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Preface

This book originates from notes used in teaching Electrical Circuit Theory courses at the
third-year level of Electrical/Electronic Engineering Department, Federal Polytechnic,
Oko, Anambra State, Nigeria. Along with other materials gathered by the author during
his degree and post-degree years of academic pursuit, and over fifteen (15) years of
teaching experience in accordance with course curriculum guidelines from the National
Board for Technical Education (NBTE), this text, “CIRCUIT ANALYSIS Using Laplace
Transform with Application”, was written.

The content of each chapter was designed to accommodate Higher National Diploma
(HND) and Bachelor of Science/Engineering (B.Sc./B.Eng.) undergraduate students as the
materials presented were made comprehensive enough to cover both classes of
programs at their mid-course levels.

Chapter 1 covers the basic knowledge of Laplace Transform with its fundamental
formula; chapter 2, partial fractions with different methods of resolving same.

Chapter 3 discusses Laplace transforms in the reverse direction, i.e., Inverse-Laplace
Transform.

Chapter 4 covers solutions of differential equations by Laplace transform method, and
how one can use it in solving time-domain equations by transforming to the frequency or
s-domain.

Chapters 5 and 6 cover electrical circuits using Laplace transform, and the various
applications thereof.

Chapter 7 is about Small Signal Transmission Lines, with primary and secondary
constants. Chapter 8 covers Ultra High Frequency (UHF) transmission lines, along with
the use of the Smith chart in solving small-signal problems.

At the end of the chapters are enough review problems designed to help the students
exercise their level of comprehension of the treated matters, and by so doing internalize
the underlying principles of the lessons taught.
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CHAPTER 1

LAPLACE TRANSFORM

1.0 The Concept of Complex Frequency

Laplace transform is a tool or device conveniently utilized to transform time-domain
functions (s-domain) for the purpose of circuit analysis. Experience has shown that while
dealing with transient analysis, it was found to be rather tedious and cumbersome
dealing in time domain with several steps, intermediate or otherwise, involved in order
to determine the initial conditions etc. Laplace transform makes it possible to solving
time-domain integer differential equations in s-domain by working algebraically. Here
differentiation in time domain corresponds to multiplying by s in frequency domain,
whereas integration in time domain is equivalent to division by same s.

The identity of the transformed function has to be presented, and the exponential
function comes in handy! This is because it is the only function in all of mathematics that

has the unique character of retaining its identity upon differentiating or integrating
t

de®t a L .
( Zt =ae™ o [edt = %), [note how the function is reproduced (reappears) in

the foregoing two operations in parenthesis].

For a given function f(t) in time domain, its Laplace transform is

Lf(t) =F(s) = oof(t) e Stdt 1.0

0-
On the frequency domain (s domain).

This is the article of faith, our working tool which is strictly a definition, so do not ask for
a “proof” since none is required for a defined relation.

A given function, when Laplace transform, has a unique value, so the use of Laplace
transform table is a perfectly valid method of getting the answer (response) back into the
original time domain which by reason of habit is presumed to be more familiar. An
analogous situation is the process of multiplication or division whereby the logarithm
table (found as part of the four-figure table in use up until a few decades back when it
got to be supplemented by the laziness-inducing handheld pocket “calculator”) is used to
convert inconvenient numbers to simpler numbers equivalent to raising 10 to other
numbers. Law of indices then allows the resulting index numbers to be added (or
subtracted), and the result then determined by employing an antilog table.



Since a given function has a unique value when Laplace transformed, the use of an
inverse transform table is a perfectly valid method of getting the transformed result (s
domain) back into the original time domain.

For a given function f(t), its two-sided Laplace transform is defined to be.

Lf(t) = foof(t)e‘“ dt = F(s) 1.1

Where the upper-case letter is used to designate the transformed function. Note once
again, this purely a definition, so no “proof” is required. However, its validity would be
established if we step back a bit and show how to traverse from time domain to
frequency (s) domain by subsuming or suppressing an et (exponential st) factor.

A general damped sinusoidal (i.e. time varying) function, say a voltage signal can be
written as: v(t) =V, et cos(wt + 0) (the cosine is the conventional trigonometric
function employed in the analysis, not the sine), where V,, is the maximum value
(amplitude), et is the damping function (o the damping factor necessarily taken to be
negative for positive time since any given signal must of necessity converge (ultimately to
zero value) in the absence of reinforcing factor], w (Greek alphabet omega, not “double-
u”) is the radian frequency in rad/s [w = 27tf], f being the cyclic frequency in cycles per
second (hertz); and 8 is the phase angle of the given voltage signal with respect to the
current assumed to have zero phase (angle). It can be written in degrees or radians,
although the letter is more acceptable.

By Euler’s identity:
e/f = cosf +jsinp 1.2
The sinusoidal function cos(wt + 8) can be written as:
cos(wt + 0) = Re {cos(wt + 0) + jsin(wt + 6)}
= Re {ej(wt+9)}
So, v(t) = Vet cos(wt + 0) = Re {,et e/(@t+0)}
= Re {Vj, e/? elotion)} 1.3

s =0+ jw is known as complex frequency, where o is the neper frequency, and w
(omega, not “w”) is radian frequency as previously mentioned o is the real part, and w
(not jw) the imaginary part.

v(t) can then be expressed as:

v(t) = Re {V, e/%e5t}



For the general expression of v(t) as a damped sinusoidal, if s =0 + jw = 0, so that
both o and w are zero, then we have simply:

v(t) =V, e@tcos(0 + 0) =V, cos 8 =V,
A constant which means a d.c. (direct current) signal.
Withs =0+ jw (6 — 0)
v(t) =V, cos(wt + 0)
A purely sinusoidal signal (with no damping factor).
Fors =0+ j0 (w = 0),
v(t) =V, e cos @ = V,e, just a damped exponential signal with no sinusoidal factor.

Example 1.1: Given that circuit in Fig. 1.1 takes us on a journey from time domain to
frequency domain to get to a forced current response with a given input voltage.

40 6H

~0.2F

AY

v(t) = 60e2 cos(4t +20°) V

Figure 1.1

The voltage source in Fig. 1.1 is a fully damped (exponential) sinusoidal signal and we
desire to determine the series current as the forced response.

We already know that in circuit analysis in time domain, that the forced response of a
given signal assumes the same character as the input signal, it would have the same
radian frequency and sinusoidal nature, differing only, perhaps in the amplitude and
possibly the phase angle. Therefore, one needs only determine the amplitude and phase
to be able to readily but down the expression for the forced response:

i(t) = I, e %t cos(4t + 0) and I,,,, the maximum current (amplitude) and phase (8)
are the only factors we need to determine from the input (nature).

v(t) = Re {60 e 2tel (4t + 10°)} — Re{60 eleOe(—2+j4-)t} 1.4
= Re{V et}

where ¥ = 60220’ is the polar representation of the voltage vector, and s = —2 + j4



Re = 602205t merely for convenience.
Similarly, i(t) “equals” TeSt, where I = I, 29,
KVL:
v(t) =4i+6ﬂ+5fidt (Remark:iz 5)
dt 0.2
Substituting,

o 5
60220 eSt = 4]est + 6s IeSt + Ele“

o 5
60220 = 4] + 65! +§I

_60£20" 60£20°
_ 4+6s+§_4+6(—2+j4)+ (_++j4)
602£20° 602£20° 1202£20°
T 4_124j2445x 24 T 85+,23 17+ )46
120220 = 2.45,/-90.28°

~ 49.04,110.28°

So, the two qualities that we set out to determine, namely, I, and @ are 2.45 A and
—90.28’, respectively, and the time domain expression for i(t) is:

i (t) = 2.45e~2t cos(4t — 90.28°) A

In the foregoing Example 1.1, the extreme usefulness of Laplace transform was
demonstrated as we shall soon see. Searchlight was also beamed on the exponential
function as the pivotal factor in the definition of Laplace transform, albeit the negative
factor.

For first order and some second order differential equations in time domain, given the
initial conditions one in the case of 1%%-order equation, and two for 2"-order the
response can be determined in relatively straightforward manner working in time
domain, but for higher order differential equations, the process can be rather tedious
and/or cumbersome. So, here Laplace transform comes in handy, and possesses a further
advantage of delivering the complete response in one fell swoop, considering the initial
conditions, and the forced response. This contrast with the time domain analysis where
the component parts of the complete response had to be delivered piecemeal!



1.1 Definition of Laplace Transform

Because Laplace transform is valid only for positive values of time, its defining equations
isasseeninEq. 1.1:

Lf(t) =f f(t) e~Stdt,

The lower limit of integration being 0~ rather than just 0, in order to consider any
discontinuities and higher-order singularities that might occur at (exactly) time zero.
Also, taking the lower limit of integration to be precisely zero might work for certain
functions, but might get us in trouble with some peculiar or improper function

For the purpose of comparing and contrasting let’s do one example before learning two
sided

Example 1.2: Determine the two-sided Laplace transform of the function
f®)==2e3u(t+3)—u(t—2)]

Solution:
Lf(t) =-2 fooe‘“ [u(t+3)—u(t—2)]e stdt

=-2 fj; e 3t e7stdt — fzooe‘“ e stdt

0,t<-3

”(t+3)={1 t> -3

we-2={133)

(o] [ee]

Lf() = —2] e~ g —J e~ gp
-3 2
(e—(s+3)t ® e—(s+3)t m)
—(s+3)|_, —(s+3),

o~ (5+3)(=3) o~ (s+3)(2)
= 20— +0———
< —(s+3) (s+3) )

X e3s+9 _ e—25—6
s+3 ( )




-2

— X e—25—6 _ e3s+9
s+3 ( )

Example 1.3: Determine the one-sided Laplace Transform of Example 1.2.

Solution:

o)

Lf() = -2 <f e~ (3t gt —f e_(5+3)tdt>
0 2
_2 (f e—(5+3)tdt — f e—(s+3)t dt)
- 2
2 ]
1 e~ (s+3)(2) 2
= -2 (0_—) 0— — —25—6 __ 1
[ —(s+3) +< s+3 )l s+3[e |

Note: the first (exponential) expressions are identical for both the two sided and one
sided but the second terms differ because the limits of integration for the first integral
expression are taken from 0~ to oo for the one-sided ignoring from —3 to 07, resulting in

[0e]

—(s+3)t e—(s+3)t

0 _—(s+3)

e
—(s+3)

ﬁ, whereas these limits are included for the two-sided.

1.2 Comparing Time Domain and S-Domain Analysis

Example 1.4: Determine the response i(t) for the circuit of Fig. 1.2.

4Q

+
u@ V(" — F=  v®

i(t) T p(00) =9V

Figure 1.2

Solution:  u(t) = 14i + 16 f_tooi (t)dt (initial energy storage in the capacitor is
accounted for, from time —oo to 0)
di(t)

Differentiate across: 6(t) = 4 T + 4i(t)



ELCIY
= 0= " + 4i(t),

and zero input here means that complete response is the same as the natural response
since the forcing function is implicitly zero.

6(t) =0, t#0(@(.e t=0%)
i(t)=Ke™ ™
((0) = % = —2A =Ke° =
= i(t) =2e *u(t)A

By Laplace transform

w(t) = i(t) + 16 ft i ()dt

The limits of integration here have to be properly readjusted to apply the transform:

0— t
u(t) = 4i(t) + 16 U i(t)dt +f i (t)dtl
—00 0—

The second term on the right represent the initial capacitor voltage, 9 V
t
u(t) =4i(t) +v(07)+ 16 f i (t)dt

Laplace transforming:

1 9 I(s

—=4](s)+—-+ 16Q

s S s
(Note: these Laplace transform will be derived later)

1 1 9 8
41(s) + 16I(s) ==~ —— = ——
S S S S

1 2
](S)+4](S);= _E

= 1) = <_§)x(si4)

_ 2
T (s+4)




I(s) = — = —2e *u(t) A =i(t), as before

(s+4)

1.3 Laplace Transforms of Common Functions

1. The Heaviside unit step function u(t), already encountered earlier in
examples:

(0]

Lu(t) = f e Stu(t)dt = f e St (1)dt 1.5
- 0
(Note: u(t) takes on the value of unity from t = 0)

o e~st ©
f e stdt =
_ —S

0
2. The ramp function t u(t)

f e‘“tu(t)dtzf te St dt
- 0

Employing integration by parts: [[udv = uv — [ v du]

u=tdv=eStdt

—st

du =dt,v=—

S

fudv=uv—fvdu

© —te 5|” o e~st
j te Stdt = —j <— >dt
0 S o 0 S
1r” 1/1 1
=0—0+—f e‘“dtz—(—):—
s Jo S \s S

Addendum: differentiation in the frequency domain

d d (00} oo

) == O_e‘Stf(t)dt = f —te™" f(t)dt

_ j e~St [—tf(D)]dt = L[~tf ()]

This shows that differentiating with respect to s in the frequency domain, is equivalent to
multiplying by (—t) in the time domain, or

= LEf(t) = —%F(s) = —F'(s)



Example 1.5: Find the Ltu (t)

Solution

If Ltu(t) = Slz, then L[t?u(t)] = —%(1),

s2

Where f (t) = t?u(t)

d /1 d 2
—_ ] = —— 2y — _ _ -3 - _
ds (52) ds (s%) 2 s3
. — 2 _nt — 4
Check: Lt[tu(t)] = Ltu (t) = e
d /2 d 6
3 — 2 _ ([ —) = _ -3-1 - __
Lt3u(t) = Le[t“u(t)] IS (53) dSZ( 3)s =
3 6
Check: £t* = o5 ==

d /6 d 24
Lttu(t) = Le[tPu(d)] = — &(5_4) = ——(6(-HsH =

Check:
Lt = 4 24
W= 1™
!
= Lt™u(t) = e earlier proven

By replacingnbyn —1 (i.e, n + 1 by n),
(n—1)!

Sn

Lt™u(t) = 1.6

Example 1.6: Find the LT of t?u(t — 3).
Solution
t2u(t—-3)=[t—-3)2+6(t—3)+9u(t—23)
=t-3)2ut-3)+ 6(t—3Dut—3)+9u(t—3)
Lt?u(t—3)=L({t-3)%ult—3)+ 6L(t—3).u(t—3) +9Lu(t—3)
6 9]

:e_35|:£ +_+_
s3 s? s

Alliteratively Lt2u(t—3)=e 3L (t—3)2=e"35L[t? + 6t + 9]



_ _35[2+6+9]
- € s3 s2 s

Example 1.7: Find the Laplace transform of cos 6t

Solution

t =——————
Lcos6 2136

Example 1.8: Find the Laplace transform of cos?t.

Solution
cos 2t = 2 cos?t —1
cos?t =% [cos2t + 1]
1 1
L(cos?t) =L [E (cos 2t + 1)] =5 [L£(cos 2t) + L(1)]
_1[ 2 +1]_1[ 2 +1]
202 + (22 sl 20s24+4 s
3. The exponential function e% with a constant:
o0 o) s—a e—(s—a)t *®
f e St et dt =f et dt =———
- - —(s—a) o
1 1
= —_ — = = Leat

The Implicitly, Le ™% =
e Implicitly, Le T a

(ej at+e—jat)

As an exercise break cos at above into its “ruler parts” and then integrate

procedure, to get the same answer as in (3) above. (It might necessitate complex
numbers!)

4, Laplace transform of a derivative time differentiating theorem

d [o/e)
L ’;Et) — L) = j =t F1(t)dt




u=e* du=—-setdt,dv = f'(t)dt,v = f(t)

J.udv =uv — f vdu = e St ()| +sfooe_5t f@®

The integral term on the right is simply the Laplace transform of f(t), which is F(s)
So, Lf'(t) =0—e°(07) + sF(s)

=sF(s) — f(07)

2
The transform of the second derivative of f(t), that is f'(t) = %tgt),

either by interpolation or by direct application of the defining formula for Laplace
transform using integration by parts:

may be solved

By interpolation,
L") = s[sF(s) = f(07)] = f'(07)
Lf"(@®) =s*F(s)—sf (07)—f'(0)
Lf(t) =s[s*F(s) —sf(07) = f'(07)] - f(07)
Lf"(#) =s*F(s) = s*f (07) —s f'(07) = f"(07)
For with derivative

LEM(t) = s"F(s) = s" 7 f(07) =s™2f'(07) —s™ 3 £(07) ...
=sf"2(07) — f"1(07)
Follow the pattern: from the second term on the indices of s and f(0™) are homogenous

in add up to n — 1, terminating where s takes up the zeroth index (s° = 1) and f(07)
therefore with (n — 1) index.

5. Laplace transform of an integral: Time-integration theorem

LF7Y(t) = LU:f(x)dxl = J:oe‘“ Uotf(x)dxl dt

u= ftf(x)dx =du = f(t)dt
0

dv = e~ 5t




- LFi(e) = [ f f (x)dx] (—es) s f “est f(eyat
0

Again, the integral expression on the far right in simply the Laplace transform of f(t), the
zeroth derivative, making that whole second term equal to ? The first term is slightly

tricky and must be evaluated carefully. Bear in mind that here, x is a dummy variable
whereas t is the operating variable.

[—e‘“ J:f(x)dxlOo =-0—-— [eo .[;0_ fx)dx = j;o_f(x)dxl

And thus, is simply the integral of f(t) evaluated at 0~

: o F(s) FTL(07)
Lfo Fedx = Lf () = ==+ — 1.7
Table 1.1
Properties of the Laplace transform
Property f(t) F(s)
Linearity a;f1(t) + af>(t) ayf>(s) + ayF5(s)
Scaling f(at) 1 /s
2F )
Time shift ft—a)u(t—a) e ¥F(s)
Frequency shift eFatf(t) F(s+a)
Time differentiation ar sF(s) — f(07)
dt
d2f S2F(s) = sf'(07) = £(07)
dt?
d*f s3F(s) —s*f(07) —sf'(07)
a £ ()
d"f s"F(s)
i — sTLF(07)s™2f7(07)
— = f=D(07)

Time integration

t 1
j f(t)dt ;F(S)
0



. . . d
Frequency differentiation tf (t) 2R
ds
Frequency integration f) fOOF(s) ds
t S

Time periodicity f(@) =f(t+nT) F;(s)
1—esT

Initial value f(0) lim sF(s)
S—00

Final value f () lirrg sF(s)
S—

Convolution f1(®) = f,(¢) F;(s) X F,(s)

Table 1.2

Laplace transform pairs

f(©) F(s)
6(t) 1
u(t) 1
s
etat 1
sta
t 1
52
tn n!
Sn+1
te?at 1
(sta)?
tneiat n!
sin wt W
s2 4+ w?
cos wt S




sin(wt + 6) ssinf + wcosf

s? + w?
cos(wt + 0) scosf — wsin 6
s?2 + w?
e*at sin wt w
(st a)?+ w?
et cos wt sta
(s + a)? + w?
1.4 Laplace Transform Theorems
1. Linearity Theorem: states that the transform the sum of functions is
simply the sum of the transforms of the individual’s functions:
Proof:
LIAEO + /0] = [ e IAO + 01 18

- f et f,(6)dt + f e f,(0)dt = f(s) + f5(5)

2. Homogeneity Property: LT of a product of a constant and a function is
simply the product of that constant and the Laplace transform of that function:

Lcf (V)] = f e Stef(t)dt = cj e St f(t)dt =cF(s) 1.9
3. First-Shift (frequency shift) theorem: also called complex translation,
states that multiplying a function by e®® in the time domain, results in subtracting
a form s in the frequency domain after Laplacing the original unmultiplied

function.
Proof:

oo

L[e®f(t)] =f e St et f(t)dt 1.10

0
=j e~ £ (t)dt
But,

j e St f(t)dt = F(s),so logically,

fooe‘(s‘a)t f®)dt = F(s — a),

Where (s — a) has replaced s in the exponential term.



4. Unit Step Function
Laplace Transform of units’ step functions

Llu(t—a)] =2

Proof.

(0]

Lut—a)]= f e Stu(t—a)dt
0

oo oo e—st°°
=f e st .0 dt + f e‘“.ldt=0+[ l
0 a S 1,

—as

Llut—a)] =2

With the help of unit step functions, we can find the

u(t-a)

wherea = 0O

Figure 1.3

Inverse transform of functions, which cannot be determined
with previous methods.

The unit step functions u (t — a) is define as follows:

_ (o whent <a
u(t—a)—{1 when tZa} where a =0

Example 1.9: Express the following in terms of unit step function and find its Laplace

<

transform: f@)= [2’ tt > ;
- _18+0 t<2
Solution: f) = 82 £ 2
3 0 t<2
=8+|_, tZJ

=8-2u(t—2)



e—Zs

Lf(t)=8£(1)—2£(t—2)=§— 2 .

Example 1.10: Draw the graph of u(t —a) —u (t — b)
Solution:

The graph of u(t — a) is a straight line from A to oo. Similarly, the graph of u(t — b) a
straight line from B to oo.

f(t) a

Figure 1.4

Hence, the graph of u[t — a] — u[t — b] is AB.

Example 1.11: Express the following functions in terms of unit step function and find its
Laplace transform:

E <t<b
f(t)=[0 : t>b]
Solution. F(O) = [% ast= ;’] = E [u(t — @) — u(t — b)]
—as —bs
Lf(t)=EleS —es

Example 1.12: Express the following function in terms step function:

t—1 1<t<?2
f@®)=13-t 2<t<3
0 t>3

and find its Laplace transform

Solution:



t—1 1<t<?2
f)=13—-t 2<t<3
0 t>3

=(t—-—Dult—1)—u(t—2)]+ B —0)[ult—2) —u(t —3)]
=t-Dut-1D)-Ct—-Dult—-2)+ G-u(t—2)+(t—-3)u(t—3)
=t-Dut—-1)-2(t—2)ut—-2)+({t—-3)u(t—3)

e—S e—ZS e—3S
Lf(t) = S_Z - 2 SZ + 52
4. Second Shift (Time-Shift) Theorem: also called real translation, states that

shifting a function by time c in the time domain and multiplying the result by an
equally shifted unit step function, is equivalent to multiplying the Laplace
transform of the original un-shifted function by the exponential of (—cs):

Proof:

(0]

LIf(t—cu(t—c)] = j e St f(t—cu(t —c)dt 1.11

But u(t — ¢)” switches on” at t = ¢ to a value of simply unity resulting in the lower
integral limit of c instead of O

Lett’' =t — ¢, where t is known as a “dummy” variable. So dt’ = dt — 0 = dkt,

L= f e~s(t'+c) f(t") dt'are what after the change of variables results
c

LIft—cu(t—c)] =e5¢ f: e St f(t)dt' not exactly in the “shape” of Laplace
transform since the lower limit (of t, not t) is c instead if 0™. This lower limit ¢, has to
be properly adjusted to ¢~ to account for the fact that the lower limit for the
transform expression is 0~ and not 0.

Butt=c =t '=t—c=c¢"—c=0" and so ¢~ for t variables correspond to 0~
for t variables we’re finally able to express.

[ee]
LIft—ult—c)] = e‘“f e st f(t")dt'
And the integral expression is still a Laplace transform regardless of the name given
to the variable of the moment! (The variable t is not sacrosanct but only seemed so
on the account of the fact that ‘t’ is used to represent line a symbol!)



LIf(t—cu(t—c)] = e 5°F(s) 1.12

4 OStSZ}

Example 1.13: A function f(t) is defined by f(t) = {Zt _3 9> ¢

Sketch the graph of the function and determine its LT.
Solution: We see thatfort =0tot = 2,f(t) = 4

f(t)
A
4

2

0 1 2 3
Figure 1.5

Notice the discontinuity att = 2
Expressing the function in unit step form:
f@) =4u(t) —4ut—-2)+u(lt—2) (2t —-3)

Note that the second term cancels f(t) = 4 at t = 2 and that the third switches on
f(t)=2t—3 att =2

Before we can express this in Laplace transforms, (2t — 3) in the third term must
be written as a function of (t — 2) to correspond to u(t — 2) . therefore, we write 2t — 3
as2(t—2) + 1.

Then
f) =4u(t) —4ut—-2)+u(t—2)-{2(t—2)+ 1}
=4u(t) —4u(t—2)+ult—2)-2(t—2)+u(t—2)
=4u(t) —3u(t—2)+u(t—2)-2(t—2)

4 3¢ 2e72%8
+

L{F ()} = < -

s s2

6 0<t<s1
Example 1.14: A function is defined by f(t)=48—-2t 1<t<3
4 t >3

Sketch the graph and find the Laplace transform of the function.



Solution:

\J

0 1 2 3 t

Figure 1.6

Expressing the graph in-unit step form we have:
f@t) =6u(t)—6u(t—1)+u(t—1)-(8—2t)
—u(t—3)-(8—2t) +4.u(t—3)

Where the second term switches off the first function f(t) = 6 att = 1 and the third
term switches on the second function f(t) = 8 — 2t, which in turn is switched off by the
fourth term at t = 3 and replaced by f(t) = 4 in the fifth term.

Before we can write down the transform of the third and fourth terms, we must
express f(t) = 8 — 2t interms of (t — 1) and (t — 3) respectively.

8—2t=6+2-2t=6-2(t—1)
8—2t=2+4+6-2t=2-2(t—3)

sf@)=6ult)—6u(t—1)+ut—1)-{6 -2(t—1D}—u(t—3)-{2—-2(t—-3)}
+ 4u(t — 3)

=o6u(t)—6u(t—1)+6u(t—1)—u(t—1)-2(t—1) —2u(t —3) +u(t —3)
+2(t —3) + 4u(t — 3)
f@W=6ul)—ult—1)-2t—1) +u(t—3)-2(t—3) +2u(t—3)
2e7S 2e735  2e73S

L) = 2~ o b o

52 52 s

Alternatively, if
f@) =6ult)—6ult—1)+u(t—1)-(8—-2t) —u(t—3)-(8—2t) +u(t—3).4

=6u(t) —6u(t—1) +8u(t—1) — 2tu(t — 1) — 8u(t — 3) + 2tu(t — 3) + 4u(t — 3)
=6u(t)—6u(t—1)+8u(t—1) —2(t+ Du(t —1) — 8u(t — 3)



+2(t + 3)u(t — 3) + 4u(t — 3)
6 6 8 1 1 8 1 1 4
LDy ==—=e +-e* — 2(—2+—)e‘5 ——e ¥ 4 2(—2+—>e‘35 +—e73
s s s s2 s s s?2 s S
6 6 8 2 2 8 2 2 4
LFM)}=——=e +-e  —e ——e  ——e ¥ +—e >+ + -7
s S S S S S S S s

Collecting like terms,
6 1 3 2 1 ~ 2
L{f(t)}=§+;(—6+8—2)e S—S—Ze 5+§(_8+2+4)e 3S+S_Ze 3s

6 2e S 2e735 2e738
2 +—3
s s s

THEOREM L[f () u(t—a) =e ™2 L[f (t+ a)]

Proof: L[f ®ut—a)]= fooo e SULIf (B) .u(t —a)] dt

=0+ fooe‘“ [f(®).u(t —a)] dt
0

=0+ fooe‘“.f () (1)dt
0

[0e]

=0+f e‘s(“a).f(y+a)dy=e‘“sf e Y . f(y+a)dy but (t—a=y)
0 0

[0e]

LIf ®Du(t—a)] = e‘“sf e St f(t+a)dt =e ¥Lf(t—a) Proved.
0

Example 1.15: Find the Laplace transform of t?u(t — 3).
Solution. t2u(—-3)=[t—-3)2+6(t—3)+9u(t—23)
=t-3)2.ut-3)+ 6(t—3)ult—3)+9u(t—3)
Lt u(t—3)=L(t—3)%u(t—3)+6L(t—3).u(t—3) +9Lu(t —3)

3 [2 4 6 +9]
=e — — 4 —
s3 s s

Lt?u(t—3) =e 3L (t —3)%2 = e 35L[t? + 6t + 9]

_35[2 4 6 +9]
=e — — 4 —
s3 sz s



Example 1.16: Represent f(t) = sin2t, 2w <t < 4 mand f(t) = 0 otherwise, in
terms of unit step function and then find its Laplace transform.

