameters. The problem is tackled by considering a very short length 
of the line that would imply discrete distribution of the parameters which are: 

1. Resistance (R): The resistance of the conductors to the flow of current.  
2. Inductance (L): Associated with the time varying signal, and depends on 
 the geometry of the cross-section of the conductors. 
3. Conductance (G): Leakage current passes through the dielectric material 
 that holds the line in position.  
4. Capacitance (C): A capacitive reactance to a time-varying signal due to 
 capacitor form from conductors and the dielectric in-between.  

So, for a two-wire line, we deal with series inductance and resistance, and parallel 
(shunt) capacitance and conductance, because any conductor (coil) possess “natural” 
resistance and there is always capacitance formed wherever two conductors come close 
to each other! 

The totality of these parameters is obtained by multiplying by the length of the line, since 
they are given on a per-length basis. Continuous distribution is approximated by its 
representation as a cascade of network of elements, with each element of length 
𝛿𝑧, (delta 𝑧). 
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V(z)

I(z)

IC,G

R L

G
C

𝑉(𝑧 + 𝛿𝑧) 

𝐼(𝑧 + 𝛿𝑧) 

 

Figure 7.1 A 2-cascade representation of transmission line 

 

Using telegrapher's equation 

V(z)

I(z)

IC,G

R L

G
C

𝑉(𝑧 + 𝛿𝑧) 

𝐼(𝑧 + 𝛿𝑧) 
a

Figure 7.1a One section of the transmission line 

  

To use telegrapher's equation, we have to consider one section of the transmission line 
as in Fig. 7.1a for the derivation of the characteristic impedance. The voltage on the left 
would be V and on the right side would be  𝑉(𝑧 + 𝛿𝑧). Fig. 7.1a is to be used for both the 
derivation methods. 

The differential equations describing the dependence of the voltage and current on time 
and space are linear, so that a linear combination of solutions is again a solution. This 
means that we can consider solutions with a time dependence and the time dependence 
will factor out, leaving an ordinary differential equation for the coefficients, which will be 
phasors depending on space only. Moreover, the parameters can be generalized to be 
frequency-dependent. 

https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Phasor
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 Taking KCL at point (a) of Fig. 7.1a, the current through the parallel combination 
of the capacitance and admittance elements is:  

𝐼𝐶𝐺 = 𝐼(𝑧) − 𝐼(𝑧 + 𝛿𝑧) = 𝐶𝛿𝑧
𝜕𝑉(𝑧)

𝜕𝑡
+ 𝐺𝛿𝑧 𝑉(𝑧), 

with 𝛿𝑧 indicating per unit length basis, and with the partial derivatives noted. Voltage 
drops across the series combination of the resistor and inductor by KVL:  

𝑉𝑅𝐿 = 𝑉𝑅 + 𝑉𝐿 = [𝑉(𝑧) − 𝑉(𝑧 + 𝛿𝑧)] 

= 𝑅𝛿𝑧𝐼 (𝑧 + 𝛿𝑧) + 𝐿𝛿𝑧
𝜕𝐼(𝑧 + 𝜕𝑧)

𝜕𝑡
 

Recall from first principles 

lim
𝛿𝑥→0

[
𝑓(𝑥 + 𝛿𝑥) − 𝑓(𝑥)

𝛿𝑥
] =

𝑑𝑓(𝑥)

𝑑𝑥
 

So,                                lim
𝛿𝑧→0

[
𝐼(𝑧 + 𝛿𝑧) − 𝐼(𝑧)

𝛿𝑧
] =

𝜕𝐼(𝑧)

𝜕𝑧
                                     

So that,                         𝐼(𝑧) − 𝐼(𝑧 + 𝛿𝑧) ≈ −
𝜕𝐼(𝑧)

𝜕𝑧
𝛿𝑧                                                           

Similarly,            𝑉(𝑧) − 𝑉(𝑧 + 𝛿𝑧) ≈ −
𝜕𝑉(𝑧)

𝜕𝑧
𝛿𝑧                                                                 

⟹                 
−𝜕𝐼(𝑧)

𝜕𝑧
𝛿𝑧 = 𝐶𝛿𝑧

𝜕𝑉(𝑧)

𝜕𝑡
+ 𝐺𝛿𝑧𝑉(𝑧)                                                        

𝜕𝐼(𝑧)

𝜕𝑧
= −(𝐺 + 𝐶

𝜕

𝜕𝑡
)𝑉(𝑧)                              

Similarly,           
𝜕𝑉(𝑧)

𝜕𝑧
= −(𝑅 + 𝐿

𝜕

𝜕𝑡
) 𝐼(𝑧 + 𝛿𝑧)                                                                 

                    ≈ − (𝑅 + 𝐿
𝜕

𝜕𝑡
) 𝐼(𝑧)                     for 𝛿𝑧 small 

For sinusoidal signals, dependence on line is expressed by 𝑒𝑗𝜔𝑡 and derivative 𝜕𝑡 

expressed by 𝑗𝜔, (
𝑑

𝑑𝑡
𝑒𝑗𝜔𝑡 = 𝑗𝜔𝑒𝑗𝜔𝑡, recall), and partial derivatives then become total 

derivatives.  

𝑑𝐼

𝑑𝑧
= −(𝐺 + 𝑗𝜔𝐶)𝑉                                         7.1 
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𝑑𝑉

𝑑𝑧
= −(𝑅 + 𝑗𝜔𝐿) 𝐼                                       7.2 

Taking the second derivatives of 𝑉, from (7.2),  

𝑑2𝑉

𝑑𝑧2
= −(𝑅 + 𝑗𝜔𝐿)

𝑑𝐼

𝑑𝑧
= (𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶)𝑉  = 𝛾2𝑉           7.3 

7.1 Propagation Constant ′𝜸′  

Where 𝛾2 (gamma squared) = (𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

Eq. (7.3) above has as its solution, 

𝑉 = 𝑉1𝑒
−𝛾𝑧 + 𝑉2𝑒

𝛾𝑧                                                          7.4              

Where   𝛾 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)          7.5 

In general, 𝛾 is a complex quality, and can therefore be represented by  

𝛾 = 𝛼 + 𝑗𝛽 

Substituting this is the expression for 𝑉,  

                              𝑉 = 𝑉1𝑒
−(𝛼+𝑗𝛽)𝑧 + 𝑉2𝑒

(𝛼+𝑗𝛽)𝑧                                   7.6                

By a similar analysis, current is expressed with 𝐼′𝑠 replacing the 𝑉′𝑠 so, voltage at some 
point 𝑧 down the transmission line is made up of two components, namely: 

a. 𝑉1𝑒
−(𝛼+𝑗𝛽)𝑧 = 𝑉1𝑒

−𝛼𝑧𝑒−𝑗𝛽𝑧  whose amplitude decreases (is attenuated) 

as it travels down the line with 𝑧 as  𝑒−𝛼𝑧, while  𝑒−𝑗𝛽𝑧  is just a phase term with 
no effect on the amplitude. Therefore, this component is known as the forward, 
or incident wave.  

b. 𝑉2𝑒
(𝛼+𝑗𝛽)𝑧 = 𝑉2𝑒

𝛼𝑧 𝑒𝑗𝛽𝑧 increases with increasing 𝑧, but since voltage 
must be attenuated as it travels along the line, 𝑧 must then decrease to 
accommodate this fact, therefore making this component to be known as the 
backward, or reflected, wave, caused by a mismatch between the transmission 
line and the load.  

So, the voltage at any point on the line a distance 𝑧 from the sending end is the shin of 
the voltages of the incident and reflected waves at the said point. 

Line parameters, 𝛼 and 𝛽 are determined by the line characteristics: 

1. 𝛼 is known as attenuation coefficient, and the negative/positive 
exponential of this is the rate at which the forward/backward wave is attenuated, 
and is a function of R, L, G and C, with the unit being dB/m (decibels per metre) 
or repers/m.  
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2. 𝛽 is the phase constant and shows the phase dependence of both the 
incident and the reflected waves with distance 𝑧 

𝛽𝜆 = 2𝜋 ⟹ 𝛽 =
2𝜋

𝜆
, where 𝜆 (Greek alphabet lambda) is the signal wavelength. 

3. 𝛾 (Gamma, Greek third alphabet) is the propagation constant, and is the 
complex sum of the attenuation coefficient and phase constant, where the 
former is the real part, and the letter the imaginary part. 𝛾 determines how the 
voltage (or by implication the current) along the line changes with 𝑧 

 

7.2 Characteristic Impedance  

From the Eq. (7.2),     
𝑑𝑉

𝑑𝑧
= −(𝑅 + 𝑗𝜔𝐿)𝐼,  

𝐼 = −
𝐼

𝑅 + 𝑗𝜔𝐿
×
𝑑𝑉

𝑑𝑧
 

Differentiating Eq. (7.4)  

𝑑𝑉

𝑑𝑧
= −𝛾𝑉1𝑒

−𝛾𝑧 + 𝛾𝑉2𝑒
𝛾𝑧 = 𝛾[𝑉2𝑒

𝛾𝑧 − 𝑉1𝑒
−𝛾𝑧] 

And substituting in the above for  

𝐼 = −
1

𝑅 + 𝑗𝜔𝐿
×  𝛾[𝑉2𝑒

𝛾𝑧 − 𝑉1𝑒
−𝛾𝑧] =

𝛾

𝑅 + 𝑗𝜔𝐿
× [𝑉1𝑒

−𝛾𝑧 − 𝑉2𝑒
𝛾𝑧] 

Substituting from Eq. (7.5) for 𝛾,  

I =
√(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶

(𝑅 + 𝑗𝜔𝐿)
× [𝑉1𝑒

−𝛾𝑧 − 𝑉2𝑒
𝛾𝑧] 

      ⟹         𝐼 = √(
𝐺 + 𝑗𝜔𝐶

𝑅 + 𝑗𝜔𝐿
) × [𝑉1𝑒

−𝛾𝑧 − 𝑉2𝑒
𝛾𝑧]                           7.7 

By analogy with Ohm’s law,  
𝐺+𝑗𝜔𝐶

𝑅+𝑗𝜔𝐿
,  is an admittance. Therefore,  

𝑅+𝑗𝜔𝐿

𝐺+𝑗𝜔𝐶
  its reciprocal, is 

an impedance called the characteristic impedance of the transmission line, determined 
by the line parameters R, L, G & C. 

   𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
                                                   7.8 

Characteristic impedance 𝑍𝑜 can be variously described as: 
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1. The value the load impedance must have to match the load to the line 
 (to either eliminate power loss, or at least minimize same), or  
2. The impedance seen from the sending end of an infinitely long line, or  
3. The impedance seen looking towards the load at any point on a matched 
 line, i.e., moving along the line produces no change in the impedance 
 towards the load.  

The transmission line is idealized as follows:  

1. The line is uniform, straight and homogenous, 
2. Line parameters R, L, G and C do not vary with atmospheric conditions 
 like temperature and humidity.  
3. Line parameters do not depend on frequency, 
4. The analysis is applicable only between the junctions on the line because 
 the circuit model on Fig. 7.2 (one of the cascades) is invalid across a 
 junction  

The above assumptions may be occasionally taken into consideration as we analyze 
transmission line. 

 

7.3 Reflection from the Load  

Shown in Fig. 7.2 where, 𝑉1𝑒
−𝛾𝑙 is the incident wave, while 𝑉2𝑒

𝛾𝑙 is the reflected or 
backward, wave on a line with total length of 𝑙. If the load has an impedance equal to the 
characteristic impedance 𝑍0, therefore say that the line is matched, and there is no 
reflected wave (theoretically speaking) as the incident wave is totally absorbed by the 
load. It, however, the load is of a value different from 𝑍0, then some of the incident wave 
would be reflected, and the amount of reflection by the load. Is expressed in terms of 
voltage reflection coefficient, designated by the Greek letter 𝜌 (𝑟ℎ𝑜), and defined as the 
ratio of the reflected voltage to the incident voltage at the load terminals.  

𝑉1𝑒
−𝛾𝑙  

𝑉2𝑒
𝛾𝑙  

𝑙 

𝑍𝐿  

Z 

                                                                              

Figure 7.2 Incident wave (𝑽𝟏𝒆
−𝜸𝒍)  and Reflected wave (𝑽𝟐𝒆

𝜸𝒍) 
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 Given that the load is at the position 𝑧 = 𝑙,  

                    𝑉𝐿 = 𝑉1𝑒
−𝛾𝑙 + 𝑉2𝑒

𝛾𝑙                                              7.9 

         

     𝜌 =
𝑉2𝑒

𝛾𝑙

𝑉1𝑒−𝛾𝑙
= (

𝑉2
𝑉1
) 𝑒2𝛾𝑙 = |𝜌|𝑒𝑗𝜓                                       7.10 

Where the last indicates that 𝜌 in general would be a complex quantity that can be 
expressed in polar form with |𝜌| as the magnitude and 𝜓 as the phase angle of the 
reflection coefficient.  

From Eqs. (7.7) and (7.8)  

                          𝐼𝐿 = (
𝑉1
𝑍0
) 𝑒−𝛾𝑙 − (

𝑉2
𝑍0
) 𝑒𝛾𝑙                                        7.11       

𝑍𝐿 (Load impedance)=
𝑉𝐿

𝐼𝐿
 

And from Eqs. (7.9) and (7.11)  

𝑍𝐿 =
𝑉𝐿
𝐼𝐿
=

𝑉1𝑒
−𝛾𝑙 + 𝑉2𝑒

𝛾𝑙

[(
𝑉1
𝑍0
) 𝑒−𝛾𝑙 − (

𝑉2
𝑍0
) 𝑒𝛾𝑙]

 

Dividing through by 𝑉1𝑒
−𝛾𝑙 and multiplying by 𝑍0 

𝑍𝐿 = 𝑍0(
[1 + (

𝑉2
𝑉1
) 𝑒2𝛾𝑙]

[1 − (
𝑉2
𝑉1
) 𝑒2𝛾𝑙]

) 

The term in the (inner) parenthesis namely (𝑉2/𝑉1)𝑒
2𝛾𝑙, is simply the voltage reflection 

coefficient 𝑒, leading to  

𝑍𝐿 = 𝑍0 (
1 + 𝜌

1 − 𝜌
) , or rearrange                                                                                                   

                                𝜌𝑣 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

                                               7.12 

For 𝑍𝐿 = 0 (indicating short circuit load),  

𝜌 = −
𝑍0
𝑍0
= −1 ⟹ |𝜌| = 1, 𝜇 = 𝜋 
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Note that 𝜇 ⟹ 𝜓 as in Eq 7.10. so, in place of 𝜓, we can use 𝜇 

For 𝑍𝐿 = ∞ (open circuit load):  

𝜌 =
𝑍𝐿
𝑍𝐿
= 1 ⟹ |𝜌| = 1, 𝜇 = 0 

 

Example 7.1: If  𝑍𝐿 = 75 + 𝑗50 Ω,   𝑍0 = 25 Ω, find the reflected coefficient  

𝜌 =
(75 + 𝑗50 − 25)

(75 + 𝑗50 + 25)
=
50 + 𝑗50

100 + 𝑗50
=
1 + 𝑗

2 + 𝑗
 

=
(1 + 𝑗)(2 − 𝑗)

22 + 1
=
3 + 𝑗

5
=
√10

5
∠ tan−1

1

3
= 0.63∠18. 43° 

 

Example 7.2: The lossless transmission line has characteristic impedance of 75 Ω and 
phase constant of 3rad/m at 100 MHz. Find inductance and capacitance of line/meter.  

Solution: 𝑍0 = √
𝐿

𝐶
                                                                                                                          

γ = β = ω√𝐿𝐶 

𝑍0
𝛽
=

√𝐿
𝐶

𝜔√𝐿𝐶
=

1

𝜔𝐶
 

75

3
× 2𝜋𝑓 =

1

𝐶
 

⟹                               25 × 2πf =
1

C
                                                                                                

⟹                        𝐶 =
1

25 × 6.28 × 108
                                                                                         

⟹                              𝐶 = 63.69 pF/m                                                                             

𝑍0
2𝐶 = 𝐿 

⟹   𝐿 = (75)2 × 63.69 × 10−12 = 358 nH/m 
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Example 7.3: A lossless transmission is 80 cm long and operates at a frequency of 600 
MHz the line parameters are 𝐿 = 0.25 μH/m and 𝐶 = 100 pF/m. Find the characteristic 
impedance, the phase constant, and the phase velocity.  

 Solution: 

 Since the line is lossless, both R and G are zero. The characteristic impedance is  

𝑍0 = √
𝐿

𝐶
= √

0.25 × 10−6

100 × 10−12
= 50 Ω 

Since     𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

= 𝑗𝜔√𝐿𝐶       we see that   

𝛽 = 𝜔√𝐿𝐶 = 2𝜋 (600 × 106) √(0.25 × 106−6) (100 × 10−12) 

= 18.85 rad/m 

Also,   

Vp =
𝜔

𝛽
=
2𝜋 (600 × 106)

18.85
= 2 × 108 m/s 
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Figure 7.3 combination of ‘Short circuit Impedance A ‘, ‘Open circuit impedance B’ and 
when the line impedance equals the load impedance C 

By a similar analysis, current reflection coefficient is given by 

𝜌𝐼 =
(𝑍0 − 𝑍𝐿)

𝑍0 + 𝑍𝐿
= −𝜌𝑉 

Where 𝜌𝑣  stands for voltage reflection coefficient.  

𝑍𝐿 = 0 ⟹ 𝜌𝐼 =
𝑍0
𝑍0
= 1,⟹ |𝜌| = 1, 𝜇 = 0 

Showing quality between the incident and reflected waves with no change in phase (with 
KCL taken at the no-load terminal).  

𝑍𝐿 = ∞ (open circuit) ⟹ 𝜌𝐼 = −
𝑍𝐿
𝑍𝐿
= −1 ⟹ |𝜌𝐼| = 1, 𝜇 = 𝜋 
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7.4 Distortionless Line (
𝑹

𝑳
=

𝑮

𝑪
) 

 Distortionless line is the one in which attenuation constant ‘𝛼’ is frequency 
independent while phase constant is linearly dependent on frequency. 

(a) 𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿) (
𝑅𝐶

𝐿
+ 𝑗𝜔𝐶)    7.13 

= √
𝐶

𝐿
 (𝑅 + 𝑗𝜔𝐿) 

⟹                                     𝛼 = 𝑅√
𝐶

𝐿
 𝑎𝑛𝑑  𝛽 = 𝜔√𝐿𝐶                                       7.14   

 (b)                                               𝑉𝑝 =
𝜔

𝛽
=

1

√𝐿𝐶
                                                       7.15  

(c)         𝑍0 = 𝑅0 + 𝑗𝑋0 = √
𝑅 (1 +

𝑗𝜔𝐿
𝑅 )

𝐺 (1 +
𝑗𝜔𝐶
𝐺 )

= √
𝑅

𝐺
= √

𝐿

𝐶
                                  7.16 

                ⟹                 𝑅0 = √
𝑅

𝐺
= √

𝐿

𝐶
;                  𝑋0 = 0                                 7.17 

A lossless line is also distortionless line, but a distortionless line is not necessarily lossless  

 

Example 7.4: A 60 Ω  distortionless transmission line has a capacitance of 0.15 nF/m  . 
The attenuation on the line is 0.01 dB/m. Calculate 

a. the line parameters: resistance, inductance and conductance per 
 meter of line 
b. velocity of propagation 
c. voltage at a distance of 1 km and 4 km with respect to sending 
 end voltage. 
 

Solution:  
For a distortionless line,  

𝑅

𝐿
=
𝐺

𝐶
 

𝑍0 = 𝑅0 = √
𝐿

𝐶
= 60 Ω 
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and 

  𝛼 = 𝑅 √
𝐶

𝐿
= 0.01

dB

m
=
0.01

8.69
Np m⁄ = 1.15 × 10−3 Np/m 

Line parameters: 

𝑅 = 𝛼𝑅0 = (1.15 × 10
−3) × 60 = 0.069 Ω/m 

𝐿 = 𝐶𝑅0
2 = 0.15 × 10−9 × 602 = 0.54 μH/m 

𝐺 =
𝑅𝐶

𝐿
=

𝑅

𝑅0
2 =

0.059

602
= 19.2 μS/m 

(b). 𝑉 =
1

√𝐿𝐶
 

=
1

√0.54 × 10−6 × 0.15 × 10−9
= 1.11 × 108 m/s 

(c). The ratio of two voltages at a distance x apart along the line 

𝑉2
𝑉1
= 𝑒−𝛼𝑥 

At 1 km 

𝑉2
𝑉1
= 𝑒−1000𝛼 = 𝑒−1.15 = 0.317 𝑜𝑟 31.7% 

At 4 km   

𝑉2
𝑉1
= 𝑒−4000𝛼 = 𝑒−4.6 = 0.01 𝑜𝑟 1% 

 

7.5 Low-Loss Dielectric  

 A low-loss dielectric is a good but imperfect insulator with a non-zero equivalent 

conductivity such that 𝑡" ≪ ∈ ′ or 
𝜎

𝜔∈
≪ 1. Under this condition 𝛾 can be approximated 

by using binomial expansion.  