Solution:
__[sin2t 2n<t<4m
f©) = 0 otherwise
f(t) =sin2t [u(t —2m) —u(t —4m)]
Lf(t) =Lsin2t.u(t—2m)— Lsin2t.u(t —4m)
1 2
_ —-27s _p—4ms | ___—
(e s+ 2 ¢ ) s3 + 4
2
— —-2ns _ ,—4rms
(e ¢ ) s34+ 4
5. Laplace of Polynomial Functions

[oe]
Lth =f t" eSt dt

—st

e

v=thdv=nt"1,dv=etdtu= .
the=st|”

Lt = +— f tv 1 eSt dt
=s |- s Jo-

n ” n-1 ,-—st n
=0—-—-0+-— t eStdt=—-1,_4
s Jo- s
Where Lt™ has been conveniently designated as I,, so that foof t™ 1 e Sthow
becomes I, — 1

Note: in evaluating the first term above, in taking the limits, the assumption has
been made that the numerical value of s is sufficiently large to force the product
t™ e75t to tend to zero for the upper limit of the integral expression, as the term
e~St diminishes faster than the term t" is increasing, so that the product
ultimately converges to zero. (The above assumption is justified on account of the
law of energy conservation!)

Continuing and replacing n by n — 1 (“mathematricks!”)

n—1 ny/m-—1
Ih1 = S Ihy=1,= (5) (T) I

Repeating the process, and replacingn byn — 1,




n—2 nm-—1\ /m—2
2= s In_3=>1"=§< s )( s )I"_3

And so on. ...... until, eventually,

n=1(57) (5 () ()

But (do not break the rule!) Iy = [~ t° e~5t dt = fooo e st dt = %

Which is the Laplace transform of unity earlier derived

=2 EHED) ) 6)-(2)6)

Finally, (and mercifully),

n!

Lt" == 1.13
Example 1.17: Find the Laplace transform of t=1/2
Solution:
n+1
We know that £ (t") = ——
s
1 1 -5+ 1 | 5 VT T
Put n=—=, L(t 2>=T —12 =— where | = =+nm
2 s 2t Vs Vs 2

A very powerful tool, since functions such as constants, quadratic, parabola etc. are now
ours for the taking as far as Laplace transforms are concerned!

6. Multiplying a function by ‘t’:

[0e]

Lt{f (t)} =J e St tf (t)dt 1.14

_ d _ . . . .
But te 5t can be expressed as — =€ St with the variable now becoming s instead of the
more familiar t. (Take the derivative to ascertain this to be so)

— 2O} = (-5 o) Feopa

. . . I d . .
Because is once again the variable, the derivative —; ¢annow leave the integral sign,
resulting in,



d (o]
Ltf(t) = s e St f(t)dt.

We once again recognize the integral expression as simply our old friend the Laplace
transform of f(t).

= |Ltf(t) = —disF(s) = —F'(s) 1.15

By the same reasoning, interpolating,

LE2f(t) = d—zF(S) LEf(t) = —d—zF(S)
 ds? T ds? ’

d (d*F —d3F
LE3f(t) = LE[t*f ()] = —%< dS(ZS)> = ds3(S)

d"F(s)
dsm

Example 1.18: Find the Laplace transform of t2 cos at.

LEF(E) = (=1)" = (=1)"F"(s) 1.16

Solution:

S
L(cosat) = m

d2 d 2 _ 42 1_ 2 d 2 2
L(t% cos at) = (—1)2 [ _ S 2] _d(s®-a)1l-5@2s) _d a® — s
S a

d s? ds (s%2 - a?)? T ds (s%2 - a?)?
(s2-a®)?x (=2s)— (a® — s®*)x2(s?-a®)(25s)
- (s2 - a?)*
=25 —2a’s —4a’s + 45s°
- (s? - q?)3
_2(s* = 3a?%)
- (s2 - a2)3

The sinusoidal function cos at

j e St cosat dt = Lcosat

sin at

(u = e~ 5t du = —se St dv=cosatdt = v = i.e by integration)



— . (o8]
e Stsin at

Lcosat =

S (o]
— ——f e Stsinat dt
al,_

a 0—

Applying integration by parts a second time:
s I—e‘“ cos at

o)

S (o]
(—e St cos at)dt l

aJ,_

Lcosat=0—-0+—
a a o

S 1 S
Lcosat = —[(—0——) ——Lcos at]
a a a
52 s
Lcosat(l +§> =?
L t >
= |Lcosat = ———
s2+a?

Example 1.19: Obtain the Laplace transform of t2et sin 4t.

Solution:

L(sm 4t) = m

4
tsin4t) =
L (te'sin 4t) G- Drt 16

L(tet sin4t) = _i( 4 > _ 4(2s — 2)
ds\s? — 2 s + 17

T (s2 - 25+ 17)2

2t o d 2 - 2)
L(t“e"sin4t) =—%( (s2 — 2s + 17)2)

2= 25+ 17)* = 2(s — 2)(s* = 25 + 17) (25 — 2)
B (s2 — 25+ 17)*

_ —4(2s® — 45 + 34 — 85 + 16s — 8)
B (s2 — 25+ 17)3
_ —4(—6s? +12s + 26) 8(3s?— 65 — 13)
 (s2 = 25+ 17)3 (s? — 25 + 17)3

7. Dividing a function by ‘t’:

L (jﬁ) = JOO F (o) do,in so far as lim I@l exist
t g=S t-0 t



Starting from the right-hand side,

fo: F(o)do = fo: [ oof(t)e""t dtl do

0—

Where in the inner integral expression, the domain has been changed s to g, in order to
restore the final integral answer back to s after evaluation. Also, here the variable is t

[fiy]

Interchanging the integrals (allowed by law convolution),
f f f(®)e ° dodt
t=0"Yo=s

-yl o[ frof=]fa

- rw [—O“e_“] a= [ L0,
t=0" t

t=0" t

)

And this is simply the Laplace transform o ,

So, by going backward we’ve been able to
show:

Lf(t) = joj F(o)do 1.17

Example 1.20: Evaluate £ (Sintat)

sinat

Testing for the existence of limit: lting = % (division by zero is prohibited!)

Applying L’ Hopital’s rule, the derivatives of the numerator and denominator are taken:

. % (sinat)  gcosat
it (@ = 150 1 -
dt
_ _a
Lsinat = 52+—a2

sin at * a
B L
t soslo?2+ a

To evaluate the integral, let’s use some geometry:



0 o
0
a
sin 8
g = atanf = a

cos 6
do cos? 6 + sin% 6 _a
a0 ¢ cos2 6 "~ cos26

5 5 2sin29 5 5 sin? 0 + cos? 6@ a?
=0“4+a“=a —+ta“=a > = 5
cos? 0 cos? 0 cos? 0

a 2
f 02+a2d0:f e de:f 40
o=S§ =S > o=S§

(
(COC; 6)

o s
= 0|g-s = arctan (—)| = arctanoco — arctan—
a o=S a

T 1 (S (@
=~ —tan (—) = tan (—),
2 a S
Because T_ arctan (i) = T_ 0 = @ = arctan (E)

2 a 2 N

So, finally (and mercifully too!), [900 —tan~?! (2) =tan~! (ﬁ)]

sin 2t
Example 1.21: Find the Laplace transform of the function:

Solution:

L(sin2t) =
(sin 2t) s2 + 4
L(sinZt)_f‘” 2 4 —21[t _1s]°°
t )7 ) s2+ a® T el 2l
s1 0w s
= [tan‘loo —tan™! E] =——tan !

2 2



s
=cot 1=
2

Esint
Example 1.22: Find the Laplace transform of the equation e dt.
0

Solution:
Lsint =
s s2 + 1
sint @ T
LTz fs I 1ds = [tan™1 s]? =5 = tan~ts
tsint 1
— dt=-— [—— tan_ls]
o t 2
1 — cost
Example 1.23: Find the Laplace transform of 5
Solution:
£a £) = £(1) — L(cost) = ~ >
(1—=cost) =L(1) cos = T 271
L(l—cost)_j‘”(l S )d—[l 1l 2+1]°°
t _S s s2+4+ 1 S= 088 zog(s )S
1 1 sz 1”7
— 2 2 o _
=5 [logs® log(s® + 1)]g =3 llogs2 n 1L
| s? 1 lo | s? l 1 | s?
=5 ° 1\ =5 |V T | T 58 2 1
2 52(1+12) 2 s2 + 1 2 sz + 1
S S

Agai L[(l—cost)]_ 1f001 s? s = 1f001 s? ) 4
s 2 17 72) By 1P T 2 (B 1) "

Integrating by parts, we have

- _Ellogsz + 1° S s2 (s? + 1)2

1 52 1 ° 1 52 °
= —=|slog -2 j ds| = —=]|slog —2tan™ts
N S

1 s2 J‘SZ+ 1(s24+ 1)2s —s%(25) r
. s ds
N

sz + 1 sz + 1 2 sz + 1



B I 2(”) log—> 4+ 2t -1a'!0o
= slogz—— an ss

2 2
1 2 °°
= -3 l—n— slogs2 1 + 2tan™? SL
S : tan™"
272 %y
T . s s? . s s?
= (E_ tan s)+§ logs2 1 cot™ s+ > logs2 1
sin 3t
Example 1.24: Evaluate £ [e““ T]
Solution:
rsin3t 3 £sin3t J‘°° 3 4 [3 ran-1 s]°°
= = — | — —
St T e t ) sz+9 PT3M 3
T s
=~ tan 1= cot‘1§
sin 3t s + 4
L [ e 4t ] = cot™?!
t 3
8. Time-Scaling theorem
1 /s
Lf(at) = =F (E) 1.18
Proof: Letat=v=>t=§=dt=idv
= Lf (v) = Lf (at) = f e St f(at)dt

oo _S(g) oo s
Jo-e f(n)ldv zlf 3 Fwyav,

a a

Where the integral quantity if F(z), the Laplace transform of f(t) with s replaced by s/a
since a change of variables from t to v makes no difference to the result of the theorem.
This is known as “dummy” variables theorems continued.

9. Initial value theorem:
This states that if a function f(t) and its first derivative f'(t) are

F(s) exists, then:



lim sF(s) = ltirrol f 1.19
S—00 -

The “initial” in the theorem is with respect to time domain(t — 0), and allows for the
evaluation of the “final” value in the s (frequency) domain by evaluating the initial value
in the time domain, (and vice versa) when the former is too complicated is to be carried
out directly in the frequency domain. (Note the slight modification by the multiplier s. do
not forget to do this in examinations!).

10. Final-value theorem:

If a function and its first derivative are Laplace transformable, and the poles of sF(s) lie
inside the left half of the s-plane, then:

lin(} sF(s) = tlim f) 1.20
s> —00

Proof:

Employing time differentiation theorem,

© d
Lf'(t) = j_e‘“%dt =sF(s)—f(07)

As earlier derived.

Taking the limit s — 0:
(o]
lim | e stdf(t) =lim[sF(s) — f(07)]
s—0 0- s—0
The limit of integral can be written as integral of limit, as long as the infinite integral on
the left-hand side exists, and we have no reason to doubt its existence since we’re

dealing with a practical situation!

oo

= | lime™" df(t) = lim[sF(s) - £(07)]

0- S0
= limsF(s) - f(07)
Because f(07) is a constant term as it is, so its unaffected by the limit
=[Ol =limsF(s) - £(07)

f(e0) = £(07) = limsF(s) = £(0)



= f(») = llim f@) = lirrg sF(s)
—00 S—
NB: proof of earlier initial value theorem in left as an exercise.

Again, the name tag, “final” is with reference to the time domain (t - o) and
allows for the computation of the “initial” value of the products of s and the Laplace
transform of the zeroth derivative of f(t), by evaluating the final value in the time
domain, and vice versa. [sO, one can always be rescued from the time domain by
resorting to the frequency domain after the necessary multiplication by s (again, do not
forget this) has been carried out].

Let f(t) =e % = Lf(t) = F(s) =$ where a is necessarily assumed to be a

positive quantity (as it should be since every realistic signal, if left unreinforced must
eventually decay to zero).

[lim e”d = 0]

t—>o0

The single pole of sF(s) = ﬁ which is —a, lie inside the left half of the s-plane,
therefore the final value theorem can be applied.

s
Lim sF(s) =lims( ) = lim
5-0 520 \S+a s=0S+a

= lim 7
s-0 1+= s-0Qa
S

After dividing throughout by s.

Note once again the single pole (s = —a) lies inside the left half of the s-plane as
required by the theorem to be valid.

By the same taken,

s
lim s F(s) = lim =1,
S—00 s»o S+ a
And lim f(¢t) =lime™% =1 = lim sF(s),
t—0 t—-0 S—co

Validating the initial-value theorem.
Note, once again, that in each case, both e~% and its first derivative (—ae™%) are

Laplace transformable as required by the two theorems.

Observations:



The initial and final value theorems call to mind the duality principle encountered
in an earlier course, and the two theorems could indeed be said to be the “duals” of each
other (although not in the strictest sense of the principle). Similarly, the first and second
shift theorems earlier treated resemble “duals” (not of each other, however), except that
in the first shift theorem, multiplying a function by e results in adding “—a”, not “a” to
the s of the frequency domain. The second-shift theorem by itself, is a more fulfilled
“dual” because shifting time by c (i.e. adding (-c) results in multiplying the Laplace

transform of the original unshifted function by e *¢
1.5 Laplace Transform of Periodic Functions

Recall that a periodic function reseat itself after every cycle that is, it looks like
itself during every period, say T. for a function f(t) with the period T, then for the first
cycle the function is described by:

f(t)={f(t)’ 0<t<T

0, elsewhere

With the bar at the top indicating that the function f(t) is periodic. The second cycle is
identical to the first, except shifted by time T (the period), and can therefore be
described by the Heaviside unit step function:

B _(f@®, T <t3T
f@—-Tu(-T) = {0, elsewhere

For the third cycle:

femamuen = TR

Then, the nth cycle:

flt—(m—DTult —(n— DT] = {fo(t)' "= DZlivtv:elr‘l:

So, generally for a periodic function

f@),f@®) = fF®u@) + ft = Tu (t = T) + f(t — 2T)u(t — 2T) + -+ -
+flt—(m—DTult— (- 1T]

Laplace transform of f(t) is then given by:

L) = f “esst Floyu (Odt = f “est Feydt = F(s),

Since f(t) = 0° for t > T as stated above.

From second-shift (time-shift) theorem,



LEFO) =LfF@OQu@®)+LfE—Tu(t—T)+ Lf(t —2T)u (t — 2T) + -
+Lf[t—(m—DTJut — (n—1DT]

=F(s)+eSTF(s)+ e T F(s) ...+ e DsTE(s)

From the sum 1+ x + x2 + x3 + -+ -+ +x™ = 1Tlx , for a converging series (i.e |x| < 1,

and e~*Tis obviously converging because T is necessarily positive),

1 _
Lf(t) = mF(s) 1.21

T
Where F(s) = f e Stf (t)dt

0
Example 1.25: For the periodic function defined by:

f@®) = 8’ (1) i i : ;} f(t+2)=f(t) (indicating aperiod of 2)

Solution:

f(t)

Figure 1.7

1

1 «© 1
LFO) =—— f e FOu()dt = —— f et f(0)dt
0 0

1 jl 2 1
=—_ e_StZdt=—_f e_St dt
1—e25 ), 1—e=25),

Since f(t) =0,1<t<?2

—st11
est

B 2 1—e"° 2(1—e~%)
0_1—8‘25( s )s(1+e‘5)(1—e‘5)

LF® =7

—e % —s

HO=aves



Example 1.26: Determine the Laplace transform of the half-wave rectifier output wave
from defined by:

f() = {4 sint 0<<tt<<27; f(t+2) = f(t) (Indicating a period of 21)

Figure 1.8

Solution:

1 21 1 T
Lf(t):m-]; e_Stf(t)dtZWJ;) e St 4 sintdt

Exponential function From Euler’s identity, e/* = cost + j sint = sint = I,,e’t, with I,,,
“imaginary” part of e’t, not its maximum of current.

s
= (1— e 2™)Lf(t) = 41, [ f e St elt dtl
0
T[ ( )t e_(s_j)t n
=41 f e~ =Dt qt = 4], |———
m 0 m _(S_]) 0

1
= 4l - ~Stelm) = 41, = ——[1—e*"(cosm + j sinm)]
1 1
= 41, —][1 —e 5" (-1)] =41, —(1 +e75T)
s+j 4L, (s +j)(A —e™5"
_ a4l (. J) (14em) = m (s +J)( )
(s—=j))(G+)) s2+1
(1+e7%M)
s?2+1
1 1+e 5T
= Lf(t) T 1—e—2ms X 4( s2+41 )
4(1+e75M)

T (t+e A -e ) (s2+1)



_ 4
T (l-e ) (s2+ 1)

The above result could have been obtained more directly (and easily) by noting that

Lsint = ———
T ETED

1 T 4 1+e5"
Lf(t)zmj; e St4sintdt = ( )

1—e2m\ s2+1

And so on, where the e ™5™ in the numerator is used to account for changing the upper
limit of (transform) integration from oo to 7.

1.6 The Dirac Delta-Unit Impulse “Function” (8t)

The quotation marks above suggest that the Dirac delta is not a proper function in
the strictest mathematical sense of the term “function”. A function is typically
characterized by its inputs and the corresponding output(s). That means that a function
should be able to tell a “story”. Implying a smooth transition from one point in space to
the next (devoid of any abrupt or irregular behavior). The Dirac delta lacks this
characteristic, the requirement above regarding functions are not obtainable with it. So,
deprived of this tool, to treat the Dirac delta we have to resort to its effect on other
functions (reminds one of the Holy Spirit who’s invisible to the naked eyes although this
work is made manifest in our daily lives)! Please | am not preaching!!

This is what the Dirac delta § (t) does to a given function f(t):

[ rose-a=r@ 122

0 fort #a

By itself, §(t —a) = {undefined fort=a

Graphically,

£(t) 5t —a)

a t

Figure 1.9



From the above integral expression relating the effect of the Dirac delta on other
function, (t) =1= f_ZlS(t —a)dt = f(a) =1 , because f(t) is identically a
constant, 1 (i.e. for all t's)

form < a <n,

f_i& (t —a)dt = f:cS(t —a)dt + f”&(t —a)dt + foog(t — a)dt

n
=0+f 6(t—a)dt+0
m

The zeros result because the limits of integration do not include t = a as required by the
above specification for 6§ (t — a), since 6(t — a) is zero at t below m and above n.

[ee] n
= f 6(t—a)dt=1=j6(t—a)dt,m<a<n

m

So, 6(t — a) is a horizontally axis with a vertical line of infinite length at t = q, that is, its
an impulse at time t = a. From the integral expression involving the Dirac delta, it can be
visualized as a “rectangle” of zero width but infinite length with an area of unity!

f P06 (6 - @t = f@ 1.23

As long as ‘a’ lies between m and n. (This is an ultimately very important provisor)

6
Example 1.27: f (t2+5)6(t—4)dt=f(4)=4*+5=21
1

valid because 1 < 4 < 6.

jonsinBt(S(t—g)dt=f(g) =sin<%ﬂ> =Si;”= 1

Valid because 0 < % <Tm

4
] e 3t§(t—a)dt=f2)=e3t=2=¢e""
1

Valid because 1 < 2 < 4

f:cosBUS (t—%) dt =f(g) = cosS(g) =cosm = —1



Valid because 0 < g <Tm

Laplace transform of 6 (t — a)
LE(t—a)= f e St§(t — a)dt,

From the definition of Laplace transform.

Here, e 75t represent f(t), per the effect of the Dirac delta on other function:

oo

= e St§(t —a)dt = ) f(®)6 (t —a)dt
0_

o-
= Li(t—a)=f(a)=e 5oy =e"5 1.24

[Note: we did a little manipulation, readjustment Eq. 1.23, albeit a legal one, by
extending redundantly, the lower limit of the integral from 0~ (for Laplace transform)
down to —oo. As mentioned, this is indeed a redundant operation that has no effect
whatsoever on the result but only allows us to have the expression in the form we want
it in order to apply the foregoing effect of the Dirac delta on other functions]

Att =0 (i.e, attheorigin),a =0 = L§(t)t =a=e% =1

Hurray! The Laplace transform of the impulse is a constant (1) where has the factor of s
gone?!)

Laplace transform of the product of a given function and the unit impulse

[0e]

LIF®)6(E—a)] = J e St F(t)6(t — a)dtl

At t=a= et =59,

Then, f(t) = f(a)

= LIf®)6(t—a)] =f(a)e™® | §(t—a)dt

o
=f(a)e ® x 1= f(a)e™®

Example 1.28: L [45(t — 2)] = f(2)e 2 = 4e725



Here because f(t) is identically equal to 4
L[t?6(t—3)] = f(3)e 35 =32e735 =973

L [sin 3té (t - g)] = f(%) e_nTs = (sin%) e_”TS = —1.6_2 = —e_nTS

Example 1.29: To find the Laplace transform of f(t) in Fig. 1.10
f(t)

25(t — 1) 65(t — 4)

—45(t — 3)

Figure 1.10
Solution £ f(t) = L[26(t — 1) —45(t —3) + 66(t —4)] = 275 — 4e735 + 6e™*S
Relating the unit step function and the unit impulse

Let f(t) =0fort,<aandt>b

i. = f [lu@®f®)]' dt =[u@®)f(t)]%% =0—-0=0
because of the conditions imposed above with respect to the function f(t), leading
f(e) =0 = f(—00).

However, by the product rule, [(uf)’ = uf + uf’] where both u and f are functions of
time,

. f [w(Of©)] de
- foo W (Of(E)dt + foou(t)f’(t)& =0 1.25

Because of Eq (1.25).

i oW @f@®de=— [0 u@f (©dt = - [ f'(0)dt

due to the fact that u(t) factor forces the expression inside the integral sign to be zero
up until time zero, from when u(t) then takes on the value of unity.



- [ rr@de=—f@ + 1@ = r),

Since f(t) = 0 for f (o) as originally imposed upon for t > b

iii. But f(0) = ffooof(t)S (t0)dt = ffoooS(t)f(t)dt, (according to the effect of
&(t — a) on the other function).
Comparison of equations (ii) and (iii), shows that u'(t)corresponds (indeed is equal) to

&(t)! This we have through the back door, established a very important and interesting
relationship, stating:

u'(t) = dt;—(tt) =6(t) 1.26

i.e. the Dirac delta “function” is simply the derivative of the Heaviside unit step function.

Test: does this make any physical sense? (After all we’re dealing with applied
mathematics, to unit, engineering!) Recall that strictly speaking, whereas the unit step
“function” u(t — a) is identically zero up to t = a~, and unit from t = a™, its values at
exactly t = a is undefined. It makes sense, therefore, that vividly speaking, impulse
6(t — a) ought to be related to ir!

Recall also that:

® _au(®)

Lu'(t) = f_e Tdt =sF(s)—f(07)

=s(§)—u(0—)=1—0=1,

And we have already determined that the Laplace transform of §(t) is 1. So, since each
of them is equal to 1, they must then be equal to each other! (This is by way of text of
the fundamental proof performed above.)

3
Example 1.30: Evaluate f (t2+4)-5(t—2)dt
1

Solution:
The factor 6 (t — 2) shows that the impulse occursatt = 2,i.ea = 2

f(t)=t>+4



f@=f(2)=4+4=38

3
f (t2+4)-6(t—2)dt=f(2) =38
1

T

m
Example 1.31: To evaluate f cos 6t - & (t — E) dt
0

J:Tcos6t-6(t—%)dt =f(g) = cos 3w = —1
And in the same way
(@ [)5-6(t—3)dt=5x1=5
(b)  [le 2 5(t—4)dt = f(4) =[e 2]y =€®
() J,(3t2—4t+5).6(t—2)dt=12—-8+5=9

Nothing could be easier. It all rests on the fact that, provided m < a <n

Therefore,ifm = 0andn = oo

[ r@-66-a =@
0
Hence, if f(t) = e~5¢, this becomes

fooe‘“ 8(t —a)dt = L{6(t — a)}
0

e—as

i.e. the value of f(t),i.ee™t, att = a
LGt —a)}=e™*
It follows from this that the Laplace transform of the impulse function at the originis 1
Because, fora = 0, L{6(t —a)} = L{5(t)} =e® =1
L{EM)} =1
Finally, let us deal with the more general case of L{f(t) - 6(t — a)}.



We have L{f () - §(t — a) = fooo e~St- f(t) - §(t — a)dt}. Now the integrand eS¢ -
f(@) - 6(t —a) = 0 for all values of t except at t = a which point eS¢ ~45 and

f@®=f@

=e

L@ (t—a)} = fla) - e f 5(t — a) dt

= f(a)-e™*(1)
L{F (&) - 6(t —a)} = f(a)e™™
we have L{f(t) - 6(t —a)} = f(a) - e™*
Therefore

a. L{6.65(t—4)} a=14
L{6-5(t —4)} = 6e™*S

b. L{t> 6(t—2)}a=2
L{t3-6(t—2)} =8e7 2

Similarly

C. L {sin 3t-6 (t — g)} = —pTS/2

Because
. s . _ns _
L{sm 3t-6 (t - E)} = [sin3t]i=p/p e 2 = —e ms/2
And
d.  L{cosh2t-6(t)} ="
Because

L {cosh 2t §(t)} = [cosh 2t];=o - €® = cosh0.(1) = 1
So, our main conclusion so far are as follows
1. fr:n S(t—a)dt =1 Providledm <a<n
2. f:lf(t) - 8(t — a)dt = f(a) providedm <a<n
4. L{(t—a))=e"*
5. Lf@®-6t-a)}=f(a)-e™®



Example 1.32: Impulses of 1,4,7 unitsoccur att = 1,t = 3 and t = 4 respectively, in the
directions shown. Write down an expression for f(t) and determine its Laplace
transform.

Solution: We have f(t) =1-8(t—1)—4-6(t—3)+7-6(t—4)
L)} =e 5 —4e 35 + 7™

1.7 Further Problems with Solutions

1. Given Lcos4t = determine the Laplace transform of e3t cos 4t.

(s2+16)’

Solution:
Since from Le ' f(t) = F(s + a)
= L(e3! cos 4t)
s—3
= (=37 +16)

2. Without first finding f(t) determine f(0%), f (o) for each of F(s) equal to

. 4e35(25+30) ... (s%-8)
(l) (”) s(s2+9)
Solution:
s4e3s
i 07) = lim —————— = 0;
(@) fO7) = lim = 13095
() = i 4e3s 4 2
o) = _—_— e — = —
f <%0 (2s+30) 30 15
lim s(s? —8) 42
.- 0+ — S§— 0 T R— 1;
(D f0 (s2+9)s 52
ling(s2 -8) _g
o0 ) = 20 = —_—
fleo) (s2+9) 9
3. (a) Given a magnitude of 10 V, phase angle of 10°, complex frequency of
s = —12 + j9 put down the expression for the voltage in the time
domain.
b) For the circuit of Fig.1.11, determine the forced response

i(t) = I,e°t cos(wt + 0).



() v(t) = 80e~3 cos(5t + 10°) V ~0.2F

Figure 1.11

Solution:
(@) wv(t) =10e 2t cos(9t + 10°)V
(b) v(t) = 80e 3¢ cos(5t + 10°)

_6(t)+97+—f (t)dt

80210° eSt = 6I(s)est + 9sI(s)eSt + El(s)e“

oy = 804107
6+9s+ g]

80,10°
5(=3-J5)
(9 + 25)

[6 +9(—3+5) +
80,10°
T (6—27 + j45 — 0.44 — 0.74)
80,10°
~ (—21.44 — j45.74)
80,10°
~ 502 — 115.4°
= 1.62—125.4°

i(t) = 1.6e 3t cos(5t — 125.4°) A

4. Evaluate (i) f__62(21:2 + 4) §(t + 5)dt (ii) fln(cos 2t) 6(t — m/2)dt, indicating
time validity in each



Solution:

(i) f(=5)=2(-5)?*+4=54
(ii) f(%) = cos [2 (g)] =cosmw =—1

1<T[<
S <T

5. Obtain the Laplace transform of f(t) = 6(t) + 2u(t) — 3e~%*u(t)
Solution:
By the linearity property
F(s) = L[5(®)] + 2L[u(t)] — 3L[e * u(t)]

_1+21 3 1  s’+s+4
B s “s+2 s(s+2)

6. Determine the Laplace transform of f(t) = t2 sin 2t u(t)
Solution:

We know that

L|sin2t] = ———
[sin 2¢] s2 + 22
Using frequency differentiation in Eq. (1.26)

2
F(s) = L[¢ sin 2] = (=1)2 2 ( 2 )

ds? \s2 + 4
_d( —4s )_1252—16
Cds\(s2+4)2)  (s2+4)3

7. Find the Laplace transform of the gate function in Fig.1.12

a(t) 4

10

Figure 1.12 Gate function



Solution:
We can express the gate function in Fig.1.12 as

g =10[u(t —2) —u(t - 3)]

Since we know the Laplace transform of u(t), we apply the time-shift property and
obtain

e7%s 73 10
- >

G(s) = 10< =— (e % —e7%)
s s

8. Calculate the Laplace transform of the periodic function in Fig. 1.13.

f(t) a

2

Figure 1.13
Solution
The period of the functionis T = 2.
We first obtain the transform of the first period of the function.
fi(®) = 2t[u(t) —u(t — 1)] = 2u(t) — 2u(t — 1)
=2tu(t) —2(t—1+ Du(t—1)
=2tu(t) - 2(t—Du(t—1) — 2u(t—1)

Using the time shift property

2 e 2 . 2 ) )
F1(8)= Z_Z_Z_Ee _5—2(1—8 — Se )
Fy(s) 2

9. Find the initial and final values of the function whose Laplace transform is



20

H) = 533G 185 7 25)

Solution:

Applying the initial-value theorem

20s
h(0) = limsH =i
(0 =limsH(s) = lim === 57 185 7 25)
20
li s% 0 0
= |lIm = =
500 3 8,25\ (14+0)(1+0+0)
(1+s)(1+s+52)
3'(— ——————————————————————— 3
|
|
|
|
|
| 1
i
! *
+4 -3 2 1 o 1 2 3 o
|
|
| -1
|
|
i 2
|
e 3

Figure 1.14

To be sure that the final-value theorem is applicable, we check where the poles of H(s)
are located. The poles of H(s) are s = —3,—4 % j3, which all have negative real parts:
they are all located on the left half of the s plane (Fig.1.14). Hence, the final-value
theorem applies and

) ) 20s
h(eo) = limsH(s) = lim - == 7+ 85 + 25)

0
“0+)010+25) 0

1.8 Exercise
1. a. (i) Given L cos 6t = s(s? + 36), determine

(i) the laplace transform of e3! cos 6t;



(i) The Laplace transform of cos 4(t — 3)u(t — 3)
b.(i). State and prove the final value theorem.

(i) State and prove the initial value theorem

(3s52+2)

2. (i) Determine the initial value of y(t), given Y(s) = 17571125)

(ii) Evaluate f_ol(sinz) 6(t+ %)dt, stating the validity thereof

3. By Laplace transform, determine y(t), given:

d? 3d
YO 3D oy = et yo)=2  y0)=1

4. (a) Given a magnitude of 20 V, phase angle of 30°, complex frequency of

s = —10 + 7] put down the expression for the voltage in the time domain.
(b) For the circuit of Fig. A, determine the forced response:

i(t) = I,e° cos(wt + 0).

6Q 9H
N Y >
i(t)
(D v(t) = 100e~>" cos(8t + 30°) V ~02F
Figure A
c). Give the geometrical interpretation of the Heaviside (unit) impulse function
5. a) Sketch and determine the Laplace transform of the function given by:

t

Io(__].), tOStSZtO
to

i(t) =11, 2ty < t < 3t,

0, t > 3t,

b) Prove the time integration theorem

6. a(i). State the initial theorem. without first finding f(t) determine f(0%),
f () for each of F(s) equal to (1) 4e35(2s + 60)/s (2) (s> —10)/(s®> +9)s



7. Evaluate (i) f__62(21:2 + 4) §(t + 5)dt (ii) fln(cos 2t) §(t — m/2)dt, indicating
time validity in each

8. Determine the Laplace transform of the periodic signal in Fig. B

0 2 4 6 8 t
Figure B
0. Determine the Laplace transform of the wave form of Fig. C
v(t)
A
Vo[ 7777 2
0 2 t
Figure C
10. (a) For the second-order differential equation:
d?y(t) 7dy(t)
- +12y(t) = 4e™*
dt? dt y(®) ¢

[y(0) = 2,y(0) = 5], determine the response y(t)

b) Evaluate (i) [~ (2t% + 4) 8(¢ + 5)dt (i) [] (cos 2t) 8(t — m/2)dt,
indicating time validity in each

11. (a) Given magnitude of 80 V, phase angle of 30°, complex frequency of
s = —6 + j8, put down the expression for the voltage in the time domain for
the.

b) For the circuit of Fig. D, determine the forced response



12.

13.
14.

15.

16.

17.

18.

19.

i(t) = I,e° cos(wt + 0). (Hint: just determine I,,,, 0 and 8)

30 8 H
NV Y »
i(t)
() () = 4573 cos(2t + 50°) V FRO02F
Figure D

(c) What is the rationale behind the lower limit of the one-sided Laplace
transform. (State the lower limit).

(a) Find the two-side Laplace transformation of the function
ft) = =3e 2 {u(t + 3) —u(t — 2)}

(b) also determine its one-sided Laplace transformation.

State and prove the final-value and initial-value theorem.

Determine the step response of a system with unit impulse response of
—4e7t6e7 %t >0

A first order linear system is initially relaxed for a unit step signal u(t). The
response is v, (t) = (1 — e~3) for t > 0. If a signal 3u(t) + §(t) is applied to
the same initial relax system, what is the response?
The response of initially relaxed linear circuit to a signal v, is e “3fu(t).

. . . . d
Determine the response if the signal is changed to (vs + 2 f .

The response of a network for t > 0is v(t) = Kte™%¢, with a real and
positive. What is the value of t that results in maximum value of v(t).

By working backwards, determine the Laplace transform of @

Sketch and determine the Laplace transform of the function given by:

6, 0<t<1
f={8-2t, 1<t<3
2, t>3



20.

21.

22.

23.

24,

25.

The delta impulse function can be thought of as a rectangle with zero width and
infinite length, with an area of unity. Use the (integral) effect of §(t) on other
functions to show this to be the case

The unit step response of a network is (2 — 3e~%"). What is the unit impulse
response?

Determine the Laplace transform of the wave form of Fig. K

v(t)

Figure K

What is the Laplace transform of (t2 — 2t)u(t — 1)

prove that dl;—(tt) = 6(t). (Do not Laplace)

Find the Laplace of the following functions:

(i) sin2t + écos 2t

N t
(i) zsin 2t + —cos 2t

2

(iii) isin 2t + tcos 2t

(iv) isin 2t + icos 2t

26. Evaluate the Laplace transform of the following functions:

(i) fooo e 3t5(t —4) dt Ans. e~ 12

s o . T

(ii) f_oooo sin 2t6(t —Z’) Ans. 1

(i) [ et —-2) Ans. 3e7°

(iv) 6(tt_4) Ans. e::S

(v) Laplace transform of costlogt §(t — m) Ans. —e "*logm
(vi) e *§5(—3) Ans.e3 5+4)

27. Evaluate the Laplace transform of the following functions:



1<t<?2 e~ S—e 28 e~ 28

@ f®) = [tO ' otherwise Ans s s
(b) et u(t — 1) Ans. e;is_l)l)
28. Evaluate the Laplace transform of the following functions:
a. t u,(t) Ans. (siz + %) e~ %X
b. 1_:2t + tu(t) + cosht.cost Ans. S_S: + siz + 54543- 7
c. t2u(t —2) Ans. EFY (452 + 4s + 2)
d. sint.u (t —4) Ans. ess [cos 4 + ssin 4]
e f(®)=Kt—2)ut—2)—u(t—3)] Ans. 5 {72 — (s + e~}
fO) =" [ult—2T) —u(t—37)] Ans o (6727 — e737)

29. Express the following in terms of unit step functions and obtain Laplace transform

. t 0<t<?2 1-2(2s+ 1)e™%s
(i) £ (® {o } Ans. u(t) — u(t — 2), = 2E D
" t 0<t<?2 1-2(25+ e 2
(i) £ (®) {0 } Ans. u(t) —u(t —2), S'Sz £
4 0<t<l1 4— 6e™5+ 7738
(iii) f @) -2 1<t<3 Ans, ———————
5 t>3
(iv) The Laplace transform tu,(t) is
1,2\ _ 1 _ 1 2\ _ e™2s
(a) (5_2 + ;) e~ 2s (b) e 25 (c) (5_2 - ;) e 2 (d) —  Ans. (@)
30. Find the Laplace Transform of the following:
i 2(1— eb) Ans. logZ—2
t N
.. l —at _ ,—bt s+b
i, - (e e” Y Ans. logs .
o 1 1 s2
iii. ?(1 — cos at) Ans. -~ logm
| 1 s? + a?
iv. - (cos at — cos bt) Ans. -~ logm
l ) l s?2 + 4
v. - sin”t Ans. ~ log—;
vi. = sinht Ans. - log ==
t 2 s+ 1

vii. %(e‘t sint) Ans.cot ™t (s + 1)



vii. %(1 — cost) Ans.% log(s? + 1) —logs

iX. fooote_Zt sint dt Ans.%

foo e—t_ =3t

o 7 dt Ans. log 3

31. Find the Laplace transform of the following:

. 4s
a.tsin2t Ans. 2= a2
. 2 as
b. tsinat Ans GZrad)e
s? +a?
c. tcoshat Ans. e
s2-1
d. tcost Ans. GZr1?
s2+1
e. tcosht Ans. T e
5 . 2(3s%-1)
f. t*sint Ans. TSZr?
g t3t_3 t Ans 6—
. (s + 3)*
- LL -]
h. tsin 3 t Ans' 2 52 (SZ + 36)2
) at 2a(s— a)
i. tt*sinat Ans'(52—2a5+2a2)2
. t _o¢ . 3 3 (s+ 2) 1 _ 1 ]
i Joe ™ t sin tdt. Ans. s lGrorvor T Grorear
~t sPHasH 2
k. t e fcosht Ans. = 79
| (2e-2¢ cos ¢ Ans 2(s3 + 10s2 + 255+ 2)

(s2 + 4s+ 5)2

m. Laplace transform t"e~% is

. m .. n+1 mn . n+1
(l) (s+a)" (ll) (s+a)ntl (Lll) (s+a)n (L ) (s+a)ntt

32. Find the Laplace transform of the following:

2 6
a.t+t?+ 3 Ans. — + =+ =,
S S S



1

b.sintcost Ans. —.
s+ 4
3 ,—-2t 6
ct’e Ans. Tt
. 3 48
d.sin® 2t Ans. D (539"
e.e"t cos? Ans. — S
2s+2  2s2+45+10
. 2 (s?-5)
f.sin2tcos3t Ans. m
. 12s
g. Sin 2tcos3t Ans. m
. . 1 Ss—a S+ a
i. cosatsinhat Ans. [(S_ D 2 Grait el
. . 3 —6
j.sinh> t Ans. D69
2(s?-5)
k. costcos2t Ans. T D67+ 9)
2_ 2
l. coshatsinat Ans M
s+ 4a
t? 0<t<?2 ,  gezs pmis
m f®){t—1 2<t<3 Ans. = — — (2 + 3s + 3s%) = (5s—1)
7 t>3
cos(t-2) t>2 gzms
n. f(t)= Ans, ——.——

t <2
3

33. Determine the Laplace transform of the ramp function in Fig. L.

v(t)

Figure L

33. The step response of a system is given by f(t) = t? + t + 1. Determine its impulse
response.



34, Determine the Laplace transform of the ramp function in Fig. M.

v(t),

Figure M
35. Determine the Laplace transform of the function in Fig. N

v(t)

N

—~y

Figure N

25245549

. _ -5t >
36. Find the Laplace transform of f(t) = (cos(3) + e™>Y)u(t)  Ans. o ) 2r9)

2s(s2-27)

37. Find the Laplace transform of f(t) = t2 cos 3t u(t) Ans 5719)°

38. Find the Laplace transform of the function h(t) in Fig. O.

h(t)
10

Figure O

Ans. E(Z —e ™ — 78



CHAPTER 2

PARTIAL FRACTIONS

2.0 Introduction

By the use of transform table 1.1 & 1.2, inverse transform of s-domain functions can be
determined, to get the corresponding time domain functions. But oftentimes, the s-
domain functions can be so complex that it would be necessary to break them into
(simpler) partial fractions so that their corresponding time domain equivalent can be
readily and easily put down.

Given a typical s-based quotient:

F(s) Ay S™ 4 Ao 1S™ + Ao s™ % + - ag 20
s) = :
ApS™ + Ap_1S™" 1+ a5+ v ay

From the above expression might take various forms, whether the numerator and/or the
denominator can be factorized or not. The coefficients, i.e., the a’s, both at the
numerator and denominator, are constants with the a, (at top) and a’s (at bottom)
generally unequal. For this quotient to be breakable into partial fractions, F(s)must be a
proper function which means that the degree of the numerator, m, must be less than

. . 4 . . 3.
that of the denominator, n. (For instance 3 Is an improper fraction, whereas L Is a proper

function!) if the two are either of the same order, or that of the numerator is greater
than that of the denominator, then a long division must first be performed in order to
break the original given polynomial into a divided (“whole number”) plus a quotient that

is now a proper fraction (g =1 +§), and the quotient can now be reduced into its

partial fractions employing any of various methods:
2.1 Method of Comparing Coefficient ‘s’
2 N 3 _2(s+2)+3(s+1)
s+1 s+2 (s+D(s+2)

_25+4+35+3_ 5s+7
 s243s+2 s243s+2

Example 2.1: But suppose that we initially were given , and we'’ve required to

s2+3s+12
break it into partial fractions. We know that there would be two, since the denominator

has two roots and therefore two factors:

Solution:



5s+7 A B
2435412 s+1 s+2
A(s+2)+B(s+1) _ 5547

+DG6+2) ~ (G+D(G+2)

This is an identity (hence the three stripes), so that this equality is valid for all values of
s,—00 < s < o0, open-ended interval.

Gathering terms
As+2A+Bs+B=(A+B)s+(2A+B =5s5s+7)
Comparing coefficients:

A+B=5
2A+B =7

After solving the simultaneous equations. [this agrees with the original given values of A
and B]

}:Azszs

Generally, given the quotient where the degree of the numerator is zero

a
(s=b)(s—c)’
(a = as®) and that of the denominator is 2 [(s —b)(s —¢) = s? — (b + ¢)s + bc],

a .
-9 can be written as:

A B
s Tsc
task is to determine their values which would then enable us to write the corresponding

time domain expression of the inverse transform.

A B A(s—c)+B(s—Db) _ a
s—b+s—c_ (s=b)(s—rc) :(s—b)(s—c)

where A, B are constant (although they generally are complex numbers). Our

The two numerators are necessarily equal regardless of the values that s takes on, since
this relationship is an identity.

= (A+B)s—(Ac+Bb) =a
A+B=0=A=-B
—(Ac+Bb) =a= —(Ac —Ab) = a
a
b—c

We notice that, on comparing the coefficient, on the left the coefficient of sis A + B,
but is zero on the right. Also, the constant term (sum of terms) on the left is —(Ac + Bb)
which must then equate to a on the right side. So, finally,

= A =




a a
a _b—-c_b-c
(s=b)(s—=c) s—b s-—c

And the inverse transform would give

a a a
bt ect

(s—b)(s—c){:)b—ce b—c

a

= (e”* —e“u(t)
b—c

With the requisite unit step attached depending on the type of signal under

consideration.

2.2 Method 2: “Cover Up” (Method of Residues)

This works best when the denominator of the polynomial in question has non-repeats,
linear factors. With repeated factors, the “cover-up” rule can be used to determine the
coefficients of the non-repeated portions as well as that of the highest-index repeated
one. Then the method of comparing coefficients or successive differentiation can be used
to determine the lower order repeated portions.

Example 2.2: To repeat the above generic example using the rule:

55+ 7 55+ 7
s2+35+12 (s+ DG +2)
A B
:s+1+s+2

Solution:

To determine A, for instance, we proceed to isolate it by “disappearing” B whether it’s
actually A or B that’s being “covered-up” depends on subjective judgment!).

Multiplying through by (s + 1), the factor lying below A:
(55+7)(s+1)_A(s+1)+B(s+1)
s243s+2  (s+1) (s+2)
55+7 N B(s+1)
s+2 (s+2)

Now, to “disappear B” thereby leaving ‘A’ all alone, we simply let s assume the value of
-1

55+ 7 _—5+7_

= 3
S+2 s=—1 _1+2



as previously determined!

[Note: any finite value other than -1 could have been chosen for s since the equation is
an identity. But that would entail closing two different values thereby ending up with a
simultaneous linear equation before aiming at the result. This is an entirely unnecessary
rigmarole!]

By the same token

B_55+7 _—10+7_3
Cos+1lee, 241

Also, as previously gotten.

Is this method (which by the way, | highly recommend for most situations) not
much more straightforward than the previous one, the method of comparing coefficient?
Furthermore, it’s less prone to error!

2.2.1 The Procedure:

1. Factorized the given polynomial if possible

2. To determine the unknown constant for instance A above remove the
factor “under” A in the polynomial function.

3. Set s equal to the root (—1) in the polynomial to determine A

Respect the above procedure for B taking cognizance of the factor under it and the
associated root (-2 now taking the place of the previous -1 in step 3 above). It should be
noted that these steps are to be repeated for polynomials with more than two factors
until all the unknown numerators are exhausted.

Caveat to my earlier caution and advice about choosing values other than the roots. It’s
no sin, and may aid in determining the two unknowns at once with simultaneous linear
equations. But how about when three or more unknown are involved?)

So, for a generic polynomial
a A B
G-DG-0 -5 -0
a . a
G0l T G B,

2.1

2.2.2 The Fast Placed Using this Method is as Follows

1. Factorized the denominator of the given quotient (or polynomial)



2. From the denominator, remove the factor on top of which is the unknown
constant (or by the way, complex number) to be determined.

3. For the remaining partial fractions, let’s assume the value of the root (or
pole) of the factor under consideration, after multiplying throughout by
that factor.

4. Whatever value so realized (real or complex) is then the constant
representing the numerator of the partial fractions under consideration.

2.3 Types of Partial Fractions

1. Linear factor: non-repeated factors — + % + é
N2 A — 3 A
2. Repeated factor (s — a)“ leads to = + oo (s —a)® leads to — T
B C ., a4 B c D
oo T oo (s —a)*leadsto —+ a2 T oo T v Bte
3. A quadratic factor (s + as + b) leads to ZAS+B and
s“+as+b
4. Repeated quadratic factor (s? + as + b)? leads to
As+B 4 Cs+D
s2+as+b (s?+as+b)?
Example 2. 3: Resolve into partial fracti sT— 155 + 41
xample 2. 3: Resolve into partial fraction:
P P s3 —4s2—-3s+18

Solution:

Factorize the denominator of this proper quotient (“fraction”) (numerator has degree 2,
while and denominator, has degree 3) by noting that both -2 and +3 are its roots, by
inspection:

[(=2)3 — 4(=2)? — 3(=2) + 18 = 0],
[32 -4 (3%) —3(3) + 18 = 0]

Dividing s3 — 4s? — 3s + 18 by the factor (s + 2) leads to s? —6s+ 9 and further
dividing s2 — 6s + 9 by s — 3, leadstos — 3

(s?—155s+41)  s>—15s5+41

50, —4s2—-35+18 (s +2)(s —3)?
A B C
=512 G-3) Go3¢
L, (o155 tan) | [(-2)? - 15(=2) + 41]
(s —3)2 (—5)2

s=-2



L (Po1ss 44Dl [BPo15@)+41] 5
B (s +2) S=3_ s 5
3 B 1 3(5=3)’+B(s+2)(s—3)+1(s+2)
s+2+s—3+(s—3)2_ (s+2)(s—3)2

_ (s*—15s+41)
~ (s3 —4s2 —35+18)

36—3)2+B(s+2)(s—3) =s?>—15s + 41

Setting s =3 or s = —2 would “disappear” B that we’re trying to evaluate! So, we
choose numbers other than those two:

s=0=3(-3)2+B2)(-3)+2=41
= B =-2.

s2 —15s + 41 3 2 1

Finally, = -
thaty 457 —35+18 s5+2 s5-3 (5-3)72

To get back to the time domain, the inverse transform[ 32 + ! ]
(s+2) (s=3) (s-3)2

= (3e™2t — 23t + te3H)u(t)

(Note: remember the first-shift theorem with respect to the third term above, or viewed
from another dimension, the effect of multiplying a function by t:

% =3 ==

ds \s—3/  (s—=3)2

An alternative, more straight forward approach to determining B is to multiply the

(s2-15s+41) (s—3)? _ s2-155+41
(5+2) (s-3)2

with respect to s, and then evaluating the resulting quotient at s = 3. If the pole is

repeated twice (that is, a total of 3 times), the third numerator term, a,,_, is evaluated

by again multiplying the quotient under consideration by (s — p)", differentiating the
result twice with repeat to s, and then dividing by 2 (or 2!).

quotient by (s — 3)?, leading to , then differentiating once

In general, given a quotient (of polynomials in s):

an ap-1 an-—2 a,

B e T s T e LA )

2.2



With n repeated ratios (each root is p,) to evaluate the a,_; term [that is, the (K + 1)
the numerator term], we first multiply F(s) by (s — p)", differentiate the result k times
with respect to s, and then divide by L! (K factorial) after (or before) evaluating the result
ats = P.

1

d* "
nte = 1y {d_sk [{(s —p) }F(S)]} 2.3

S=p

For the last example, B represent the a,,_; term, that is the numerator of the second
repeated root (written in descending order of indices).

_1(d (s - 3)? s?2 —15s + 41
-1 = 1as | G+ -32]f
_d s? —15s + 41

~ds s+ 2

=3

s=3

_ (s +2)(25 —15) — (s? — 155 + 41)

(s+2)? s
_(5)(=9)—(9—-54+41) —45-9+45—41
- 25 B 25

=50 ,
25

With practice, it could be seen that the above procedure is much quicker and less subject
to errors, than the method of comparing coefficients.

1
Example 2. 4: Find the inverse transform of .
s2 — 55+ 6
Solution: Let us convert the given function into partial fractions.

e R e
s2 — 55+ 6] s — 3 s — 2

1 1
— r-1 _r-1 — 3t _ L2t
£ (s — 3) £ (s — 2) ¢ ¢

Note: We shall discourse the inverse Laplace transform in details in the proceeding
chapter.

Example 2.5: Find the inverse Laplace transform of
s —1
s2 — 6s + 25




solution: L7 [ﬁ] =L [(s— 2521(4)2] =L~ [(ss__é?z:(iﬁ]

1 s — 3 1 4
== rar) 2 e e
(s 3)2 + (4) 2 (s 3)2 + (4)
1
= e3' cos 4t + > e3tsin 4t

Example 2.6: Find the inverse Laplace transform of

s + 4
s(s— 1)+ (s2+ 4)°
: : s + 4 : : :
Solution: Let us first resolve in partial fractions.

s(s + 1)+ (s? + 4

s + 4 A+ B +Cs+D
s(s—1)+(s2+4) s s—-—1 s?+ 4

s+4=A(G—1)(s*+ 4)+ Bs(s? + 4)+ (Cs+D)s(s—1) (¥
Putting s =0, we get 4 =—4A or A=-1
Putting s =1, weget5=B.1.(1+4)or B=1
Equating the coefficients of s3 on both sides of (*), we have
0=A+B+C or 0=-1+1+C or C=0.
Equating the coefficients of s on both sides of (1), we get
1=4A+4B—-D or 1=-444—-D or D=-1

On putting the values of A, B, C, D in (*), we get

s + 4 _ 1,1 1
s(s— 1)+ (s2+ 4 s s—1 s2+ 4
s + 4 1 1 1
—1[ ]zL-l[——+ +
s(s—1)+ (s2 + 4) s s—1 s2+ 4

- Q)+ (=) £ ()
B s s — 1 2 s2 + 4

1
= —1+et—zsin2t.

Example 2.7: Find the Laplace inverse of



SZ

(s2 + a?) + (s? + b?)

Solution: Let us convert the given into partial fractions.

£ s
(s2 + a?2)+ (s + b?)

a?® 1 b? 1
a? — b?2 's?2 + b2 a? — bZ 52 + p2

_ L—ll

1 a? b?
= [,_1 —
a? — b2 s2 + a? s?2 — p2

=] (5 snat) - (goins)
—az_ b2 a asma bsm

1
= m [a sin at — b sin bt].
24 Repeated Poles
Suppose F(s) has n repeated poles at s = —p. Then we may represent F(s) as
k, kn_1 k, k

1
= + +ot + +F 2.4
G Grpri T GapE T TR

where F; (s) is the remaining part of F(s) that does not have a pole at s =
—p. We determine the expansion coefficient k,, as

kn=(+p)"+F(s)|s=—p 2.5

F(s)

as we did above. To determine k,,_;, we multiply each term in Eq. (2.4) by (s + p)™ and
differentiate to get rid of k,,, then evaluate the result at s = —p to get rid of the other
coefficients except k,,_; Thus, we obtain

kn-1 = % [(s +P)"F($)]ls=—p 2.6
Repeating this gives
2
knz = 7= [(s +P)" F()lsemy 27
The mth term becomes
1 d™

kn_m = ﬁds_m [(s + p)nF(s)]|s=—p 2.8



wherem = 1,2, ...,n — 1. One can expect the differentiation to be difficult to handle as
m increases. Once we obtain the values of k4, k, .... k,, by partial fraction expansion, we
apply the inverse transform

. [ 1 ] _ tn—le—atu(t) 29
(s+a)™ (n—1)! '

to each term on the right-hand side of Eq. (2.4) and obtain

k k
f(t) = (kle_pt + kzte_pt + Z—the‘pt + -+ F"ll)'tn—le—pt> u(t) + fl(t) 2.10

2.5 Complex Poles

A pair of complex poles is simple if it is not repeated; it is a double or multiple pole if
repeated. Simple complex poles may be handled the same way as simple real poles, but
because complex algebra is involved the result is always cumbersome. An easier
approach is a method known as completing the square. The idea is to express each
complex pole pair (or quadratic term) in D(s) as a complete square such as (s + a)? +
(% and then use Table 1.2 to find the inverse of the term.

Since N(s) and D(s) always have real coefficients and we know that the complex
roots of polynomials with real coefficients must occur in conjugate pairs, F(s) may have
the general form

Ais+ A,

F(s):sz+as+b

+ F(s) 2.11

where F;(s) is the remaining part of F(s) that does not have this pair of complex poles.
If we complete the square by letting

s?+as+b=s’+2as+a’+p*=(s+a)*+p? 2.12
we also let

Ais+ A, =A,(s+a)+B.f 2.13
then Eqg. (2.12) becomes

Ai(s+ a) B.f

F(s) = (s+a)>+p? (s+a)+p?

+ F(s) 2.14

From Table 1.2, the inverse transform is

f(t) = (Ae % cos Bt + Bye % sin Bt)u(t) + f1(t) 2.15



Whether the pole is simple, repeated, or complex, a general approach that can

always be used in finding the expansion coefficients is the method of algebra. To apply
the method, we first set F(s) = % equal to an expansion containing unknown
constants. We multiply the result through by a common denominator. Then we
determine the unknown constants by (i.e., by algebraically solving a set of simultaneous

equations for these coefficients at like powers of s).

Another general approach is to substitute specific, convenient values of s to
obtain as many simultaneous equations as the number of unknown coefficients, and
then solve for the unknown coefficients. We must make sure that each selected value of
s is not one of the poles of F(s).

Example 2.8: Find the inverse Laplace transform of

5 N 6
s+1 s2+4

3
F(S)=;—

Solution:

The inverse transform is given by

f(t) =L7YF(s)] = L1 (g) _ 1 (H—Ll) +L‘1<

= (3 —=5e7t + 3sin2t)u(t), t=>0

52+4>

where Table 1.2 has been consulted for the inverse of each term.