𝛾 = 𝛼 + 𝑗𝛽 ≡ 𝑗𝜔√𝜇 ∈′  [1 −
𝑗 ∈′

2 ∈′
+
1

8
 (
∈ " 

𝑒′
)
2

] 

From which we can say  
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𝛼 ≅
𝜔 ∈ " 

2
√
𝜇

∈
 (
𝑁𝑝

𝑚
)attenuation constant 

𝐴𝑛𝑑     𝛽 ≅ 𝜔√𝜇 ∈ [1 +
1

8
 (
𝜖"

𝜖′
)
2

] (
rad

m
)phase constant                                      

′𝛼′for low − loss dielectric is a positive quantity and 
is approximately directly proportional 

to frequency. β deviates only very slightly from value 2√𝜇 ∈  (lossless dielectric)
 

𝜂 = √
𝜇

𝜖
 (1 − 𝑗 

∈ ” 

∈′
)
−
1
2
 

𝜂 ≃  √
𝜇

∈′
 (1 + 𝑗

∈ " 

2 ∈′
) (Ω)  → intrinsic impedance 

We can say that 
𝐸𝑥

𝐻𝑦
= 𝜂 and here the electric and magnetic field intensities in lossy 

dielectric are not in time phase as in lossless medium.  

𝑉𝑝 =
𝜔

𝛽
=

1

√𝜇 ∈′
 [1 −

1

8
 (
∈ " 

∈′
)
2

]m s⁄                    phase velocity  

 

7.6 Equivalent Circuit in Terms of Primary and Secondary Constants  

 

Equivalent T-section of a line of length 𝜹 

V(z)

I(z)  

𝐶𝛿𝑧 𝐺𝛿𝑧 

𝑅

2
𝛿𝑧 

 

 

𝐿

2
𝛿𝑧 

𝐿

2
𝛿𝑧 

𝑅

2
𝛿𝑧 

 

 

1

1'

2

2'  

Figure 7.3 Equivalent ′𝑻′ Transmission Line Circuit 
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Equivalent 𝝅 −section of a line of length 𝜹

1

1'

2

2'

𝐿𝛿𝑧 
𝑅𝛿𝑧 

𝐶

2
𝛿𝑧 

𝐺

2
𝛿𝑧 𝐺

2
𝛿𝑧 

𝐶

2
𝛿𝑧 

 

Figure 7.4 Equivalent ′𝝅′ Circuit  

 

Here,    𝑧 = (𝑅 + 𝑗𝜔𝐿) Ω; 𝑦 = (𝐺 + 𝑗𝜔𝐶) ℧ 

Secondary constants of line  

a. The input impedance of line is called its characteristics impedance  

𝑍0 = √
𝑧

𝑦
= √

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
 

b. 𝛾 = 𝛼 + 𝑗𝛽                                                     (Propagation constant)  

• Real part 𝛼 of 𝛾 is measured of charge in magnitude of current or 
voltage in each 𝜏-section and called attenuation constant.  

• Imaginary part 𝛽 of 𝛾 equal difference in phase angle between the 
input current and the output current or the corresponding voltages and 
called phase shift constant.  

𝛾 = √𝑧𝑦 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

c. The phase shift constant or wavelength constant 𝛽 indicates the amount 
by which the phase of an input current changes in a unit distance. In a distance 

equal to one wavelength 𝜆, the phase shift is 2𝜋 radians,  𝜆 =
2𝜋

𝛽
, wavelength.  

d. The phase velocity of propagation is  

𝑣𝑝 = 𝑓𝜆 =
𝜔

𝛽
 

 

Example 7.5: An open wire transmission line has 𝑅 = 5 Ω/m, 𝐿 = 5.2 × 10−8 H/m, 
𝐺 = 6.2 × 10−3 Ω/m, 𝐶 = 2.13 × 10−13 F/m, frequency = 4 GHz. Find 𝑍0, 𝛾 𝑎𝑛𝑑 vf.  

Solution:  



   
  Circuit Analysis with Laplace Transform 

172 
 

v𝑝 =
1

√𝐿𝐶
=

1

√5.2 × 10−8 × 2.13 × 10−10
 

= 0.3 × 109 = 0.3 × 108 m/s 

𝜔 = 2𝜋𝑓 = 2𝜋 × 4 × 109 = 8𝜋 × 109 = 2.512 × 1016 rad 

𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
 

𝑅 + 𝑗𝜔𝐿 = 5 + 𝑗2.512 × 1010 × 5.2 × 10−8 

= 5 + 𝑗1306.24 = 1306.25 < 89. 78° 

𝐺 + 𝑗𝜔𝐿 = 6.2 × 10−3 + 𝑗2.512 × 1010 × 2.13 × 1010 

= 6.2 × 10−3 + 𝑗5.35 = 8.18 < 40. 79° 

𝑍0 = 12.64 < 24.49
°  

𝛾 = √(𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶) 

𝛾 = 103.37 < 65.23°  

 

Example 7.6: A typical transmission line has a resistance of 8 Ω/km, impedance of               
2 mH/km, a capacitance of 0.002 μF/km and a conductance of 0.07 μs/km. Calculate 
the characteristic impedance, attenuation constant, phase constant of the transmission 
line at a frequency of 2 kHz. If a signal of 2 V is applied and the line terminated by its 
characteristic impedance, calculate the power delivered to load 

Solution: 

𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
 

= √
8 + 𝑗4𝜋 × 2 × 10−3 × 103

0.007 × 10−6 + 𝑗4𝜋 × 0.002 × 10−6 × 103
 

= 1.024 < −8.75𝑜 × 103 Ω 
= (1012.1 − 𝑗155.72) Ω 

 

𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶) 

𝛾 = √(8 + 𝑗4𝜋 × 2 × 10−3 × 103)(0.007 × 10−6 + 𝑗4𝜋 × 0.002 × 10−6 × 103) 
= 0.02574 < 81.09 = 0.003987 + 𝑗0.02543 
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⟹  𝛼 = 0.003987 Np/km 
𝛽 = 0.02543 rad/km 

Input voltage 𝑉𝑠 = 2 V; 𝑙 = 500 km; 𝑍0 = 1012.1 Ω (real part) 
 
Since line is terminated in its characteristic impedance, 𝑍𝑖𝑛 = 𝑍0 = 𝑍𝐿  

I𝑠 =
𝑉𝑠
𝑍𝑖𝑛

=
2

1024 < −8.75𝑜 × 103
=

2

1024 < −8.75𝑜
= 1.953 < 8.75𝑜 mA 

𝐼𝑙 = 𝐼𝑠 𝑒
−𝛾𝑙 = (1.953 < 8.75𝑜)𝑒(−0.003987+𝑗0.02543)×500 
|𝐼𝑙| = 1.953 × 𝑒−1.9935 = 0.2669 mA 

𝑃 = |𝐼𝑙|
2 Real (𝑍0) = 1012.1 × (0.2669)2 = 72.1 μW 

𝑉𝑝 =
𝜔

𝛽
=
4𝜋 × 103

0.02543
= 494.22 km/s 

 

7.7 Sending-End Impedance  

To determine the degree of mismatch between the source and line, we have to know the 
impedance that the combination of transmission line and load presents to the source. 
Sending end impedance is that looking into the line from the source: 

A

Zin
ZL

𝑙 

Z

                                               

Figure 7.5 Sending end Impedance and Load Impedance 

from Eqs. (7.4), (7.7) and (7.8)  

𝑍𝐴 =
𝑉𝐴
𝐼𝐴
= 𝑍0 × (

𝑉1𝑒
−𝛾𝑧 + 𝑉2𝑒

𝛾𝑧

𝑉1𝑒−𝛾𝑧 − 𝑉2𝑒𝛾𝑧
) 

From Eq. (7.10), 
𝑉2

𝑉1
= 𝑒−2𝛾𝑙 

⟹                                             𝑍𝐴 = 𝑍0  (
𝑒−𝛾𝑧 + 𝜌 𝑒−2𝛾𝑙𝑒𝛾𝑧

𝑒−𝛾𝑧 − 𝜌 𝑒−2𝛾𝑙 𝑒𝛾𝑧
)                                                
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After dividing through by 𝑉1 

Multiplying through by 𝑒𝛾𝑙  

𝑍𝐴 = 𝑍0  (
𝑒𝛾𝑙𝑒−𝛾𝑧 + 𝜌 𝑒𝛾𝑙−2𝛾𝑙𝑒𝛾𝑧

𝑒𝛾𝑙𝑒−𝛾𝑧 − 𝜌 𝑒𝛾𝑙−2𝛾𝑙 𝑒𝛾𝑧
) 

= 𝑍0 (
𝑒𝛾(𝑙−𝑧) + 𝜌𝑒−𝛾(𝑙−𝑧)

𝑒𝛾(𝑙−𝑧) − 𝜌𝑒𝛾(𝑙−𝑧)
) 

𝑙 − 𝑧 = 𝑥 from Fig.7.5 

⇒                                𝑍𝐴 = 𝑍0 (
𝑒𝛾𝑥 + 𝜌𝑒−𝛾𝑥

𝑒𝛾𝑥 − 𝜌𝑒−𝛾𝑥
)                                  

From                                             𝜌𝑉 = (
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

)                                               

 

𝑍𝐴 = 𝑍0 [
𝑒𝛾𝑥 + [

(𝑍𝐿 − 𝑍0)
(𝑍𝐿 + 𝑍0)

] 𝑒−𝛾𝑥

𝑒𝛾𝑥 − [
(𝑍𝐿 − 𝑍0)
(𝑍𝐿 + 𝑍0)

] 𝑒−𝛾𝑥
] 

Multiplying through by (𝑍𝐿 + 𝑍0) 

𝑍𝐴 = 𝑍0 [
(𝑍𝐿 + 𝑍0)𝑒

𝛾𝑥 + (𝑍𝐿 − 𝑍0)𝑒
−𝛾𝑥

(𝑍𝐿 + 𝑍0)𝑒𝛾𝑥 − (𝑍𝐿 − 𝑍0)𝑒−𝛾𝑥
] 

Factorizing, 

𝑍𝐴 = 𝑍0 [
𝑍𝐿(𝑒

𝛾𝑥 + 𝑒−𝛾𝑥) + 𝑍0(𝑒
𝛾𝑥 − 𝑒−𝛾𝑥)

𝑍𝐿(𝑒𝛾𝑥 − 𝑒−𝛾𝑥) + 𝑍0(𝑒𝛾𝑥 + 𝑒−𝛾𝑥)
] 

Dividing through by 2 to give hyperbolic functions  

𝑍𝐴 = 𝑍0 [
𝑍𝐿 cosh 𝛾𝑥 + 𝑍0 sinh 𝛾𝑥

𝑍𝐿 sinh 𝛾𝑥 + 𝑍0 cosh 𝛾𝑥
] 

Dividing through by cosh 𝛾𝑥, 

𝑍𝐴 = 𝑍0 [
𝑍𝐿 + 𝑍0 tanh 𝛾𝑥

𝑍𝐿 tanh 𝛾𝑥 + 𝑍0
] 

Putting 𝑥 = 𝑙, 𝑍𝐴 becomes 𝑍𝑖𝑛 (sending-end impedance) 
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⟹                                     𝑍𝑖𝑛 = [
𝑍0 𝑍𝐿 + 𝑍0

2 tanh 𝛾𝑙

𝑍𝐿 tanh 𝛾𝑙 + 𝑍0
]                                                7.18𝑎 

When normalized to the characteristic impedance 𝑍0,  

𝑧𝑖𝑛 =
𝑍𝑖𝑛
𝑍0

= [
𝑍𝐿 + 𝑍0 tanh 𝛾𝑙

𝑍𝐿 tanh 𝛾𝑙 + 𝑍0
]               

Normalized, load impedance 𝑧𝐿 =
𝑍𝐿

𝑍0
 

⟹                                         𝑧𝑖𝑛 = [
(
𝑍𝐿
𝑍0
) + tanh 𝛾𝑙

(
𝑍𝐿
𝑍0
) tanh 𝛾𝑙 + 1

]                                           7.18𝑏    

                                             𝑧𝑖𝑛 =
𝑧𝐿 + tanh𝛾𝑙

𝑧𝐿 tanh 𝛾𝑙 + 1
                                                    7.18𝑐  

Example 7.7: A 600 Ω lossless transmission line is fed by a 50 Ω generator. If the line is 
200 m long and terminated by load of 500 Ω, determine in 𝑑𝐵′𝑠. 

(i) Reflection loss 
(ii) Transmission loss 
(iii)  Return loss.  

Solution: 

𝜌 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

=
500 − 600

500 + 600
=
−100

1100
=
−1

100
=
−1

11
 

i. Reflection loss = 10 log10
1

1−|𝜌|2
= 10 log 10

1

1−
1

121

= 0.036 dB 

ii. Transmission loss = Attenuation loss + Reflection loss  
= lossless + 0.036 

= 0 + 0.036 = 0.036 dB 

iii. Return loss = 10 log10|𝜌| = 10 log10 (
1

11
) = −10.414 dB 

 

7.8 Low Loss Lines  

Eq. (7.5):              𝛾 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

Factoring out 𝑗𝜔𝐿 and 𝑗𝜔𝐶,  

𝛾 = √(𝑗𝜔𝐿) (𝑗𝜔𝐶) (
𝑅

𝑗𝜔𝐿
+
𝑗𝜔𝐿

𝑗𝜔𝐿
) (

𝐺

𝑗𝜔𝐶
+
𝑗𝜔𝐶

𝑗𝜔𝐶
) 
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= 𝑗𝜔√𝐿𝐶 (1 +
𝑅

𝑗𝜔𝐿
)

1
2
(1 +

𝐺

𝑗𝜔𝐶
)

1
2
 

Binomial series expansion of 𝛾 gives:    

𝛾 = 𝑗𝜔√𝐿𝐶 (1 +
𝑅

2𝑗𝜔𝐿
−
1

4
 
𝑅2

(𝑗𝜔𝐿)2
) × (1 +

𝐺

2𝑗𝜔𝐶
−

𝐺2

4(𝑗𝜔𝐶)2
) 

For low-loss lines, R and G are very small, and can therefore be ignored: 

⟹                    𝛾 ≈ 𝑗𝜔√𝐿𝐶  (1 +
𝑅

2𝑗𝜔𝐿
) × (1 +

𝐺

2𝑗𝜔𝐶
)                                             

= 𝑗𝜔√𝐿𝐶  (1 +
𝑅

2𝑗𝜔𝐿
+

𝐺

2𝑗𝜔𝐶
−

𝑅𝐺

(2𝑗𝜔)2𝐿𝐶
) 

= 𝑗𝜔√𝐿𝐶  (1 +
𝐺

2𝑗𝜔𝐶
+

𝑅

2𝑗𝜔𝐿
−

𝑅𝐺

4𝜔2𝐿𝐶
) 

= 𝑗𝜔√𝐿𝐶  (1 −
𝑅𝐺

4𝜔2𝐿𝐶
−

𝑗𝑅

2𝜔𝐿
−

𝑗𝐺

2𝜔𝐶
) 

𝛾 = 𝛼 + 𝑗𝛽 = 𝜔√𝐿𝐶  (𝑗 −
𝑗𝑅𝐺

4𝜔2𝐿𝐶
−
𝑗2𝑅

2𝜔𝐿
−
𝑗2𝐺

2𝜔𝐶
) 

𝛼 + 𝑗𝛽 = 𝜔√𝐿𝐶 [(
𝑅

2𝜔𝐿
+

𝐺

2𝜔𝐶
) + 𝑗 (1 −

𝑅𝐺

4𝜔2𝐿𝐶
)] 

⟹                     𝛼 ≈ 𝜔√𝐿𝐶 (
𝑅

2𝜔𝐿
+

𝐺

2𝜔𝐶
) ,      𝛽 ≈ 𝜔√𝐿𝐶  (1 −

𝑅𝐺

4𝜔2𝐿𝐶
)               

              𝛼 ≈
𝑅

2
√
𝐶

𝐿
+
𝐺

2
 √
𝐿

𝐶
                                                            7.19 

𝛽 ≈ 𝜔√𝐿𝐶 (1 −
𝑅𝐺

4𝜔2𝐿𝐶
) 

R and G very small, so at high frequencies:  

            𝛽 ≈ 𝜔√𝐿𝐶                                                                         7.20 

Similarly,  

𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
= √

𝑗𝜔𝐿

𝑗𝜔𝐶
×
𝑗𝜔𝐶

𝑗𝜔𝐿
× (

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
) 



   
  Circuit Analysis with Laplace Transform 

177 
 

= √
𝑗𝜔𝐿

𝑗𝜔𝐶
(
𝑅

𝑗𝜔𝐿
+ 1) (

𝐺

𝑗𝜔𝐶
+ 1) = √

𝐿

𝐶
× (1 +

𝑅

𝑗𝜔𝐿
)

1
2
× (1 +

𝐺

𝑗𝜔𝐶
)

1
2

 

≈ √
𝐿

𝐶
× (1 +

𝑅

2𝑗𝜔𝐿
) × (1 −

𝐺

2𝑗𝜔𝐶
) 

By binomial expansion, with terms in 𝑅2, 𝐺2 neglected 

𝑍0 = √
𝐿

𝐶
 × (1 −

𝐺

2𝑗𝜔𝐶
+

𝑅

2𝑗𝜔𝐿
−

𝑅𝐺

4𝑗2𝜔2𝐿𝐶
) 

≈ √
𝐿

𝐶
× (1 −

𝑗𝑅

2𝜔𝐿
+

𝑗𝐺

2𝜔𝐶
) 

          
𝑅

𝜔𝐿
,
𝐺

𝜔𝐶
 very small ⟹ 𝑍0 = √

𝐿

𝐶
                                    7.21   

      

Plugging Eq. 7.21 in 7.19 

                             𝛼 =
𝑅

2𝑍0
+
𝐺𝑍0
2
                                                             7.22 

 

7.9 Lines of Zero Loss  

For a relatively short line and operating at very high frequencies, it is reasonable to 
assume zero attenuation, i.e., lossless line  

⟹                               𝛼 = 0 =
𝑅

2𝑍0
+
𝐺𝑍0
2

⟹ 𝑍0
2 = −

𝑅

𝐺
                                            

⟹                                      𝑍0 = 𝑗√
𝑅

𝐺
                                                                                   

In this case 𝛾 = 𝛼 + 𝑗𝛽 = 0 + 𝑗𝛽 = 𝑗𝛽 

Replacing 𝛾 by 𝑗𝛽 in Eq. 7.18b 



   
  Circuit Analysis with Laplace Transform 

178 
 

     𝑧𝑖𝑛 =
𝑧𝐿 + tanh 𝑗𝛽𝑙

1 + 𝑧𝐿 tanh 𝑗𝛽𝑙
⟹

𝑧𝐿 + 𝑗 tan𝛽𝑙

1 + 𝑗𝑧𝐿 tan𝛽𝑙
                                 7.23 

 

7.10 Quarter Wave Transformer  

For a lossless line (𝛼 = 0) and replacing 𝛾 by 𝑗𝛽 in Eq. (7.18a)  

⟹                               𝑍𝑖𝑛 = 𝑍0  (
𝑍𝐿 + 𝑗 𝑍0 tan 𝛽𝑙

𝑍0 + 𝑗 𝑍𝐿 tan 𝛽𝑙
)                                                                   

⟹                               𝑍𝑖𝑛 = 𝑍0  (

𝑍𝐿
tan𝛽𝑙  

+ 𝑗𝑍0

𝑍0
tan 𝛽𝑙

+ 𝑗𝑍𝐿

)                                                                  

𝑑 = quarter wavelength long ⟹ tan 𝛽𝑙 = tan
𝜋

2
= ∞ 

𝑍𝑖𝑛 = lim𝑍0 (

𝑍𝐿
𝑥 + 𝑗 𝑍0

𝑍0
𝑥 + 𝑗𝑍𝐿

) = 𝑍0 (
𝑗𝑍0
𝑗 𝑍𝐿

) =
𝑍0
𝑍𝐿

 

⟹                                            𝑍0
2 = 𝑍𝑖𝑛 𝑍𝐿                                                                   7.24           

For matching a given load to a given input impedance, a quarter wave section of lossless 
line is used with characteristics impedance of  

𝑍0 = √𝑍𝑖𝑛 𝑍𝐿  

Example 7.8: A 50 W lossless line has a length of 0.4𝜆. The operating frequency is 300 
MHz. A load 𝑍𝐿 = 40 + 𝑗30 Ω is connected at 𝑍 = 0, and the Thevenin equivalent source 
at 𝑍 = −1 is 12 < 0𝑜 V in series with 𝑍𝑇ℎ = 50 + 𝑗0 Ω. Find (a) ρ; (b) S; (c) 𝑍𝑖𝑛. 

Solution: 

Using 7.23,  

𝑍𝑖𝑛 =
(𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑙)

(𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑙)
 

Putting 𝑍𝐿 = ∞(we know that
1

∞
= 0) and dividing entire by 𝑍𝐿 we get  

So,      𝑍𝑖𝑛 = 𝑍0
(1 + 0)

(0 + 𝑗 tan𝛽𝑙)
=

𝑍0
𝑗 tan𝛽𝑙

=
𝑍0

𝑗 tan𝛽𝑙
= −𝑗 

𝑍0
tan 𝛽𝑙
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Ans:  

(a) 0.333 < 90𝑜  
(b) 2.00 
(c) 25.5 + 𝑗5.90 Ω 

 

Example 7.9: Calculate the characteristic impedance of a quarter-wave transformer if a 
120 Ω load is to be matched to a 75 Ω line. 

Solution: 

 𝑍0 = √𝑍𝐿 𝑍𝑖𝑛 

⟹                     
𝑍0

2

𝑍𝑖𝑛
= 𝑍0                                                   

⟹   𝑍0 = √120 × 75 = 95Ω 
 

 

7.11 Stubs  

Eq. (7.23) ⟹ 𝑧𝑖𝑛 =
𝑧𝐿+𝑗 tan𝛽𝑙

1+𝑗 𝑧𝐿 tan𝛽𝑙
 shows the variation of input impedance with the length of 

the line and this property can be used in stubs (short lengths of line) for matching 
applications. These are terminated in either short circuit or open circuit load.  

Open − circuit load ⟹ 𝑧𝐿 = ∞ = 𝑧𝑖𝑛 =
𝑧𝐿

𝑗𝑧𝐿 tan𝛽𝑙
                                                        

                        𝑧𝑖𝑛 =
1

𝑗 tan𝛽𝑙
= −𝑗 cot 𝛽𝑙                                                   7.25 

Short circuit load ⟹ 𝑧𝑖𝑛 =
0 + 𝑗 tan𝛽𝑙

1 + 0
= 𝑗 tan𝛽𝑙                                     7.26 

For lossless line:  
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Positive 

reactance

Negative 

reactance

𝜆

4
 

𝜆

2
 

3𝜆

4
 

𝜆 5𝜆

4
 

3𝜆

2
 

Open-circuit stub Short-circuit stub

0

Figure 7.6 Stubs 

 

Example 7.10: An ideal lossless 
𝜆

4
 extension of line 𝑍0 = 60 Ω is terminated with 𝑍𝐿. Find 

𝑍𝑖𝑛 of extension when  

(i) 𝑍𝐿 = 0 
(ii) 𝑍𝐿 = ∞ 
(iii) 𝑍𝐿 = 60 Ω 

Solution 

i. 𝑍𝑖𝑛 = 𝑍0                               where 𝛽𝑙 =
2𝜋

∞
×
𝜆

4
 

𝑍𝑖𝑛 = 𝑗 𝑍0 tan 𝛽𝑙 = ∞                for 𝑍𝐿 = 0 

ii. 𝑍𝑖𝑛 =
𝑍0

𝑗 tan𝛽𝑙
= 0      for        𝑍𝑖𝑛 = ∞ 

iii. 𝑍𝐿 = 60 Ω 

= 60 (
60 + 𝑗60 tan(𝜋/2)

60 + 𝑗60 tan(𝜋/2)
) = 60 Ω 

 

7.12 Standing Waves  

For a lossless line (𝛼 = 0), the total voltage at a point z from the sending end:  

⟹    𝑉 = (𝑉1𝑒
−𝑗𝛽𝑧 + 𝑉2𝑒

𝑗𝛽𝑧)𝑒𝑗𝜔𝑡 

Where 𝑒𝑗𝜔𝑡 indicates the time dependence.  
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From 𝜌 = (
𝑉2

𝑉1
) 𝑒2𝛾𝑙     [Eq. (7.10)]       

𝑉 = 𝑉1𝑒
𝑗𝜔𝑡 [𝑒−𝑗𝛽(𝑙−𝑥) + (

𝑉2
𝑉1
) 𝑒𝑗𝛽𝑙 𝑒−𝑗𝛽𝑥] 

For lossless line, 𝜌 = (
𝑉2

𝑉1
) 𝑒2𝛾𝑙 = (

𝑉2

𝑉1
) 𝑒𝑗2𝛽𝑙 

Since,  𝛼 = 0 ⟹ 𝑉 = 𝑉1𝑒
𝑗𝜔𝑡 𝑒−𝑗𝛽𝑙 [𝑒𝑗𝛽𝑥 + 𝑒−𝑗𝛽𝑥]            7.27  

This is the equation representing voltage standing wave (VSWR), made up of two 
component waves, one of forward direction, and the other of backward direction 
reflected from the load.  

 For a short circuit load 𝜌 = −1) and without the time dependence,  

𝑉 = 𝑗2𝑉1 𝑒
−𝑗𝛽𝑙 [𝑒𝑗𝛽𝑥 − 𝑒−𝑗𝛽𝑥]  = 𝑅𝑒𝑉1𝑒

−𝑗𝛽𝑙 sin 𝛽𝑥 = 𝑉               7.28 

The real part of the absolute value (modulus) of Eq. (7.28) is  

|𝑉| = 𝑅𝑒|[𝑗2𝑉2𝑒
−𝑗𝛽𝑙 sin 𝛽𝑥]| 

= 𝑅𝑒|[𝑗2𝑉1(cos𝛽𝑙 − 𝑗 sin 𝛽𝑙)] sin 𝛽𝑥| 

= 𝑅𝑒 |[2𝑉1(𝑗 cos 𝛽𝑙 + sin 𝛽𝑙)] sin 𝛽𝑥| 

                                |𝑉| = 2𝑉1 |sin𝛽𝑥| sin 𝛽𝑙                                         7.29  

 

 

Figure 7.7 Standing Waves 
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For an open-circuit load (𝜌 = 1) under the same conditions,  

𝑉 = 𝑉1𝑒
−𝑗𝛽𝑙(𝑒𝑗𝛽𝑥 + 𝑒−𝑗𝛽𝑥) = 2𝑉1𝑒

−𝑗𝛽𝑙 cos 𝛽𝑥 ⟹ |𝑉| = 2𝑉𝐿|cos𝛽𝑥| 

For a load in between short and open circuit, say 𝑒 = 0.6 + 𝑗0.3, 

𝑉 = 𝑉1𝑒
−𝑗𝛽𝑙[𝑒𝑗𝛽𝑥 + (0.6 + 𝑗0.3)𝑒−𝑗𝛽𝑥] 

|𝑉| = 𝑅𝑒[𝑉1𝑒
−𝑗𝛽𝑙 |𝑒𝑗𝛽𝑥 + (0.6 + 𝑗0.3)𝑒−𝑗𝛽𝑥|] 

From Eq. (7.29), for (𝑛 − 1)𝜋 = 𝛽𝑥, sin 𝛽𝑥 = 0, and the next minimum occurs at 

𝜋

𝛽
= (

𝜋

2𝜋
𝜆

) =
𝜆

2
 etc. 

It could be discerned that minima for short circuits occur at maxima for open circuit, and 
vice versa. Both the adjacent minima and maxima are separated by half a wavelength 
with the first minimum occurring at the load terminals for short circuit (maximum for 
open circuit). For a load in between, the minima and maxima the between zero and 2𝑉1, 
but with adjacent minima and maxima still half a wavelength apart.  

Voltage standing wave ratio (VSWR)  

 By definition,     VSWR ⟹ 𝑆 =
|𝑉𝑚𝑎𝑥|

|𝑉𝑚𝑖𝑛|
                                                                          

 1 ≤ 𝑆 ≤ ∞ and depends on the degree of mismatch at the load (reflection coefficient).  

From Eq. (7.27), plugging in 𝜌 = |𝜌|𝑒𝑗𝜓 

                            𝑉 = 𝑉1𝑒
−𝑗𝛽𝑙[𝑒𝑗𝛽𝑥 + 𝜌𝑒−𝑗𝛽𝑥]                                               7.30 

                           𝑉 = 𝑉1𝑒
−𝑗𝛽(𝑙−𝑥) [1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥)]                              7.31 

                                |𝑉𝑚𝑎𝑥| = 𝑉1 (1 + |𝜌|)                                                       7.32 

When (𝜓 − 2𝛽𝑥) = 2(𝑚 − 1)𝜋,𝑚 = 1,2,3, …, i.e when 2 (𝑚 − 1) is a positive even 
number, making cos(𝜓 − 2𝛽𝑥) positive unity,  

                                 |𝑉𝑚𝑖𝑛| = 𝑉1(1 − |𝜌|)                                                   7.33 

When 𝜓 − 2𝛽𝑥) = (2𝑚 − 1),𝑚 = 1, 2, 3, … .. i.e when 2𝑚 − 1 is a positive odd number, 
making cos(𝜓 − 2𝛽𝑥) negative unity,  

                 𝑆 =
𝑉1(1 + |𝜌|)

𝑉1(1 − |𝜌|)
=
1 + |𝜌|

1 − |𝜌|
= 𝑆                                                     7.34 
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⟹                                     |𝜌| =
𝑆 − 1

𝑆 + 1
                                                                7.36 

 

From Eq. (7.31) at the first voltage minimum, at 𝑥 = 𝑥𝑚𝑖𝑛 from the load,  

𝜓 − 2𝛽𝑥 = 𝜋 

𝜓 = 2𝛽𝑥𝑚𝑖𝑛 + 𝜋 ⟹ 𝑍 = 𝑍𝑚𝑖𝑛 = (
𝑉

𝐼
) 𝑥𝑚𝑖𝑛 

𝑍𝑚𝑖𝑛 =
𝑉𝑚𝑖𝑛
𝐼𝑚𝑖𝑛

=
𝑉1𝑒

−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥𝑚𝑖𝑛)]

(
𝑉1
𝑍0
) 𝑒−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛) − (

𝑉2
𝑍0
) 𝑒𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)

 

=
𝑉1𝑒

−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥𝑚𝑖𝑛) ]

𝑉1𝑒−𝑗𝛽
(𝑙−𝑥𝑚𝑖𝑛)[1 − |𝜌|𝑒𝑗𝜓−𝑗2𝛽𝑥𝑚𝑖𝑛 ]

𝑍0 

=
𝑉1𝑒

−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥𝑚𝑖𝑛) ]

𝑉1𝑒
−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 − |𝜌|𝑒𝑗(𝜓−𝑗2𝛽𝑥𝑚𝑖𝑛) ]

𝑍0 

    = 𝑍0 ×
1 + |𝜌|𝑒𝑗𝜋

1 − |𝜌|𝑒𝑗𝜋
 

But from trigonometry (Euler’s identity),  𝑒𝑗𝜋 = cos 𝜋 + 𝑗 sin 𝜋 = −1 

                 𝑍0 ×
1 − |𝜌|

1 + |𝜌|
=
𝑍0
𝑆
= 𝑍𝑚𝑖𝑛                                    7.37 

Normalized to the characteristic impedance,  

                                               
𝑍𝑚𝑖𝑛
𝑍0

= 𝑧𝑚𝑖𝑛                                              7.37a  

 

                                        𝑧𝑚𝑖𝑛 =
1

𝑆
                                                   7.37b 

Similarly, 

𝑍𝑚𝑎𝑥 = 𝑍0 ×
1 + |𝜌|

1 − |𝜌|
 

   𝑍𝑚𝑎𝑥 = 𝑍0 ×  𝑆          7.38 

  𝑆 = 𝑧𝑚𝑎𝑥        7.38a 
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Example 7.11: A 50 Ω lossless transmission line is terminated by a load impedance, 

 𝑍𝐿 = 50 − 𝑗75 Ω. If the incident power is 100 mW. Find the power dissipated by the 
load.  

Solution: 

The reflection coefficient  ⟹ 𝜌 =
𝑍𝐿−𝑍0

𝑍𝐿+𝑍0
 

𝜌 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

=
50 − 𝑗75 − 50

50 − 𝑗75 + 50
= 0.36 − 𝑗 0.48 = 0.60 𝑒−𝑗93 

Then,  〈𝑃𝑡〉 = (1 − |𝜌|2)〈𝑃𝑖〉 = [1 − (0.60)
2](100) = 64 mW   

Impedance at a voltage minimum/maximum  

Example 7.12: A lossless transmission line of 𝑍0 = 100 Ω is terminated by an unknown 
impedance. The termination is found to be at a maximum of the voltage standing wave 
and the VSWR is 5. What is the value of terminating impedance? 

Solution:  

We know that 𝑍𝑚𝑎𝑥 = 𝑍0. (VSWR) as the termination is at maximum of the voltage 
standing wave.  

𝑍𝑚𝑎𝑥 = 100 × 5 = 500 Ω 

 

7.13 Load Impedance on a Lossless Line  

This can be determined if the VSWR, wavelength (𝜆) and distance from the load to the 
nearest voltage minimum are known.  

Equation: 𝑉 = (𝑉1𝑒
−𝑗𝛽(𝑙−𝑥))[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥)] 

𝜓 − 2𝛽𝑥 = (2𝑚 − 1)𝜋,𝑚 = 1, 2, 3, … 

𝑚 = 1 ⟹ 𝑥 = 𝑥𝑚𝑖𝑛 ⟹ 𝜓− 2𝛽𝑥 = 𝜋 

⟹    𝜓 = 2𝛽𝑥𝑚𝑖𝑛 + 𝜋       

                                    𝑍𝐿 = 𝑍0
1 + 𝜌

1 − 𝜌
= 𝑍0

1 + |𝑒| 𝑒𝑗𝜓

1 − |𝑒|𝑒𝑗𝜓
                                7.39 

From Eq (7.37) 
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 𝑍𝐿 = 𝑍0 × [
1 + [

(𝑆 − 1)
(𝑆 + 1)

] 𝑒𝑗𝜓

1 − [
(𝑆 − 1)
(𝑆 + 1)

] 𝑒𝑗𝜓
] 

From Eq. (7.36)  

𝑍𝐿 = 𝑍0 × [
1 + [

(𝑆 − 1)
(𝑆 + 1)

] 𝑒𝑗(2𝛽𝑥𝑚𝑖𝑛+𝜋)

1 − [
(𝑆 − 1)
(𝑆 + 1)

] 𝑒𝑗(2𝛽𝑥𝑚𝑖𝑛+𝜋)
] 

𝑒𝑗𝜋 = cos 𝜋 + 𝑗 sin 𝜋 = −1 ⟹ 𝑍𝐿 = 𝑍0 × [
1 + [

(𝑆 − 1)
(𝑆 + 1)

] 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛

1 − [
(𝑆 − 1)
(𝑆 + 1)

] (𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)
] 

From Eq. (7.39)  

𝑍𝐿 =
(𝑆 + 1) + (𝑆 − 1)(−𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)

(𝑆 + 1) − (𝑆 − 1)(−𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)
× 𝑍0 

= 𝑍0 [
𝑆(1 − 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛) + (1 + 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)

𝑆(1 + 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛) + (1 − 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)
] 

Dividing both the numerator and denominator by 𝑒𝑗𝛽𝑥𝑚𝑖𝑛  

𝑍𝐿 = 𝑍0 [
𝑆(𝑒𝑗𝛽𝑥𝑚𝑖𝑛 − 𝑒𝑗𝛽𝑥𝑚𝑖𝑛) + (𝑒−𝑗𝛽𝑥𝑚𝑖𝑛 + 𝑒𝑗𝛽𝑥𝑚𝑖𝑛)

𝑆(𝑒−𝑗𝛽𝑥𝑚𝑖𝑛 + 𝑒𝑗𝛽𝑥𝑚𝑖𝑛) + (𝑒−𝑗𝛽𝑥𝑚𝑖𝑛 − 𝑒𝑗𝛽𝑥𝑚𝑖𝑛)
] 

= 𝑍0 ×
𝑆(−2𝑗 sin 𝛽𝑥𝑚𝑖𝑛) + 2 cos𝛽𝑥𝑚𝑖𝑛
𝑆(2 cos 𝛽𝑥𝑚𝑖𝑛) − 𝑗2 sin 𝛽𝑥𝑚𝑖𝑛

 

Dividing through by 2 cos 𝛽𝑥𝑚𝑖𝑛, 

𝑍𝐿 = 𝑍0  [
−𝑆𝑗 tan𝛽𝑥𝑚𝑖𝑛 + 1

𝑆 − 𝑗 tan𝛽𝑥𝑚𝑖𝑛
]                                   

                      𝑍𝐿 = 𝑍0 [
1 − 𝑗𝑠 tan𝛽𝑥𝑚𝑖𝑛
𝑆 − 𝑗 tan𝛽𝑥𝑚𝑖𝑛

]                                                  7.40 

Normalized load impedance, 
𝑍𝐿

𝑍0
, 

            𝑧𝐿 =
𝑍𝐿
𝑍0
=
1 − 𝑆 tanh 𝑗𝛽𝑥𝑚𝑖𝑛
𝑆 − tanh 𝑗𝛽𝑥𝑚𝑖𝑛

                                                        7.41 
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Example 7.13:  A 100 Ω line feeding the antenna has  VSWR = 2 and the distance from 
load to the first minima is 10 cm. Design a single stub matching to make VSWR =  1. 
Given 𝑓 =  150 MHz 

Solution: 

 𝑆 = VSWR = 2 

|𝜌| =
S − 1

S + 1
=
1

3
= 0.33 

F = 150 MHz 

𝜆 =
𝐶

𝑓
= 2 m 

 

We know that  

𝜓 − 2𝛽 𝑑𝑚𝑖𝑛 = 𝜋 

2𝛽𝑑𝑚𝑖𝑛 = 𝜓 − 𝜋 = 2 ×
2𝜋

2
× 0.1 = 0.2𝜋 

The position of stub  

𝑙𝜓 =
𝜆

4𝜋
 (cos−1(𝜌) − 2𝛽 𝑑𝑚𝑖𝑛) 

|𝑙𝜓| =
𝜆

4𝜋
(0.39𝜋 − 0.2𝜋) =

0.1

4𝜋
× (0.19𝜋) = 4.75 mm 

Length of stub = 𝑙𝑡 =
𝜆

2𝜋
tan−1 (

√1 − |𝜌|2

2|𝜌|
) 

=
𝜆

2𝜋
tan−1 (

√1 − |0.33|2

2(0.33)
) = 15 mm 

 

Example 7.14: An UHF transmission line operating at 1 GHz is connected to 𝑍𝐿 producing 

reflection coefficient 0.5∠30°. Design single stub matching. Find VSWR. 