Example 2.9: Find f (t) given that

s?2+12

Fls) = s(s+2)(s+3)

Solution:

Unlike in the previous example where the partial fractions have been provided, we first
need to determine the partial fractions. Since there are three poles, we let

s2+12 A B C

=— 2.16
s(s+2)(s+3) s+s+2+s+3

where A, B, and C are the constants to be determined, we can find the constants using
two approaches



Residue method:

. o sT+12 __12 _,
=3 (S)|5=0_(s+2)(s+3) S=O_(2)(3)_
2412 4+ 12

B= (s + 2)F(s)|s=—2 = ;(;r—+3) - (—;LW T
2412 9+12

C=(s+3)F(s)|s=—3 = :(SJF—JFZ) - (—;LW T

s=—

Algebraic method:
multiplying both sides of Eq. (2.17) by s(s + 2)(s + 3) gives
s2+12=A(s+2)(s+3)+Bs(s+3) + Cs(s +2)
Or
s2+ 12 =A(s>+ 55+ 6) + B(s? + 3s) + C(s? + 2s)
Equating the coefficient of like powers of s gives

Constant: 12=64 = A=2

S: 0=54+3B+2C = 3B+2C=-10
52 1=4A+B+C = B+C=-1
Thus,A =2,B = —8,C = 7 and Eq. (2.17) becomes
2 8 7
F =——
(5) S s+2+s+3

By finding the inverse transform of each term, we obtain
f(t) = (2—-8e 2t + 7e 3)u(t)
Example 2.10: Calculate v(t) given that

10s% + 4

V) = G DG+

Solution:

While the previous example is on simple roots, this example is on repeated roots. Let



10s2 + 4
s(s+1)(s +2)?
A B C D
§+s+1+(s+2)2+s+2

V(s) =

2.17

Residue method:

A=sV _ 10s%2 + 4 4 L
=Vl = DG, T D
10s%2 + 4 14
B = (S + 1)V(S)|S=_1 = m D = W =14
10s% + 4 44
C = (S + Z)ZV(S)|S=_2 = m . = m =22
d d (10s? + 4
D= [(s + 2)2V(s)] T £<—52 s ) .
(s +5)(20s) — (10s2 + 4)(2s + 1) 52
= =—=13
(s2+5)? sy 4

Algebraic method:
Multiplying Eq. (2.17) by s(s + 1)(s + 2)?, we obtain
10s2+4 =A(s + 1)(s + 2)? + Bs(s + 2)?

=Cs(s+1)+Ds(s+1)(s+2)

Or
1052+ 4 = A (s3 4+ 552 + 85 + 4) + B(4s? + 4s)

C(s?+5s)+ D(s3 + 3s% + 2s)
Equating coefficients,
Constant: 4=44 = A=1
s: 0=84+4B+C+2D = 4B+(C+2D=-8
s%: 10=54+4B+C+3D = 4B+C+3D=5
s3: 0=A+B+D = B+D=-1



Solving these simultaneous equations gives A = 1,B = —14,C = 22,D = 13, so that

ol 1,13 2
VST 541  s+2  (5+2)2

Taking the inverse transform of each term, we get

v(t) = (1 —14e ' + 1372 + 22372Y)u(t)

Example 2.11: Find the inverse transform of the frequency-domain function of:

20

H) = 5361857 25)

Solution:

In this example, H(s) has a pair of complex poles at s> + 85+ 25 =0 or s = —4 + 3.
We let

20 _ A 4 Bs+C
(s+3)(s24+85+25) s+3 (s2+8s+25)

H(s) = 2.18

We now determine the expansion coefficient in two ways

Combination of Methods:

we can obtain A using the method of residue method

20 20

A=CH+DHO == 75728l . " T0°
S=—

2

Although B and C can be obtained using the method of residue, we will not do so, to
avoid complex algebra. Rather, we can substitute two specific values of s [say s = 0,1,
which are not poles of F(s)] into Eq. (2.18). This will give us two simultaneous equations
from which to find B and C. If we let s = 0 in Eq. (2.18), we obtain

20 A N C
75 3 25
Or
20 = 254 + 3C 2.18.1

Since A = 2, Eq. (2.18.1) gives C = —10. Substituting s = 1 into Eq. (2.18) gives



20 A N B+cC
(4)(34) 4 34
Or
20 = 34A + 4B + 4C 2.18.2

ButA = 2,C = —10, so that Eq. (2.28.2) gives B = —2
Algebraic method:
Multiplying both sides by Eq (2.18) by (s + 3)(s? + 8s + 25) yields
20 = A(s?+8s+25)+ (Bs+C)(s+3)

= A(s*+ 85+ 25) +B(s?+3s)+C(s +3) 2.18.3
Equating coefficient gives
s2: 0=A+B = A=-B
s: 0=84+3B+(C=5A+C = (C=-54
Constant: 20=25A+3C=254A—-15A = A=2
Thatis, B = —2,C = —10 thus,

Hs) = 2 25410 2 2(s+4)+2
)T 5¥3 (s2+85+25) s+3 (s+4)2+9
2 2(s+4) 2 3

“s5+3 (5+42+9 3(G+4)2+9
Taking the inverse of each term, we obtain
h(t) = (Ze‘3t —2e * cos3t — ge““ sin 3t) u(t) 2.18.4

It is alright to leave the result this way. However, we can combine the cosine and sine
terms as

h(t) = (2e73* — Re™*t cos(3t — 8))u(t) 2.18.5
To obtain Eq. (2.18.5) from Eq. (2.18.4).

Next, we determine the coefficient R and the phase angle 6:

leN

2

2
R= |22+ (g) —2108, 6 =tan 12 =14.43°

2_

Thus



h(t) = (2e73" — 2.108e~** cos(3t — 18.43°))u(t)

2.6 Exercise

Solve the following partial fraction

1 s2 + 25+ 6
. 2
1
s2— 75+ 12
s— 2
s2—-4s+ 13
3s+ 1
G- DE2+ D

11s>-2s+ 5
253 — 3s2— 35+ 2

252 — 65+ 5
(s—1)(s-2) (s -3)

3s+ 1
(s—4)2%+9

16
T (s + 25 + 5)2

1

9. (s =3)(s2 + 25 + 2)

1

10. (s=2)(s2 +)

s2—6s54+ 7

11. (s3 - 4s + 3)2

25+3
" s2455+4



CHAPTER 3

INVERSE LAPLACE TRANSFORMS

3.0 Introduction

Now we obtain f(t) when F(s) is given, then we say that inverse Laplace
transform of F (s) is f(t).
IfL[f(t)] = F(s), then L7 [F(s)] = f(b). 3.1

where L1 is called the inverse Laplace transform operator.
From the application point of view, the inverse Laplace transform is very useful.

3.1 Important Formulas

(7) {52
(8) £ {F(s—k)}=e’“f(t)
— 1
O L o

(10) L—l{ s_m

(s + mz)2 + n2

1 .
} == e™sinnt
n

} = e™ coshnt

(11) £71 { - mz)z ————} =2 e sinhnt

(12) £71 { s nz} % tcoshnt

(13) £ {(52 mZ)Z} = 5— (sinmt —mt cosmt)
(14) £t = mz)z} = —tsm mt

(15) £71 {(2+m2)2}=tcosmt

(16) L1 {1} =6 (1)

(17) £71 {(32 - mZ)Z} — [sinmt + mt cos mt]



Example 3.1: Find the inverse Laplace Transform of the following

i —
! s — 2
(i)

ii 3 _59
(iii) R
(V) —

v SZS — 25
(V) s2—-9 )

(Vl) (s—2)2%+1

s — 1
(vii)
(s— 22+ 4
(viii) G- D — 4
_ s+ 2
) e =z = 25
1

(X) 2s—7

Solutions:

: -1_1 _ a2t
(I) L 5 % ¢ 1 3 1

.. -1 _ -11 _ 1o
(ii) L7 5—=L Rl 5 sinh 3¢
(i) L7 > ==L o Gz = cosh4t
. 11 1 5 .
(iv) L e T oo G2 50 st
_ 1 N

(v) L 152+92: oG = Cos3t

H -1 — p2t g
(vi) L —(5_2)2+1—e sint

.. -1 s—1 _ t
(vii) L G e’ cos2t

1 1 _ 1 2 _ 1 3.
(viii) L G a7 i 26 3 _@p Se sinh 2t
. 1 1 Zt
(ix) — == ez



Example 3.2: Find the inverse Laplace transform of

. S? +s5+2
O —=—
S2
. 2s — 5
() g5z = - 25
(iid) 2
i 62+ 20

Solution:
s? +s+2 1 1
(i £t 3 =L1s24+ L7572+ L7
S2
1 1 2
=L —+LT5+ L
s 2 s2 S2
1 1 3
t‘f‘l ti‘l 2t5 1
= +
s : F 1 F""f
1 % Vot m
Gi) £ 2s — 5 ]
t 9s2 — 25
ﬁl:_l[ - ]
9s2 — 25 9s%2 — 25
5

T b 0]

w | ;1
—

2 g5t 1 5t
- — _ e
9COS 3 3Slrl3

| ro

%5}

N W



(iii) £ =L‘1[ > ]—L—l[ 2
652 + 20 6sZ + 20 6s% + 20,
1 s _ 1
"5t 10 2]—51:1 10\’
2 it 2 —_
(5] ()
10
1 0.1 |3, 3
6COS 3 3

3.2 Multiplication by s

d
L7SF (9] = () + f(0)8(8)

Example 3.3: Find the inverse Laplace transform of

. s - S .. 38
@ s241 (i) 45?2 — 25 (to 25+9
Solution:
1
Q) L1 Ty =sint
» 1 d . :
e (sint) + sin(0) 6(t)
= cost
1 1 1 12 : 1
i) £-1 =_ [ =-.c L7 < =qosinhy ¢
() L7 o5 =7 , 25 4°5 52 1072
-7 s2- (2)
3 3 1 __3.-3
(iii) £7* =5 L7 =5¢7




3.3 Division by s (multiplication by %)

IF (s )l ftL‘l[F (s)]dt = th(t) dt
0 0

Example 3.4: Find the inverse Laplace transform of

)

1
s(s+ m)

(i) s (52 + 1)

(iii)

s (52 + 9)

Solution:

® 0 () =em

—meqt
£ [s (s + m)] j s + m) dt = Jote_mt dt = [e—mlo

= =— [1—e™]
-m m m

(i) £71 < = sint

1 1 t 1 ‘
-1z <2—):f L1 (2—) dtzf sint dt = [—cost]{, = —cost + 1

s \s* + 1 0 s+ 1 0
(D) L_152+3__152+9—6__1[1 6
l” s(s2 + 9) s(s2 + 9) | s s(s?2 + 9)

t 3 t 1
=>1—] L‘lz—ds=1—2jsin3tdt=1+2x— [cos 3t]§
0 s+ 9 0 3

—1+2 3t 2—2[ 3t —1]
= 3COS 3—3COS



3.4 First Shifting Property
L7IF (s) = f(t), then L7IF (s+m)=e ™ L7F (s)]

Example 3.5: Find the inverse transform of

)

(s + 2)5
. S
W) 5+ 13
Rl 3
(iii) 952 + 65 + 1
Solution:
. 11 t*
) L=
Then
-1 1 _ —Zti
(s+ 2)5 4
s s+ 2
.x L_l = -1
(i) (sz + 4s + 13) (s + 2)2 + (3)?
. s+ 2 1 s+ 2
_ - L
(S n 2)2 + (3)2 (s + 2)2 + 32
s 2 S
—2tp-1__ >  _ _—2tp-12(__ >
= e L 52 1 32 e L 3(52+32)
2
= e 2t cos 3t — 3 e %'sin 3t
S 1 1
L_l =L_1—=_L_1
(itd) 952 + 65 + 1 (Bs + 1)* 9 (
1 ¢ 1 1 t t ¢t
:5@3,6 5_225932563

3.5 Second Shifting Property
LT [e™F@$)]=ft—-—m)u(t—m)

Example 3.6: Obtain inverse Laplace transform of



e—TL’S

O 553

—S

OF

Solution:
© & yme
_1 e’ T
1 P 3(t n)u(t_n.)
t2
(i) £t —
_1 1 —t i
(s+ 1)3 2
- e (- (t
' (s+ 1)3 v u(t=1)

Example 3.7: Find the inverse Laplace transform of

se_% + me™?
sz + m?
in terms of unit step functions.
Solution:
L1 % sin(t—1).u(t—1)
s+ m

L1 [e‘s o nz] = sin(mt).u(t—1)

and

T
LV ——— =sinnt

s?2 + w2

1 1
-1 -s/2 — - — -
L [e P =COST (t 2).u (t 2)

=sinmw t.u(t—%)

On adding (*) and (**), we get



=sinm t.u(t—%)—z sin(mt).u(t—1)

= sin nt[u(t—%)—u(t—l)]

3.6 Inverse Laplace Transform of Periodic Functions

Since the transforms are obtained from integration over one cycle, instead of
from zero to infinity as required by the definition of Laplace transform, a simple inverse
transform table is not obtainable as in the transform of non-periodic functions.

2e %
s(1—e—%9)

Example 3.8: Determine f(t) for Lf(t) = F(s) =
Solution:
F(s) = %e“‘s(l —e )1 = %e“‘s(l +e ™ +e 8 fe 125 4.
(By binomial expansion)
= (Gt (B)erse s (oo (B)orre
S S S S
= f@®) = L7F(s) = 2u(t — 4) + 2u(t — 8) + 2u(t — 12) + -

By second-shift (time shift) theorem.

3.7 Inverse Laplace Transforms of Derivatives
d
£t | ZFE)| = e [F @)= ~t )

or L7YF(s)]=—-L"1 [d—iF(s)]

Example 3.9: Find inverse Laplace transform of tan™?! §

Solution:

-1 e = TP B O

L (tan s)_ tL [dstan s]
_ lL‘l 1 ( 1) _ 1L‘1[ 1 ]_sint
ot 1\ s2 t 1 + s2] ¢t



2 _
Example 3.10: Obtain the inverse Laplace transform oflogs 5

Solution:
o1 152_1—112_1(1152_1
o8 ot ds 57 52
1 d 1 2s% 2 1
:__L—l[_ 2 _9)_ ]:__ -2 _fl - 2 _
" IS {log(s* —2) — 2logs} . L 2 Sl . [2 cosht — 2]

2
=7 [1 — cosht]

Example 3.11: Find L[ cot™1(1 + 5)].

Solution:

_ _ 1 .14 . _
L7 cot 1(1+s)]=—?£ 1 [%cot 1(1+s)]

-1 1
:——L_l ]:——L_l[
t 1 + (s + 1)? t (s + D)2+ 1

1 ., .
=— e "sint
t

3.8 Inverse Laplace Transform of Integrals

-1 UOOF(s)dsl = & = 112_1[F(5)] or L7YF(s)]=tL™? [fooF(s)dsl
t t t t

28
Example 3.12. Obtain L_l m .
Solution:
) 2s i ®  2s ds - [ ]°°
(s2 + 1)2 s (s + 1) sz + 1]
=tL 1[—0 ]
Ty



1

Example 3.13.0Obtain L_l m .

Solution:

1 sinmt

1
L71-=1 and £7? > ==
s s2 —m m

Hence by the convolution theorem

Lj;t{l'sjnmrflt_ K dx}: (%) (52 -I-1 m2>

1 }: .[:sinm (t-x) = [— cos(mt — mx)]:

ST
s (s2 + m?) m —m?2

=3 [1 — cosmt]

3.9 Exercise

1. Find the inverse Laplace transform of the following:

35— 8 3 5t 4 . 5t
(a). Ans.-cos— — -sin—
452 + 25 4 2 5 2
3(s?2 - 2)? 3 1
(). 220 Ans.2—3t2 42 ¢4
2s 2 2
35— 8 4s — 18 1.

(c)

1 5¢ 5¢ )
} Ans. = cos=— — =sin= — 4 cosh 3t + 6 sinh 3¢
4s2 + 25 9 — s2 2 2 2 2

55— 10 5 4 5 ., 4
(d). 52 Ans. - cosh- t —=sinh-t
952 — 16 9 3 6 3
(e). L4 18 > Ans.- — 16sinht
4s 1-s 4

2. Find the inverse Laplace transform of the following:

(i). — Ans.1—5¢e75¢
s +5

. 28 E _i -2t
(ii). P — Ans.3 S€

1 t
(iii). 2525 T Ans.E coshz

. s? .
(iv). e Ans. 1 — asinat

(V). 5——

Ans. 1 — Zsin 3t



(vi). Ans. te3!

(s — 3)?

52
(s? + 4)?

(vii). £71

3. Solve the following partial fraction

(i) 25(51— 3) Ans. % [%% -1
(ii). o Ans. = _;_Zt
(iii). = _1 ) Ans. 1—16 [cosh 4t — 1]
(iv). ﬁ Ans.%
(v). S(SSZ 124) Ans. cos?t
(vi). m Ans.t —e ¢t
(vii) ST D Ans. ? +cost—1
(viii). £71 (SZSZ s
(a) 1 —cost (b) 1+cost (c) 1—sint (d) 1+sint Ans. (a)

4. Obtain the inverse Laplace transform of the following:

: % Ans. e %! (cost + 6sint)
: % Ans. e 3t (cos 2t — 1.5sin 2t)
. ~7tt 3 _
¢ 53 Ans. e S (3-=7t)
d —=*2 Ans. et(cosh 3t + sinh 3t)

s2—- 25— 8
s

- 3 .
e. ———— Ans. e3¢ [cos 4t =sin 4t]
s¢ + 6s+ 25 4

1 et .
s e—— Ans. —sin 4t
2 (s —1)2 + 32 8
s — 4

1 1 .
g ————— Ans.-e3t cos 2t — = e3tsin 2t
4(s— 3)2+ 16 4 8



5. Obtain inverse Laplace transform of the following:

-s/2 s

se + me™ 1 .
(a) 2+ 72 Ans. [u (t — E) — 1;L(t — 1)] sin Tt
e —(t-2) (t=2) _
(b) T Ans. e > u(t—2)
e—ZS

(c)

—(t-2) _ _ _
(s+ 1)(s2+ 25+ 2) Ans. e {1 COS((t 2)}u(t 2)

e=S e—(t - 1)
(d) Vs+ 1 Ans. ﬁu(t -1)
T 3T
e 2% + e 2° 37 b4
(e) ‘}SZT Ans. cott [u (t - 7) —Uu (t - E)]
¥ (s+ 2) _ _
(f) ﬁ Ans. e 2t - W cos}Et —wWu(t—4)
e~ s _(t—a when t = a
() s2 Ans. f(8) = { 0 when t > a
e TS .
(h) e Ans. -sintu (t —m)
(i) The inverse Laplace transform of (e=3%)/s3 , is
(A) t=3uz () B) (t—3)uz(@® (€O t—3)%us(0)
(D) (t—3)us (t). Ans. (D)
(j) If Laplace transform of a function f (t) equals (e 2% —e™5)/s, then

Af)=1t=1;
(B) f(t) =1, when 1 <t <2, and 0 otherwise;
(C©)f() =—-1, when 1 <t <3, andO0 otherwise;
(D) f(t) =—1, when 1 <t <2, andO0 otherwise.
Ans. (D)
(k) The Laplace inverse £71 [?2 (e™® + e‘45] equal
(A)2,if 0<t<4; 0 otherwise
(B) 2, ift=0
(€) 2,if0<t<2; 0 otherwise;
(D) 2,if 0<t<4; 0 otherwise
Ans. (D)

() The Laplace transform of t u, (t)

(4) (Siz+§)e-25 B) e () (5- Z)e-zs (D) Ze ™.

N



—as

: K i
(m) The inverse Laplace transform ofm is

(A) sinkt (B) coskt (C)u(t—a)sinkt (D) none of these Ans. (D)
(n) The inverse Laplace transform of 1 is:
A1 (B) 6 (t) C)6(t—1) (D) u(t) Ans.(B)

6. Obtain inverse Laplace transform of the following:

2
a.log(1+w—2) Ans.Z—Zcoswt
s t t
S 2 .3 . t
b. m Ans. ﬁ smﬁ t Sll’lhz
-3t
c.zs;1 Ans. 2 [2t sin 2t + 2t cos 2t — sin 2t]
(52 +65+13)2 8
s tsinat
ey Ans
1 s + b2 e~ — cosht
e. log{(s_ a)Z} Ans.f
f. tan™! (s + 1) Ans. —%e‘t sin t
1 2
g. log (1 + s_Z) Ans. — [1—coswt]
s -1 1-cost
h.slog=—=+cot™"s Ans. —

7. Find the inverse transform of:

2
3 S:% Ans. 1+ 2t + 3t2
ii. 2; Ans. e
s4— 75+ 12

4t 3t

—e

s— 2

4 :
i, 5 ———— Ans. €3t cos3t + - e?' sin 3t
s —4s5+ 13 3

3s+ 1

. o r s t _ .
V. ST D Ans. e" —2cost +sint

1152 -2s+ 5
" 283 - 352 - 35+ 2

Ans. 2e~t 4 5e?t —% et/?

. 252 - 654+ 5 1 5
vi. Ans. = et — g2t 42 g3t
(s—1)(s-2) (s -3) 2 2
3s+ 1

T(s—-4)2%2+9

vii Ans. e*! cos 3t



16 _ .
VIII. m Ans. e t(Sll’l 2t — 2t cos Zt)



CHAPTER 4

SOLUTION OF DIFFERENTIAL EQUATIONS BY LAPLACE
TRANSFORMS

4.0 Solving Differentials Equation Using Laplace Method

Ordinary linear differential equations with constant coefficients can be easily solved
by the Laplace Transform method, without finding the general solution and the arbitrary
constants.

The method will be clear from the following examples:
Example 4.1: Using Laplace transforms find the solution of the initial value problem
y" —4y' + 4y = 64sin 2t
y(0) =0,y(0) = 1.

Solution:
y" —4y'+ 4y = 64sin 2t 4.1
y(0)=10,y'(0) =1

Taking Laplace transform of both sides of (4.1), we have

) - : , 642
[s? 5 = sy (0) =y (0] — 4Is y—y Ol +4y =5 4.2
On putting the values of y (0) and y'(0) into Eq. (4.2), we get
2514y +4y = o
>y >y Y =57 r4
2 _ 128 5 128
(S _4S+4)y=1+ m, or (5—2) y=1+m
N S 128 1 8 , 16 8
Ve G-22 G-+ H) G -2F s-2 G- s+ 4

8 17 8s

:L_l —_
Y s — 2+(s—2)2+52+4

y = —8e? +17e?" + 8cos 2t



Example 4.2: Applying convolution, solve the following initial value problem

y'+y=sin3t

y(0)=0, y'(0) =0.
Solution:

y'+y=sin3t

Taking Laplace transform of both the sides, we have

[s*7=sy O =y' O] +7 =3 i 5
On putting the values of y (0), y'(0) into Eq. (4.3) we get
25, S 3 2 =
sy+y=m or (s +1)y=m
B 3 31 1 1

y:(sz + 1) (s? + 9):§ s2+ 1 s2+9

Taking the inversion, we get

EL—l—__ L_l
8 s24+ 1 8 s+ 9
3 3

1
y=§sint—§ X §sin3t

y:

—3 int L 3t
y—851n 8sm

Example 4.3: Solve [tD? + (1 — 2t)D — 2] y = 0. where y(0) =1,

y'(0) =2
Solution:

Here, tD? + (1 — 2t)Dy — 2y =0
= ty'"+y -2ty'—2y=0
Taking Laplace transform of given differential equation, we get

L(y") + L") —2L(ty") —2L(y) =0

d d
=~ LY+ 2 L0) - 2L() =0

4.3



i , . d _
- [s2y—sy (0)—y' (O] + [sy—y (0] + 2—lsy-y(@]-2y=0

Putting the values of y (0) and y (0), we get
d 5 5 - d _ _
T (s°y—s=2)+(s y—1)+ZE(s y—=-1)=2y=0
[+ y(0) =1,y"(0) = 2]
:—sziy—2y+1+ 37—1+2(s —y+37>—237=
ds B S
= —(52—25)2—)5}—537=0

dy 1

= —— ds=0
_+S_Zs

y
:fdy+f ! =0 =logy+1 2) =logC
5 P ogy +log(s — 2) = log

1
=Ce?t 44
5—2}:}] €

C
Putting y (0) = 1 into Eq. (4.4), we get 1=Ce° = c=1
Putting C = linto Eq. (4.4), we get y = e?!
This is the required solution.

Example 4.4. Using Laplace transform technique solve the following initial value problem

Y Y gy = Ssint herey (0) = y'(0) = 0 45
102 7 T2y = 5sint, where y =y = :
Solution:

y" +2y" + 2y = 5sint
y(0)=y'(0)=0

Take the Laplace Transform of both sides, we have

4.6

[529 = 5y (0) = y' ()] +2[s7 =y ()] + 25 = 5 x 5 —

On substituting the value y (0), and y (0) into Eq. (4.5), we get

25 - = 2 S
s*y+2sy+ 2y—52+ T or [s“+2s+ 2]y o



5
(s2+25+2)(s?2+1)
2s + 3 +—2$ + 1
s2 4+ 2s+2 s2+ 1

)_}z

Resolving into partial fractions,y =

Taking the inverse transform, we get

L‘l( 2s + 3 )+£_1<—25 + 1)
y: —

s2 4+ 25 + 2 s2 4+ 1
2(s + 1) —2s +1
(Y e ()
l(s+1)2+1+ sZ+1Jr sz 4+ 1

2(s + 1) 1

— or-1 -1
(s + 1)2+1+L [(s+ 1)2 + 1

]—2cost+sint

=2etcost+etsint—2cost+sint

Example 4.5. Solve the initial value problem
2y" +5y" +2y =e"%t, y(0) =1, y'(0)=1

using the Laplace transforms.

Solution:
29"+5y' +2y=e2t y(0)=1, y'(0)=1

Taking the Laplace Transform of both the sides, we get

, _ _ 1
2[s*y = sy (0) =¥ (O] + 5[5y —y (D] + 2y = ——
On putting the values of y (0) and y'(0) in (1), we get
1
2[s2y —s — 1] +5[sy — 1] + 2y =
[s°y =s =11+ 5[sy -1+ 2y = ——
[2s2+5s+2]y—2s—2—-5= !
STesTayTas TS+ 2
1+(s + 2)(2s+7) 2s? + 11s + 15

V=2 + 55 + D6+ 2) @ +D G+ 22



4 11 1
9 9 3 41 1 1 1 1 1
25+ 1 s+ 2 (s+ 2)2_925+1 9 s+ 2 3(s+ 2)2
2
2 1, 11 1
—Z,3t _ " -2t _ 4,2t
y=3e 5 ¢ 3te
d’y _dy L ,
Example4.6:Solvedx2+2a+ 5y =e *sinx for y (0) =0, y'(0)=1
Solution:
d? d
d—szl+ Zd—i}+ 5y = e *sinx

Taking the Laplace Transform of both the sides, we get

[s?y — sy (0) —y"(0)] + 2[sy — y (0)] + 57 = L (e *sinx)

[s25 — sy (0) — y'(0)] + 2[s7 — y (0)] + 5§ = ———— 4.7

(s+ 2)%2+ 1

On substituting the values of y (0) and y (0) into Eq. (4.7), we get

1
2y—1)+2(sy)+5y =
2 2 4 EY T 14 5%+ 25+ 3
(s Sy =t G s 2T 251 2

_ s2+ 2s+ 3
y_(52+ 2s + 5)(s?2 + 25+ 2)

On resolving the R.H.S. into partial fractions, we get

2 1 1 1

V — — +_
Y 3s24+ 2s+ 5 3s2+ 2s+ 2

On inversion, we obtain

2 1 Ry 1
Y=3 2+ 25+ 5 3" s2+ 2s+ 2

Or

1 2 1 1
y== -1 -1

3 G F 2 r @2 3 G ¥ Dy @




1
y=3 e *sin2 x+§ e *sinx or y=3 e ™ (sinx +sin2 x)

Example 4.7. Using Laplace transforms, find the solution of the initial value problem:
y'+9y =9%u(—-3), y(0)=y'(0)=0
where u (t — 3) is the unit step function.
Solution:
y" +9y =9u (t — 3). 4.8

Taking Laplace transform of Eq. (4.8), we have

e—3S

4.9
s

s?y —sy (0)—y'(0)+9y =9

Putting the values of y (0) and y'(0) = 0 into Eq. (4.9), we get

9 e—3s
y+9y =
sy y S
9 e—3s
(s2+9)y =
9 e—3$ 9 e—3s
= = = L:_l _—
Y s(s?2+9) Y s(s?+ 9)
L1 3 in 3t
= sin
s2+ 9

3 t
Ll—— =3 f sin3t dt = — [cos 3t]§ =1 — cos 3t
s(s?+ 9) 0
9 e—SS
s(s?2+ 9)
y =[1—-cos3(t—3)]u(t—3)

4.1 Solution of Simultaneous Differential Equations by Laplace Transform

y=L"

Simultaneous differential equations can also be solved by Laplace Transform method.