Solution:   

f = 1 GHz 
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𝜆 =
3 × 108

1 × 109
= 0.3 m 

|𝜌| = 0.5 

S = VSWR =
1 + |𝜌|

1 − |𝜌|
=
1.5

0.5
= 3 

𝜓 = 30° =
𝜋

6
 rad 

𝑙𝑠 =
𝜆

4𝜋
(𝜓 + 𝜋 − cos−1(|𝜌|)) =

𝜆

4𝜋
(
𝜋

6
+ 𝜋 − cos−1(0.5)) 

=
𝜆

4𝜋
(
7𝜋

6
−
𝜋

3
) =

𝜆

4𝜋
×
5𝜋

6
=
5𝜆

24
=
1.5

24
= 6.25 cm 

Length of stub = lt =
𝜆

2𝜋
tan−1 (

√1 − |𝜌|2

2|𝜌|
) 

=
𝜆

2𝜋
tan−1 (

√1 − (0.5)2

2 × 0.5
) 

=
𝜆

2𝜋
× 0.227𝜋 = 3.4 cm 

 

7.14 Further Examples 

1. A transmission line with the characteristic impedance of 250 Ω is terminated in a 
load of 100 Ω. If the load is dissipating a continuous sinusoidal power of 50 watts, 
calculate:  

(i) the reflection coefficient  
(ii)  Voltage standing wave ratio  
(iii)  reflected voltage |𝑉𝑟| 

 Solution: 

(i)  |𝜌| = |
100−250

100+250
| = 0.43 

(ii) 𝑆 = 𝑉𝑆𝑊𝑅 =
(|𝜌|+1)

(1−|𝜌|)
=

1.43

0.57
= 2.50 

(iii)  50 =
(𝑉𝑚𝑎𝑥)(𝑉𝑚𝑖𝑛)

𝑍0
 

50 =
(𝑉𝑖 + 𝑉𝑟)(𝑉𝑖 − 𝑉𝑟)

250
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𝑉𝑖
2 − 𝑉𝑟

2 = 12500 

𝑉𝑟 = √𝑉𝑖
2 − 12,500 = 0.43𝑉𝑖 

𝑉𝑖
2 = (0.43𝑉𝑖)

2 + 12,500 

𝑉𝑖 = ±√
12500

(1 − 0.432)
 

= 123.84 V 

2. A lossless transmission line with 𝑍0 = 60 Ω is 40 m long and operates at 3 MHz, 
the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω. Given that 𝑢 = 0.8𝑐 on the 
line, determine analytically. 𝑐 = 3 × 108 m/s:  

(i)  Load admittance 
(ii)  Voltage reflection coefficient (magnitude & phase) 
(iii)  VSWR  
(iv)  𝑍𝑖𝑛 
(v)  𝑍𝑚𝑎𝑥  
(vi)  𝑍𝑚𝑖𝑛 

 
Solution: 

(𝑖)                                              𝑌𝐿 =
1

𝑍𝐿
                                                  

𝑌𝐿 =
1

(120 + 𝑗60)
 

=
(120 − 𝑗60)

(14400 + 3600)
 

𝑌𝐿 = 0.0067 − 𝑗0.00333 Ω 

(𝑖𝑖)                                     𝜌 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

                                                   

𝜌 =
(120 + 𝑗60 − 80)

(120 + 𝑗60 + 80)
 

 

𝜌 =
(40 + 𝑗60)

(200 + 𝑗60)
 

 

=
(2 + 𝑗3)

(10 + 𝑗3)
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=
(2 + 𝑗3)(10 − 𝑗3)

(100 + 9)
 

=
(20 + 9 + 𝑗30 − 𝑗6)

109
 

𝜌 = √292 + 242∠ tan−1 (
24

29
) 

𝜌 = 0.34∠39.64𝑜 

(𝑖𝑖𝑖)                                 𝑉𝑆𝑊𝑅 =
(1 + 0.34)

(1 − 0.34)
=
1.34

0.66
= 2.03                     

     (𝑖𝑣)     𝜆 =
𝑢

𝑓
=
(0.8)(3 × 108)

3
× 10−6 = 80 m ⟹ 𝛽𝑙 =

2𝜋

𝜆
(
40𝜆

80
) = 𝜋 

𝑍𝑖𝑛 = 𝑍0 [
𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑙

𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑙
] 

= 80 [
120 + 𝑗60 + 𝑗80 tan𝜋

80 + 𝑗(120 + 𝑗60) tan𝜋
] 

= 80 [
120 + 𝑗60

80
] 

𝑍𝑖𝑛 = 120 + 𝑗60 Ω 

 (v)        𝑍𝑚𝑎𝑥 = 𝑍0 × 𝑆 = 80(2.03) = 162.4 Ω 

        (vi)                               𝑍𝑚𝑖𝑛 =
𝑍0

𝑆
=

80

2.03
= 39.41 Ω                      

3. A distortionless line (𝑅𝐶 = 𝐺𝐿) has  𝑍0 = 80Ω, 𝛼 = 25 mNP/m, 𝑢 = 0.5, where c 
is the speed of the light in a vacuum. Determine  

(i)  R 
(ii)   L 
(iii)   G 
(iv)   C  
(v)   𝜆   at 100MHz. (𝑐 = 3 × 108 m/s) 

 
Solution: 

𝑅𝐶 = 𝐺𝐿 ⟹ 𝐺 =
𝑅𝐶

𝐿
 

⟹ 𝛾 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) = √𝑅𝐺√(1 +
𝑗𝜔𝐿

𝑅
) (+

𝑗𝜔𝐶

𝐺
) 
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𝛾 = √𝑅𝐺 (1 +
𝑗𝜔𝐿

𝑅
) (1 +

𝑗𝜔𝐿

𝑅
) = √𝑅𝐺 (1 +

𝑗𝜔𝐿

𝑅
) = 𝛼 + 𝑗𝛽 

𝛼 = √𝑅𝐺 

𝛽 = √𝑅𝐺 (
𝜔𝐿

𝑅
) 

= √𝑅𝐺 (
𝜔𝐶

𝐺
) 

= 𝜔𝐶√
𝑅

𝐺
 

= 𝜔(√
𝐿

𝐶
) 

𝛽 = 𝜔√𝐿𝐶 

𝑍0 = √
𝑅

𝐺
 

𝛼𝑍0 = (√𝑅𝐺) (√
𝑅

𝐺
) = 𝑅 

𝑅 = (25 × 10−3) (80) 

𝑅 = 2 Ω 

𝑢 =
𝜔

𝛽
=

𝜔

𝜔√𝐿𝐶
=

1

√𝐿𝐶
⟹

𝑍0
𝑢
=

(√
𝑅
𝐺)

𝑢
= (√

𝐿

𝐶
)√𝐿𝐶 = 𝐿 

𝐿 =
80

(0.5)(3 × 108)
 

𝐺 =
𝐿2

𝑅
=
(25 × 10−3)2

2
 

= 625 ×
10−6

2
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𝐺 = 312.54 V/m 

𝐶 =
𝐺𝐿

𝑅
=
(312.5 × 10−6)(533.33 × 10−9)

2
 

𝐶 = 83.33 pF 

𝜆 =
𝑐

𝑓
=
0.5 × 3 × 108

100
× 10−6 

𝜆 = 1.5 m 

7.15 Exercise  

1. (i)  In not more than 15 words, define (explain) what is meant by transmission 
 line 

(ii) Sketch and completely label 2 types of Transmission line 
(iii) Name and explain the parameters involved in a typical transmission line. 

2. (i)  Define reflection coefficient  
(ii) Under what load conditions will there be total reflection from the load  
(iii) For lines of zero loss for a quarter wave transformer, determine the 
expression for the characteristic impedance in forms of the input and load 
impedance. 
(iv) In what way does quarter the wavelength section of a transmission line 
act as an impedance transformer? 

3. (i) What is a stub, and how is it applied in transmission lines?  
(ii) Derive the expression for reflection coefficient in terms of load and 
characteristic impedances.  

4. What does (i) VSWR = 1 (ii) VSWR = ∞, signify with reference to matching of 
 the transmission line to the load?  
5. A transmission line with the characteristic impedance of 250 Ω is terminated 
 in a load of 100 Ω. If the load is dissipating a continuous sinusoidal power of 
 50 watts, calculate:  

(i) The reflection coefficient  
(ii) Voltage standing wave ratio  
(iii) Reflected voltage |𝑉𝑟| 

6. Two voltage waves having equal frequencies and amplitudes propagate in 
 opposite directions in a lossless transmission line.  

(i) Determine the total voltage as a function of distance and time.  
(ii) What kind of a wave results (relating its behaviour with respect to position 
and time)?  
(iii)  Where do the zeros in the amplitude (i.e., null position) occur? 
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7. A lossless transmission line of 100 cm and operates at a frequency of 300 MHz, 
 the line parameters are 𝐿 = 0.5 μH/m and 𝐶 = 200 pF/m. determine  
(a) The characteristic impedance 
 (b) the phase constant  
 (c) the phase velocity.  
8. (i) Define the characteristic impedance of a typical transmission line  
 (ii) in what other way can it be viewed  
9. An airline has a characteristic impedance of 60 Ω and a phase constant of 2 rad/m 
at 80 MHz, calculate the inductance/meter and the capacitance/meter of the line. 
(𝑅 = 0 = 𝐺, 𝛼 = 0) 
10.  What is meant by distortionless lines? 
11.  A distortionless line (𝑅𝐶 = 𝐺𝐿) has 𝑍0 = 160 Ω, 𝛼 = 50𝑚Np m⁄ , 𝑢 = 0.8, 
 where c is the speed of the light in a vacuum. Determine R, L, G, C and 𝜆 at  
 100 MHz, (𝑐 = 3 × 108 m/s) 
12.     (i) Show that at high frequencies: 

 (𝑅 ≪ 𝜔𝐿, 𝐺 ≪ 𝜔𝐿), 𝛾 = (
𝑅

2
√
𝐶

𝐿
+
𝐺

2
√
𝐿

𝐶
) + 𝑗𝜔√𝐿𝐶 

  (ii) Obtain a similar formula for 𝑍0 
13. (i) Define reflection coefficient 
 (ii) under what load conditions will there be total reflection from the load  
14. Derive the expression for reflection coefficient in terms of load and characteristic 
impedances.  
15. (i) Define the characteristic impedance of a typical transmission line  

        (ii)  In what other way can it be viewed  

16. An airline has a characteristic impedance of 80 Ω and a phase constant of 3.5 
rad/m at 100 MHz, calculate the inductance/meter and the capacitance/meter of the 
line. (𝑅 = 0 = 𝐺, 𝛼 = 0) 
17. What is meant by distortionless lines? 
18. A distortionless line (𝑅𝐶 = 𝐺𝐿) has 𝑍0 = 80 Ω, 𝛼 = 25 𝑚Np m⁄ , 𝑢 = 0.5𝑐, where 
c is the speed of the light in a vacuum. Determine R, L, G, C and 𝜆 at  
100 MHz, (𝑐 = 3 × 108 m/s) 
19. An airline has a characteristic impedance of 200 Ω and a phase constant of 
4rad/m at 180 MHz, Calculate the inductance/meter and the capacitance/meter of 
the line. (𝑅 = 0 = 𝐺, 𝑎 = 0) 
20. A distortionless line (𝑅𝐶 = 𝐺𝐿) has 𝑍0 = 120 Ω, 𝛼 = 50 𝑚Np m⁄ , 𝑢 = 0.75𝑐, 
where c is the speed of the light in a vacuum. Determine at 160 MHz, (𝑐 =
3 × 108 m/s) 

(i) R 
(ii)  L 
(iii)  G 
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(iv)  C  
(v)  𝜆  

21.  A lossless transmission line is 100 cm and operates at a frequency of 400 MHz, 
the line parameters are 𝐿 = 0.75 μH/m and 𝐶 = 300 pF/m. determine 
 (a) the characteristic impedance 
 (b) the phase constant 
 (c) the phase velocity. 
22. A load of 25 + 𝑗50 Ω terminates a 50 Ω line, given that the line is 60 cm long and 
the signal wavelength 2 m, 𝑐 = 3 × 108 m/s. Determine analytically:  

(i) The load admittance 
(ii) The reflection coefficient (amplitude and phase)  
(iii) Voltage Standing Wave Ratio 
(iv) input impedance.   

23. A lossless transmission line of characteristic impedance 150 Ω is terminated in a 
load of 350 + 𝑗200 Ω, given that the length of the line is 80 cm and the signal 
wavelength is 50cm, 𝑐 = 3 × 108 m/s determine analytically the: 

(i) load admittance  
(ii) reflection coefficient VSWR  
(iii) distance between the load and the nearest voltage minimum to it  
(iv) normalized input impedance. 

24. A transmission line with the characteristic impedance of 120 Ω is terminated in a 
load of 80 Ω. If the load is dissipating a continuous sinusoidal power of 40 watts, 
calculate:  

(i) The reflection coefficient 
(ii) Voltage standing wave ratio 
(iii) Reflected voltage |𝑉𝑟| 

25. A lossless transmission line with 𝑍0 = 60 Ω is 80 m long and operates at 6 MHz, 
the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω. Given that 𝑢 = 0.5 𝑐 on the 
line, determine analytically. 𝑐 = 3 × 108 m/s:  

(vii) Load admittance 
(viii) voltage reflection coefficient (magnitude & phase) 
(ix)  VSWR and  𝑍𝑖𝑛 
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CHAPTER 8 

UHF LINES AND SMITH CHART 
 

8.0 UHF Lines 

The transmission lines are required to carry signals in ultra-high frequency (UHF) range 
and its characteristics is entirely different from normal telephone communication. It 
allows several simplifying approximations and salient features are: 

(a) The line considered a considerable skin effect so that almost all the 
current may be assumed to pass through the outer surface of the conductor 
hence, the internal inductance of wires may be considered to be zero. 
(b) With these high frequencies, reactance from 𝜔𝐿 is much larger than 
resistance R. this is due to the fact that the a.c. resistance of the wires 
increases in proportion to square root of frequency ′𝑓 because of the skin 
effect while the inductive reactance increases directly as frequency 𝑓 
(c) These lines are properly constructed so that the shunt conductance G may 
be considered to be zero at all frequencies. Transmission lines are studied 
under the consideration that at radio frequencies. 
(d) Low dissipation lines—in which case R is small in comparison with 𝜔𝐿  
(e) Zero dissipation lines or lossless lines—in which case R is negligible in 
comparison with 𝜔𝐿 
 

8.1 Impedance Matching and the Smith Chart: The Key Note 

At high radio frequencies, the elements like wire inductances, interlayer capacitances, 
and conductors and resistances have a significant yet unpredictable impact on the 
matching network. Higher than a few tens of megahertz, theoretical Calculations and 
simulations are often insufficient. In-situ RF lab measurements, along with tuning work, 
have to be considered for determining the proper final values. Computational values are 
needed to set up the type of structure and target component values. 

The various ways of impedance matching, includes: 

• The Computer Simulations: This is Complex but simple to apply, as such 
simulators are dedicated to differing design functions but not of that of 
impedance matching. Designers have to get used to the multiple data inputs that 
need to be entered and the correct formats. They equally need the expertise to 
find the useful data among the tons of results coming out. That means that a 
circuit-simulation software is not pre-installed on computers, unless they are 
dedicated to such an application. 
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• The Manual Computations: Tedious due to the length ("kilometric") of the 
equations and the complex nature of the numbers to be manipulated. 

 Instinct: This can be acquired only after one has devoted many years to the RF 
industry. In short, this is for the super-specialist. Smith Chart: Upon which this article 
concentrates. 

 

Figure 8.1. Fundamentals of Impedance and the Smith Chart. 

 

8.2 Smith Chart  

The Smith chart, invented by Phillip H. Smith (1905–1987), and T. Mizuhashi, is a 
graphical calculator or nomogram designed for electrical and electronics engineers 
specializing in radio frequency (RF) engineering to assist in solving problems with 
transmission lines and matching circuits. The Smith chart can be used to simultaneously 
display multiple parameters including impedances, admittances, reflection coefficients, 
scattering parameters, noise figure circles, constant gain contours and regions for 
unconditional stability, including mechanical vibrations analysis. The Smith chart is most 
frequently used at or within the unity radius region. However, the remainder is still 
mathematically relevant, being used, for example, in oscillator design and stability 
analysis. While the use of paper Smith charts for solving the complex mathematics 
involved in matching problems has been largely replaced by software based methods, 
the Smith charts display is still the preferred method of displaying how RF parameters 

https://en.wikipedia.org/wiki/Phillip_Hagar_Smith
https://en.wikipedia.org/wiki/Nomogram
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Transmission_line
https://en.wikipedia.org/wiki/Impedance_matching
https://en.wikipedia.org/wiki/Electrical_impedance
https://en.wikipedia.org/wiki/Admittance
https://en.wikipedia.org/wiki/Reflection_coefficient
https://en.wikipedia.org/wiki/Scattering_parameters
https://en.wikipedia.org/wiki/Noise_figure
https://en.wikipedia.org/wiki/Stability_theory
https://en.wikipedia.org/wiki/Vibration
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Stability_theory
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behave at one or more frequencies, an alternative to using tabular information. Thus, 
most RF circuit analysis software includes a Smith chart option for the display of results 
and all but the simplest impedance measuring instruments can display measured results 
on a Smith chart display. 

Smith transmission line chart is a graphical technique of solving transmission line 
problems. The chart consists of three sets of circular arcs and one straight line, and any 
value of impedance or admittance can be represented. The horizontal line that divides 
the chat into upper and lower halves is the locus of impedances and admittances with 
zero reactive and susceptive component, i.e.:  

𝑧𝐿 = 𝑟 + 𝑗0, 𝑦𝐿 = 𝑔 + 𝑗0 in normalized modes. (“Normalized” simply means dividing the 
given quantity (ohms) by the characteristic impedance 𝑍0). The sets of circles all have 
their centers on the horizontal line, and they all meet at the right side of the chart. The 
complete circles represent the normalized resistive or conductive components of 
impedance or admittance (r or g). The center of the chart has coordinates (1, 0), meaning 
that the complete circle represents unity normalized resistance or conductive, the zero 
standing for zero reactance or susceptance. The goal of matching is to change the 
impedance at the matching point to that of value of (1,0). 

 The second set of circular arcs above the horizontal line represents the positive 
imaginary components of impedance or admittance. The third set of arcs below the 
horizontal line represent the negative imaginary components of impedance or 
admittance.  

 The centers of the arcs representing the positive and negative imaginary 
components all lie on a vertical line at the right end.  

 With any circle drawn with centers at the middle of the chart (1,0), and a 
diameter drawn to cut across the circle, then the normalized impedance and admittance 
are at the opposite ends of the diameters of the circle. For example, given 𝑧𝐿 = 0.35 −
𝑗0.75, on the lower half of the chart: with center at (1,0) (i.e, middle of the chart), radius 
at z, draw a circle. From z draw a diameter cutting the circle and ending on the other side 
of the circle. It is found that the diameter intersects the circle on the other side (positive 
imaginary components of the impedance or susceptance) at coordinates about 
0.5 … .+ 𝑗1.1  

 Since Smith chart is a circular plot with a lot of interlaced circles on it. When used 
correctly, matching impedances, with apparent complicated structures, can be made 
without any computation. The only effort required is the reading and following of 
values along the circles. 

The development of Smith chart was done by examining the load where the impedance 
must be matched. Rather than considering its impedance directly, let its reflection 

https://en.wikipedia.org/wiki/Table_(information)


   
  Circuit Analysis with Laplace Transform 

197 
 

coefficient denote 𝜌, which is used to characterize a load (such admittance, gain, and 
transconductance). The 𝜌𝐿 is more useful when dealing with RF frequencies. 

𝑉𝑖𝑛𝑐  

𝑉𝑟𝑒𝑓𝑙  

𝑍𝐿  

𝑍0 

𝜌𝐿 =
𝑉𝑟𝑒𝑓𝑙

𝑉𝑖𝑛𝑐
 

 

Figure 8.2 Impedance at the load 

We know the reflection coefficient is defined as the ratio between the reflected voltage 
wave and the incident voltage wave as shown in Fig. 8.2.  

The amount of reflected signal from the load is dependent on the degree of  mismatch 
between the source impedance and the load impedance. Its  expression has been 
defined as follows:  

                                𝜌𝑣 =
𝑉𝑟𝑒𝑓𝑙

𝑉𝑖𝑛𝑐
=
Z𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

= 𝜌𝑟 + 𝑗𝜌𝑖                                              8.1 

 Because the impedances are complex numbers, the reflection coefficient will be a 
complex number as well. 

 In order to reduce the number of unknown parameters, it is useful to freeze the 
ones that appear often and are common in the application. Here 𝑍0 (the characteristic 
impedance) is often a constant and a real industry normalized value, such as 50 Ω, 75 Ω, 
100 Ω and 600 Ω. We can then define a normalized load impedance by: 

                                         𝑧𝐿 =
𝑍𝐿
𝑍0
=
(𝑅 + 𝑗𝑋)

𝑍0
= 𝑟 + 𝑗𝑥                                             8.2 

For simplification, we can rewrite the reflection coefficient formula as: 

         𝜌𝑣 = 𝜌𝑟 + 𝑗𝜌𝑖 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

=
(𝑍𝐿 − 𝑍0)/𝑍0
(𝑍𝐿 + 𝑍0)/𝑍0

=
𝑧 − 1

𝑧 + 1
=
𝑟 + 𝑗𝑥 − 1

𝑟 + 𝑗𝑥 + 1
         8.3 

Clearly, we can see the direct relationship between the load impedance 𝑍𝐿 and its 
reflection coefficient. Unfortunately, the complex nature of the relation is not useful 
practically, so we can use the Smith chart as a type of graphical representation of the 
above equation. 
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To build the chart, the equation must be rewritten to extract standard  geometrical 
figures. 

                                 𝑧𝐿 = 𝑟 + 𝑗𝑥 =
1 + 𝜌𝑖
1 − 𝜌𝑖

=
1 + 𝜌𝑟 + 𝑗𝜌𝑖
1 − 𝜌𝑟 − 𝑗𝜌𝑖

                                       8.4 

And 

                                                   𝑟 =
1 − 𝜌𝑟

2 − 𝜌𝑖
2

1 + 𝜌𝑟2 − 2. 𝜌𝑟 + 𝜌𝑖
2                                           8.5  

By setting the real parts and the imaginary parts of equation obtain two independent, 
new relationships: 

                     𝑟 =
1 − 𝜌𝑟

2 − 𝜌𝑖
2

1 + 𝜌𝑟
2 − 2. 𝜌𝑟 + 𝜌𝑖

2                                             8.6 

                     𝑥 =
2. ρ𝑖

1 + 𝜌𝑟2 − 2. 𝜌𝑟 + ρ𝑖
2                                             8.7 

Note that this equation is a relationship in the form of a parametric 
equation (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑅2 in the complex plane (𝜌𝑟 , 𝜌𝑖) of a 

circle centered at the coordinates (
𝑟

𝑟
+ 1,0) and having a radius of 1/1 +

 𝑟. 