Example 4.8: Solve % +y=0 and % _ x =0 under the condition

dt
x(0)=0, y(0)=0
Solution:



xX+y=0 4.10

y' —x=0 4.11
Taking the Laplace transform of Egs. (4.10) and (4.11) we get
[sx—x(0)]+y=0 4.12
[sy—y(0]-x=0 4.13
On substituting the values of x(0) and y(0) into Eqgs. (4.12) and (4.11) we get
sx—14+y=0 4.14
sy—x=0 4.15
Solving Egs. (4.14) and (4.15) for X and y we get
_ S _ S
T r o1 Y= ¥ 1
. . . _ -1 S _ -1 S
On inversion, we obtain x=L (SZ " 1) , y=L (52 " 1)

x =cost, y=sint

Example 4.9: Solve % —y=et, D 4 x =sint given: x(0) =1, y(0) =0

dt
Solution:
x' —y=et 4.16
y' +x =sint 4.17

Taking the Laplace Transform of Egs. (4.17) and (4.17), we get

1
x —x(0)] -y = 418
o7 -xO] =7 =
y —y(0 X = —— 4.19
[sy —y(0)] +x 7 1 1
On substituting the values of x(0) and y(0) into Egs. (4.18) and (4.19) we get
1
xX—1—y= 4.20
sX y 15_1
S_’)_/ +x =m 4.21
On solving Egs. (4.20) and (4.21), we get
_ st+ P+ s -1 1 1 +1s+1+ 1 192
TG - DGE+ 12 2s — 17252 + 1 (s2+ 102
_ =+ s?=2s 1 1 +1s+1+ S 123
V=G - D2+ 1)2 2s — 1252 + 1 (24 1)2

On inversion Eq. (4.23), we get



LI .
2 s + 1 (s + 1)2

1 1 1 1 1 _
=§et+§cost+§smt+§ (smt—tcost)=§ [ef + cost + 2sint — t cos t]
Oninverse we get
1 1 1 s 1 1 s
- __ L_l _ L_l _ L—l L_l
Y=o b s At gy a2 e r vt 1y
- - e'+icost—asint+= tsint
y == e +5cost—zsint+z tsin
1 _ _
y=z[—et—smt+cost+ tsint]

Example 4.10: Using the Laplace transform solve the initial value problem
yi =y1+3y;
s =4y, —4e'

Solution:
yi =y1+3y, 4.24
y; =4y, —4et 4.25
Taking the Laplace transform of Egs. (4.24) and (4.25) we get
s?y1 =sy;(0) — y1 (0) =y, + 3, 4.26
_ , _ 4
$?5; = 5y,(0) — ¥, (0) =43, — 4.27

s+ 1
Putting the values of y; (0), y,(0),y, (0) into Egs. (4.25) and (4.26), we get

s?2y,—2s—3=y, + 3y, or (s*—1y,— 3y, =25+3 4.28

2P —s—2=4F ——— Or 4J —SPy=————5—2 4.29
On solving Egs. (4.28) and (4.29), we get
_ (25 =3)E"+ 3)(s+ 2) 2s — 3 1 1

y1= s— D2+ 3)Gs+4) (- Ds—2) s-— 1+s— 2
y, = et +e?



_ (= 2)(6*+3) 1
2= (7 3)(s2+ 4) s — 2’

— p2t

4.2 Application to Integro Differential Equations

The Laplace transform is useful in solving linear integro differential equations. Using the
differentiation and integration properties of Laplace transforms, each term in the
integrodifferential equation is transformed.

Initial conditions are automatically taken into account. We solve the resulting algebraic
equation in the s-domain. We then convert the solution back to the time domain by
using the inverse transform. The following examples illustrate the process.

Example 4.11: Use the Laplace transform to solve the differential equation

d?v(t) dv(t) B
72 +6 It + 8v(t) = 2u(t)

Subjecttov(0) = 1,v'(0) = -2

Solution:

We take the Laplace transform of each term in the given differential equation and obtain

[s2V(s) — sv(0) — v'(0)] + 6[sV(s) — v(0)] + 8V (s) = %

Substituting v(0) = 1,v(0) = -2

2
s2V(s)—s+2+6sV(s)—6+8V(s)=—

S
Or
2 s?t4+4s+2
(52+6s+8)V(s)=s+4+;=f
Hence,
s> +4s+2 A B C

V(s) = =—+——+
(s) s(s+2)(s+4) s s+2 s+4

Where



s244s+2 2 1

A=Vl =i pern|_ " 1
s2+4s+2 -2 1
B=GraVel— =~y | _ "o 2
s2+4s+2 2 1

C= GOl ==y | D 3

Hence,

V(is)=—+

(2 ENEE
ZHLSTE
B

%)
+
N

By the inverse Laplace transform

v(t) = l(1 +2e72t + e *u(t)
4

Example 4.12: Solve for the response y(t) in the following integro differential equation.

d—y+5(t)+6ft (r) = u(®) (0) =2
dt y oy ) y

Solution

Taking the Laplace transform of each term, we get

[5¥(5) ~ y(O)] +5¥() + ¥ (s) = -

Substituting y(0) = 2 and multiplying through by s,
Y(s)(s?+5s+6)=1+2s

Or
Y(s) = 2s+1 _ A N B
(s+2)(s+3) s+2 s+3
Where
A=Yl =T -3 3
s+3|__ 1



2s+1 -5
B=(s+3)Y(s)|s=—3 = = =—_1=5
s=-3

Thus

—3+5
s+2 s+3

Y(s) =

Its inverse transform is

y(t) = (=3e72t + 5e3Y)u(t)

4.3 Exercise
Solve the following differential equations:
2y oy _ ay _ _ _
1.dx2 +y =0, where y =1 and ol lat x=0
Ans.y = cosx — sinx

2y g — ay _ _ _
2.dx2 4y =0, where y =0 and ol 6atx3—0. 3
Ans.y=—562x+5e_2x
2y oy -1 @ _ _
3.dx2+y—0,wherey—1,dx—1atx—0.
Ans.y = sinx + cosx
d’y dy _ _ 5 4y _ _
4.ﬁ+25+5y—0,wherey—2, = 4 at x=0
Ans.y = e*(2 cos2 x —sin2 x)
2
5 +2————2y—0 gweny—d——O,%=6atx=0
Ans.y =e*—3e %+ 2¢7*
2
6.%+y—3c052x where y———Oatx—O Ans.y = COSXx — COS 2 x.
dady 1 _aY _
7.ﬁ+a—2y—1 2x,gweny—0,dx—4atx—0
Ans.y =e* —e 2 + x
3
8.% 3 +2y 4e” Zx,gweny——Band ~=5atx=0.

Ans y =—7e* +4e 2 + 4 xe?*

9 u—3dy+2y 4x + =% ,wherey=1,2—z=—1atx=0.

" dx3 L )
Ans. y=3+2x+5e3x—5e"
— — — a?y —
10. +2de —2y=0, wherey = 1 =2, 5=2at x=0.

Ans.y =§ex—e‘x+§e‘2x
11. (D? =D —2)x = 20sin2t, xo = —1,x; = 2



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Ans.x =2e%t —4e "t +cos2t—3sin2t
(D3 +D?)x =6t>+4.x(0)=0,x(0)=2,x(0)=0
Ans. x = %t‘* —2t3+8t2 — 16t — 16e~t

By A, S0 Y jare=
> de+x—e,wherex(0)—2, = latt=0. 1

Ans.x = 2e" —3tef + —te
(D? —n?)x = asin(nt + «) wherex=D x=0 at t=0

. in 2 .
Ans. x = an cos a (sinnt — nt cos nt) + % (tsinnt)

y'+2y +y=te”t ify(0) =1, y'(0) =-2
(1 _ s ) -t
Ans.y—(l t+6)e

d%y _ _ ay _ _

ﬁ+y—xc052x,wherey—4dx—0att5—0.
Ans.y=gsin2x—gsinx—§cost

3 2 2

%— %— Z—z—yzxzxzx, Whereyzl,j—i:O,ZTZ:—zatx:()
Ans.y =e?*(x? —6x+12) —e*(15x*2+ 7x + 11)

y'+4y'+3y =t,t >0; giventhat y(0) =0and y'(0) =1

Ans.y:—§+£+e—t_ge—3t
y"+2y =7 (t), y(0) =0, y'(0) = 0 where r(t):{o’ tZl}
’ , 1, 0<t<l

Ans. v =%—% cosV2t.
2 )
% + 4y = y(t — 2), where u is unit step function y(0) =0andy (0) =1
Ans.y = %sinZt fort <2
2
S ty—u(t-m—u(t—2m), y(0)=y'(0) =0
Ans.y = (1 + cost)u(t —m) — (1 —cost)u (t — m)
A condenser of capacity Cis charged to potential E and discharged at t = 0 through

an inductance L and resistance R. The charge q at time t is governed by the
differential equation

d’q  dq q
L—+R—+—==2q(t
dt? * dt * C 100
E
Ee—at
q(t) = Esinft
Ecosft
Using Laplace transforms, show that the charge q is given by
CE . R 1 R?
q =— e * [ksinnt + ncosnt] wherek = — and n? = — — —

n 2L CLC 12



d?y(t) 3dy _
qr2 - ? - 10y(t) =4

y(07)=2  y(07)=1

2
24. For the second-order differential equation dstgt) — %:t) + 12y(t)

23. Determine the final value of y(t), Given

[y(0) = 2,y(0) = 5], determine the response y(t) solve the following simultaneous
differential equations by Laplace transform

25.%+ 4y=0,%—9x=0. givenx=2andy =1att =0.
Ans.x=—§sin6t+2cos6t, y = cos 6t + 3 sin 6t
dy dx _ dx ay _ e
26. 45 + T 3y=0, 3dt+ 2x + Fri 1  under the condition:
x=y=0att=0
6

el y=2¢
10 Y =3

— _ 1 —it
Ans. x = t t—ge 11

N | =

1
—-e
5
dx dy . .
27.E+5x—2y=t,E+2x+y=O,belngglvenwhenx=y=0Whent=0.
—_1 -3t ¢ 1 _2 -3t _ 2t 4
Ans. x = 27(1+61:)e +27(1+3t),y 27(2+3t)e 5 5

28. %+y=sint, %+x=costgiventhatx=2, and y =0 whent = 0.

Ans.x = et + e t,y=et—el +sint

x| ady _ ax _
29. 3dt+ 3dt+ 5x =25cost, Zdt

32—3;= 5sint withx (0) = 2,y(0) =3
Ans.x = 2cost +3sint, y=3cost+ 2sin3 t

30. By Laplace transformation method, determine the response y(t) fort > 0

d’y(t)  _dy(t) 3
12 +3 It + 2y(t) = 5u(t)

31. By Laplace transform, Solve the differential equation:
2 —4x =8,x(07) = x(0*) = 2

d?y(t) _ 3ady
dt? dt

y(07) =2,y'(07) =1

32. Determine the final value of y(t), given —10y(t) = 4



33.

34.

35.

36.

37.

2
By Laplace transform, determine y(t), given: d;;gt) -3 dJ;(:) —10y(t) =e™*

y(07) =2 y(0)=1
2
For the second-order differential equation: ddL(t) — 7(13;_(:) + 12y(t) = 6e™*t

t2

y(0) =2, ¥'(0) =5, determine the response y(t)
. . . d%y dy ]
For the second-order differential equation: prei 75 + 12y = 2sin4t

y(0) =2, y'(0) = 5, determine the response y(t)

Solve the following differential equation using the Laplace transform method.

2
d“v(t) + 4‘dv(t)

If v'(0) =v(0) =2, — ”

+ 4v(t) = 2e7t
Ans: (2e7t + 4e72Y)u(t)

Use the Laplace transform to solve the integro differential equation

t

dy _
E-I_ 3y(t) + Zf y(t)dr = 2e73 y(0) =0
0

Ans: (—e~t + 4e7%t — 3e 3 u(t)



CHAPTER 5

CIRCUIT ANALYSIS BY LAPLACE TRANSFORM

5.0 Introduction

This chapter is dedicated to solving electrical circuit or networks analysis in frequency
domain or s-domain which is known as Laplace Transformation method. Laplace method
is linear in nature which makes its use very easy and a useful tool in circuit analysis.
Consider for example Fig. 5.1 is a series R-L circuit containing a voltage source made up
of a combination of a (trice-scaled-up) impulse “function” and a (twice-scaled-up) unit
step function (a combination d.c voltage)

40

D) wi(©) =380 + 2u(®) V g o
i(t)

Figure 5.1

We are required to determine the current as the response (output)
Taking KV L of the loop:

di(t
We have 38(t) + 2u(t) = 4i(c) + 0.4% 5.1

Taking the Laplace transform of both sides of the Eq. 5.1.
2
3+ i 41(s) + 0.4[sI(s) —i(07)]

A little observation on the initial condition i(07): the source voltage, vs(t), is a sum of
impulse and step signals, the former being non-zero only att = 0. So, att = 07, the sum
is zero since u(t) takes up non-zero value from t = 0. Because an inductor presents a
short circuit in a steady-state, which in this case is the one prior to t = 0~ (assuming the
circuit has been in this condition for a long time), applying Ohm’s law (always applicable
at any point in time) simply gives Eq. 5.2:



(0-0)
4

Because a current through an inductor cannot change in zero time (instantaneously).
Even if the time was not “long” enough for the inductor to present a short circuit, the
impedance would have a reactive component by i(07) is still zero because the source
voltage v;(0™) = 0 on account of the step function which takes on value of 2 only from
t = 0 (or 0™). Getting back to Eq. 5.2 for i(0%) = 0 A, we have:

i(07) =

=0A=i(0%) 5.2

3+§=4I(s)+0.4[s](s)—0]

(3+5)

)= GFo4s
Resolving Eq. 5.3 into partial fraction
30s 20
__3s+2 =(T)+(T)
s(0.4s + 4) (s+10)
A N B
s s+10
15s
_ () +5 _1
s+ 10 2
s=0
15s
B_(T)+5 _ =75+45
s - -10
s=-10
1
I(s)= 24— 5.4
VT 10 '
Finding the inverse Laplace transform of Eq. 5.4 we have:
(&) =L711(s) = (0.5+ 7e 1)u(t) A 5.5

The first term in Eq. 5.5i.e. 0.5, is known as the d.c component because for this term,
the root (pole) and hence frequency is zero (making the period which is its reciprocal,
“infinite” hence, which is its reciprocal, “infinite” hence direct current). So, the time
domain expression for this component explicably written as 0.5¢% = 0.5¢° = 0.5 A. this
portion is what remains after the transient portion 7e~1° has died off as time tends to



infinity. A simple application of Ohm’s law in the steady state (inductor is short) gives

(0+i)_0 = 0.5 A, to be consistent with the foregoing observation!

Example 5.1: A resistance R in series with inductance L is connected with e.m.f E(t). The
current i(t) is given by

Ldi+ Ri=E(t)
dt 1= .

If its switch is closed at t = 0 and disconnect at t = a, find the current | in terms of

Solution:
Condition under which current | flowsarei=0 at t =0,
E(t) ={E 0<t<a}
Given equation is L%+ Ri =E (t) 5.6

Taking Laplace transform of Eq. 5.6, we have

L[51—i(0)] Rt = f e SLE (t) dt

Ls‘z+ﬁ=fooe‘5tE(t) dt [i (0) = 0]
0

(LS+R)i=f e‘StEdtzf e‘SfEdt+f e SLE dt
0 0 a

e~st]¢ E E E
=E +0=—-(1—e®]=——=¢as
—S 0 S S S

E Ee™®
s(Ls+R) s(Ls+R)

1=

On inversion, we obtain

Ee—aS
] R 7
l s(Ls + R) s(Ls + R)
Now we have to find the value of £71 [—]
s(Ls+R)

L‘l[ ] E‘l ! (Resolving int tial fractions)
—_  |== S esolving into partial fractions
s+ Rl -1t S(s+£) vingntop

L



_EL 1 _E[l _§t]
LR S R| ™R €
S + A
Ee™9s
d —1[ ] [1 L(t a)] t —
an sLs+R)I "R € (t=a)

[By the second shifting theorem]

On substituting the values of the inverse transforms into Eq. 5.7, we have
E R E R
=— 1—e_ft]——[1—e_f(t_a)]u t—a
q R (t=o

. E —Et
Hence, i== [l—e L] for 0<t<a, [u(t—a)=0]

R,1 E R
[ = [1—e_ft] -2 {1—e_f(t_a)} for t>a

E
R
[u(t—a)=1]

E R R E R Ra
=7 [1 —e Tt~ _ e_ft] =i(t) = R e Lt [eT — 1| Ans.

Example 5.2: Using the Laplace transform, find the current i(t) in Fig. 5.2.

L
Y Y e

Coil i

v(t)
Figure 5.2

Assuming L=1 henry, C = 1 farad, zero

initial current and charge on the capacitor, and

v(t)=t when 0<t<1=0 otherwise.



Solution:

The differential equation for L and C circuit is given by

d*q q

PuttingL =1,C =1,e = v (t) into Eq.5.8, we get
2q
di2 +q=v(t) 5.9

Taking Laplace Transform of Eq. 5.9 we have

o

s?G—sq'(0)— q(0)+q= f v(t) e~ Stdt
0
Substituting g'® = 0,i (0) = ¢ (0) = 0, we get

1 [e9)
526_1+c_1=f te st dt + f 0 e stdt

0 0

5 B e—st t 18 st e—s e—st 1 e—s e—s 1
(s*+1Dg=|t - dt=——|—5| =-—-—+5
-5, o —S —s s? |, —-s s S
_ 1 e e’ N 1
= s2 4+ 1l —s s% 2
—e~ S e s 1

__ _ +
1 s(s2 + 1) s2(s?2+ 1) s?2(s?+ 1)

Taking inverse Laplace transform, we get

gt P DL ! 5.10
1= s(s2+ 1) s2(sz2 4+ 1) s2(s2+ 1) 7
We know that

L7 e f()] =ft—au(t—a)

1 t
1 1 t .
= mzj;(l—cost) dt =t —sint
In view of this, we have
_e_s

_1 _

£ [gp] = 1 - coste - Dhu e = 1)
e’ '
! Sz(sz—_l_l) =[(t—1)—sin(t—DJu(t—-1)

Putting into Eq. 5.10 we get
qg=—-[1—cos(t—D]u(t—1)—[(t—1)—sin(t—D]Ju(t—1) + t —sint



5.1 Further Examples on Frequency Domain Circuit Analysis

Example 5.3: In the circuit of Fig. 5.3 the coil has 10 Q resistance and a 6 H inductance. If
R = 14 Q and the source voltage is 24 V and the switch is open at t = 0. Determine i(t)
using the Laplace transform method.

7/{t=o
6H 10 O R
— AN
coil i
24V
)
N
Figure 5.3
Takingthe KVL @ t = 0,
i = 24 =24A 5.11
ip = 0= % .
di(t
24 = 10i(t) + 14i(t) + 6% 512
Laplacing Eq. 5.12, we have
24
Y + Li(0) =1 (6s+ 10 + 14) 5.13

24
— +6(24) = I(6s + 24)

24 + 14.4s
L —(6s+24)

L 14.4s + 24
S s(6s + 24)
_ 24s+4

S — 5.14
S s(s+4)
Resolving Eq. 5.14 into partial fraction, we have:

24s+4 A N B
s(s+4) s s+4
Using Cover Up-Rule



A= E—r}(} s+ 4 - 4 -
B = lim 2.4s + 4] _ -5.6 _ 14
s—>—4 S —4
1 1.4
Iy = 3 + P 5.15
Taking the inverse Laplace transform of Eq. 5.15, i.e.
i) =Lty =L7" [1 P,
s s+4

i(t) =1+ 1.4e *u(t) A

Example 5.4: Find i(t) i.e., the current across 12 Q resistor at t > 0 in Fig. 5.4 by first

Laplacing the circuit and then use the Laplace transform method to fine the current as
stated.

i(t)
i1(t) 40
+
24 v<_> 12Q
i2(t)
8H
Figure 5.4
Solution:
KVL LOOP 1: 24 = 12(i,(0) — i,(D) 5.16
di(t) . . .
KVL LOOP 2: 0=38 ot 41y + 12(i,(t) — i1(D) 5.17

Laplacing Fig. 5.4a we have Fig. 5.4b



i(t)

|1(S) 40

12Q
24 +>
5 N\ I2(s)
8s
Figure 5.4b
Using MESH analysis
For mesh 1
24
5 =121, — 121, 5.18
24
121, = Y + 121,
_1212+24_512+2
™ 12s 7 s
sl + 2
I = 5.19
S
For mesh 2
121, — 121, + 41, + 8sl, =0 5.20

Substituting Eg. 5.18 into Eq. 5.20 we have:

I s+2

I
o

161, — 12 ( )+8sl2

12 sI, — 24

16]2 +8 SIZ =

16sl, — 12sl, — 24 + 8s%1, = 0
8s2I, + 16sl, — 1251, = 24
1,852 + 4sl, = 24
I, (852 + 4s) = 24

= 24 _ 3
27 s(8s+4) s(s+0.5)




3
[, = ———— 5.21
27 s(s+0.5)
Resolving Eq. 5.21 into partial fraction we have that
3 _A N B
s(s+05) s s+05

3
A=1i ]=—=6
sl—r>% s+ 0.5 0.

5.22
i,(t) =6(1—e "u(t) A
Substituting Eg. 5.22 into Eq. 5.16
24 = 12(i,(t) — 6 + 67959

24
— =i1(t) — 6 + 67"

12
i1(t) =2+ 6 — 6e7"%

i;(t) = 8—6e 05A 5.23

i(t) =8—6e 0% — 6+ 6705t

i(t)=2A

Example 5.5: The circuit shown in Fig. 5.5a is under steady state with the switch at
position 1. At t = 0 the switch, is moved to position 2. Find i(t) using the Laplace

transform method.



S0V

Figure 5.5a
Solution:
Laplacing Fig. 5.5a, we have Fig. 5.5b
400
10
S 0.02s
I(s)
Figure 5.5b
1(0) _50_ 1.25A 5.24
i =20- L .
10
~ = 401 + 0.02(sI — i(0)) 5.5

Substituting Eg. 5.24 into Eq. 5.25 we have:

10
—= 401 + 0.02 (sI — 1.25)

Solving for I(s)



10
<= 401 + 0.02sI — 0.025

10 + 0.025s
——— = 1(0.025 + 40)

- 0.025s + 10 5 2
~ 5(0.02s + 40) '

Resolving Eq. 5.26 into partial fraction we have Eq. 5.27
[ - 0.025s + 10 _ 1.25s + 500
5(0.02s + 40) s(s+2000)
1.25s + 500 A B
TS+ (+2000) s s+2000
4 = lim 1.25 + 500 _ 500
s-0l s 42000 2000

1.25s + 1000] _ —2000
—-2000

= 0.25

B = lim
§-—-2000 S

0.25 1
I ==t 52000
0.25 1
S + s+ 2000)

i(t) = 0.25 + e=2000ty(t) A

5.27

i(6) = £-1[1] = L‘1<

Example 5.6: Express the voltage of the circuit of Fig. 5.6 in the s-domain if v(07) = 0
and hence solve for v(t) using the Laplace transform method. Hence obtains the steady
state condition using final the value theorem.



/1

N =

Figure 5.6

Solution:

Applying KCL into Fig. 5.6 at Node V(t), we have Eq. 5.28

i: iR+iC

%4 dv

dv

=2V + 05—
u(t) V+05dt

Taking the Laplace transform of Eq. 5.9a
1
$= 2V 4+ 0.5 (sV —v(0%)

Substituting v (0*) = 0V into Eq. 5.30

1
i 2V 4+ 0.5sV
Solving for V(s) we have Eq. 5.32
1
V(2 +0.55) = 5
V= 1
~ 5(0.55 + 2)
V(s) = —
8= (s+4)

Resolving Eq. 5.32 into partial fraction we have Eq. 5.33

5.28

5.29

5.29a

5.30

5.31

5.32



,__2 _A B
T s(s+4) s s+4

2
A=1i
sl—% s+4

|-2-0s
2o,

_ 2 2
B = lim [—] =—=-0.5
s—-—418 4
0.5 0.5
V=—+ 5.33
S s+4

Taking the inverse Laplace transform of Eq. 5.33 we have Eq. 5.34

0.5 0.5
v(t) = (0.5 —0.5e " *)u(t) v 5.34

v(t) =050 —-e*Hu(®)V

Furthermore, we can apply final value theorem to find the steady state condition in
example 5.6.

Fundamentally, the final value theorem states that:
f(e0) = lims F(s)
Applying the theorem to Example 5.6 to obtain steady state value of V(s)
Vos = lim V(s)

2
s(s+4)

FromEq.5.32, I, =V =

2

I/;S=lim Z=05V

2s ]_
s=0ls(s +4)]

Example 5.7: The current (in the s-domain) through a circuit is given by:

6
I =
© " s(s+2)(s +3)

Whatis i(0)?

Solution:



Applying the final value theorem, recall

i(0) = £1_r)%51(s) = lss

o) 1 65 ] 6 6

o0 ) = = = —

! S ls+2G6+3)l " 2x37 6
i(0)=1A

Example 5.8: In the RL circuit of Fig. 5.7, the switch is in position 1 long enough to
establish steady state-state conditions and at t = 0 it is switched to position 2. Find the
resulting current i(t) using the Laplace transform method.

25 Q)
W'Y
i(t)
1 2
Figure 5.7
Solution
When the switch is at point 1,
i(0) = >0 _ 2A 5.35
[ =55~ .
At point 2
Taking the KVL of Fig. 5.7
) di
100 = 25{ + 0.01— 5.36
dt
Taking the Laplace transform of Eq. 5.36 we have Eq. 5.37
100
< = 251+ 0.01 [sI —i(0) ] 5.37

Substituting Eqg. 5.35 into Eq. 5.37, we have Eqg. 5.38



100
—— =251 +0.01[sI +2] 5.38

Solving for I(s) in Eq. 5.38 we have Eq. 5.39

100

100 = 25 sI 4+ 0.01s% I — 0.02s

1(0.01s2 + 25s) = 100 — 0.025
—0.02s + 100

= 001s7 + 255 >39
Resolving Eq. 5.39 into partial fraction we have Eq. 5.40
1:—25+1OOOO:é+ B
s(s+2500) s (s+2500)
i(t) = L7[I]
A = lim [—25 + 10000 _ 10000 _
s-0l s+ 2500 2500
B= lim [—25 + 10000] _ —2(—2000) + 10000
$--2500 s —2500
15000
T 22500
I = f — L 5.40
s s+2000
i(t) = L7
Taking the Laplace inverse of Eq. 5.40 we have Eq. 5.41
i(t) = £ (i - L)
s s+2000
i(t) =4 —6e 2500y (1) A 5.41

Example 5.9: In the two-mesh network in Fig. 5.8, find the currents which result when
the switch is closed using the Laplace transform method.