   𝑟 + 𝑟. 𝜌𝑟
2 − 2𝑟. 𝜌𝑟 + 𝑟. 𝜌𝑖

2 = 1 − 𝜌𝑟
2 − 𝜌𝑖

2   8.8 

   𝜌𝑟
2 + 𝑟. 𝜌𝑖

2 − 2𝑟. 𝜌𝑟 + 𝑟. 𝜌𝑖
2 + 𝜌𝑖

2 = 1 − 𝑟   8.9 

   (1 + 𝑟). 𝜌𝑟
2 − 2𝑟. 𝜌𝑟 + (𝑟 + 1)𝑖

2 = 1 − 𝑟   8.10 

                                                       𝜌𝑟
2 −

2. 𝑟2

𝑟 + 1
∙ 𝜌𝑟 + 𝜌𝑖

2 =
1 − 𝑟

1 + 𝑟
                                 8.11      

                𝜌𝑟
2 −

2. 𝑟2

𝑟 + 1
∙ 𝜌𝑟 +

𝑟2

(𝑟 + 1)2
+ 𝜌𝑖

2 −
𝑟2

(𝑟 + 1)2
=
(1 − 𝑟)

(1 + 𝑟)
                          8.12 

                   (𝜌𝑟 −
𝑟

𝑟 + 1
)
2

+ 𝜌𝑖
2 =

1 − 𝑟

1 + 𝑟
+

𝑟2

(1 + 𝑟)2
=

1

(1 + 𝑟)2
                          8.13 

                                 (𝜌𝑟 −
𝑟

𝑟 + 1
)
2

+ 𝜌𝑖
2 = (

1

1 + 𝑟2
)
2

                                             8.14 

 

 The points situated on a circle are all the impedances characterized by the same 
real impedance part value. For example, the circle, 𝑟 =  1, is centered at the coordinates 



   
  Circuit Analysis with Laplace Transform 

199 
 

(0.5, 0) and has a radius of 0.5. It includes the point (0, 0), which is the reflection zero 
point (the load is matched with the characteristic Impedance). A short circuit, as a load, 
presents a circle centered at the coordinate (0, 0) and has a radius of 1. For an open-
circuit load, the circle degenerates to a single point (centered at 1, 0 and with a radius of 
0). This corresponds to a maximum reflection coefficient of 1, at which the entire 
incident wave is reflected totally. 

 

 

Figure 8.3 Smith Chart 

 

When developing the Smith chart, there are certain precautions that should be noted. 
These are among the most important: 

• All the circles have one same, unique intersecting point at the Coordinate 

• The zero W circle where there is no resistance (r = 0) is the largest one  

• The infinite resistor circle is reduced to one point at (1, 0) 

• There should be no negative resistance. If one (or more) should occur, we 
will be faced with the possibility of oscillatory conditions. 

• Another resistance value can be chosen by simply selecting another circle 
corresponding to the new value. 
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8.3 Back to the Drawing Board 

 Moving on, we use equations above to further develop equations into another 
parametric equation. This results in 

                            𝑥 + 𝑥. 𝜌𝑟
2 − 2. 𝑥. 𝜌𝑟 + 𝑥. 𝜌𝑖

2 = 2. 𝜌𝑖                                                8.15  

                     1 + 𝜌𝑟
2 − 2. 𝜌𝑟 + 𝜌𝑖

2 = 2𝜌𝑖/𝑥                                                8.16 

                      𝜌𝑟
2 − 2. 𝜌𝑟 + 1 + 𝜌𝑖

2 −
2

𝑥
𝜌𝑖 = 0                                           8.17 

            𝜌𝑟
2 − 2. 𝜌𝑟 + 1 + 𝜌𝑖

2 −
2

𝑥
𝜌𝑖 +

1

𝑥2
−
1

𝑥2
= 0                                  8.18 

                         (𝜌𝑟 − 1)
2 + (𝜌𝑖 −

1

𝑥
)
2

=
1

𝑥2
                                              8.19 

Again, Eq. 8.19 is a parametric equation of the type (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑅2 in the 
complex plane (𝑒𝑟 , 𝑒𝑖) of a circle centered at the coordinates (1, 1/𝑥) and having a 
radius of 1/𝑥 

 

Figure 8.4 Smith chart 

The points situated on a circle are all the impedances characterized by the same 
imaginary impedance part value 𝑥. For example, the circle 𝑥 = 1 is centered at 
coordinate (1, 1) and has a radius of 1. All circles (constant x) include the  

point (1,0). Differing with the real part circles, 𝑥 can be positive or negative. This explains 
the duplicate mirrored circles at the bottom side of the complex plane. All the circle 
centers are placed on the vertical axis, intersecting the point 1. 
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8.4 Get the Picture 

To complete our Smith chart, we superimpose the two circles' families. It can 
then be seen that all of the circles of one family will intersect all of the circles of the 
other family. Knowing the impedance, in the form of 𝑟 + 𝑗𝑥, the corresponding reflection 
coefficient can be determined. It is only necessary to find the intersection point of the 
two circles corresponding to the values 𝑟 and 𝑥 

 

8.5 The Reciprocation 

 The reverse operation is also possible. Knowing the reflection coefficient, find the 
two circles intersecting at that point and read the corresponding values r and x on the 
circles. The procedure for this is as follows: 

• Determine the impedance as a spot on the Smith chart. 

• Find the reflection coefficient (G) for the impedance. 

• Having the characteristic impedance and G, find the impedance. 

• Convert the impedance to admittance. 

• Find the component values for the wanted reflection coefficient (in 
 particular the elements of a matching network). 

 

8.6  To Extrapolate 

 Because the Smith chart resolution technique is basically a graphical method, the 
precision of the solutions depends directly on the graph definitions. Here is an example 
that can be represented 

Let’s compare the two coordinates:  

0.35 − 𝑗0.75 and 0.5… . . +𝑗 1.1 

𝑧𝐿 = 0.35 − 𝑗0.75 = √0.352 + 0.752 ∠ tan−1
0.75

0.35
 

= 0.828 ∠ − 64. 98° 

1

𝑧𝐿
=

1

0.828∠ − 64.98°
 =

1∠64.98°

0.828
 

=
cos 64.98° + 𝑗 sin 64.98°

0.828
= 

0.51 + 𝑗 1.095 ≅ 0.5… .+𝑗 1.1 = 𝑦 
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So, 𝑧𝐿 and its reciprocal y, which is the normalized admittance, are found to lie at the 
opposite ends of the diameters of the circle centered at coordinates (1,0)! Herein lies 
one great use of which the smith chart is made.  

 

8.7 Black Magic Design 

The Smith chart is plotted on the complex reflection coefficient plane in two dimensions 
and is scaled in normalised impedance (the most common), normalised admittance or 
both, using different colours to distinguish between them. These are often known as the 
Z, Y and YZ Smith charts respectively. Normalised scaling allows the Smith chart to be 
used for problems involving any characteristic or system impedance which is represented 
by the center point of the chart. The most commonly used normalization impedance is 
50 ohms. Once an answer is obtained through the graphical constructions described 
below, it is straightforward to convert between normalised impedance (or normalised 
admittance) and the corresponding unnormalized value by multiplying by the 
characteristic impedance (admittance). Reflection coefficients can be read directly from 
the chart as they are unitless parameters.  

The Smith chart has a scale around its circumference or periphery which is graduated in 
wavelengths and degrees. The wavelengths scale is used in distributed component 
problems and represents the distance measured along the transmission line connected 
between the generator or source and the load to the point under consideration. The 
degrees’ scale represents the angle of the voltage reflection coefficient at that point. The 
Smith chart may also be used for lumped-element matching and analysis problems.  

Use of the Smith chart and the interpretation of the results obtained using it requires a 
good understanding of AC circuit theory and transmission-line theory, both of which are 
prerequisites for RF engineers.  

As impedances and admittances change with frequency, problems using the Smith chart 
can only be solved manually using one frequency at a time, the result being represented 
by a point. This is often adequate for narrow band applications (typically up to about 5% 
to 10% bandwidth) but for wider bandwidths it is usually necessary to apply Smith chart 
techniques at more than one frequency across the operating frequency band. Provided 
the frequencies are sufficiently close, the resulting Smith chart points may be joined by 
straight lines to create a locus. 
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The Normalised Impedance Smith chart 

A wave travels down a transmission line of characteristic impedance Z0, terminated at a 
load with impedance 𝑍𝐿 and normalised impedance z = ZL/Z0. There is a signal reflection 
with coefficient 𝜌. Each point on the Smith chart simultaneously represents both a value 

of 𝑧𝐿 (bottom left), and the corresponding value of 𝜌 (bottom right), related by 𝑧𝐿 =
1+𝜌

1−𝜌
 

Using transmission-line theory, if a transmission line is terminated in an impedance (ZT) 
which differs from its characteristic impedance (Z0), a standing wave will be formed on 
the line comprising the resultant of both the incident or forward (vi) and the reflected or 
reversed (vr) waves. Using complex exponential notation: 

The normalised impedance ⟹ 𝑧𝐿 =
𝑅 + 𝑗𝜔𝐿

𝑍0
                                                        

The SI unit of impedance is the ohm with the symbol of the uppercase Greek letter 
omega (Ω) and the SI unit for admittance is the Siemens with the symbol of an upper 
case letter S or moh (Ʊ). Normalised impedance and normalised admittance are 
dimensionless. Actual impedances and admittances must be normalised before using 
them on a Smith chart. Once the result is obtained it may be de-normalized to obtain the 
actual result. 

https://en.wikipedia.org/wiki/Transmission_line
https://en.wikipedia.org/wiki/Characteristic_impedance
https://en.wikipedia.org/wiki/Electrical_impedance
https://en.wikipedia.org/wiki/Signal_reflection
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https://en.wikipedia.org/wiki/Standing_wave
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https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/International_system_of_units
https://en.wikipedia.org/wiki/Electrical_impedance
https://en.wikipedia.org/wiki/Ohm
https://en.wikipedia.org/wiki/Greek_alphabet
https://en.wikipedia.org/wiki/Omega
https://en.wikipedia.org/wiki/SI_unit
https://en.wikipedia.org/wiki/Admittance
https://en.wikipedia.org/wiki/Siemens_(unit)
https://en.wikipedia.org/wiki/Dimensionless
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Figure 8.5 
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Example 8.1: A lossless transmission line of characteristics impedance 100 Ω is 
terminated in a load of 300 + 𝑗 150 Ω. Determine with the use of Smith Chart:         

i. The reflection coefficient  
ii. The load admittance  
iii. VSWR  
iv. Distance between the load and the nearest voltage minimum to it.  
v. Normalized input impedance 𝑧𝑖𝑛, given that the length of the line is 92cm 
and the signal wavelength is 40 cm.  

Solution: 

Normalized load impedances,  

𝑧𝐿 =
𝑍𝐿
𝑍0
=
(300 + 𝑗150)

100
 

𝑧𝐿 = 3 + 𝑗1.5 

We plot the normalized impedance in the smith chart as shown in the Fig.8.6. 

a circle drawn through 𝑧𝐿 cuts out 𝑆 = 3.8 = VSWR next, draw a line from 𝑧𝐿 through 
the center (1,0) to angle of reflection coefficient (the innermost ring on the outside of 
the chart), giving 𝜓 = 160. 

 The modulus (absolute value) of the reflection coefficient, |𝜌|, measured on the 
scale in Fig. 8.6 gives approximately 0.6.  

⟹ 𝜌 = |𝜌|𝑒𝑗𝜓 

𝜌 = 0.6𝑒𝑗16
𝑜
 

𝜌 = 0.6𝑒𝑗0.28 

Load admittance 𝑦𝐿 across the circle from 𝑧𝐿 on the opposite side is approximately 

 𝑦𝐿 = 0.26 − 𝑗0.14 .  
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𝑦
𝐿
≈

0
.2

6
−
𝑗0

.1
4

 
𝑧 𝑖
𝑛
≈

0
.3

+
𝑗0

.1
9

 

𝑧 𝑚
𝑖𝑛
≈

0
.2

6
 

𝑧 𝐿
=

3
+
𝑗1

.5
 

𝑧 𝑚
𝑎
𝑥
≈

3
.8

 

Figure 8.6 
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The length of the line is defined as: Number of wavelengths = (
92

40
) 𝜆 = 2.3𝜆 

Wavelength towards generator (WTG) reading at the load point extension line is 0. 23𝜆 

Therefore, 𝑧𝑖𝑛 is at  2.3λ + 0.23λ = 2.53λ 

1 revolution = 0.5𝜆 (half a wavelength)  

⟹ 2.53𝜆 = 5𝑟𝑒𝑣𝑠 + 0.03𝜆 

𝑧𝑖𝑛 is therefore, at 0.03 on WTG scale of Fig. 8.6, reading 𝑧𝑖𝑛 ≈ 0.26 + 𝑗0.19 

𝑧𝑚𝑖𝑛 =
1

𝑠
[𝐄𝐪. (𝟕. 𝟑𝟏)] lies on the horizontal line to the left of (1,0) 𝑥𝑚𝑖𝑛 is determined by 

reading the distance from 𝑧𝐿 to 𝑣𝑚𝑖𝑛 on WTG scale, and 𝑣𝑚𝑖𝑛 is at point C on the chart 
which reads (0,0) on the scale.  

𝑧𝑚𝑖𝑛 ⟹ 𝑣𝑚𝑖𝑛 ≈ 0.26 from the load.  

Example 8.2: A lossless transmission line of length 0.45𝜆 and characteristic impedance 
75 Ω is terminated in an impedance 195 + 𝑗135 Ω. Find using Smith Chart:  

(a) The voltage reflection coefficient  
(b) The standing wave ratio 
(c) Input impedance  
(d) Location of voltage maximum on line  
(e) 𝑧𝑚𝑖𝑛 

Solution: given  

𝑍′ = 0.44𝜆 

𝑍𝑜 = 75 Ω 

𝑧𝐿 = 195 + 𝑗135 Ω 

(a) Let us first find the voltage reflection coefficient  

1. Plot a smith chart 𝑧𝐿 =
𝑍𝐿

𝑍0
= 2.6 + 𝑗1.8  see point P 
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Figure 8.7 
 

The load admittance is at point T which reads 𝑦𝐿 = 0.26 − 𝑗0.18 
2. With center at origin, draw a circle of radius 𝑂𝑝 = |𝜌| = 0.6 Measured from the 
voltage or current reflection coefficient scale of the complete smith chart shown in 
Fig.8.5 which is the radius of chart 𝑂𝑃𝑆𝐶 = unity). 
3. Draw line (straight) 𝑂𝑃 and extend it to 𝑂𝑃 on the periphery. Read 0.220 on WTG 
scale. 
4. Phase angle 𝜓 of reflection coefficient note that 4𝜋 → 1𝑟𝑒𝑣 𝑜𝑓 2 × 360𝑜  

𝜓 = (change in wavelength) × 4𝜋 
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= (0.25 − 0.22) × 4𝜋 

0.12𝜋 (rad) 

𝜓 = 21𝑜 

Therefore    𝜌 = |𝜌|𝑒𝑗𝜓 

𝜌 = |0.6|𝑒𝑗0.37 

or 

𝜌 = 0.6 ∠21𝑜 

(b) The |𝜌| = 0.6 circle intersects with positive real-axis 𝑂𝑃′ at 𝑟 = 𝑆 = 4. 
Two, voltage standing wave ratio is 4 
(c) To find input impedance more 𝑃′ by total of 0.45𝜆 WTG, i.e. 0.45𝜆 +
 0.22𝜆 =  0.67𝜆 = 1𝑟𝑒𝑣 +  0.17𝜆 or (0.5 − 0.22) + 0.17 or first to 0.5 (i.e 
0.0, 0.0) and then further to 0.17 to 𝑄, 𝑧𝑖𝑛 = 0.9 + 𝑗1.4  which is at point R 
(d) Maximum voltage (𝑧𝑚𝑎𝑥) is the same thing as the VSWR i.e the voltage 
standing wave. Therefore,  𝑧𝑚𝑎𝑥 = 4 
(e) The minimum voltage (𝑧𝑚𝑖𝑛) is at point U on the smith chart.  𝑧𝑚𝑖𝑛 = 0.25 
 

Example 8.3: A lossless transmission line of characteristic impedance 125 Ω is 
terminated in a load of 350 − 𝑗200 Ω. By the smith chart determine the:  

(a) The load Admittance   
(b) Reflection coefficient  
(c) VSWR 
(d) Normalize input impedance. Given that the length of the line is 1.6𝜆 
(e) Distance between the load and the nearest voltage minimum to it 
 
 
Solution: given  

𝑍′ = 1.6𝜆 

𝑍𝑜 = 125Ω 

𝑍𝐿 = 350 − 𝑗200 Ω 

(a) Just as in the foregoing Example 8.2 solution, let us first of all find the 
voltage reflection coefficient by plotting the load impedance on the smith 
chart. 
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Figure 8.8 
 
 
 

1. Plot a smith chart 𝑧𝐿 =
𝑍𝐿

𝑍0
= 2.8 − 𝑗1.6  see point  

 
The load impedance is at point N which reads 𝑦𝐿 = 0.26 + 𝑗0.15 
 

(b)  
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2. With center at origin, draw a circle of radius 𝑂𝑋 = |𝜌| = 0.58 Measured 
from the voltage or current reflection coefficient scale of the complete smith 
chart shown in Fig.8.5 which is the radius of chart 𝑂𝑋𝑆𝐶 = unity). 
3. Draw line (straight) 𝑂𝑋 and extend it to 𝑂𝑋 on the periphery. Read 0.224 
on wavelength towards load (WTL) scale. 
4. Phase angle 𝜓 of reflection coefficient note that 4𝜋 → 1𝑟𝑒𝑣 𝑜𝑓 2𝑥360𝑜 

𝜓 = (change in wavelength) × 4𝜋 

= (0.25 − 0.224) × 4𝜋 

0.026𝜋 (rad) 

𝜓 = −18𝑜 

Therefore    𝜌 = |𝜌|𝑒𝑗𝜓 

𝜌 = |0.58|𝑒−𝑗0.32 

or 

𝜌 = 0.58 ∠−18𝑜 

(c) The |𝜌| = 0.58 circle intersects with positive real-axis 𝑂𝑃′ at 
  𝑟 = 𝑇 = 3.8. Two, voltage standing wave ratio is 3.8 
(d) To find input impedance more 𝑋′ by total of 1.6𝜆 “WTL”, which is the 
anticlockwise i.e. 1.6𝜆 +  0.224𝜆 =  1.824𝜆 = 3 𝑟𝑒𝑣 +  0.324𝜆 or first to 1.5 (i.e. 
0.0, 0.0) and then further to 0.324 to 𝑌 which reads input impedance    𝑧𝑖𝑛 = 1 +
𝑗1.4 at point Z 
(e) The minimum voltage (𝑧𝑚𝑖𝑛) is at point K on the smith chart.  𝑧𝑚𝑖𝑛 = 0.26 
 

Example 8.4: A lossless transmission line with 𝑍0 = 60 Ω is 80 m long and operates at 6 
MHz, the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω.  

Given that 𝑢 = 0.5𝑐 on the line, 𝑐 = 3 × 108 m/s  determine by the use of smith 
chart: 

(i) Load admittance  
(ii) Voltage reflection coefficient 
(iii) VSWR  
(iv) 𝑧𝑖𝑛  
(v) 𝑧𝑚𝑎𝑥  
(vi) 𝑧𝑚𝑖𝑛 

Solution:  

Given that 𝑢 = 0.5𝑐 on the line, 𝑐 = 3 × 108 m/s 
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 The line wavelength(𝜆) =
𝑐

𝑓
=
0.5 × 3 × 108

6 × 106
= 25 m                               

𝑍𝑜 = 60 Ω 

𝑍𝐿 = 120 + 𝑗60 Ω 

𝑧𝐿 =
𝑍𝐿
𝑍0
=
120 + 𝑗60

60
= 2 + 𝑗1 Ω 
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Figure 8.9 
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(i) Load admittance is at point Z which reads  𝑦𝐿 = 0.4 − 𝑗0.2 Ʊ 
 
(ii) Phase angle 𝜓 of reflection coefficient note that  

4𝜋 → 1𝑟𝑒𝑣       𝑜𝑓    2 × 360𝑜 
𝜓 = (change in wavelength) × 4𝜋 

= (0.25 − 0.218) × 4𝜋 

= 0.032𝜋 (rad) 

𝜓 = 28𝑜 

Therefore    𝜌 = |𝜌|𝑒𝑗𝜓 

𝜌 = |0.44|𝑒𝑗0.49 

or 

𝜌 = 0.44 ∠28𝑜 

 

(iii) VSWR is at point Y on the chart at it reads 2.6 
(iv) To find input impedance (𝑧𝑖𝑛) more 𝑇′ by total of 3.2𝜆 WTG, i.e.  
 3.2𝜆 + 0.214𝜆 =  3.414𝜆 = 6𝑟𝑒𝑣 + 0.414𝜆 or first to 3.0 (i.e. 
 0.0, 0.0). And then further to 0.414 to 𝑁 which reads input 
impedance 𝑧𝑖𝑛 ≈ 0.35 − 𝑗0.5 as seen in point X 
(v) 𝑧𝑚𝑎𝑥  is at point Y i.e., 2.6 
(vi) 𝑧𝑚𝑖𝑛 is at point K i.e., ≈ 0.24  
 

8.8 Uses of Smith Chart  

1. For impedance, the intersection of the circles with the line 𝑟 + 𝑗0 gives 
the maximum impedance on the line at the intersection to the right of (1,0) and 
the minimum impedance at the intersection to the left. Voltage minima occur at 
impedance maxima.  
2. For admittance, the intersection of the circles with the line 𝑔 + 𝑗0 gives 
the maximum admittance at the intersection to the right of (1,0) and the 
minimum admittance at the intersection to the left. Voltage minima are at 
admittance maxima.  

A locus of points on a Smith chart covering a range of frequencies can be used to 
visually represent: 

3. how capacitive or how inductive a load is across the frequency range 
4. how difficult matching is likely to be at various frequencies 

https://en.wikipedia.org/wiki/Capacitance
https://en.wikipedia.org/wiki/Inductance
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5. how well matched a particular component is! 

  

8.9 Exercise 

1. A lossless transmission line with 𝑍0 = 60 Ω is 80 m long and operates at 6 
MHz, the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω.  
Given that 𝑢 = 0.5𝑐 on the line, 𝑐 = 3 × 108 𝑚/𝑠 determine by the use of Smith 
chart:  

(i) Load admittance 
(ii) voltage reflection coefficient (magnitude & phase)  
(iii) VSWR 
(iv)  𝑧𝑖𝑛 

 
2. A lossless transmission line with 𝑍0 = 80 Ω is 40 m long and operates at 3 
MHz, the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω.  
Given that 𝑢 = 0.8𝑐 on the line, 𝑐 = 3 × 108 m/s determine by the use of smith 
chart: 

(vii) Load admittance  
(viii) Voltage reflection coefficient 
(ix) VSWR   
(x) 𝑧𝑖𝑛  
(xi) 𝑧𝑚𝑎𝑥  
(xii) 𝑧𝑚𝑖𝑛 
 

 
3. A lossless transmission line with 𝑍0 = 100 Ω is 40 m long and operates at 
3 MHz, the line is terminated with a load of 𝑍𝐿 = 300 + 𝑗150 Ω.  
Given that 𝑢 = 0.8𝑐 on the line, 𝑐 = 3 × 108 m/s determine by the use of smith 
chart:  

(i) load admittance 
(ii) Voltage reflection coefficient  
(iii) VSWR  
(iv) 𝑧𝑖𝑛  
(v) 𝑧𝑚𝑎𝑥  
(vi) 𝑧𝑚𝑖𝑛 
 

4. A lossless transmission line of characteristic impedance 150 Ω is 
terminated in a load of 350 - j200 Ω, 92 cm long and operates at 3 MHz 
Determine using Smith Chart: 
 (a) Load impedance  



   
  Circuit Analysis with Laplace Transform 

215 
 

(b) reflection coefficient 
 (c) VSWR 
5. A lossless transmission line with 𝑍0 = 100 Ω is 80 m long and operates at 
6 MHz, the line is terminated with a load of 𝑍𝐿 = 300 − 𝑗150 Ω.  
Given that 𝑢 = 0.8𝑐 on the line 𝑐 = 3 × 108 m/s, determine by the use of smith 
chart:  

(i) load impedance 
(ii) Voltage reflection coefficient  
(iii) VSWR  
(iv) 𝑧𝑖𝑛  
(v) 𝑧𝑚𝑎𝑥  
(vi) 𝑧𝑚𝑖𝑛 
 

6. A lossless transmission line with 𝑍0 = 60 Ω is 85 m long and operates at 5 
MHz, the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω.  
Given that 𝑢 = 0.8𝑐 on the line, 𝑐 = 3 × 108 m/s ,determine by the use of smith 
chart:  

(i) Load admittance 
(ii) Voltage reflection coefficient  
(iii) VSWR  
(iv) 𝑧𝑖𝑛  
(v)  𝑧𝑚𝑎𝑥 
(vi) 𝑧𝑚𝑖𝑛 
 

7. A load of 25 + 𝑗50 Ω terminates at 50 Ω line, use Smith chart to 
 determine: 

(i) The load admittance 
(ii)  The reflection coefficient (amplitude and phase)  
(iii) Voltage Standing Wave Ratio 
(iv) Input impedance, given that the line is 60 cm long and the signal 
wavelength 2 m 
(i) Load Impedance 
(ii) Reflection coefficient  
(iii) VSWR  
(iv) Distance between the load and the nearest voltage minimum to it  
(v) Normalized input impedance. Given that the length of the line is 
 80 cm and the signal wavelength is 50 cm  
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MULTICHOICE QUESTION A 

 

1. The Laplace transform of the function 𝑓(𝑡) is defined to be (a) 

∫ 𝑓(𝑡)
∞

0−
𝑑𝑡 (b) ∫ 𝑒−𝑠𝑡𝑓(𝑡)

∞

0−
𝑑𝑡 (c) ∫ 𝑓(𝑡)

∞

0−
𝑒−𝑠𝑡 (d) ∫ 𝑒−𝑠𝑡𝑓(𝑡)

0+

−∞
𝑑𝑡 

2. s in the function in the options in question 1: (1) may be complex 
number (2) may be real number (3) is cyclic frequency (4) complex frequency 
(a) 1&2 above (b) 2&3 (c) 1, 2 & 3 (d) 1, 2 & 4 
3. Laplace transform of 𝑓(𝑡) is a function of (a) time (b) complex 
frequency (c) time and complex frequency (d) none of these  
4. For complex frequency 𝑠 = 𝜎 + 𝑗𝜔, the following represents the 
nature of 𝜎: 𝜎 (1) has a damping effect (2) causes the convergence of the 

integral ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
−∞

𝑡
 (3) < 0: (a) 1,2,3 (b) 1,2 (c) 2,3 (d) 1,3 

5. Double integration of a unit step function leads to (a) an impulse (b) a 
parabola (c) a ramp (d) a doublet  
6. The open circuit voltage ratio 𝑉2(𝑠)/𝑉1(𝑠) of the network shown in fig 
A 1 is (a) 1 + 2𝑠2 (b) 1/(1 + 𝑠2) (c) 1 + 2𝑠 (𝑑)1/(1 + 2𝑠) 
 

1 H

1 F4 ΩV1 (s)
V2 (s)

                                
 Figure A1 

 
7. The response of an initially relaxed linear circuit to a signal 𝑉𝑠 is 

𝑒−2𝑡𝑢(𝑡). If the signal is changed to (𝑉𝑠 + 2
𝑑𝑣𝑠

𝑑𝑡
), the response will be (a) 

−4𝑒−2𝑡𝑢(𝑡) (b) −3𝑒−2𝑡𝑢(𝑡) (c) 4𝑒−2𝑡𝑢(𝑡) (d) 5𝑒−2𝑡𝑢(𝑡) 
8. A first-order linear system is initially relaxed system for a unit step 
signal 𝑢(𝑡). The response if 𝑉1(𝑡) = (1 − 𝑒−3𝑡) for 𝑡 > 0. If a signal 3𝑢(𝑡) +
𝛿(𝑡) is applied to the same initially relaxed system, the response will be: (a) 
(3 − 6𝑒−3𝑡)𝑢(𝑡) (b) (3 − 3𝑒−3𝑡)𝑢(𝑡) (c) 3𝑢(𝑡) (d) (3 + 3𝑒3𝑡)𝑢(𝑡) 
9. The Laplace transform of (𝑡2 − 2𝑡)𝑢(𝑡 − 1) is: (a) (2𝑒−𝑠/𝑠2) −

(2𝑒−𝑠/𝑠1) (b) (
2𝑒−2𝑠

𝑠3
−
2𝑒−𝑡

𝑠2
) (c) (2𝑒−𝑠/𝑠1) − (𝑒−𝑠/𝑠) (d) none of the above 
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10. The unit impulse response of a system is 𝑐(𝑡) = 4𝑒−𝑡 + 6𝑒−2𝑡. The 
step response of the same system for 𝑡 ≥ 0 is: (a) −3𝑒−2𝑡 + 4𝑒−𝑡 + 1 (b) 
−3𝑒−2𝑡 − 4𝑒−𝑡 + 1 (c) −3𝑒−2𝑡 − 4𝑒−𝑡 − 1 (d) 3𝑒−2𝑡 + 4𝑒−𝑡 − 1 
11. Given 𝐼(𝑠) = (10𝑠 + 4)/𝑠(𝑠 + 1)(𝑠2 + 4𝑠 + 5) the final value of 
𝑖(𝑡)is: (a) 4/5 (b) 5/4 (c) 4 (d) 5 
12.  Given 𝐹(𝑠) = (𝑠 + 4)/𝑠(𝑠 + 2) final and initial values of 𝑓(𝑡) will be: 
(a) 1,1 (b) 1,2 (c) 2,2 (d) 2,1 
13. The d.c gain of a system represented by the transfer function 
10(𝑠 + 1)(𝑠 + 2) is (a) 1 (b) 2 (c) 5 (d) 10 
14. The current response for the circuit shown in fig A2 is: (a) 1 − 𝑒−𝑡 (b) 

1 + 𝑒−(𝑡−𝑠)𝑢(𝑡 − 5) (c) (1 − 𝑒−𝑡)𝑢(𝑡 − 5) (d) 1 − 𝑒−(𝑡−3) 

1 H

1 Ω

u(t-5) V

i(t)

                                              
Figure A2 

 
15. The response of an initially relaxed system to a unit ramp excitation is 

(𝑡 + 𝑒−𝑡), its step response is: (a)  
1

2
𝑡2 − 𝑒−𝑡 (b) 1 − 𝑒−𝑡 (c) −𝑒−𝑡 (d) 𝑡 

16. The impulse response of an RL circuit is: (a) rising exponential function 
(b) decaying exponential function (c) step function (d) parabolic function  
17. The Laplace transform of a rectangular current pulse of duration T and 

magnitude 𝑡 is (a) 1/𝑠 (b) (1/𝑠)𝑒−𝑠𝑇 (c) (1/𝑠)𝑒𝑠𝑇 (d) (
1

𝑠
) /(1 − 𝑒−𝑠𝑇) 

18. Given ℒ[𝑥(𝑡)] = 𝑋(𝑠), ℒ[𝑥(𝑡 − 𝑡)] equals (a) 𝑒𝑠𝑇𝑋(𝑠) (b) 𝑒−𝑠𝑇𝑋(𝑠) (c) 
𝑋(𝑠)/(1 + 𝑒𝑠𝑇) (d) 𝑋(𝑠)/(1 − 𝑒−𝑠𝑇) 
19. The response of a network for 𝑡 ≥ 0 is 𝑣(𝑡) = 𝐾𝑡𝑒−∝𝑡, with ∝ real and 
positive. The value of 𝑡 that results in maximum value of 𝑣(𝑡) is (a) (∝) (b) 2 ∝ 
(c) 1/∝ (d) ∝2 
20. Given 𝐻(𝑠) = 𝑎/(𝑠2 + 𝑎2) then the final value of ℎ(𝑡) is (a) zero (b) 
indeterminate (c) unity (d) ∞(undefined)  
21. The Laplace transform of a unit ramp function at 𝑡 = 𝑎 is (a) 
1/(𝑠 + 𝑎)2 (b) 𝑒−𝑎𝑠/(𝑠 + 𝑎)2 (c) 𝑎/𝑠2 (d) 𝑒−𝑎𝑠/𝑠2    
22. The Laplace transform of the voltage across a capacitor of 0.5F is: 
𝑉𝑐(𝑠) = (𝑠 + 1)/(𝑠2 + 𝑠 + 1). Then current 𝑖(0+) through the capacitor is (a) 
0 A (b) 0.5 A (c) 2 A (d) 1 A 



   
  Circuit Analysis with Laplace Transform 

218 
 

23. The response of an initially relaxed linear constant parameter network 
to a unit impulse applied at 𝑡 = 0 is 4𝑒−2𝑡𝑢(𝑡). The response to a unit step 
function will therefore be: (a) 2[(1 − 𝑒−2𝑡)𝑢(𝑡)] (b) 4|𝑒−𝑡 − 𝑒 − 1−2𝑡|𝑢(𝑡) (c) 
cos 2𝑡 (d) (1 − 4𝑒−4𝑡)𝑢(𝑡) 

24.  The closed loop transfer function of a control system is given by: 
𝑌(𝑠)

𝐺(𝑠)
=

2(𝑠 − 1)/(𝑠 + 2)(𝑠 + 1). Given that 𝑔(𝑡) = 𝑢(𝑡), then response 𝑦(𝑡) is (a) 
−3𝑒−2𝑡 + 4𝑒−𝑡 − 1 (b) −3𝑒−2𝑡 − 4𝑒−𝑡 + 1 (c) undefined (infinity) (d) zero 

25. Given 𝑋(𝑠) =
(5−𝑠)

(𝑠2−𝑠−2)
, 𝑥(𝑡) is: (a) 𝑒2𝑡𝑢(𝑡) − 2𝑒−𝑡𝑢(𝑡) (b) 

−𝑒2𝑡𝑢(−𝑡) + 2𝑒−𝑡𝑢(𝑡) (c) −𝑒2𝑡𝑢(−𝑡) − 2𝑒−𝑡𝑢(𝑡) (d) none of the above 

26. Given 𝑌(𝑠) =
(𝑠+5)

(𝑠+1)(𝑠+3,)
, 𝑦(𝑡) is: (a) 2𝑒−𝑡 − 𝑒−3𝑡 (b) 2𝑒−𝑡 + 𝑒−3𝑡    

 (c) 𝑒−𝑡 − 𝑒−3𝑡 (d) 𝑒−𝑡 + 𝑒−3𝑡 

27. Given 𝑋(𝑠) =
(2𝑠+1)

(𝑠2+8𝑠2+16𝑠+5)
, 𝑥(∞) equals (a) ∞ (b) unity (c) zero (d) 2 

28. Reflection coefficient for the transmission line shown in fig A3, is (a) 1 
(b)  −1 (c) 0     (d) 0.5 
 

300 Ω

Z0 = 300 Ω
Load

                                                     
Figure A3 

 
29. For a 200Ω line with a pure capacitive impedance of −𝑗200 Ω 
determine the reflection (a) 0 (b) 1 (c) 1∠ − 𝜋/2 (d) 1∠90𝑜 
30. Transmission of power to a load over a transmission line achieves 
optimum value when standing wave ratio (SWR) is (a) 2: 1 (b) 1: 2 (c) 1: 1 (d) 

1: √2 
31. For an open-circuited load, voltage reflection coefficient is (a) |𝜌| =
1, 𝛽 = 𝜋 (b) |𝜌| = 0, 𝛽 = 𝜋 (c) |𝜌| = 1, 𝛽 − 𝜋 (d) |𝜌| = 1, 𝛽 = 𝜋 
32. On the smith chart, the area on the upper half stand for (a) inductive 
reactance and capacitive reactance (b) inductive reactance and capacitive 
susceptive (c) inductive susceptance and capacitive susceptance  
33. For a given voltage signal: 𝑉𝑚𝑎𝑥 (a) 𝑉1(1 − |𝜌|) (b) 𝑉1(1 + |𝜌|) (c) 
𝑉1(1 − |𝜌|)

2 (d) 𝑉1(1 + |𝜌|)
2 

34. The inverse Laplace transform of 𝐹(𝑠) is (a) ℒ{𝐹(𝑠)} = 𝑓(𝑠) (b) 
ℒ−1{𝐹(𝑠)} = 𝑓(𝑡) (c) ℒ{𝐹(𝑠)} = 𝑓(𝑡) (d) ℒ{𝐹(𝑠)}−1 = 𝑓(𝑡) 
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35. Laplace transform of 1 is (a) 𝑠(𝑠 > 0) (b) 𝑠(𝑠 < 0) (c) 
1

𝑠
(𝑠 > 0) (d) 

1

𝑠
(𝑠 < 0) 

36. ℒ(𝑒𝑎𝑡) = (a) 1/(𝑠 − 𝑎)(𝑠 < 𝑎) (b) 1/(𝑠 − 𝑎)(𝑠 > 𝑎) (c) 1/(𝑠 +
𝑎)(𝑠 > 𝑎) (d) (𝑠 − 𝑎)(𝑠 > 𝑎) 
37. Laplace transform of 𝑒−𝑎𝑡 is (a) 1/(𝑠 − 𝑎)(𝑠 < −𝑎) (b) 1/(𝑠 + 𝑎)(𝑠 >
𝑎) (c) 1/(𝑠 − 𝑎)(𝑠 > 𝑎) (d) 1/(𝑠 + 𝑎)(𝑠 > −𝑎)  
38. ℒ(𝑒𝑎𝑡) = (a) 2/(𝑠 − 𝑎)2 (b) 2/(𝑠 − 𝑎) (c) 1/(𝑠 − 𝑎)2 (d) 1/(𝑠 + 𝑎)2 
39. Laplace transform of sin 𝑎𝑡 is (a) 𝑠/(𝑠2 − 𝑎2) (b) 𝑠/(𝑠2 + 𝑎2) (c) 
𝑎/(𝑠2 − 𝑎2) (d) 𝑎/(𝑠2 + 𝑎2) 
40. ℒ{𝑒𝑎𝑡 sin 𝑏𝑡} = (a) 𝑎/[(𝑠 − 𝑏)2 + 𝑎2] (b) 𝑏/[(𝑠 − 𝑎)2 + 𝑏2] (c) 
𝑎/[(𝑠 − 𝑏)2 + 𝑏2] (d) 𝑏/[(𝑠 − 𝑎)2 + 𝑎2] 
41. Laplace transform of cos 𝑏𝑡 is (a) 𝑠/(𝑠2 − 𝑏2) (b) 𝑠/(𝑠2 + 𝑏2) (c) 
𝑏/(𝑠2 − 𝑏2) (d) 𝑏/(𝑠2 + 𝑏2) 
42. ℒ{𝑒𝑎𝑡 cos 𝑏𝑡} = (a) 𝑎/[(𝑠 − 𝑏)2 + 𝑎2 ] (b) 𝑏/[(𝑠 − 𝑎)2 + 𝑏2] (c) 
(𝑠 − 𝑎)/[(𝑠 − 𝑎)2 + 𝑏2] (d) (𝑠 − 𝑏)/[(𝑠 − 𝑎)2 + 𝑎2] 
43. Laplace transform of sinh 𝑏𝑡 is (a) 𝑏/(𝑠2 − 𝑏2)(𝑠 > |𝑏|) (b) 𝑏/(𝑠2 +
𝑏2)(𝑠 > |𝑏|) (c) 𝑏/(𝑠2 − 𝑏2)(𝑠 < |𝑏|) (d) 𝑏/(𝑠2 + 𝑏2)(𝑠 < |𝑏|) 
44. ℒ [cosh 𝑎𝑡] =(a) 𝑎/(𝑠2 − 𝑎2)(𝑠 > |𝑎|) (b) 𝑠/(𝑠2 + 𝑎2)(𝑠 > |𝑎|) (c) 
𝑠/(𝑠2 − 𝑎2)(𝑠 > |𝑎|) (d) 𝑎/(𝑠2 + 𝑎2)(𝑠 > |𝑎|) 
45. Laplace transform of 𝑒−𝑎𝑡𝑓(𝑡) is (a) 𝐹(𝑠 − 𝑎) (b) 2𝐹(𝑠 + 𝑎) (c) 
𝑒𝑎𝑠𝐹(𝑠 − 𝑎) (d) 𝑒𝑎𝑠𝐹(𝑠 + 𝑎) 
46. ℒ−1(1/𝑠) = (a) 𝛿(𝑡) (b) 𝑡 (c) 1 (d) 𝑒𝑡 

47. Laplace transform of 𝑒2𝑡 + 4𝑡3 is (a) 
1

(𝑠+2)
+

6

𝑠3
 (b) 

1

(𝑠−2)
+
24

𝑠4
 (c) 

1

(𝑠+2)
+

24

𝑠4
 (d) 

1

(𝑠−2)
+

6

𝑠3
 

48. ℒ {2 sin 3𝑡 + 3 cos 3𝑡} =? (a) 
2

(𝑠2−9)
+

3𝑠

(𝑠2−9)
 (b) 

2

(𝑠2+9)
+

3𝑠

(𝑠2+9)
 (c) 

6

(𝑠2+9)
+

3𝑠

(𝑠2+9)
 (d) 

6

(𝑠2−9)
+

3𝑠

(𝑠2−9)
 

49. The response of an initially relaxed linear circuit to a signal 𝑉𝑠 is 

𝑒−3𝑡𝑢(𝑡). If the signal is changed to 𝑉𝑠 + 2
𝑑𝑉𝑠

𝑑𝑡
, the response becomes (a) 

−3𝑒−2𝑡𝑢(𝑡) (b) −4𝑒−2𝑡𝑢(𝑡) (c) 5𝑒−2𝑡𝑢(𝑡) (d) 4𝑒−2𝑡𝑢(𝑡) 
50. A first order linear system is initially relaxed for a unit step signal 𝑢(𝑡). 
The response is 𝑣1(𝑡) = (1 − 𝑒−4𝑡) for  𝑡 > 0. If a signal 4𝑢(𝑡) + 𝛿(𝑡) is 
applied to the same initially relaxed system, the response will be (a) 
(4 − 8𝑒−4𝑡)𝑢(𝑡) (b) (4 − 4𝑒−4𝑡)𝑢(𝑡) (c) (4 + 4𝑒−4𝑡)𝑢(𝑡) (d) 4𝑢(𝑡) 