10 Q
—-\{ AN
t=0 ﬂ
i2
100 v I 20mH 250
Figure 5.8

Applying KVL for mesh 1

_ di, di,
At LOOP 1: 10i; + 0.02 (— - —) =100
dt  dt

Applying KVL for mesh 2

b 002di2—100
dt TTdt

0.02 (& - ﬂ) +5i,=0
dt dt
ﬂ— 0.02ﬂ+ 5i, =0
dt dt
Taking the Laplace transform of Egs. 5.42 & 5.43a

100
101, +0.02s1 = 0.02s1, = —

AtLOOP 2:  10i; + 0.02

0.02

0.02sI, — 0.02sl; + 51, =0
Solving for I, in equation Eq. 5.45 we have Eq. 5.46
0.02s1, — 0.02s1; + 51, =0
sl, —sl; + 2501, =0
I,(s + 250) = sl

I = sk
27 s+ 250

5.42

543

5.43a

5.44

5.45

5.46

Substitute the value of Eq. 5.46 in equations recall Eq. 5.44 we have Eq. 5.47



1,010 + 0.025) = ~22 4 0.0251, = 20 1 0.02 ( sh )
1 'S_s 'SZ_S 'ss+250

100 0.02s21,
+ s+ 250
0.02s%I, 100
(s + 250) s
0.025% 100
(s + 250)] B

/ <(s +250)(10 + 0.2s) — 0.0252> 100
1

1,(10 + 0.02s) =

1,(10 + 0.02s) —

I l(1o +0.02s) — -

s + 250 -

L 100(s + 250)
17 [s(s + 250) (10 + 0.02s) — 0.02s2]

L 100(s + 250)
1™ 5(10s + 0.02s2 + 2500 + 55 — 0.0252)

~100(s +250) _ 6.667(s + 250)
17 s(15s + 2500) ~ s(s + 166.667)

_ 6.667(s + 250)
17 s(s + 166.667)

S

5.47

Resolving Eq. 5.47 into partial fraction, we have Eq. 5.48
_ 6.667s + 1666.75 A B

L, = —
17 s(s+166.667) s * (s + 166.667)

4 — o [6:6675 +1666.75) _ 1666.77
o0 s+166667 | 166.667

A=10

[6.6675 + 1666.75] _ 6.667(—166.667) + 1666.75
B —166.667

B= lim = —3.33

$§——166.667 S

L 10 3.33 5 48
17 s (s+166.667) '

i(t) =L 1]
i,(t) = 10 — 3.33e166:667t (1) A 5.49

Substituting Eg. 5.47 into Eq. 5.46 we have Eqg. 5.50



L= sl I x s 6.667(s + 200) o s
27 (s+250) ' s+250  s(s+166.667) " (s + 250)
6.667

I, = T 166667 5.50
i, = L7H[I]
Taking the Laplace inverse of Eg. 5.50, we have Eq. 5.50a
i,(t) = 6.667¢166:567y(t) A 5.50a

Example 5.10: In the two-mesh network of Fig. 5.9, there is no initial charge on the

capacitor. Find the loop circuit currents i; and i, which result when the switches close at
t = 0 using the Laplace transform method.

10 Q
—e —e M
S N
N ; 40 Q
50 v(©) i —02F 240
Figure 5.9
1
For LOOP 1:10(i; +i,) + Ef ipdt =5 5.51
For LOOP 2:10(i; + i) + 40i, = 50 5.52
10i; + 10i, + 40i, = 50

Taking the Laplace transform of Egs. 5.51a and 5.52a respectively

I, 50



50

From Eq. 5.54, solving for I,, we have Eq. 5.54a

50
5012 = ? = 1011

50 — 10s1,
50, = ———*
—0.2sI; + 1

I =——— 5.54a

Substituting into Eq. 5.54a into Eq. 5.53, we have Eq. 5.55
0.2s1; + 1] 4 5I; _ 50

101, — 10 [ =
S S

2sl,+10 51, 50

_ ==

101
! S S

10sl; —2s1; +10+ 5 50

S
8s 1, + 51, = 50
[,(85 +5) =50 —10
=20 _

17 (8s+5)

5

[, =—— 5.55
7 (s + 0.625)
Taking the Laplace inverse of Eqg. 5.55, we have Eq. 5.56

ij = 5_1(11)

s
h=5 ¥ 0625
i; = 5e %625ty (t) A 5.56
Substitute the value of I; in Eg. 5.55 into Eq. 5.54, we have Eq. 5.57

S 50
0 [s n 0.625] +50h =~

+ 501, = >0
s + 0.625 27 5



S0l — 50 50  50(s + 0.625) — 50s
2= s+0.625  s(s+0.625)

50s + 31.25 - 50s
s(s +0.625)
0.625
2=+ 0629

5012 =

5.57

Resolving Eq. 5.57 into partial fraction, we have Eq. 5.58

L 0.625 _A+ B
27 s(s+0625) s s+0.625

4 [ 0625 | _ 0625
o5 +0625 ~ 0625

A=1
0. 625] 0.625
~0.625

B =

im [
s-0625] S
1 1

L=-—— 5.58
27 s s+0.625

i2 = L_IIZ

i2 =1— e—0.625tu(t) A

Example 5.11: Find i(t) using Laplace transform method by first Laplacing the circuit and
then taking the loop equation in the circuit of Fig. 5.10 if the initial conditions are all zero
and the switch is closedatt = 0

t= o l(t)

J‘ J—05F
50 V() /TE %\59

Figure 5.10

Transforming to s-domain, we have circuit of Fig. 5.10a



 — N
I(s) L1 2
S S
00 50 S50
S
Figure 5.10a
Ve =1,Z 5.59
Vs
Z=— 5.59a
I
Parallel Impedances: Zq =10+ (5 + %) // G + 5) 5.60
1 2
54+=)%x(=+5
o [ E)
5+§+§+5
2,5,10 5
Z, =10+ | >3
a 10s+ 3

N

2 15 10s + 3 2 4+ 155 + 2552 s
=10+([—+—+25]+ )=10+ X
s?2 s s 52 10s + 3

(255% + 155 +2)s N 2552 + 155 + 2
s2(10s+3) s(10s + 3)

B 100s2 4+ 30s + 155 4+ 2552 + 2
B s(10s + 3)

B 12552 + 455 + 2
7 s(10s + 3)

5.60a



But 1(5) =—

50 s(10s + 3)
I = s % 12552 + 455 + 2
__50(10s+3)
() = (12552 + 455 + 2)

5.61

Resolving Eq. 5.61 into partial fraction, we have Eq. 5.62

L 500s + 150
(&) ™ (12552 + 455 + 2)
L 4(s = 0.3)
) ™ (s + 0.308) (s + 0.052)
~ 4 (s +0.3) ~ A . B
~ (s +0.308)(s + 0.002) (s +0.308) ' (s + 0.052)
P 4(s+0.3)] _ 4(—0.308 + 0.3)
~ so—0308 | (s + 0.054)| _ —0.308 + 0.052
_ 0032 o
T —-0.256

4(s + 0.3)

B= lim [———
50,052 ls +0.308

_ 4(-0.052+0.3)  0.992
© —0.0052 + 0.308 0.256

B = 3.875
I = 0.125 N 3.875 5 62
s+ 0.308 (s + 0.052)
Taking the inverse Laplace transform of Eq. 5.62 we have Eq. 5.63
i (t) = L_l[ls]
i(t) = 0.125 0308t 4 3 875,0052¢ 5.63

i(t) = 0.125¢70308t 4 3.875¢70.052t A

Example 5.12: In the circuit of the Fig. 5.11, obtain the differential equation for i; and i,.
Find the current i; and i, at t = 0 using Laplace transform.



100 Q

240 V— \_’W 2

i %0.1H 0.2H

Figure 5.11

Note: To find the Laplace transform first Laplace the circuit assuming all initial conditions
as shown in Eq. 5.64

di,(0%) Vv
(07 = 5(07) = 0, 5,(0%) =07y =0, LDV 5
dat L,
Applying KVL at each of the loops:
di
For LOOP1: 240 = 50i, + 50i, + 0.1d—t1 5.65
For LOOP 2: 240 = 50i; + 50i, + 100i, + 0.2% 5.66

Laplacing the circuit of Fig. 5.11 we have Fig. 5.11a

— R

\v 100 Q
240 —— \/_\ l2

l4 0.1s 0.2s

Figure 5.11a

Laplacing Eq. 5.65 we have Eq. 5.67

240
——=50(11 + 1) + 0.1s]; 5.67



Solving for I;in Eq. 5.67 we have Eq. 5.68
240 = 50s(I; + 1I,) + 0.1s% I,
240 ES 50511 + 50 SIZ + 0.152 11

240 = I, (0.152 + 50s) + 5051,
2400 — 500 sI,

1™ s24500s 568
Laplacing Eq. 5.66 we have Eq. 5.69
240
< - 50 (I; + 1,) + 1001, + 0.2s1, 5.69

240 = 50s(I; + 1) + 100s1, + 0.2s% I,
1200 = 250s(I, + I;) + 500 sI, + s? I, (Dividing through by 0.2)
1200 = 250 sI; + 750 sI, + s?I, 5.70a
Substituting the value of Eq. 5.68 into Eq. 5.70a, we have Egs. 5.70b and 5.71

2400 — 500 sI, )
1200 = 2505( =T S000 ) + 75051, + s2I,
1200 = 600000s — 1250005212 + 750 sl + 2]

s2 4+ 500s 2 2

1200 (s% 4+ 500s) = 600000s — 125000521, + (750s1, + s21,)(s? + 500s)
1200 (s2 + 5005) = 600000s — 125000521, + 7505L,(s? + 5005) + s2,(s% + 5005)

I,(—12500 s% + 750s(s? + 500s) + s2(s% 4+ 500s)) = 1200(s? + 500s) — 600000

L 1200 (s% + 500s) — 600000
27 52(s2 +500s) + 750s(s2 4+ 500s) — 12500052

s[1200 (s + 500) — 600000]

L2 = 15527 5005) + 750(s? + 5005) — 1250005]
L 12005 + 600000 — 600000
27 s [(s% +500s) + 750 (s + 500) — 125000]
1200s
~ s[(sZ + 5005s) + 750 (s + 500) — 125000]

L 1200
27 §2 4 5005 + 750s + 375000 — 125000




1200

l2 = 2312505 + 250000 5.70b
1200
L2 = 5T 1000)(s + 250) 571
Resolving Eq. 5.71 into partial fraction we have Eq. 5.72
1200
L2 = 5T 1000)Gs + 250)
1200 A B
l2 = 5100005 +250) ~ (5 +1000) T (s + 250
, 1200 1200 1200
A= lim, [s +250] ~ Z1000+250  —750 - 1®
A=-16
p_ o 1200 1200 1200 _
s--2505 + 1000  —250 + 1000 _ 750
1.6 1.6
2 = 5772850 " s+ 1000 572

iz(t) = L_l[lz]
o ( 16 16
20 = S+250 s+ 1000

i) = 1.6(e250 — ¢=1000t) () A

) = 1.6e 7250t — 1,6 1000t A

To find i;(4), let us substitute Eq. 5.71 into Eqg. 5.69, then we will have Eq. 5.73

_ 2400 — 500 sI,
1™ s24500s

1200
L 2400 =500 s | 7-37600) (s + 250)
1 s2 +500s

2400 500 x 1200

I = —~
17 s(s+500) (s+500)(s+1000)(s + 250)

_2400(s + 1000)(s + 250) — 600000s
1 s(s + 500)(s + 1000)(250)

5.73

Resolving Eq. 5.73 into partial fraction we have Eq. 5.74



2400(s + 1000)(s + 250) — 600000s 4
s(s+ 500)(s + 1000)(250)

B c D
=5 TG 1500 TG 1000) T 5+ 250)
(2400 X 1000 x 250

A= im0 x 1000 x 250 ) ~ +8

g i |2400 X 500 X (~250) — 600000 x (~500)] _
= >80 (=500) x 500 x (—250) -

] —600000 x (—10000)
C= lim =-1.6
s—»-1000 [ (—1000) x (=500) x (—750)

. —600000 x (—250) | _ -
= =035 |(=250) x (250) x (750)| ~
L 4.8 1.6 3.2 5 74
17 s s+1000 s+ 250 '
i1(t) = L_l [11]

i;(t) = (4.8 — 1.6e71000¢ _ 3 2250ty () A

Example 5.13: For the two-mesh network of Fig. 5.12, determine the values of the loop

current i; & i, using Laplace transform and hence, write the s-domain equation in matrix
form. Taking Q, = 0.

10Q
_./. /\/V\,
\’—\v Loy si0a
. |2
100 V() TORAF Y,
Figure 5.12

1 t
For LOOP 1: 10i; + Z(QO + j (i(t)dt)) + 10i, = 100 5.75
0



di2
For LOOP2:  20i, + 4— + 10i; = 100 5.76

dt
10 Q
—eo—o— AN/
\—’w | 10 Q
100 e
s " T4s 4s
Figure 5.12a

Laplacing Egs. 5.75 and 5.76 respectively we have Egs. 5.77 and 5.78

101, + 1—1 + 101, = @ 5.77
4s S
I + 1—1 +1, = @
40s S
—11(42;: ) +1, = 1?0 5.77a
100
201, + 4sl, + 101, = — 5.78

10

10
LL+1,(2+04s) = s 5.78a
Putting Egs. 5.77a and 5.78a into matrix form, we have Eq. 5.79
(405 + 1) 1 10
40s [11] = 150 5.79
1 (04s+ )% |[=
s

Solving Eq. 5.79 matrix using determinant method, we have Eqs. 5.79a, 5.79b and 5.79c



40s + 1 (40s + 1)(0.4s + 2)
A= 40s - 40s -1
1 (0.4s + 2)
16s5% + 80s + 0.4s + 2
A= 40s
16s5% + 0.4s + 2
A= 05 5.79a
10 .
Al = 15 =E(0.4s+2)—1s—0
— (04s+2)
20 10 4s+10
Al =4+——-—=
S S S
4s + 10
1= 5.79b
40s+1 10
I =1_O<405+1>_2=40s+10_1_0
z L 1_0 s 40s s 40s? s
S
400s + 10 — 400s 10
= 40s ~ 4052
1
A= 7.79¢
Solving for I;and I, we have Egs. 5.80 and 5.81 respectively.
Al (4s + 10)40s 40(4s + 10)
b= T 51652+ 4045+ 2) _ 1657 + 4045 + 2
160s + 400 160s 400
B = 67 12045+ 2 1652+ 4045 +2 1657 + 4045 + 2
10s 25
h= 3753510125 Ts2 12535 + 0125
10s 25
5.80

I, = 2 + 2
C (s +1.263)% - (V1.469)" (s +1.263)2 — (V1.469)

Taking the inverse Laplace of Egs. 5.80 we have 5.803,
i1 = L_1[11]



25
iy = 10e 1263t coshv1.469t + 7696‘1'263‘* sinhv1.496 ¢

— 56_1'263t(61'213t + e—1.212t) 4+103+ e—1.263(el.212t _ e—1.212t)

— Se—0.0St + 58_2'475t + 10.318_0'05t _ 10.316_2'475t

i; = 15.31e7005t — 53172475y (t) A 5.80a
But 12:%: 1 +16SZ+40.4S+2
A 4s? 40s
40s
2= 152 (16s? + 2045 + 2)
10
I 5.81

= 5 (1652 + 4045 + 2)

Resolving Eq. 5.81 into partial fraction we have Eq. 5.82

B 10 A N Bs+C
" S(1652+404s+2) s 1652 +40.4s+2

10 = A (165 + 40.4s + 2) + (Bs + C)s

I

10 = 24,
2
Taking s2:
0=16A+B = B = —164, A=-16x5=-80
Taking s:
404A+C=0; = C=-4044A (C=-404x5=-202
Therefore
L= § B 80s + 202 & g

27 s |16s2+40.4s + 2

L5 [ 55 + 12.63
27 s sz +25255+0.125
L5 55 + 12.63
2=
S |(s +1.263)2 — (V1.469)




55 N 12.63
(s+1.263)2 — (VI469)" (s + 1.263)? — (VI469)"

12=__

] 5.82

Taking the Laplace inverse of Eq. 5.82 we have Eq. 5.83
i = L_l[lz]
1212t 4 ,-1212t

2

1.212t __

2

e

e
iy = 5 _ 58—1.263tl

—1.212t
l — 10.42¢71:263 l l

iy = 5— 2.5¢ 7005 — 2572475 _ 521005 4 5712475

i, =5—7.71e7905 4+ 2.71e72475ty(t) A 5.83

Example 5.14: By the use of Laplace transform, determine the response v(t) in the
circuit of Fig 5.13 given v(07) =4V

5Q
+
Oa2ut v 01F ==,
Figure 5.13
Solution:
Taking the Laplace of the Loop KVL we lave Eq. 5.84
L[2u(t)] = L[5i.(t) + v(t)] 5.84
dv(t)

e dt

Applying Eq. 5.85 into Eq. 5.84 gives Eq. 5.86

L[2u(®)] =L 5(0.1)d1;—it) + v(t) 5.86



% =0.5[sV(s) —v(07)] +V(s)

V(s) = m
V(s) = L 5.87
s(s+2)
Resolving Eq. 5.87 into partial fraction gives Eq. 5.88
4 A B
sG+2) s G+2)
dim bt
s=0(0+2) 2
B=lim ===
s>-2(=2) (=2)
V(s) = E — 2 5.88
s (s+2)

v(t) = L7V (s)
=vt)=2-2e2Hu(t)V

5.2 Exercise

1. By the use of Laplace transform, determine the response v(t) in the circuit of Fig.
Agivenv(07) =8V
50Q

) su Vv 025F == )

Figure A

2. By Laplace transform, determine the current i;and i, in the circuit of Fig. B



s 0.2H §59
100V =

Figure B

3. For the circuit Fig. C, determine i(t) as the response, by means of Laplace
transform.

10 Q
N
(O eu v 05F =
i(t)
Figure C

4. For the circuit of Fig. D, determine i(t) as the response by means of Laplace
transform. What is its steady-state value?

10 Q
MW

C Bu(t) v § 2H

i(t)

Figure D

5. For the circuit to Fig. E, determine the force response.

9H
60 A R
i(t)
O v(t) = 80 cos 5tV 7~0.2F
Figure E

129



6. Determine the current response i(t) for the circuit of Fig. F, by Laplace
transformation.

<->36(t) +2u(t) v

itt)

Figure F

7. What is the current response i(t) for the network shown in Fig. G. Indicate
time validity.

40 8H
MV

CD 2u(t-5)V

i(t)

Figure G

8. For the two-mesh network of Fig. H, determine the values of the loop current
i1 &i, using Laplace transform and hence, write the s-domain equation in matrix
form.

—e e '\%/Q,
+ 8Q
- i2
VO " 2F 3H

Figure H



9. For the two-mesh network of Fig. |, determine the values of the loop current
i1 &i, using Laplace transform and hence, write the s-domain equation in matrix

form.
10Q 10Q
— 4 A AMA—

100V _

§5H Y7 5F
Figure |
Taking the initial conditions as follows:
. o . o di;(0%) Vv
i(1(07) =,(07) =0 i,(07) = i,(07) =0, dt Zz
10. Without first finding f(t) determine f(0%), f(oo) for each of F(s)
equal to
. 4e35(25+30)
i. — Y
. (s?-8)
I 5(s249)
. I . (3s52+2)
11. Determine the initial value of y(t), given Y (s) = Sria
12. Without first finding f(t), determine f(0*), f(oo) for each of F(s)
equal to
—-2s
(i) Se §S+60)
2
(i) (s%+5)

s(s2+10)



CHAPTER 6

APPLICATIONS OF THE LAPLACE TRANSFORM

6.0 Introduction

Now that we have introduced the Laplace transform, let us see what we can do with it.
Please keep in mind that with the Laplace transform we actually have one of the most
powerful mathematical tools for analysis, synthesis, and design. Being able to look at
circuits and systems in the s-domain can help us to understand how our circuits and
systems really function. In this chapter we will take an in-depth look at how easy it is to
work with circuits in the s-domain. In addition, we will briefly look at physical systems.
We are sure you have studied some mechanical systems and may have used the same
differential equations to describe them as we use to describe our electric circuits.
Actually that is a wonderful thing about the physical universe in which we live; the same
differential equations can be used to describe any linear circuit, system, or process. The
key is the term linear.

A system is a mathematical model of a physical process relating the input to the
output.

It is entirely appropriate to consider circuits as systems. Historically, circuits have
been discussed as a separate topic from systems, so we will actually talk about circuits
and systems in this chapter realizing that circuits are nothing more than a class of
electrical systems.

The most important thing to remember is that everything we discussed in the last
chapter and in this chapter applies to any linear system. In the last chapter, we saw how
we can use Laplace transforms to solve linear differential equations and integral
equations. In this chapter, we introduce the concept of modeling circuits in the s-domain.
We can use that principle to help us solve just about any kind of linear circuit. We will
take a quick look at how state variables can be used to analyze systems with multiple
inputs and multiple outputs. Finally, we examine how the Laplace transform is used in
network stability analysis and in network synthesis.

6.1 Circuit element models

Having mastered how to obtain the Laplace transform and its inverse, we are now
prepared to employ the Laplace transform to analyze circuits. This usually involves three
steps.

Steps in Applying the Laplace transform:

1. Transform the circuit from the time domain to the s-domain.



2. Solve the circuit using nodal analysis, mesh analysis, source
transformation, superposition, or any circuit analysis technique which we are
familiar with.

3. Take the inverse transform of the solution and thus obtain the solution in
the time domain.

Only the first step is new and will be discussed here. As we did in phasor analysis, we
transform a circuit in the time domain to the frequency or s-domain by Laplace
transforming each term in the circuit.

i(t) I(s)

v(t) i) - V(s)

(a) (b)

I(s)

O

V(s)

(c)

Figure 6.1 Representation of an inductor: (a) time-domain, (b, c) s-domain equivalents

For a resistor, the voltage-current relationship in the time domain is

v(t) = Ri(t) 6.1
Taking the Laplace transform, we get
[V(s) = RI(s)| 6.2
For an inductor,
v(t) =1L d;(tt) 6.3
Taking the Laplace transform of both sides gives
V(s) =L[sI(s) —i(07)] =sLI(s) — Li(07) 6.4

Or



i(07)

S

I(s) = leV(S) + 6.5

The s-domain equivalents are shown in Fig. 6.1, where the initial condition is modeled as
a voltage or current source.

For a capacitor,

i(0=C dZit) 6.6
which transforms into the s-domain as
I(s) = C[sV(s) —v(07)] =sCV(s) —Cv(07) 6.7
Or
Vs) = 215y + 200 6.8
sC s

The s-domain equivalents are shown in Fig. 6.2. With the s-domain equivalents, the
Laplace transform can be used readily to solve first- and

Representation of a capacitor: (a) time-domain (b,c) s-domain equivalent second-order
circuits such as those we considered in Chapters 4 and 5, We should observe from Egs.
(6.3) to (6.8) that the initial conditions are part of the transformation. This is one
advantage of using the Laplace transform in circuit analysis. Another advantage is that a
complete response-transient and steady-state of a network is obtained. We will
illustrate this with Examples 6.2 and 6.3. Also, observe the duality of Egs. (6.5) and (6.8),
confirming what we already know from the fact that L and C,1(s) and V(s), and v(0)
and i(0) are dual pairs.

If we assume zero initial conditions for the inductor and the capacitor, the above
equations reduce to:

Resistor: V(s) = RI(s)

Inductor: V(s) = sLI(s) 6.9

1
Capacitor: V(s) = < I(s)



i(t) I(s)

v(t) v(0) =~ C

(a) (b)

I(s)

V(s) ° (T) cw (0

(c)

m|"‘
V|
/1

Figure 6.2 Time domain and s-domain representations of passive elements under zero
initial conditions

The s-domain equivalents are shown in Fig. 6.3.

We define the impedance in the s-domain as the ratio of the voltage transform to
the current transform under zero initial conditions; that is,

Z(s) = @ 6.10
1(s)
Thus, the impedances of the three circuit elements are
Resistor: Z(s) = R
Inductor: Z(s) = sL 6.11
Capacitor: Z(s) = é

Table 6.1 summarizes these. The admittance in the s-domain is the reciprocal of the
impedance, or

1 1(s)

A ORNTO)

6.12

The use of the Laplace transform in circuit analysis facilitates the use of various
signal sources such as impulse, step, ramp, exponential, and sinusoidal.



The models for dependent sources and op amps are easy to develop drawing
from the simple fact that if the Laplace transform of f(t) is F(s), then the Laplace
transform of af (t) is aF(s)—the linearity property. The dependent source model is a
little easier in that we deal with a single value. The dependent source can have only two
controlling values, a constant times either a voltage or a current. Thus,

Llav(t)] = aV(s) 6.13
Llai(t)] = al(s) 6.14

The ideal op amp can be treated just like a resistor. Nothing within an op amp,
either real or ideal, does anything more than multiply a voltage by a constant. Thus, we
only need to write the equations as we always do using the constraint that the input
voltage to the op amp has to be zero and the input current has to be zero.

Example 6.1: Find v, (t) in the circuit of Fig. 6.3, assuming zero initial conditions

1Q 50
MWV MWV

u(t) C) =~ 1 F vo(t)
3

Figure 6.3
Solution:

We first transform the circuit from the time domain to the s-domain.



10 50

+

H©)

A
71

vl w

S
1(s) I(s) g vo(®)

Figure 6.4 Mesh analysis of the frequency-domain equivalent of the same circuit in Fig.
6.3

The resulting s-domain circuit is in Fig 6.4. We now apply mesh analysis. For mesh 1,

1 3 3
—=<1+—>11——12 6.15
s s s
For mesh 2,
3 3
0=—-1 +(s+5+—)12
s s
Or
1
I = 5(52 + 55 + 3)1, 6.16
Substituting this into Eq. (6.15),
1 3 1 3
§:(1+E)X§(S +5$+3)12—;12 6.16b

Multiplying Eq 6.16a by 3s gives

3
3= (1 + E) X s(s?+5s+3)I, — 91, = (s3+8s2 + 18s)I,

3
= I, =
27 53 +8s2+18s
2 3 V2

Vo(s) = sl =

_— =X
s2+8s+18 2 (S+4)2+(\/§)2

Taking the inverse transform yields

3
v, (t) = ﬁe“” sinV2t V, t=>0



Example 6.2: Find v, (t) in the circuit of Fig. 6.6. Assume v,(0) =5V

10Q
'A%

+

10e~u(®) v (") 100 o1 F v pzs@ A

Figure 6.5
Solution

We transform the circuit to the s-domain as shown in Fig. 6.6. The initial condition is
included in the form of the current source Cv,(0) = 0.1(5) = 0.5 A. [See Fig. 6.2(c).] We
apply nodal analysis. At the top node,

10,
s+1) ™ Rz
o t2+05 =15+ gg
S
Or
~pas=2ey o Lyt
s+1 710 710 10°%
100 Vo(s)
a l
10
1O s thsa |t

Figure 6.6

Nodal analysis of the equivalent of the circuit in Fig 6.5

Multiplying through by 10,



10
—— +25=V,(s+2)

s+1
Or
25s + 35 A B
]/O: = —+
(s+1D(s+2) s+1 s+2
Where
25s + 35 10
A= 191 ey =— =—=10
(S+ ) O(S)ls— 1 (S+2) - 1
25s + 35 —-15
B = 2)V. ey = ——— =——=15
(S+ ) O(S)ls— 2 (S+ 1) R _1
Thus,
V. (s) = 10 4 15
o) =TI 52

Taking the inverse Laplace transform, we obtain

v,(t) = (10e™t + 15e 2)u(t) V

Example 6.3: In the circuit of Fig. 6. 7(a), the switch moves from position a to position b
att =0.Find i(t) fort > 0.

t=0
%>< R i(t)

b

Vo

(a)

R sL

(b)
Figure 6.7




Solution:

The initial current through the inductor is i(0) = 1I,. For t > 0, Fig. 6.7(b) shows the
circuit transformed to the s-domain. The initial condition is incorporated in the form of a
voltage source as Li(0) = LI,. Using mesh analysis,

V.
1(s)(R +sL) — LI, —fz 0 6.17
Or
LI v, I Yo
I(s) = —2 0o _ 0 R 6.18
(s) R+sL+s(R+sL) R+ R

s+ r S (S + r)
Applying partial fraction expansion on the second term on the right hand side of Eq.
(6.18) yields

Lok %
I(5)=—20s+ 8B ___R__ 6.19
s+ R's (S + B)
L L
The inverse Laplace transform of this gives
. Y _t Y
l(t)=(10—E°)er+E° t>0 6.20

R . . . . )
Where T = - The term in parentheses is the transient response, while the second term is

the steady-state response. In other words, the final value is i(o) = %, which we could
have predicted by applying the final-value theorem on Eq. (6.18) or (6.19); that is,

Yo
. | sl T Vo
limsI(s) = lim + = — 6.21
s—0 s—0 s + B s + B R
L L
Equation (6.20) may also be written as
A A _t
i(t) =1,e T+E(1_e T) t=>0 6.22

The first term is the natural response, while the second term is the forced response. If
the initial condition I, = 0, Eq. (6.22) becomes

: Vo t

l(t)=E(1—e r), t=>0 6.23



which is the step response, since it is due to the step input Vo with no initial energy.

6.2 Circuit Analysis

Circuit analysis is again relatively easy to do when we are in the s-domain. We merely
need to transform a complicated set of mathematical relationships in the time domain
into the s-domain where we convert operators (derivatives and integrals) into simple
multipliers of s and 1/s. This now allows us to use algebra to set up and solve our circuit
equations. The exciting thing about this is that all of the circuit theorems and
relationships we developed for dc circuits are perfectly valid in the s-domain.

Remember, equivalent circuits, with capacitors and inductors, only exist in the s-
domain; they cannot be transformed back into the time domain.

Example 6.4: Consider the circuit in Fig. 6.8(a). Find the value of the voltage across the
capacitor assuming that the value of v(t) = 10u(t) V and assume that at t = 0,—1A
flows through the inductor and +5 V is across the capacitor.

—0.1F

200 g oh

O =t U2 O

N

Figure 6.8



Solution:

Fig. 6.8(b) represents the entire circuit in the s-domain with the initial conditions
incorporated. We now have a straightforward nodal analysis problem. Since the value of
V; is also the value of the capacitor voltage in the time domain and is the only unknown
node voltage, we only need to write one equation.

10 v(0)
Vi—— -0 i) Vl_[T —0 6.24
10 + =S + 5 + 1 = .
3 (0.1s)
Or
2 3 1
0.1 (s+3+—>V1=—+—+O.5 6.25
s Y
Where v(0) = 5Vandi(0) = —1 A. Simplify we get
(s?+3s+2)V; =40+ 5s
Or
- 40+5s 35 30 6.26
P75+ D(G+2) s+1 s+2 '
Taking the inverse Laplace transform yields
v,(t) = (357t —30e 2Hu(t) V 6.27

Example 6.5: For the circuit shown in Fig. 6.8, and the initial conditions used in Example
6.4, use superposition to find the value of the capacitor voltage.

Solution:
3 Vi ISI
NN\ 11

10+
0 +
r -) 5s (D 0

Figure 6.9a



Figure 6.9b

—|5

V3

O =g Yo O

Figure 6.9¢

Since the circuit in the s-domain actually has three independent sources, we can look at
the solution one source at a time. Fig. 6.9 presents the circuits in the s-domain
considering one source at a time. We now have three nodal analysis problems. First, let
us solve for the capacitor voltage in the circuit shown in Fig. 6.9(a). (a)
10
Vi—=——= Vv,—-0 V,—0

s —
0 + oS +0+ 1 =0 6.28

3 (0.1s)
Or

2 3
O.1(s+3+—>V1=—
S S

Simplifying we get



(s2+3s+2)V;, =30
30 30 30

V= = - 6.28.1
Y7 Gs+DG+2) s+1 s+2
Or
v,(t) = (30e™t —30e 2)u(t) v
For Fig. 6.9(b) we get,
VZ - O VZ - O 1 VZ - O
0 "5 st 10
3 (0.1s)
Or
2 1
0.1 (s+3+—)V2 = -
s s
This leads to
V= 10 10 10
27 G+ D(G+2) s+1 s+2
Taking the inverse Laplace transform, we get
v,(t) = (10e™t — 10e 2Hu(t) V 6.28.2
For Fig. 6.9(c),
10 5s > 5] 7 (01s)
3
Or
2
0.1 <s+3+§>V3 =0.5
V. = 5s _ -5 N 10
T (s+D(Gs+2) s+1 s+2
This leads to
v3(t) = (—=5e7t + 10e 2)u(t) V 6.28.3

Now all we need to do is to add Egs. (6.28.1), (6.28.2), and (6.28.3):

v(t) = v1(t) + v, (8) + v3(0)



= {(30 + 10 — 5)e~t + (=30 + 10 — 10)e~2}u(t) V
Or
v(t) = (35e~ ¢ —30e2Hu(t) V

Example 6.6: Assume that there is no initial energy stored in the circuit of Fig6.10 at t =
0 and that i = 10u(t) A. (a) Find V,(s) using Thevenin’s theorem. (b) Apply the initial
and final value theorems to find v,(0%) and v, (). (c) Determine v, (t)

i, 2 H

is (D 2i, 502 v ()

50

Figure 6.10

Solution:

Since there is no initial energy stored in the circuit, we assume that the initial inductor
current and initial capacitor voltage are zeroat t = 0

(a) To find the Thevenin equivalent circuit, we remove the 5 (Q resistor and then
find V,. (V71,) and I,.. To find Vy;, we use the Laplace transformed circuit in Fig 6.11(a).
Since I, = 0, the dependent voltage source conditions no effect, so

10 50
Voo = Vi = 5(~) ==

S

To find Vrp,, we consider the circuit in Fig. 6.11(b), where we first find I;.. We can use

nodal analysis to solve for V; which then leads to (ISC =1, = Z—;)

10 V,—2L)—0 V,—0
__+(1 x) + 1
S 5 2s




Ix 2s
S~~~ +

-—
Vrn

()

b

21,
50
@
AN
a

10(4 21, l’“
S

50

(b)

Figure 6.11 (a) Finding Vu, (b) Determining Ztu

Along with
V.
I, = 2—;
leads to
_ 100
17 2s+3
Hence,
100
I :V1:(25+3): 50
s¢ 2s 2s s(2s + 3)
and
e %
Zrp = E = 0 =25+3



The given circuit is replaced by its Thevenin equivalent at terminals a-b as shown
in Fig. 6.12. From Fig. 6.12,

Zrh

+ 50 2y,
Vrn C) o

b

Figure 6.12 The Thevenin Equivalent of the circuit in Fig. 6.10 in s-domain

= o’ Vs = 5 ><(50)_ 250 125
° T 54+ Zy  MT 542543 \s/) s(2s+8) s(s+4)
(b) Using the initial-value theorem we find
125
0) = lim sV = li 125 = li B =0
o = fm 3409 = I [Z5] = i |5 = -
+ —_
s
Using the final-value theorem we find
= lim sV =1 125 —125—3125V
V(%) ~ 00 o(5) _sl—r;%[s+4 T4 T

(c) By partial fraction,
125 A B

V. = —m8m— =
° s(s+4) s+s+4

A =sV,(s)| _ 1 = 31.25
= sV, (s =0 =Tq =30
125
B=(+4)sV,(s)|szcs =— = —31.25
S lg=—4

V= 31.25 31.25
°T s s+4

Taking the inverse Laplace transform gives



v,(t) =31.25(1 — e ™ *Hu(t) V

Notice that the values of v,(0) and v, (o) obtained in part (b) are confirmed.

6.3 Transfer Functions

The transfer function is a key concept in signal processing because it indicates how a
signal is processed as it passes through a network. It is a fitting tool for finding the
network response, determining (or designing for) network stability, and network
synthesis. The transfer function of a network describes how the output behaves with
respect to the input. It specifies the transfer from the input to the output in the s-
domain, assuming no initial energy.

The transfer function H(s) is the ratio of the output response Y(s) to the input
excitation X(s), assuming all initial conditions are zero.

Thus,

H(s) = —= 6.29

The transfer function depends on what we define as input and output. Since the input
and output can be either current or voltage at any place in the circuit, there are four
possible transfer functions:

— o Vo(s)
H(s) = Voltage gain = V) 6.30a
H(s) = Current gain = lo(s) 6.30b
I;(s)
H(s) = Impedance = 6.30
s) = Impedance = 1) .30c
. 1(s)
H(s) = Admittance = —= 6.30d
V(s)

Thus, a circuit can have many transfer functions. Note that H(s) is dimensionless in Egs.
(6.30a) and (6.30b).

Each of the transfer functions in Eqg. (6.30) can be found in two ways. One way is
to assume any convenient input X(s), use any circuit analysis technique (such as current
or voltage division, nodal or mesh analysis) to find the output Y(s), and then obtain the
ratio of the two. The other approach is to apply the ladder method, which involves
walking our way through the circuit. By this approach, we assume that the output is IV as



appropriate and use the basic laws of Ohm and Kirchhoff (KCL only) to obtain the input.
The transfer function becomes unity divided by the input. This approach may be more
convenient to use when the circuit has many loops or nodes so that applying nodal or
mesh analysis becomes cumbersome. In the first method, we assume an input and find
the output; in the second method, we assume the output and find the input. In both
methods, we calculate H(s) as the ratio of output to input transforms. The two methods
rely on the linearity property, since we only deal with linear circuits in this book. Example
6.8 illustrates these methods.

Eqg. (6.29) assumes that both X(s) and Y(s) are known. Sometimes, we know the
input X(s) and the transfer function H(s). We find the output Y(s) as

Y(s) = H(s)X(s) 6.31

and take the inverse transform to get y(t). A special case is when the input is the unit
impulse function, x(t) = §(t) so that X(s) = 1. For this case

Y(s) = H(s) or y(t) = h(t) 6.32
where
h(t) = L7YH(s)] 6.33

The term h(t) represents the unit impulse response—it is the time-domain response of
the network to a unit impulse. Thus, Eq. (6.33) provides a new interpretation for the
transfer function: H(s) is the Laplace transform of the unit impulse response of the
network. Once we know the impulse response h(t) of a network, we can obtain the
response of the network to any input signal using Eq. (6.31) in the s-domain or using the
convolution integral in the time domain.

Example 6.7: The output of a linear system is y(t) = 10e~¢ cos 4t u(t) when the input is
x(t) = e~tu(t). Find the transfer function of the system and its impulse response.

Solution: If x(t) = e~tu(t) and y(t) = 10e~¢ cos 4t u(t), then

10(s + 1)
(s+1)% + 42

X(s) = and Y(s) =

s+1
Hence,

Y(s) 10(s+1)*>  10(s*+2s+1)
X(s) (s+12+16  s2+2s+17

To find h(t), we write H(s) as

H(s) =

4 10(s?+2s+1)

H =A B X =
(s) + (s+1)%2+42 s2+2s+17




S A[(s+1)2+4%]+4B = A(s?+ 25+ 17) + 4B = 10(s?> + 25 + 1)
Constants: 174 + 4B = 10; and Coefficients of s%: A4 = 10

10— 170

2 =—40 = H(s)=10-40x

(s+1)2+42
From Table 1.2, we obtain  h(t) = 105(t) — 40e~¢ sin 4tu(t)

Example 6.8: Determine the transfer function H(s) = I;O((j)) of the circuit in Fig. 6.13.
1o 10 I ﬁ
I, l [
Veor () 0= v
a0 _
Figure 6.13
Solution
METHOD 1 By current division
(s+4)I,
12 = 1
s+4+2+ 75
But
2(s + 41,
o= &2 =1
s+6+ 75
Hence,

V,(s) B 4s(s + 4)
IL,(s) 2s2412s+1

METHOD 2 We can apply the ladder method. We let V, = 1 V. By Ohm’s law

H(s) =

I, = Yo = 1A The voltage across the | 2 + L impedance is
2 2 2s



V1=12(2+i)=1+l=45+1

2s 4s 4s

This is the same as the voltage across the (s + 4) impedance. Hence,
Vi 4s +1

I —_— p—
Y7 s4+47 4s(s+4)
Applying KCL at the top node yields
4s +1 1 25°+12s+1

IL,=L+,=——+-=
°T T2 T 4s(s 4+ 4) 2 4s(s + 4)
Hence,
V. 1 4s(s + 4
H() =—=—= ( )
I, 1, 2s2+12s+1
As before

Example 6.9: For the s-domain circuit in Fig. 6.14, find: (a) the transfer function H(s) =
V,/V; (b) the impulse response, (c) the response when v;(t) = u(t) V, (d) the response
when v;(t) = 8cos2t V.

10

r‘v‘ﬁv‘\
|7 é? :EQ 10 EE Vo
b
Figure 6.14
Solution
(a) Using voltage division,
1
V, = v 6.32

il



But

(s+1)
1l(s+1) (s +2)
Vap = = X
1+11(s+1) G
(s+2)
Or
Vo= s+1 v
a =25 +3 ¢
Substituting Eq. (6.32.1) into Eq. (6.32) results in
% i
° 2543
Thus, the transfer function is
v, 1
H = — =
&)=y =273
(b) We may write H(s) as
1
H(s) = —2
+ —
$T72

Its inverse Laplace transform is the required impulse response:

1 3,
h(t) = Ee 2 u(t)

(c) When v;(t) = u(t),V;(s) = %, and

1 A B
25(5+7) s+5
Where
4= sv,(s)] ! 1
= SVolS S=O=—3 —_ —
3
21s+5
(S 2)5—0
B—( +3)V() _1 __1
=1\S 2 o\S Sz_%—ZS S=_§ 3

6.32.1



Hence, for v;(t) = u(t),

v _1 1 1
o(S)—§ ; s+§
2

and its inverse Laplace transform is

v,(t) = %(1 - e_%t>u(t) \Y

(d) When v;(t) = 8 cos 2t, then V;(s) = 5

— and
s“+4

4s
(s + %) (s2+4)

Vo(s) = H(s)Vi(s) =

A Bs+C

= 6.32.2
3+52+4
S+7
Where
A—(+3)V() _ 4s _ 24
—\5Tg) Y 3 sT+4l 37 25

To get B and C, we multiply Eq. (6.32.2) by (s + %) (s? +4). We get

3 3
4s=A(52+4)+B<52+Es)+C<s+§)

Equating coefficients,

Constants: 0=4A+%C = C=—§A
s: 4= B+C
s2: 0=A+B =B=-A
Solving these gives A = —z—:, B = z_:’ C = z—: Hence, for v;(t) = 8 cos 2t V

24 1 24 s 32 2

h(s)=—soX—5+ X — X
o(8) = —7¢ S+§+25 2147257 5714
2

and its inverse is



24 3t 4
v,(t) = g(—e_T + cos 2t + gsin 2t> u(t) Vv

6.4 Exercise

1. Determine v, (t) in the circuit of Fig 6.15, assuming zero initial conditions
~A
%F = CT 5u(t) A 40 uyt)
Figure 6.15

Answer: 20(1 — e 2t — 2te ?Hu(t) V

2. Find v, (t) in the circuit shown in Fig. 6.16. Note that, since the voltage
input is multiplied by u(t), the voltage source is a short for all t < 0 and
10
30e—2tu(e) v(C) > |—|§ 20 = Lo
Figure 6.16

t
Answer: (246_2t - 46_5) u(t) v

3. The switch in Fig. 6.17 has been in position b for a long time. It is moved to
position a at t = 0. Determine v(t) fort > 0.



D) ST cho

Vo

Figure 6.17

t
Answer: v(t) = (V, —I,R)e =+ I,R,t > 0, where T = RC

4. For the circuit shown in Fig. 6.17 with the same initial conditions, find the
current through the inductor for all time ¢t > 0.
Ans:i(t) = (3—7e t +3e2)u(t) A

5. For circuit shown in Fig. 6.18: The initial energy in the circuit of Fig. 6.13 is
zero att = 0. Assume that v, = 15u(t) V.

iy 10 1F

; +
+> 4
v #D 205 e v

Figure 6.18

(a) Find V,(s) using the Thevenin theorem.
(b) Apply the initial- and final-value theorems to find v, (0) and v, ()
(c) Obtain v, (t)

Ans: (a) VZ,(S) _ 12(s+0.25)

s(s+0.2)

,(b)12V,10V

6. Rework Example 6.9 for the circuit shown in Fig. 6.19.
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Figure 6.19

Answer:

(a)

(s+4)

(b) 2e~*u(t), (c) % (1—-e*Hu®) Vv

(d) 3.2 (—e“” + cos 2t + %sin Zt) u(t) v

7.
(a)
(b)
(c)
(d)

8.

The open circuit voltage ratio Zzgg of the network shown in Fig.
1
1+ 252
1
(1+s2)
1+ 2s
1
(1+2s)
1H
Y YY)
Vi(s)
g 40 1F—— V2(s)
Figure 6.20

The transfer function of a linear system is

H(s) =

Find the output y(t) due to the input 5e 3w (t) and its impulse response.

Answer: —10e73t + 20e7%, t > 2,25(t) — 12e~%tu(t)

6.20is?



CHAPTER 7

TRANSMISSION LINES

7.0 Introduction

There are means of relaying signals (also power) from one point to another, usually a pair
of electrical conductors, with coaxial cables and twisted pair cable being some of the
examples. Having said this, | must point out that the lines are not merely “wire” or cables
in their simplest form, but rather are intricate cascades of electrical circuits! Bearing in
mind costs, convenience and ease of calculations that involve the properties of the
transmission line, they are then arranged in definite geometric patterns.

The goal of the transmission is to transport a typical signal with minimal loss. Loss
there must be when we’re dealing with physical realities, but the idea behind any design
is to minimize such.

Up to this point in your circuit theory series, we’ve dealt with the more familiar
low-frequency circuit where the wires that connect devices are justifiably assumed to
have zero resistance, and phase delays are absent across wires. Furthermore, short
circuited lines always yield zero resistance. Not so in high frequency transmission lines
where the above does not obtain and we have to expect the unexpected! For example,
short circuits can actually possess infinite impedance, and open circuits (the idealized
model of an infinite impedance) can actually behave like short circuited wires!

For low frequency signals and d.c signals, transportation normally involves very
low losses, but high frequency ones in the range of radio waves, losses are quite
pronounced and the objective of the design engineer is to eliminate or minimize such.
So, here, attention is focused on high frequency applications whereby the length of the
line is of at least the same order of magnitude as the least the same order of magnitude
as the wavelength of the signal under consideration. This is strictly with regard to
systems of conductors having a forward and return path.

Areas of application include communication engineering where study is made to
determine the most efficient use of power and equipment available to transfer for
example, as much power as possible from the feeder line into the antenna. To avoid
power wastage, a receiving antenna must be correctly matched to the line that connects
it to the receiver.

To eliminate losses, we resort to “matching” the line to the load, by making the
factor known as the characteristic impedance of the line, designated Z,, equal or very
close to the load impedance (Z,). In d.c and low frequency a.c circuits earlier referred to,
the characteristic impedance of parallel wires is usually insignificant and can therefore be



ignored in analyzing circuit behavior. Here the phase difference between the sending and
the receiving and is negligible, the period of propagation is very small compared to the
period of the waveform under consideration. It can be practically assumed that the
voltage along all the respective points (of a low frequency, two conductor line) are equal
and in-phase with each other at any given point in time.

An idealized transmission line has an “infinite” length, this way all the energy is
absorbed and more is reflected back to the source, because the characteristic (natural)
impedance of the line is now matched to the frictions load impedance (Z)

To investigate low voltage or current changes along transmission lines, the
following assumptions are made and the following parameters must be borne in mind, so
that circuit analysis can be employed.

The line is made up of continuous conductors with constant cross-sectional
configuration, and therefore indicating even distribution of the parameters, the problem
is tracked by considering a very short length of the line that would imply a very discreet
distribution of the parameters. The problem is tackled by considering a very short length
of the line that would imply discrete distribution of the parameters which are:

1. Resistance (R): The resistance of the conductors to the flow of current.

2. Inductance (L): Associated with the time varying signal, and depends on
the geometry of the cross-section of the conductors.

3. Conductance (G): Leakage current passes through the dielectric material
that holds the line in position.

4, Capacitance (C): A capacitive reactance to a time-varying signal due to

capacitor form from conductors and the dielectric in-between.
So, for a two-wire line, we deal with series inductance and resistance, and parallel
(shunt) capacitance and conductance, because any conductor (coil) possess “natural”
resistance and there is always capacitance formed wherever two conductors come close
to each other!

The totality of these parameters is obtained by multiplying by the length of the line, since
they are given on a per-length basis. Continuous distribution is approximated by its
representation as a cascade of network of elements, with each element of length
6z, (delta z).



1) R L 1(z + 62)

AN AN
lce

V(z) - G V(z+6z)

Y Y

Figure 7.1 A 2-cascade representation of transmission line

Using telegrapher's equation

|(Z) R L I(Z + 62)
A +|C’G A
V(2) e G V(z + 62)

A 4

Figure 7.1a One section of the transmission line

To use telegrapher's equation, we have to consider one section of the transmission line
as in Fig. 7.1a for the derivation of the characteristic impedance. The voltage on the left
would be V and on the right side would be V(z + 6z). Fig. 7.1a is to be used for both the
derivation methods.

The differential equations describing the dependence of the voltage and current on time
and space are linear, so that a linear combination of solutions is again a solution. This
means that we can consider solutions with a time dependence and the time dependence
will factor out, leaving an ordinary differential equation for the coefficients, which will be
phasors depending on space only. Moreover, the parameters can be generalized to be
frequency-dependent.


https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Phasor

Taking KCL at point (a) of Fig. 7.1a, the current through the parallel combination
of the capacitance and admittance elements is:

aV(z)
ot

with 8z indicating per unit length basis, and with the partial derivatives noted. Voltage
drops across the series combination of the resistor and inductor by KVL:

Ve, =Vr +V, =[V(2) =V (z+ 62)]

0l(z + 0z2)
ot

Ieg =1(2) = I(z+ 6z) = Coz + G6zV(2),

= RézI (z+ 6z) + Loz

Recall from first principles

I fle+6x)—fx)| _ df(x)
m =
5x—0 ox dx
- 1(z+62z) —1(2)] 0I(2)
So, im =
520 0z 0z
01(z)
So that, 1(z)—1(z+62) = _?62
. v (z)
Similarly, V(z) -V(z+d6z) = — P 6z
—0dI(2) aV(z)
= 6z = Céz——+ G622V (2)
0z Jt
d1(2) d
= (G + CE)V(Z)
Similarl V@) _ (R+La)1( +67)
imilarly, PP 5¢) (2 + 6z

ad
~ — (R + La) 1(z) for 6z small

For sinusoidal signals, dependence on line is expressed by e/®t and derivative ot
d

expressed by jw, (dt

e/t = jpel®t, recall), and partial derivatives then become total
derivatives.

dl— (G +jwC)V 7.1
rri jw :



v _ (R +jwl) I
dz J@

Taking the second derivatives of V, from (7.2),
d?v dl
- = i R ; ; — .2
17 (R + jwl) e (R+jwl) (G+ jwC)V =y*V
7.1  Propagation Constant 'y’
Where y? (gamma squared) = (R + jwL) (G + jwC)
Eq. (7.3) above has as its solution,

V = Vle_yz + Vzeyz

Where ¥ =V R+ jwl)(G + jwC) 7.5

In general, y is a complex quality, and can therefore be represented by
y=a+jp
Substituting this is the expression for I/,

V = Vle_(a'i'jﬁ)z + Vze(a+jﬁ)z

By a similar analysis, current is expressed with I's replacing the V's so, voltage at some

7.2

7.3

7.4

7.6

point z down the transmission line is made up of two components, namely:

a. Ve~ @tiB)z — i, e=@Ze=JBZ \whose amplitude decreases (is attenuated)

as it travels down the line with z as e~%, while e 7% is just a phase term with
no effect on the amplitude. Therefore, this component is known as the forward,
or incident wave.

b. V,e(@+iP)z =y, %% gJBZ jncreases with increasing z, but since voltage
must be attenuated as it travels along the line, z must then decrease to
accommodate this fact, therefore making this component to be known as the
backward, or reflected, wave, caused by a mismatch between the transmission
line and the load.

So, the voltage at any point on the line a distance z from the sending end is the shin of
the voltages of the incident and reflected waves at the said point.

Line parameters, a and 8 are determined by the line characteristics:

1. a is known as attenuation coefficient, and the negative/positive
exponential of this is the rate at which the forward/backward wave is attenuated,
and is a function of R, L, G and C, with the unit being dB/m (decibels per metre)
or repers/m.



2. p is the phase constant and shows the phase dependence of both the
incident and the reflected waves with distance z

pA=2r= [ = ZTH, where A (Greek alphabet lambda) is the signal wavelength.

3. y (Gamma, Greek third alphabet) is the propagation constant, and is the
complex sum of the attenuation coefficient and phase constant, where the
former is the real part, and the letter the imaginary part. y determines how the
voltage (or by implication the current) along the line changes with z

7.2 Characteristic Impedance

av

From the Eq. (7.2), — = —(R + jwlL)I,
I av
R+jwl dz

Differentiating Eq. (7.4)

dv
el —yVie V2 +yVye¥? = y[V,e?* — Ve V7]
And substituting in the above for
1 Yz -yz |4 -yz vz
I=—mx y[Vze - Ve ]=rja)LX[V1€ - e ]

Substituting from Eq. (7.5) for y,

JR + joL)(G + joC

[ =
(R+jwlL)

X [Vle_yz - Vzeyz]

G+jwC
= 1= (2

= X [V,e V2 —V,eV% 7.7
R+ij) Ve 2¢"”]

G+jwC

. , +jwL
By analogy with Ohm’s law, FYT)

. . R
, is an admittance. Therefore,
G+jwC

its reciprocal, is

an impedance called the characteristic impedance of the transmission line, determined
by the line parametersR, L, G & C.

7 = R+ jwL g
°7 16+ jwC '

Characteristic impedance Z, can be variously described as:



1. The value the load impedance must have to match the load to the line
(to either eliminate power loss, or at least minimize same), or
2. The impedance seen from the sending end of an infinitely long line, or
3. The impedance seen looking towards the load at any point on a matched
line, i.e., moving along the line produces no change in the impedance
towards the load.
The transmission line is idealized as follows:

1. The line is uniform, straight and homogenous,
2. Line parameters R, L, G and C do not vary with atmospheric conditions
like temperature and humidity.

3. Line parameters do not depend on frequency,

4. The analysis is applicable only between the junctions on the line because
the circuit model on Fig. 7.2 (one of the cascades) is invalid across a
junction

The above assumptions may be occasionally taken into consideration as we analyze
transmission line.

7.3 Reflection from the Load

Shown in Fig. 7.2 where, V;e "' is the incident wave, while V,e! is the reflected or
backward, wave on a line with total length of L. If the load has an impedance equal to the
characteristic impedance Z,, therefore say that the line is matched, and there is no
reflected wave (theoretically speaking) as the incident wave is totally absorbed by the
load. It, however, the load is of a value different from Z,, then some of the incident wave
would be reflected, and the amount of reflection by the load. Is expressed in terms of
voltage reflection coefficient, designated by the Greek letter p (rho), and defined as the
ratio of the reflected voltage to the incident voltage at the load terminals.

Vle_yl _—

Figure 7.2 Incident wave (V,e77!) and Reflected wave (V,e?!)



Given that the load is at the position z = [,

VL = Vle_yl + Vzeyl 79
V,e?t 2\ .
= = — vl — ¥
P Vi <V1) e lple 7.10

Where the last indicates that p in general would be a complex quantity that can be
expressed in polar form with |p| as the magnitude and i as the phase angle of the
reflection coefficient.