51. Laplace transform of (𝑡2 − 2𝑡)𝑢(𝑡 − 1) is (a) 
2𝑒−𝑠

𝑠3
−
2𝑒−𝑠

𝑠2
 (b) 

2𝑒−𝑠

𝑠3
−
𝑒−𝑠

𝑠
 

(c) 
2𝑒−𝑠

𝑠3
−
2𝑒−𝑠

𝑠2
 (d) none of the above  
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52. The unit impulse response of a system is 𝑦(𝑡) = −4𝑒−𝑡 + 3𝑒−2𝑡. The 
step response of the same system for 𝑡 > 0 will be (a) 4𝑒−2𝑡 − 3𝑒−2𝑡 + 1 (b) 
4𝑒−2𝑡 − 3𝑒−2𝑡 − 1 (c) −4𝑒−2𝑡 + 3𝑒−2𝑡 (d) −4𝑒−2𝑡 − 3𝑒−2𝑡 + 1 

53. The final value of 𝑦(𝑡) for 𝑌(𝑠) =
(10𝑠+4)

𝑠(𝑠+1)(𝑠2+4𝑠+5)
 will be (a) 0 (b) ∞ (c) 

0.8 (d) 4, 5 
54. The unit step response of a network is (1 − 𝑒−𝑎𝑡). Its unit impulse 

response will be (a) 𝑎𝑒−𝑎𝑡 (b) 
1

𝑎𝑒−𝑡/𝑎
 (c) 

𝑒
−
𝑡
𝑎

𝑎
  (d) (1 − 𝑎)𝑒−𝑎𝑡 

55. The voltage through a resistor with current 𝑖(𝑡) in the s-domain is (a) 
𝑠𝑅𝐼(𝑠) (b) 𝑠2𝑅𝐼(𝑠) (c) 𝑅𝐼(𝑠) (d) 𝑉/𝐼(𝑠) 

T

I0

t                                    
Figure A4 

 

56. Laplace transform of the waveform shown Fig A4 is (a) 
𝐼0

𝑇𝑠2
+ (

𝐼0

𝑇𝑠
) 𝑒−𝑇𝑠 

(b) 
𝐼0

𝑇𝑠2
+ (𝐼0/𝑇𝑠

2)𝑒−𝑇𝑠 (c) 
𝐼0

𝑇𝑠2
+ (

𝐼0

𝑇𝑠2
) 𝑒−𝑇𝑠(1 + 𝑠𝑇) (d) (

𝐼0

𝑇𝑠2
) − 𝐼0 

57. Given 𝑌(𝑠) =
(𝑠+2)

𝑠(𝑠+1)
, the initial and final values of 𝑦(𝑡) will be 

respectively: (a) 2,1 (b) 1,2 (c) 2,2 (d) 1,1 

58. The impedance of a 10 − 𝐻 inductor is (a) 
10

𝑠
 (b) 

𝑠

10
 (c) 

1

10𝑠 
 (d) 10𝑠 

59. Laplace transform of 𝑒−𝑎𝑡𝑓(𝑡) is (a) 𝐹(𝑠 − 𝑎) (b) 𝐹(𝑠 + 𝑎) (c) 
𝑒𝑎𝑠𝐹(𝑠 − 𝑎) (d) 𝑒𝑎𝑠𝐹(𝑠 + 𝑎) 

60. ℒ−1 (
1

𝑠
) = (a) 𝛿(𝑡) (b) 𝑡 (c) 1 (d) 𝑒𝑡  

 

MULTICHOICE QUESTION B 

1. The Laplace transform of the function 𝑓(𝑡) is defined to be (a) ∫ 𝑓(𝑡)
∞

0−
 𝑑𝑡 (b) 

∫ 𝑒−𝑠𝑡
∞

0−
𝑓(𝑡)𝑑𝑡 (c) ∫ 𝑓(𝑡)𝑒−𝑠𝑡

∞

0−
 (d) ∫ 𝑒−𝑠𝑡

0−

−∞
𝑓(𝑡)𝑑𝑡 

2. S above (1) may be complex number (2) may be real or complex number (3) is 
cyclic frequency (4) is complex frequency (a) 1&2 above (b) 2&3 (c) 1,2&3 (d) 
1,2&4 
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3. Laplace transform of 𝑓(𝑡) is a function of (a) time (b) complex frequency (c) 
time &complex frequency (d) none of the above  
4. The inverse Laplace transform of 𝐹(𝑠) is (a) ℒ{𝐹(𝑠)} = 𝑓(𝑠) (b) ℒ−1{𝐹(𝑠)} =

𝑓(𝑡) (c) ℒ{𝐹(𝑠)} = 𝑓(𝑡) (d) ℒ{𝐹(𝑠)}−1 = 𝑓(𝑡) 

5. Laplace transform of 1 is (a) 𝑠(𝑠 > 0) (b) 𝑠(𝑠 < 0) (c) 
1

𝑠
(𝑠 > 0) (d) 1/𝑠(𝑠 < 0) 

6. ℒ(𝑒𝑎𝑡) = (a) 1/(𝑠 − 𝑎) (𝑠 < 𝑎) (b) 1/(𝑠 − 𝑎)(𝑠 > 𝑎) (c) 1/(𝑠 + 𝑎)(𝑠 > 𝑎) (d) 
(𝑠 − 𝑎)(𝑠 > 𝑎) 

7. Laplace transform of 𝑒−𝑎𝑡 is (a) 1/(𝑠 − 𝑎)(𝑠 < −𝑎) (b) 1/(𝑠 + 𝑎)(𝑠 > 𝑎) (c) 
1/(𝑠 − 𝑎)(𝑠 > 𝑎) (d) 1/(𝑠 + 𝑎)(𝑠 > −𝑎) 

8. ℒ(𝑡𝑒𝑎𝑡) =(a) 2/(𝑠 − 𝑎)2 (b) 2/(𝑠 − 𝑎) (c) 1/(𝑠 − 𝑎)2 (d) 1/(𝑠 + 𝑎)2 
9. Laplace transform of sin 𝑎𝑡 is (a) 𝑠/(𝑠2 − 𝑎2) (b) 𝑠/(𝑠2 + 𝑎2) (c) 𝑎/(𝑠2 − 𝑎2) 

(d) 𝑎/(𝑠2 + 𝑎2) 
10. ℒ{𝑒𝑎𝑡 sin 𝑏𝑡} = (a) 𝑎/[(𝑠 − 𝑏)2 + 𝑎2] (b) 𝑏/[(𝑠 − 𝑎)2 + 𝑏2] (c) 𝑎/[(𝑠 − 𝑏)2 +

𝑏2] (d) 𝑏/[(𝑠 − 𝑎)2 + 𝑎2] 
11. Laplace transform of cos 𝑏𝑡 is (a) 𝑠/(𝑠2 − 𝑏2) (b) 𝑠/(𝑠2 + 𝑏2) (c) 𝑏/(𝑠2 − 𝑏2) 

(d) 𝑏/(𝑠2 + 𝑏2) 
12. ℒ{𝑒𝑎𝑡 cos 𝑏𝑡} = (a) 𝑎/[(𝑠 − 𝑏)2 + 𝑎2](b) 𝑏/[(𝑠 − 𝑎)2 + 𝑏2](c) (𝑠 − 𝑎)/

[(𝑠 − 𝑎)2 + 𝑏2] (d) (𝑠 − 𝑏)/[(𝑠 − 𝑎)2 + 𝑎2] 
13. Laplace transform of sin ℎ  𝑏𝑡 is (a) 𝑏/(𝑠2 − 𝑏2)(𝑠 > |𝑏|) (b) 𝑏/(𝑠2 + 𝑏2)(𝑠 >

|𝑏|) (c) 𝑏/(𝑠2 − 𝑏2)(𝑠 < |𝑏|) (d) 𝑏/(𝑠2 + 𝑏2)(𝑠 < |𝑏|) 
14. ℒ[cosh 𝑎𝑡] = (a) 𝑎/(𝑠2 − 𝑎2)(𝑠 > |𝑎|) (b) 𝑠/(𝑠2 + 𝑎2)(𝑠 > |𝑎|) (c) 

𝑠/(𝑠2 − 𝑎2)(𝑠 > |𝑎|) (d) 𝑎/(𝑠2 + 𝑎2)(𝑠 > |𝑎|) 
15. Laplace transform of 𝑒−𝑎𝑡𝑓(𝑡) is (a) 𝐹(𝑠 − 𝑎) (b) 𝐹(𝑠 + 𝑎) (c) 𝑒𝑎𝑠𝐹(𝑠 − 𝑎) (d) 

𝑒𝑎𝑠𝐹(𝑠 + 𝑎) 
16. ℒ−1(1/𝑠) = (a) 𝛿(𝑡) (b) 𝑡 (c) 1 (d) 𝑒𝑡 

17. Laplace transform of 𝑒2𝑡 + 4𝑡3 is (a) 
1

(𝑠+2)
+ 6/𝑠3 (b) 

1

(𝑠−2)
+ 24/𝑠4 (c) 

1

(𝑠+2)
+

24/𝑠4 (d) 
1

(𝑠−2)
+ 6/𝑠3 

18. ℒ{2 sin 3𝑡 + 3 cos 3𝑡} = (a) 
2

(𝑠2−9)
+ 3𝑠/(𝑠2 − 9) (b) 

2

(𝑠2+9)
+ 3𝑠/(𝑠2 + 9) (c) 

6

(𝑠2+9)
+ 3𝑠/(𝑠2 + 9) (d) 

6

(𝑠2−9)
+ 3𝑠/(𝑠2 − 9) 

19. The response of an initially relaxed linear circuit to a signal 𝑉𝑠 is 𝑒−2𝑡𝑢(𝑡). If 

the signal is changed to 𝑉𝑠 + 2
𝑑𝑉𝑠

𝑑𝑡
, the response becomes (a) −3𝑒−2𝑡𝑢(𝑡) (b) 

−4𝑒−2𝑡𝑢(𝑡) (c) 5𝑒−2𝑡𝑢(𝑡) (d) 4𝑒−2𝑡𝑢(𝑡) 
20. The first order linear system is initially relaxed for a unit step signal 𝑢(𝑡). The 

response if 𝑉1(𝑡) = (1 − 𝑒−4𝑡  𝑓𝑜𝑟 𝑡 > 0). If a signal 4𝑢(𝑡) + 𝛿(𝑡) is applied to 
the same initially relaxed system, the response will be (a) (4 − 8𝑒−4𝑡)𝑢(𝑡) (b) 

(4 − 4𝑒−4𝑡)𝑢(𝑡) (c) (4 + 4𝑒−4𝑡)𝑢(𝑡) (d) (4𝑢(𝑡)) 
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21. Laplace transform of (𝑡2 − 2𝑡)𝑢(𝑡 − 1) is (a)
2𝑒−𝑠

𝑠3
− 2𝑒−𝑠/𝑠2 (b) 

2𝑒−𝑠

𝑠3
−
𝑒−𝑠

𝑠
 (c) 

2𝑒−2𝑠

𝑠3
−
2𝑒−𝑠

𝑠2
 (d) none of the above  

22. The unit impulse response of a system is 𝑦(𝑡) = −4𝑒−𝑡 + 6𝑒−2𝑡. The step 
response of the same system for 𝑡 > 0 will be (a) 4𝑒−2𝑡 − 3𝑒−2𝑡 + 1 (b) 
4𝑒−2𝑡 − 3𝑒−2𝑡 − 1 (c) −4𝑒−2𝑡 + 3𝑒−2𝑡 + 1 (d) −4𝑒−2𝑡 − 3𝑒−2𝑡 + 1 

23. The final value of 𝑦(𝑡) for 𝑌(𝑠) =
(10𝑠+4)

𝑠(𝑠+1)(𝑠2+4𝑠+5)
 will be (a) 0 (b) ∞ (c) 0.8 (d) 

4.5 
24. The unit step response of a network is (1 − 𝑒−𝑎𝑡). Its unit impulse response 

will be (a) 𝑎𝑒−𝑎𝑡(b) 1/𝑎𝑒−𝑡/𝑎 (c) 𝑒−𝑡/𝑎/𝑎 (d) (1 − 𝑎)𝑒−𝑎𝑡 
25. The impulse response of an 𝑅 − 𝐿 circuit is a (a) rising exponential function (b) 

decaying exponential function (c) step function (d) parabolic function  
26. Laplace transform of the waveform in Fig 9 is ……... 

T

V0

t  
Figure 9 

 

(a) 
𝑉𝑜

𝑇𝑠2
+ (

𝑉0

𝑇𝑠
) 𝑒−𝑇𝑠 (b) 

𝑉0

𝑇𝑠2
+ (

𝑉0

𝑇𝑠2
) 𝑒−𝑇𝑠 (c) 

𝑉0

𝑇𝑠2
+ (

𝑉0

𝑇𝑠2
) 𝑒−𝑇𝑠(1 + 𝑠𝑇) (d) 

(
𝑉0

𝑇𝑠2
) − 𝑉0 

27. Given 𝑌(𝑠) = (𝑠 + 2)/𝑠(𝑠 + 1), the initial and final values of 𝑦(𝑡) will be 
respectively: (a) 2,1 (b) 1,2 (c) 2,2, (d) 1,1 

28. A linear time-invariant system has impulse response 𝑒2𝑡 , 𝑡 > 0. Given zero 

initial conditions and imput of 3𝑒3𝑡 the output for 𝑡 > 0 is (a) 𝑒5𝑡 (b) 𝑒3𝑡 − 𝑒2𝑡 
(c) 𝑒3𝑡 + 𝑒2𝑡 (d) none of the above  

29. The d.c gain of a system represented by the transfer function 8/(𝑠 + 1)(𝑠 +
2) is (a) 2 (b) 1 (c) 4 (d) 8 
(For Question 30&31) the plot of the signal 𝑦(𝑡) is in Fig.10 

t

y(t)

21
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Figure 10 
30. Then the pot of 𝑦(−𝑡) will be:  

 
 

t

y(-t)

t

y(-t)

t

y(-t)

t

y(-t)

(a) (b) (c) (d)

 
31. The plot of 𝑦(1 − 𝑡) will be:  

 

t

y(1-t)

t

y(1-t)

t

y(1-t)

t

y(1-t)

(a)
(b) (c) (d)

 
 

32. Voltage transfer function of a simple 𝑅 − 𝐶 integrator has: (a) a finite zero and 
a pole at the origin (b) a finite zero and a pole at infinity (c) a zero at the origin 
and a finite pole (d) a zero at infinity and a finite pole. 

33. The current response for the circuit shown in Fig.11 is: 

i(t)
C

R

V0

 
Figure 11 

 (a) 𝑉0/𝑅 (b) (
𝑉0

𝑅
) (𝑒−𝑡/𝑅𝐶) (c) (

𝑉0

𝑅
) (1 − 𝑒−𝑡/𝑅𝐶) (d) (

𝑉0

𝑅
) (1 + 𝑒−𝑡/𝑅𝐶) 

34. The response 𝑥(𝑡) of a network is expressed by 
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑥(𝑡). If 𝑣(𝑡) = 𝐾𝑒−2𝑡, 

then the dominant solution of 𝑥 (A’s are constants) for 𝑡 > 0 resembles (a) 
𝐴1𝑒

𝑡 (b) 𝐴2𝑒
−𝑡 (c) 𝐴1𝑒

2𝑡 (d) 𝐴2 cost+𝐴3𝑠𝑖𝑛𝑡 
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35. A unit step function 𝑢(𝑡 − 𝑎) is applied to the circuit in Fig 12. The current 
response 𝑖(𝑡) is given by: 

L

1 Ω

u(t-4) V

 
Figure 12 

 

 (a) 1 − 𝑒−𝑡 (b) [1 − 𝑒−(𝑡−4)]𝑢(𝑡 − 4) (c) 1 − 𝑒−(𝑡−4) (d) (1 − 𝑒−𝑡)𝑢(𝑡 − 4) 

36. The response of an initially relaxed system to a unit ramp excitation is 

(𝑡 + 𝑒−𝑡). Its step response will be (a) 1-𝑒−𝑡 (b) 
𝑡2

2
− 𝑒−𝑡 (c) 𝑡(𝑑) − 𝑒−𝑡 

37. The response of a network is 𝑖(𝑡) = 𝐴𝑡𝑒−𝑎𝑡 for 𝑡 ≥ 0, with a real and positive. 
The value of t for which 𝑖(𝑡) will be maximum is (a) 𝑎2 (b) 2𝑎 (c) 1/𝑎 (d) 𝑎 

38. A rectangular pulse of duration 𝑇 and magnitude 𝐼 has the Laplace transform 

(a) (1/𝑠)𝑒−𝑠𝑇 (b) (𝐼/𝑠)𝑒𝑠𝑇 (c) (𝐼/𝑠) (d) (
𝐼

𝑠
) (1 − 𝑒−𝑠𝑇) 

39. Given 𝐿[𝑓(𝑡)] = 𝐹(𝑠), 𝐿[𝑓(𝑡 − 𝑇)] equals (a) 𝑒−𝑠𝑇𝐹(𝑠) (b) 𝑒𝑠𝑇𝐹(𝑠) (c) 
𝐹(𝑠)/(1 − 𝑒𝑠𝑇) (d) 𝐹(𝑠)/(1 + 𝑒𝑠𝑇)  

40. The unit impulse response of a linear time-invariant system is unit stop 
function 𝑢(𝑡). For 𝑡 > 0, the response of the system to an excitation 
𝑒−𝑎𝑡𝑢(𝑡), 𝑎 > 0, will be (a) 𝑎𝑒−𝑎𝑡 (b) 𝑎(1 − 𝑎𝑒−𝑎𝑡) (c) 1 − 𝑎𝑒−𝑎𝑡 (d) 
(1 − 𝑒−𝑎𝑡)/𝑎 

41. For 𝐹(𝑠) =
2(𝑠+1)

(𝑠2+2𝑠+5)
, 𝑓(0+), 𝑓(∞), are respectively, (a) 2,0 (b) 0,2 (c) 2/5,0 (d) 

1,0 
42. Laplace transform of a unit ramp function at 𝑡 = 𝑎, is (a) 𝑎/𝑠2 (b) 𝑒−𝑎𝑠/𝑠2 (c) 

𝑒−𝑎𝑠/(𝑠 + 𝑎)2 (d) 1/(𝑠 + 𝑎)2 
43. For a voltage across a capacitor of value 0.5𝐹, 𝑉𝑐(𝑠) = 1/(𝑠2 + 1). Then 

𝑖𝐶(0
+) is (a) 0 (b) 2A (c) 0.5A (d) 1A 

44. The poles of the transfer function (𝑠 + 1)/(𝑠2 − 5𝑠 + 6)(𝑠 − 4) are (a) 1 (b) 
1,2,3,4 (c) 1,5,6,4 (d) 2,3,4 

45. The voltage through a resistor with current 𝑖(𝑡) in the s-domain is (a) 𝑠𝑅𝐼(𝑠) 
(b) 𝑠2𝑅𝐼 (c) 𝑅𝐼(𝑠) (d) 𝑉/𝐼(𝑠)  

46. The current through an 𝑅 − 𝐿 series circuit with input voltage 𝑣(𝑡) is given in 

the s domain as: (a) 𝑉(𝑠) (𝑅 +
1

𝑠𝐿
) (b) 𝑉(𝑠)(𝑅 + 𝑠𝐿) (c) 𝑉(𝑠)/(𝑅 + 1/𝑠𝐿) (d) 

𝑉(𝑠)(𝑅 + 𝑠𝐿) 
47. The impedance of a 10F capacitor is (a) 10/s (b) s/10 (c) 1/10s (d) 10s 
48. The impedance of a 10-H inductor is (a) 10/𝑠 (b) 𝑠/10 (c) 1/10𝑠 (d) 10𝑠 
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49. The Laplace transform of 𝑢(𝑡 − 2) is (a) 1/(𝑠 + 2) (b) 1/(𝑠 − 2) (c) 𝑒2𝑠/𝑠 (d) 
𝑒−2𝑠/𝑠 

50. The inverse Laplace transform of (𝑠 + 2)[(𝑠 + 2)2 + 4] is (a) 𝑒−𝑡 cos 2𝑡 (b) 
𝑒−𝑡 sin 2𝑡 (c) 𝑒−2𝑡 cos 2𝑡 (d) 𝑒−2𝑡 sin 2𝑡 

51. Reflection coefficient for the transmission line shown in Fig 13 is………  

250 Ω

Z0 = 150 Ω
Load

 
Figure 13 

 
(a) 1 (b) −1 (c) 0 (d) 0.5 

52. For a −400Ω line with a pure capacitive impedance of −𝑗400Ω, the reflection 
coefficient is (a)0 (b) 1 (c) ∞ (d) −1 

53. Transmission of power to a load over a transmission line achieves optimum 

value standing wave ratio (SWR) is (a) 2: 1 (b) 1: 2 (c) 1: 1 (d) 1:√2 
54. For an open circuited load, voltage reflection coefficient is |𝜌|, 𝛽, respectively, 

(a) 1, 𝜋 (b) 0, 𝜋 (c) −1, 𝜋 (d) 1,0 
55. For a given voltage signal, 𝑉𝑚𝑎𝑥 =(a) 𝑉1(1 + |𝜌|) (b) 𝑉1(1 + |𝜌|) (c) 

𝑉1(1 − |𝜌|)
2 (d) 𝑉1(1 + |𝜌|)

2 
56. For a reflection coefficient of 0.6/450 VSWR equals (a) 1.67 (b) 0.25 (c) 4 (d) 6 
57. For a VSWR of 5, the magnitude of the reflection coefficient is (a) 0.2 (b) 2 (c) 

0.33 (d) 0.67 
58. For a characteristic impedance of 200Ω and voltage standing wave ratio of 4, 

the normalizes minimum, maximum impedances will be respectively, (a) 
50Ω, 200Ω (b) 0.25, 4 (c) 200, 800 (d) 2Ω, 8Ω 
(For Questions 59 and 60) A transmission line has a characteristic impedance 
of 100Ω and load impedance of 35 − 75Ω. On the smith chart. 

59. The corresponding load admittances is (a) 10 + 𝑗11Ω (b) 0.5 + 𝑗1.1 (c) 1.1 +
𝑗0.51 (d) 50 + 𝑗110     

60. The voltage standing wave ratio is (a) 4.6 (b) 3.6 (c) 5.6 (d) 6.6 

 
 LAPLACE TRANSFORM CONCEPT 

 
1. Find the Laplace transform of (1 + cos 2𝑡) using first principle. 
2. Find the Laplace Transform of cos2t. 

3. Find the Laplace Transform of 4t−
1

2 
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4. ind the Laplace Transform of 5t2 cos 2t 
5. Find the Laplace Transform of: 8 + 𝑡 + 9𝑡2 + 𝑡3      
6. sin 4𝑡 using first principles  
7. 4 cos 4𝑡 using Euler’s rule  
8.  𝑡3 𝑒− 2 𝑡         
9.  7𝑠𝑖𝑛32 𝑡  
10.     6𝑒−4𝑡 𝑐𝑜𝑠2𝑡     

 

SOLUTION OF DIFFEREBTIAL EQUATIONS BY LAPLACE 
TRANSFORMS 

 Solve the following differential equations using Laplace Transform: 

1. 
𝑑2𝑦

𝑑𝑥2
 + 𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 1  𝑎𝑛𝑑  

𝑑𝑦

𝑑𝑥
 = −1  𝑎𝑡  𝑥 = 0 

2. 
𝑑2𝑦

𝑑𝑥2
− 4𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 0  𝑎𝑛𝑑  

𝑑𝑦

𝑑𝑥
 = −6  𝑎𝑡  𝑥 = 0.     

3. 
𝑑2𝑦

𝑑𝑥2
 + 𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 1,

𝑑𝑦

𝑑𝑥
 = 1  𝑎𝑡  𝑥 = 0 

4. 
𝑑2𝑦

𝑑𝑥2
 +  2 

𝑑𝑦

𝑑𝑥
 + 5 𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒  𝑦 = 2,

𝑑𝑦

𝑑𝑥
 = −4  𝑎𝑡  𝑥 = 0   

5. 𝑦′′ + 2𝑦′ + 𝑦 = 𝑡𝑒−𝑡   𝑖𝑓 𝑦(0) = 1, 𝑦᾽(0) = −2   

6. 
𝑑2𝑦

𝑑𝑥2
+ 𝑦 = 𝑥 cos 2 𝑥 , 𝑤ℎ𝑒𝑟𝑒  𝑦 =  

𝑑𝑦

𝑑𝑥
= 0 𝑎𝑡 𝑡 = 0.   

7. 
𝑑3𝑦

𝑑𝑥3
− 3 

𝑑2𝑦

𝑑𝑥2
− 3 

𝑑𝑦

𝑑𝑥
−  𝑦 = 𝑥2𝑥2 𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑦 = 1,

𝑑𝑦

𝑑𝑥
 = 0,

𝑑2𝑦

𝑑𝑥2
= −2 𝑎𝑡  𝑥 = 0   

8. 
𝑑𝑥

𝑑𝑡
+  4 𝑦 = 0,

𝑑𝑦

𝑑𝑥
− 9 𝑥 = 0.         𝑔𝑖𝑣𝑒𝑛 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 1 𝑎𝑡 𝑡 = 0.         

9. 4 
𝑑𝑦

𝑑𝑡
 +

𝑑𝑥

𝑑𝑡
+  3 𝑦 = 0,

3 𝑑𝑥

𝑑𝑡
+  2 𝑥 +

𝑑𝑦

𝑑𝑡
= 1, under the condition  𝑥 = 𝑦 = 0 𝑎𝑡 𝑡 = 0 

10. 
𝑑𝑥

𝑑𝑡
+ 5 𝑥 − 2 𝑦 = 𝑡,    

𝑑𝑦

𝑑𝑡
+ 2 𝑥 + 𝑦 = 0  being given when 𝑥 = 𝑦 = 0  𝑤ℎ𝑒𝑛 𝑡 = 0 

11.   
𝑑𝑥

𝑑𝑡
+ 𝑦 = sin 𝑡 ,   

𝑑𝑦

𝑑𝑡
+ 𝑥 = cos 𝑡 given that 𝑥 = 2, 𝑎𝑛𝑑  𝑦 = 0  𝑤ℎ𝑒𝑛 𝑡 = 0. 

12.   3
𝑑𝑥

𝑑𝑡
+  3

𝑑𝑦

𝑑𝑡
+  5 𝑥 = 25 cos 𝑡 ,    2

𝑑𝑥

𝑑𝑡
− 3

𝑑𝑦

𝑑𝑡
= 5 sin 𝑡  

𝑤𝑖𝑡ℎ 𝑥 (0) = 2, 𝑦(0) = 3 

13.  For the second-order differential equation 
𝑑2𝑦(𝑡)

𝑑𝑡2
−
7𝑑𝑦(𝑡)

𝑑𝑡
+ 12𝑦(𝑡) = 6𝑒−4𝑡  

   𝑦(0) = 2, 𝑦′(0) = 5, determine the response 𝑦(𝑡) 

 

14. For the second-order differential equation 
𝑑2𝑦

𝑑𝑡2
− 7

𝑑𝑦

𝑑𝑡
+ 12𝑦 = 2𝑠𝑖𝑛4𝑡  

 𝑦(0) = 2, 𝑦′(0) = 5, determine the response 𝑦(𝑡) 
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15. Solve the following differential equation using the Laplace transform method. 
𝑑2𝑣(𝑡)

𝑑𝑡2
+ 4

𝑑𝑣(𝑡)

𝑑𝑡
+ 4𝑣(𝑡) = 2𝑒−𝑡 ,   If 𝑣(0) = 𝑣(0) = 2 

 

 

APPLICATION OF LAPLACE TRANSFORM 

1.  In the circuit of figure 5.3 of your textbook, the coil has 10 Ω resistance and a 
8 H inductance. If 𝑅 = 14 Ω and the source voltage is 30 V and the switch is 
open at 𝑡 = 0. Determine 𝑖(𝑡) using Laplace transform method. 

2. The circuit shown in Fig. N is under steady state with the switch at position 1. 
At 𝑡 = 0 the switch, is moved to position 2. Find 𝑖(𝑡) using Laplace transform 
method. 

2

1 40Ω 

20mH

25V100V

i(t)

 
Figure N                                                          

3. In the RL circuit of Fig. O below the switch is in position 1 long enough to 
establish steady state-state conditions and 𝑡 = 0 it is switched to position 2. 
Find the resulting current 𝑖(𝑡) using the Laplace transform method. 

21

25Ω 

10mH
180V100V

i(t)

     
Figure O           

4. Find 𝑖(𝑡) using Laplace transform method by first Laplacing the circuit of Fig.R 
and then taking the loop equation in the circuit of figure below if the initial 
conditions are all zero and the switch is closed at 𝑡 = 0  
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10Ω 

100V 10Ω 

1F 0.5F

5Ω 

t=0 i(t)

 
Figure R 

5. In the circuit of the Fig.S, obtain the differential equation for 𝑖1 and 𝑖2. Find 
the current 𝑖1 and 𝑖2 at 𝑡 = 0 using Laplace transform. Given that all initial 
conditions are 

𝑖1(0
+) = 𝑖1(0

−) = 0   𝑖2(0
+) = 𝑖2(0

−) = 0,        
𝑑𝑖1(0

+)

𝑑𝑡
=
𝑉

𝐿1
 

50Ω 

50Ω 

0.2H 0.4H
100V

i1

i2

t=0

     
Figure S                                                        

6. For the two-mesh network of Fig.P, determine the values of the loop current 
𝑖1 & 𝑖2 using Laplace transform and hence, write the s-domain equation in 
matrix form. 

5Ω 

5Ω 

4H
i1

i2

4F120V

+ 

𝑄0 

     - 

 

      

Figure P                                                                                        

7. Determine the Laplace transform of the ramp function in Fig. L. 
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0 1 2 3 4

v(t)

t

10

 

Figure L 

8. The step response of a system is given by 𝑓(𝑡) = 2𝑡2 + 3𝑡 + 1. Determine its 
impulse response. 

9. Determine the Laplace transform of the ramp function in Fig. M. 

0 1 2 3 4

v(t)

t

2

4

 

Figure M 

10.  Determine the Laplace transform of the function in Fig. N 

0 1 2 3 4

v(t)

t

2

4

5 6 7

  

Figure N 

11.  Find the Laplace transform of 𝑓(𝑡) = (cos 3𝑡 + 𝑒−4𝑡)𝑢(𝑡)  

12. Find the Laplace transform of 𝑓(𝑡) = 𝑡2 cos 4𝑡 𝑢(𝑡)   
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13.  Find the Laplace transform of the function ℎ(𝑡) in Fig. O. 

 

0 4 8

6

h(t)

t

2

 

Figure O 

 

Transmission Lines Solution with Smith Chart 

1. A lossless transmission line of characteristics impedance 75 Ω is terminated in a 
load of 300 + 𝑗 150 Ω. determine the:         

i. Reflection coefficient  
ii. The load admittance  
iii. VSWR  
iv. Distance between the load and the nearest voltage minimum to it. 
v. Normalized input impedance 𝑍𝑖𝑛, given that the length of the line is 92 cm 

and the signal wavelength is 40 cm. 
 Use the smith chart in Fig. Q3 to answer question 1 

2. A lossless transmission line of characteristic impedance 125 Ω is terminated in a 
load of 350 + 𝑗200 Ω. By the smith chart determine the:  

(a) The load impedance  
(b) Reflection coefficient  
(c) VSWR 
(d) Normalize input impedance. Given that the length of the line is 1.6𝜆 
(e) Distance between the load and the nearest voltage minimum to it. 

Use the smith chart in Fig. Q2 to answer question 2 
 

3. A lossless transmission line with 𝑍0 = 100 Ω is 80 m long and operates at 6 MHz 
the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω.  
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Given that 𝑢 = 0.8𝑐 on the line, 𝑐 = 3 × 108 𝑚/𝑠 determine by the use of smith 
chart: 
(i) Load admittance  
(ii) Voltage reflection coefficient 
(iii) VSWR  
(iv) 𝑧𝑖𝑛 , 𝑧𝑚𝑎𝑥, 𝑧𝑚𝑖𝑛      Use the smith chart in Fig. Q1 to answer question 3 

 

 

 



   
  Circuit Analysis with Laplace Transform 

232 
 

Figure Q1 
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Figure Q2 
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Name: …………………………………………………………………………... 

Matric Number: ……...………………………………………………………. 

        Date ……………………………. 

Figure Q3 
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    INDEX 
A 

Ac circuit theory (211) 

Admittance element (167)  

Admittances (204) 

Algebraic method (68) 

Amplitude (2) 

Amplitude decreases (169) 

Angle of reflection coefficient (213) 

Antenna (165) 

Attenuation coefficient (170) 

Attenuation constant (175,179) 

B 

Bandwidth (211) 

Binomial expansion (79,117) 

Black magic design (210) 

C 

Capacitance (166) 

Capacitive reactance (166) 

Capacitor (7,139) 

Capacitor voltage (149) 

Characteristic impedance 

(166,170,186,191) 

Circle (204) 

Circuit (151) 

 

 

 

Circuit element models (137) 

Circuit theory series (165) 

Circular plot (204)  

Coaxial cables (165) 

Coil (166) 

Combination of methods (70) 

Communication engineering (165) 

Comparing coefficients (58) 

Complete response-transient (139) 

Completing the square (66) 

Complex algebra (66) 

Complex frequency (2) 

Complex poles (66) 

Complex quantity (169,172) 

Complex roots (66) 

Complex sum (170) 

Complex translation (15) 

Computer simulations (202) 

Conductance (166) 

Conductive components (204) 

Constant coefficients (87) 

Constant cross sectional (166) 

Constant gain contours (203) 
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Continuous conductor (166) 

Convolution (26) 

Convolution integral (155) 

Convolution theorem (81) 

Cosine (2) 

Cover- up rule (59) 

Current reflection coefficient (175) 

Current source (139) 

D 

D.C component (102) 

D.C signals (165) 

D.C voltage (101) 

Damped (2) 

Damped exponential (2) 

Damped sinusoidal (2) 

Damping factor (2) 

Damping function (2) 

Decibel (169) 

Denominator (57,192) 

De-normalized (211)  

Derivative (168) 

Derivative time differentiating (11) 

Design engineer (165) 

Determinant method (128) 

Dielectric material (166) 

Differential equations (95,137,167) 

Differentiation (1) 

Dirac delta (37) 

Dirac delta function (40) 

Dirac delta -unit impulse function (36) 

Direct current (2,102) 

Distortionless line (175) 

Division of s (multiplication) by (76) 

Domain equivalent (57) 

Dummy variable (18) 

E 

Effect of the Dirac delta (37) 

Electrical circuit (165) 

Electrical conductors (165) 

Energy conservation (22) 

Engineering (203) 

Equating coefficients (69) 

Equivalent n circuit (178) 

Equivalent t transmission line (178) 

Euler’s (2) 

Exponential (141) 

Exponential function (1) 

Exponential signal (2) 

F 

Final value theorem (30,47,113,114,153) first order differential equations (3) 
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First shift (frequency shift) theorem (15) 

First shift theorem (15,32,62) 

First shifting property (77) 

Forcing function (7) 

Frequency (102,175) 

Frequency domain (8,142) 

G 

Gamma (170) 

General solution (87) 

Graphical technique (204) 

Greek alphabet (2) 

H 

Heaviside unit step function (8,40) 

High frequencies (165,185,202) 

High frequency transmission lines (165) 

High radio frequencies (202) 

Higher order differential equations (3) 

Higher order singularities (4) 

I 

Imaginary part (179) 

Impedance (102,141) 

Implicitly zero (7) 

Impulse (38,141) 

Impulse response (164) 

Incident wave (171) 

Independent source (149) 

Inductance (166) 

Inductor (102,139) 

Inductor present a short (101) 

Infinite impedance (165) 

Infinite lines (166) 

Initial capacitor (7,151) 

Initial condition (101,154) 

Initial energy stored (151) 

Initial inductor (151) 

Initial value theorem (30,32) 

Input excitation x(s) (154) 

Input impedance (186) 

Integral expression (18) 

Integration (1) 

Integration properties (94) 

Integro-differential equations (94) 

Intrinsic impedance (177) 

Inverse (71) 

Inverse Laplace (73,129) 

Inverse Laplace transform (63,96,113) 

Inverse transform (66) 

K 

KCL (112) 

KCL admittance element (167) 
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Kirchhoff (155) 

KVL loop (101,108,116) 

L 

L-hopital’s rule (26) 

Laplace inverse (115) 

Laplace transform (1,79,94,114,137) 

Laplace transform method (87,92) 

Laplace transform table (1) 

Laplacing (110) 

Lazined-inducing Laplace transform (3) 

Leakage current (166) 

Line characteristics (169) 

Line of zero loss (185) 

Line parameter (171) 

Linear factor (61) 

Linear system (137) 

Linearity property (141) 

Load admittance (216,221) 

Load impedance (166,174) 

Loop (127) 

Low dissipation lines (202) 

Low frequency signals (165) 

Low loss dielectric (177) 

M 

Magnetic field intensities (177) 

Manual computations (203) 

Matched (165) 

Mathematical model (137) 

Matrix (128) 

Maximum current (2) 

Maximum reflection coefficient (207) 

Mechanical systems (137) 

Mesh analysis (108,142,155) 

Method of comparing coefficients (57) 

Method of residues (59) 

Minimal loss (165) 

Minimum voltage (219) 

Mismatch (180) 

moh (211) 

Multiple poles (66) 

Multiplying factor by t (23) 

N 

Natural response (7) 

Negative factor (3) 

Neper frequency (2) 

Network stability (154) 

Network synthesis (154) 

Nodal analysis (149) 

Node (112) 

Noise figure circles (203) 
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Non- periodic function (79) 

Non-zero value (101) 

Normalize load impedance (213) 

Normalized (204) 

Normalized admittance (210) 

Normalized impedance (210) 

Normalized modes (204) 

Normalized resistive (204) 

Number of wavelengths (215) 

Numerator (192) 

Numerator (57) 

O 

Ohm (155) 

Ohms law (101,157) 

Omega (2,211) 

One cycle (79) 

One for 1st- order equation (3) 

Op amp (141) 

Open circuit impedance (174) 

Open circuit load (172) 

Ordinary linear differential equation (87) 

Oscillator (204) 

Output response y(s) (154) 

Output y(s) (155) 

P 

Parallel (166) 

Parallel impedance (121) 

Parallel wires (166) 

Parameter (166) 

Parametric equation (206) 

Partial derivative (168) 

Partial fraction (102,109,117,125) 

Partial fraction expansion (145) 

Partial fractions (57) partial fractions 

(89) 

Phase (2) 

Phase angle (216) 

Phase constant (170) 

Phase shift constant (179) 

Phase velocity of propagation (179) 

Physical process (137) 

Polynomial (57) 

Polynomial functions (22) 

Propagation (166) 

Propagation constant (170) 

Q 

Quadratic factor (61) 

Quadratic term (66) 

Quarter wave (186) 

Quarter wave transformer (185) 

Quotient (57) 
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R 

Radian frequency (2) 

Radian frequency (2) 

Radio frequency rf (203) 

Ramp (141) 

Reactance (202) 

Real coefficients (66) 

Real translation (18) 

Receiving antenna (165) 

Reciprocal (102,141) 

Reflected wave (171) 

Reflection coefficient (171,205,210) 

Reflection from the load (171) 

Reinforcing factor (2) 

Repeated factor (61) 

Repeated poles (65) 

Repeated quadratic factor (61) 

Repeated root (62) 

Required solution (89) 

Residue method (68) 

Resistance (166,202) 

Resistor (141) 

Rf circuit (204) 

Rf frequencies (205) 

Rf parameters (204) 

Right hand side (26,145) 

R-L circuit (101) 

Root (pole) (102) 

S 

S- domain (1,95,121,137,155) 

S-domain equivalents (139) 

S-domain functions (57) 

Second order differential equation (3) 

Second shift (time shift) theorem (18,80) 

Second shift theorem (32) 

Second shifting property (78) 

Second shifting theorem (104) 

Sending end (188) 

Sending end impedance (180) 

Short circuit (102,189,207) 

Short circuit impedance (174) 

Short circuit load 172) 

Signals (165) 

Simple complex poles (66) 

Simultaneous differential equation (92) 

Simultaneous equation (58,69) 

Sinusoidal (2,141) 

Sinusoidal function (2,24) 

Sinusoidal signal (2) 

Skin effect (202) 
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Smith chart (203) 

Smith chart resolution technique (210) 

Smith transmission line chart (204) 

Source voltage (101) 

Standing waves (188) 

Steady state (101,139,146) 

Steady state value (113) 

Step (141) 

Step function (102) 

Step signals (101) 

Stubs (186) 

Stunt (166) 

Sum of functions (14) 

System (137) 

T 

Telephone communication (202) 

Thevenin equivalent (153) 

Time – scaling theorem (29) 

Time differential theorem (30) 

Time varying signal (166) 

Transfer function (154) 

Transform table (57) 

Transformed function (1) 

Transient response (146) 

Transmission lines (165,202) 

Trice -scale- up (101) 

Twice scaled -up (101) 

Two for 2nd- order the response (3) 

Two wire line (166) 

Types of partial fractions (61) 

U 

Ultra – high frequency (uhf) (202) 

Unit impulse (38) 

Unit step function (39,79,101) 

Unknown coefficients (67) 

Unmultiplied function (15) 

Unpredictable (202) 

Unshifted functions (32) 

V 

Voltage division (155) 

Voltage reflection (172) 

Voltage reflection coefficient (172) 

Voltage standing wave ratio (189,219) 

VSWR (188) 

W 

Wavelength scale (210) 

Wavelength towards generator (215)  

Z 

Zero (151,154) 

Zero dissipation (202) 
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Zero input (7) 

Zero resistance (165) 

Zero time (102) 

Zeroth derivative (12) 
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