From Egs. (7.7) and (7.8)

V. V.
I, = (—1) eVl — (—2) e 7.11

Z; (Load impedance)= ?
L

And from Egs. (7.9) and (7.11)

1 Vie "t + Vet

C e -
Dividing through by V;e~"* and multiplying by Z,
1+ ()]

=)

2yl

ZL:ZO

The term in the (inner) parenthesis namely (V,/V;)e
coefficient e, leading to

, is simply the voltage reflection

1+
ZL=Z°(1

) , Or rearrange

ZL =2y

= 7.12
Zy +2Z,

Py

For Z; = 0 (indicating short circuit load),

Zy
p=—Z—=—1=>Ip|=1, p=T
0



Note that u = 1 asin Eq 7.10. so, in place of 1), we can use u

For Z;, = oo (open circuit load):

Zy
P=Z—=1=>|P|=1,H=0
L

Example 7.1: If Z; =75+ )50 Q, Z, = 25 Q, find the reflected coefficient
_ (754j50—-25) 50+ 50 1+
P = (75+50 +25) 100 +j50 2+

1+)2-j) 3+j 10 1 .
= = = ya == 0. Z .
2+ 1 c c tan 3 0.63218.43

Example 7.2: The lossless transmission line has characteristic impedance of 75 (2 and
phase constant of 3rad/m at 100 MHz. Find inductance and capacitance of line/meter.

Solution: Z, = %
y=B=wVLC
e
Z, NC 1
B wVIC oC
75 1
3 X 2nf = C
= 25 X 2nf = 1
C
1
= C=25x628x10°
= C = 63.69 pF/m
Z,°C =1L

= L = (75)% x 63.69 x 10~12 = 358 nH/m



Example 7.3: A lossless transmission is 80 cm long and operates at a frequency of 600
MHz the line parameters are L = 0.25 pH/m and € = 100 pF/m. Find the characteristic
impedance, the phase constant, and the phase velocity.

Solution:

Since the line is lossless, both R and G are zero. The characteristic impedance is

0.25x10°¢ _
100 x 10-12

Since =a+jB =R+ jwL)(G+ jwC)

= jwVLC  we see that

f = wVLC = 21 (600 X 10°) \/(0.25 %X 10676) (100 x 10712)
= 18.85rad/m
Also,

. 21 (600 x 106)

)
— = — 8
P 18.85 2x10°m/s



Z =0 (Short circuit)

Incident wave

N S N e N L peflective wave

Z=00(0Open circuit)

\/ \\/ etc

|
2 Z| (Any other)

|

Figure 7.3 combination of ‘Short circuit Impedance A ‘, ‘Open circuit impedance B’ and
when the line impedance equals the load impedance C

By a similar analysis, current reflection coefficient is given by

G-z
P1 —Zo Y7, Pv
Where p, stands for voltage reflection coefficient.

Zo
ZL=0$pI=Z—=1’:Ip|=1’H=O
0

Showing quality between the incident and reflected waves with no change in phase (with
KCL taken at the no-load terminal).

Z
Z; = oo (open circuit) = p; = —Z—L= —-1=|pl=Lu=m
L



7.4 Distortionless Line (g = g)

Distortionless line is the one in which attenuation constant ‘a’ is frequency
independent while phase constant is linearly dependent on frequency.

(a) }/=a+j,8=\/(R+ja)L)(RL—C+ij) 7.13
C
=\/;(R+ja)L)
C
= a=R\/;andB=w LC 7.14
(b) 7.15
©) e 7.16
C = |z )
= Ry, = R— L' Xo=0 7.17
07 16 c’ 0~ '

A lossless line is also distortionless line, but a distortionless line is not necessarily lossless

Example 7.4: A 60 () distortionless transmission line has a capacitance of 0.15 nF/m .
The attenuation on the line is 0.01 dB/m. Calculate

a. the line parameters: resistance, inductance and conductance per
meter of line
b. velocity of propagation
voltage at a distance of 1 km and 4 km with respect to sending
end voltage.
Solution:
For a distortionless line,
R G
L C
L
Zy =Ry = i 60 Q



and

=R C—OOldB—()OlN/ 1.15 % 1073 N
=R LT T T8 /M T p/m

Line parameters:
R =aR, = (1.15x1073) x 60 = 0.069 /m
L= CR% =0.15x 107° x 60% = 0.54 uH/m

GoRE_ R 0059 oo s
L T RZ 60? H3/m

1
(b). Vv =Tz

1
" V054x106x015x 10-°

(c). The ratio of two voltages at a distance x apart along the line

=1.11x 108 m/s

E — e~ ax
41
At 1 km
7
2 — ¢~1000@ — o-115 — () 317 or 31.7%
41
At 4 km
v
2 = 740000 — =46 — .01 or 1%
4}

7.5 Low-Loss Dielectric

A low-loss dielectric is a good but imperfect insulator with a non-zero equivalent
conductivity such that t" « € " or i « 1. Under this condition y can be approximated
by using binomial expansion.

EI

1 n 2
= = jon € |1-2=+= (—
=a+jB =joyu [ X 8 )l

From which we can say



_weE” u(N
=2 €

zp) attenuation constant

rad

1 E" 2
And f = w,/pu€E ll + 3 (?> l (F) phase constant

"a’'for low — loss dielectric is a positive quantity and
is approximately directly proportional

to frequency. 3 deviates only very slightly from value 2,/u € (lossless dielectric)

-1
_ M .EJI> 2

K € ) R
n= \/; (1 +j e (©2) - intrinsic impedance

We can say that 5—" = 1 and here the electric and magnetic field intensities in lossy
y

dielectric are not in time phase as in lossless medium.

n 2

o 1 1 /€
Vv—ﬁ—ﬁ[l‘g(?)

l m/s phase velocity

7.6 Equivalent Circuit in Terms of Primary and Secondary Constants
Equivalent T-section of a line of length §

R L R L
I2) 507 S8z 70z 787

1 ANN\——— N A~ 2

ve Céz f } Géz
L

Figure 7.3 Equivalent ‘T’ Transmission Line Circuit




Equivalent T —section of a line of length §
L6z

N~~~ RO
. z

Figure 7.4 Equivalent 'rt’ Circuit

Here, z=R+jwl) By =(G+jwC)U

Secondary constants of line

a. The input impedance of line is called its characteristics impedance
z R+ jwL
Zo = == |7
y G+ jwC
b. y=a+jp (Propagation constant)
° Real part a of y is measured of charge in magnitude of current or
voltage in each t-section and called attenuation constant.
° Imaginary part [ of y equal difference in phase angle between the

input current and the output current or the corresponding voltages and
called phase shift constant.

y =2y =R +jwl)(G + joC)

c. The phase shift constant or wavelength constant 8 indicates the amount
by which the phase of an input current changes in a unit distance. In a distance

equal to one wavelength A, the phase shift is 2w radians, A = %n, wavelength.

d. The phase velocity of propagation is
v, = fl=

w

|

Example 7.5: An open wire transmission linehas R = 5Q/m, L = 5.2 x 1078 H/m,
G=62x10"30/m,C = 2.13 x 10713 F/m, frequency = 4 GHz. Find Z,, y and vy.

Solution:



1 1
V., = =
P* VIC V52x108x213 x 1010
=03x%x10°=03x10%m/s

w =2nf =21 x4 %x10° =87 x 10° = 2.512 X 101° rad

R+ jwL
ZO = D ——
G+jwC

R+ jwL =5+ 2512 x 10 x 5.2 x 1078
=5+ j1306.24 = 1306.25 < 89.78’
G+ jwL = 6.2 %1073 +j2.512 x 10'° x 2.13 x 10*°
=6.2x 1073 + j5.35 = 8.18 < 40.79’

Zy = 12.64 < 24.49°

y = \/(R + jowl) (G + jwC)

y = 103.37 < 65.23°

Example 7.6: A typical transmission line has a resistance of 8 Q/km, impedance of

2 mH/km, a capacitance of 0.002 pF/km and a conductance of 0.07 us/km. Calculate
the characteristic impedance, attenuation constant, phase constant of the transmission
line at a frequency of 2 kHz. If a signal of 2 V is applied and the line terminated by its
characteristic impedance, calculate the power delivered to load

R+ jwL
Zy = ’—
G+jwC

_\/ 8 + j4m X 2 X 103 X 10°

Solution:

0.007 X 107 + j4m x 0.002 x 107° x 103

= 1.024 < —8.75° x 103 Q
= (1012.1 — j155.72) Q

y=a+jB =R+ jwL) (G + jwC)
¥ =/ (8+j4m x 2 x 1073 x 103)(0.007 x 10~6 + j4m x 0.002 X 106 x 103)
= 0.02574 < 81.09 = 0.003987 + j0.02543




= a = 0.003987 Np/km
B = 0.02543 rad/km
Input voltage V; = 2V; 1 =500 km; Z, = 1012.1 Q (real part)

Since line is terminated in its characteristic impedance, Z;,, = Z, = Z;,

A 2 2
=1.953 < 8.75° mA

I, = —

Z, 1024 < —8.75° x 105 1024 < —8.75°
Il — IS e—yl — (1953 < 8.750)e(_0'003987+j0'02543)><500
1] = 1.953 x e~19935 = 0.2669 mA
P = |I,|? Real (Z,) = 1012.1 X (0.2669)% = 72.1 uW
Vo= w  Am X 103
P B 0.02543

= 494.22 km/s

7.7 Sending-End Impedance

To determine the degree of mismatch between the source and line, we have to know the
impedance that the combination of transmission line and load presents to the source.
Sending end impedance is that looking into the line from the source:

4

el
Lt |

Ln—»

A

A
Figure 7.5 Sending end Impedance and Load Impedance

from Egs. (7.4), (7.7) and (7.8)

v, Ve V7 + Vye??
Za=7=2 ( vz z>
Iy Vie V2 —V,eY
From Eq. (7.10), % =e 21t
1
e V? + p e 2rler?
= Zp =129 —yz =2yl ,yz
e VZ—pe “¥tevr



After dividing through by V;

Multiplying through by e?!

, eyle—yz + p eyl—Zyleyz
AT 20\ oyle-vz — p e¥l=2yl gyz

e]/(l—Z) + pe_y(l_z)
= Zo ( eV(=2) — per(-2) )

l —z = x from Fig.7.5

e’ + pe 7™
=z Za=Zo (er - pe‘Vx>
Z,—Zy
From Pv = (Z +Z )
L 0
Zy=1Z L0
S R TPy 75) P
(Z, + Zy)

Multiplying through by (Z, + Z,)

(Zy+ Zy)eV* + (Z, — Zy)e™*
ZA = ZO g — x
(Z, + Zg)eV* — (Z, — Zp)e™Y
Factorizing,
7 —7 Z (e +e )+ Z,(eV* —e™7¥)
AT 20 Z,(eV* —e VX)) + Z,(eV* + e~ V%)

Dividing through by 2 to give hyperbolic functions

7 7 ZLcoshyx+Zosinhyx]
a0 Z; sinhyx + Z, coshyx

Dividing through by cosh yx,

P ZL+Zotanh)/x]
AT o0 Z; tanhyx + Z,

Putting x = [, Z, becomes Z;, (sending-end impedance)



= 2, = 7.18a

Zy Z, + Zy* tanhyl
Z; tanhyl + Z,

When normalized to the characteristic impedance Z,,

. _@_ ZL+ZOtanhyl]
" Z, |z tanhyl + Z,

. . Z
Normalized, load impedance z; = Z—L
0

(é_](;) + tanh yl

T (%) tanhyl + 1

7.18b

z;, + tanhyl

= - 7.18
zptanhyl+ 1 ¢

Zin
Example 7.7: A 600 () lossless transmission line is fed by a 50 Q generator. If the line is
200 m long and terminated by load of 500 (), determine in dB's.

(i) Reflection loss
(ii)  Transmission loss
(iii) Return loss.
Solution:
Z,—Z, 500—600 -100 -1 -1
Z,+Z, 500+600 1100 100 11
i. Reflection loss = 10log;, ﬁplz = 10log 19 i = (0.036 dB
121
ii. Transmission loss = Attenuation loss + Reflection loss
= lossless + 0.036
=0+ 0.036 =0.036dB

iii. Returnloss = 101log;olp| = 10log;, (i) = —10.414 dB

p:

7.8 Low Loss Lines

Eq. (7.5): ¥ =V R+ jwl)(G + jwC)

Factoring out jwL and jwC,

— |GoL) G C)(R +ij>(G +ja)C>
v = |Gol) Go joL " joL) \joC " joC




N[ =

1
R G \2
=] \/LC(l —) (1 —)
J +]a)L +]a)C
Binomial series expansion of y gives:
R 1 R? G G?
=jwVLC|(1 — = X1 -
v=Je ( T 2wl " 2 (ij)2> < " 2jwc 4(ij)2>

For low-loss lines, R and G are very small, and can therefore be ignored:

R G
o 11545
= J ( NETRY) NETIY

R G RG
— joVIC (1 — )
Jo T 2ol T ZjoC ~ @e)Lc

G R RG
= jwVIC (1 - )
JovLC ( t 2wt " Zjol  dw?LC

, RG jR G
= JovLC (1 T 4w?LC 2wl ZwC)

JRG i’R i2G
=a+jf= wVLC (] — _1r ] )

w?LC 2wl 2wC

a+fﬁ—wf[(m+%) (1= )|

G RG
= a = wVLC — + ~ wVLC (1 - )
w?LC
G 7.19
2 L 2 '
~ wVLC (1 )

pravl 4w2LC

R and G very small, so at high frequencies:
B = wVLC 7.20

Similarly,

7 R+ jwL ijxijx(R+ij)
07 |6+ jwC |jwC  jowL” \G+ jwC



= ij(R +1)<G +1)— L><<1+ R) x(1+ G)
~ JjoC \jwL jwC —c jwL jwC
Lx(1+ K )x (1 ¢ )
~Jc 2jwL 2jwC

By binomial expansion, with terms in R?, G? neglected

L G R RG

Zy = X|(1-— - )
07 C ( 2jwC * 2jwl  4j2w2LC
L jR  jG
~ [=X(1-—+-—
\/; (1 2wL + 2wC>

R G L
l'aoc very small = Z, = C 7.21

Plugging Eq. 7.21in 7.19

R Gz,
Q=+ 7.22

2Z, 2
7.9 Lines of Zero Loss

For a relatively short line and operating at very high frequencies, it is reasonable to
assume zero attenuation, i.e., lossless line

0 R +GZO 7.2 R
—1 = = — —_— = — —
* 27, " 2 0 G
Z IR
el — —_
o =] G

Inthiscasey =a+jf =0+ =jp
Replacing y by jf in Eq. 7.18b



_zp +tanhjpl z; +jtanfl

= 7.23
fin =T z tanhjBl 1+ jz, tanpl
7.10 Quarter Wave Transformer
For a lossless line (@ = 0) and replacing y by jf in Eq. (7.18a)
Z, +jZytan Sl
= Lin =12 ( )
20 \Z, +j Z, tan Bl
A .
ol T o
tan Sl
= fn=Zo | —z———
tan g1 t /%L
d = quarter wavelength long = tan fl = tan% = 0
2 +JjZo iz Z
. X 0 0
Zin = llmZO Z— =4y (—) = —
20 +jZ, JZy Z
X
= Zo> =Zin 7, 7.24

For matching a given load to a given input impedance, a quarter wave section of lossless
line is used with characteristics impedance of

Zo=+ZinZ,

Example 7.8: A 50 W lossless line has a length of 0.41. The operating frequency is 300
MHz. A load Z; = 40 + j30 Q is connected at Z = 0, and the Thevenin equivalent source
atZ = —1is12 < 0° Vin series with Z, = 50 4+ jO Q. Find (a) p; (b) S; (c) Z;,.

Solution:
Using 7.23,

_(Z,+jZytanBl)
" (Zy + jZ, tan Bl)

Putting Z;, = o (we know thaté = O) and dividing entire by Z; we get

_ 1+0)  Zy,  Zy, . Z
T 0+ tangl) jtanpBl jtangl  ? tanpl

SO, Zin



Ans:

(@  0.333 < 90°
(b)  2.00
(¢) 25545900

Example 7.9: Calculate the characteristic impedance of a quarter-wave transformer if a
120 Q load is to be matched to a 75 Q line.

Solution:
Zy=\ZZin
Z,”
= —=7
Zin 0
= Zy =120 x 75 = 950
7.11 Stubs

zp+jtan Bl
EQ. (7.23) = zin = T

the line and this property can be used in stubs (short lengths of line) for matching
applications. These are terminated in either short circuit or open circuit load.

shows the variation of input impedance with the length of

Open — circuitload = z;, = 0 = z;,, = jZLtZ#ﬁl
1
Zin :jtanﬁl = —jcotfl 7.25
Short circuitload = z;,, = Ltanﬁl = jtan Sl 7.26

1+0

For lossless line:



/ /
Positive ! , ,
reactance /

L
N

Negative 1 n % .~ ﬁ / e i
reactance | / 2

Open-circuit stub Short-circuit stub

Figure 7.6 Stubs

Example 7.10: An ideal lossless % extension of line Z, = 60 Q is terminated with Z;. Find
Zin of extension when

(i) Zz,=0
(i) Z;, = oo
(i) Z, =60 Q
Solution
i. Zim =12, where 1 = %T X %
Zin =jZytanfl = o0 forZ, =0
. oz _
i Zin =5 = for Z;,=o0
iii. Z, =600

60 + j60 tan(m/2)
0 ; =60 ()
60 + j60 tan(m/2)

7.12 Standing Waves

For a lossless line (@ = 0), the total voltage at a point z from the sending end:

= V= (Ve 7P + V,e/P?)elot

Where e/*t indicates the time dependence.

v



Fromp = (?) e?'t [Eq.(7.10)]

V= v,elot [e—jﬁ(l—x) + (%) o JF! e—jﬁx]
1

. v B\ i
For lossless line, p = (—2) e2vl = (—2) eJ2h1
V1 £

Since, a =0 =V = V,e/%t e P! [e/Fx 4 ¢=IFX] 7.27

This is the equation representing voltage standing wave (VSWR), made up of two
component waves, one of forward direction, and the other of backward direction
reflected from the load.

For a short circuit load p = —1) and without the time dependence,
V =j2V, e JPl [e/P* — e7IBX] =R,V e /Plsinpx =V 7.28

The real part of the absolute value (modulus) of Eq. (7.28) is

[V| = R,|[j2V,e /P! sin Bx]|
= R,|[j2V;(cos Bl — j sin B1)] sin Bx|
= R, |[2V;(j cos Bl + sin B1)] sin x|
|V| = 2V, |sin Bx| sin S 7.29

[Vmin| in-between

Figure 7.7 Standing Waves



For an open-circuit load (p = 1) under the same conditions,
V =V,e /Pl (e/P* + e7IF*) = 2V,e /Pl cos fx = |V| = 2V |cos fx|
For a load in between short and open circuit, say e = 0.6 + j0.3,
V =V,e /Bl elP* + (0.6 + j0.3)e/F¥]
V| = Ro[V,e ™/t |e/F* + (0.6 + j0.3)e 7P|

From Eq. (7.29), for (n — 1) = Bx,sin fx = 0, and the next minimum occurs at

S _/1
pT\2m |72
A

It could be discerned that minima for short circuits occur at maxima for open circuit, and
vice versa. Both the adjacent minima and maxima are separated by half a wavelength
with the first minimum occurring at the load terminals for short circuit (maximum for
open circuit). For a load in between, the minima and maxima the between zero and 2V,
but with adjacent minima and maxima still half a wavelength apart.

Voltage standing wave ratio (VSWR)

| Vmax |
IVmin I

1 < S < oo and depends on the degree of mismatch at the load (reflection coefficient).

By definition, VSWR = § =

From Eq. (7.27), plugging in p = |p|e/¥

V = Vye P elF* 4 peiF] 7.30
V = Ve iFl-0 [1+ |p|ej(1/)—2Bx)] 731
[Vinax| = V1 (1 + [pl) 7.32

When (¢ —2Bx) =2(m —1)mr,m = 1,2,3, ..., i.e when 2(m — 1) is a positive even
number, making cos(y) — 28x) positive unity,
IVminI =V(1- Ipl) 7.33
Wheny —28x) = (2m—1),m=1,2,3,.....i.e when 2m — 1 is a positive odd number,
making cos(y — 28x) negative unity,
_(@+1pl) 1+1pl

— = = 7.34
Vi1 —=1pl) 1-|pl




" S—1
- [
P51

From Eq. (7.31) at the first voltage minimum, at x = x,,,;;, from the load,

Y—-20x=m

V
Y =2BXmin + T = Z = Zpin = (7) Xmin

7 _ Vmin _ Vle_j,g(l_xmin)[l + |p|ej(¢_2/3xmin)]
" hin (V1) g iB0-tmin) — (V2) 0iBU=min)
min (Z—O) e J Xmin) — (Z—O) el Xmin

Vle_jﬁ(l_xmin) [1 + |p|ej(1p_2ﬁxmin) ]
= Ve IBxmi)[1 — |p|es¥—i2Bxmin ] °°

Vle_j,g(l_xmin)[l + |p|ej(w_2ﬁxmin) ]
- Vle—jﬁ(l—xmin)[ — Iplej@/)—jzﬁxmin)] 0

1+ |ple/™
1-—|ple/™
But from trigonometry (Euler’s identity), e/™ = cosm + jsinm = —1
N L—1lpl 2,
0 1+ |,0| S min
Normalized to the characteristic impedance,
Zmin _
ZO = Zmin
1
Zos, — —
min S
Similarly,
1+ |p|

Zmax_ 0X1—|p|
Zmax=ZOXS

S = Zmax

7.36

7.37

7.37a

7.37b

7.38
7.38a



Example 7.11: A 50 Q lossless transmission line is terminated by a load impedance,

Z; =50 —j75 Q. If the incident power is 100 mW. Find the power dissipated by the
load.

Solution:

Z1,—Zy

The reflection coefficient = p = Py
L 0

P =7, %27, " 50—j75+50
Then, (P,) = (1= |p|D)(P,) = [1 - (0.60)2](100) = 64 mW

=0.36 —j 0.48 = 0.60 e /%3

Impedance at a voltage minimum/maximum

Example 7.12: A lossless transmission line of Z, = 100 () is terminated by an unknown
impedance. The termination is found to be at a maximum of the voltage standing wave
and the VSWR is 5. What is the value of terminating impedance?

Solution:

We know that Z,,,, = Z,. (VSWR) as the termination is at maximum of the voltage
standing wave.

Zmax = 100 X 5 = 500 Q

7.13 Load Impedance on a Lossless Line

This can be determined if the VSWR, wavelength (1) and distance from the load to the
nearest voltage minimum are known.

Equation: V = (Ve TFU=0)[1 + |p|e/ W-26%)]
Y—-2x=02m—-1)r,m=1,2,3,...

m=1=x=x,,=>V—-2Bx=m

= |¢=2ﬁxmin+n|

1+p 1+ |e| e/®
1—p “%1—|elei¥

ZL = ZO 739

From Eq (7.37)



1+[

S+ 1)
Z; =7
L 0 1 (S )
S+1
From Eq. (7.36)
j(zﬁxmin‘Hr)
1+ [(5 1)
ZL - ZO X
1-— [(S 1) eJ 2Bxmin+m)
S+1)
1+ [ jzﬁxmin
; . S+ 1)
el =cosm+jsint=—-1=7, =7, X -1

1-—

) [
From Eq. (7.39)

S+ D)+ (S — 1)(—e/?Prmm)

LTS+ D = (S — D(—ef2Frmin)

_ S(l — ejZﬁxmin) + (1 + ejzﬁxmin)
- S(1 + eJ2Bxmin) + (1 — eJ2P¥min)

X Zy

Dividing both the numerator and denominator by e/f*min

S(ejﬁxmin — ejﬁxmin) + (e_jﬁxmin + ejﬁxmin)
S(e_jﬁxmin + ejﬁxmin) + (e_jﬁxmin — ejﬁxmin)

ZL:ZO[

o S(—=2j sin fxmin) + 2 cOS LXpmin
° S(Z cos ﬁxmin) —Jj2sin BXmin
Dividing through by 2 cos Bxin,

—Sjtanx,,,;,, + 1
ZL =Z0 ] : ﬁ min ]
S —jtan fxmin
1—jstanfx,,;
Z, =17, L 4 m‘”] 7.40
S _]tanﬁxmin

. . z
Normalized load impedance, Z—L,

Z; 1—StanhjBxpmin
VA e - 7.41
Zy S—tanhjfxn,in




Example 7.13: A 100 Q) line feeding the antenna has VSWR = 2 and the distance from

load to the first minima is 10 cm. Design a single stub matching to make VSWR = 1.
Given f = 150 MHz

Solution:
S =VSWR =2
-1 1
|p| =?=§=0.33
F = 150 MHz
/1=£= 2m
f

We know that
l[} - Zﬁ dmin =T

21
Z,Bdmm=l,l}—7r=2><7><0.1=0.27r

The position of stub
A -1
by =5~ (cos™(p) — 28 dimin)

y) 0.1
|ly| = -—(0.397 — 0.21) = — x (0.197) = 4.75 mm
4 4

A J1 = |p|?
Length of stub = [, = —tan™?! <A)

2m 2|pl
_A J1=10.33]2 s
oz 20033) )~ MM

Example 7.14: An UHF transmission line operating at 1 GHz is connected to Z; producing
reflection coefficient 0.5230°. Design single stub matching. Find VSWR.

Solution:

f=1GHz



_3x10°
T 1x109

lp| = 0.5
1+pl 15

1—|p|] 05

0.3m

S =VSWR =

s T
Y =30 =€rad

A A
I, = pp (Y +m —cos™I(|p])) = pp (% +m— cos‘1(0.5))

_A(7n n)_lx5n_51_1.5_625
~an " a6 24 24 oM

6 3

A
Length of stub = 1; = ﬁtan

(%)

2|pl

=g an 2% 05

A
=—X0.2277 = 3.4 cm
2T

7.14 Further Examples

1. A transmission line with the characteristic impedance of 250 Q is terminated in a
load of 100 (. If the load is dissipating a continuous sinusoidal power of 50 watts,
calculate:
(i) the reflection coefficient
(ii) Voltage standing wave ratio
(iii) reflected voltage |V, |
Solution:

(i)

Ip| = |1oo—250

| =043
1004250

(Ipl+1) _ 143 _

(i) S=VSWR=Zos=10=

2.50

(III) 50 — (Vmax)(Vmin)
Zo

_ W)

50 250




V2 = V.2 = 12500

v, = /Viz — 12,500 = 0.43V;

V% = (0.43V,)% + 12,500

U4 | 12500
7= [(1-0.432)

=123.84V

2. A lossless transmission line with Z; = 60 Q is 40 m long and operates at 3 MHz,
the line is terminated with a load of Z; = 120 + j60 Q. Given that u = 0.8c on the
line, determine analytically. c = 3 X 108 m/s:

(i) Load admittance

(ii) Voltage reflection coefficient (magnitude & phase)

(iii) VSWR
(iv) Zin
(V) Zmax
(Vi) Zmin
Solution:
0 v, ==
L 7 = Z,
v 1
L™ (120 + j60)
_ (120 —j60)
~ (14400 + 3600)
Y, = 0.0067 — j0.00333 Q
) _Zy—Z
. P =7, %17,

(120 + j60 — 80)
P =120 + j60 + 80)

(40 + j60)
P =200 + j60)

_(2+)3)
~ (10 +53)



_ (24)3)(10 - 3)
B (100 + 9)

(2049430 — j6)
- 109
24
p =+292 + 2422 tan™? (E)
p = 0.34£39.64°
_(1+4034) 134

(iii) VSWR =103 066 = 2.03
_ u  (0.8)(3 x 108) 21 (40
(iv) A—]—C— 3 X107 =80m = Bl = /1<80>—T[

Z;, +jZytan Sl
°[z, +jZ, tanfl
B 120 +j60 + j80tanm ]
80 + (120 + j60) tanm
— 30 [120 +j60]
80
Zin =120 +j60 Q
(V) Zjax =Zpy xS =80(2.03) =162.4Q

Zin =

(vi) Zinin =2 = == =39.410
3. Adistortionless line (RC = GL) has Z, = 800, @ = 25 mNP/m, u = 0.5, where c
is the speed of the light in a vacuum. Determine
(i) R
(i) L
(i) G
(iv) C
(v) 2 at 100MHz. (¢ = 3 x 108 m/s)

Solution:

R
RC=GL =G =

o

L
- - ]a)L ]a)C
=y =R +jwl)(G + jwC) =VRG 1+— G)



wVIC VJIC u u

aZy = (VRG) (\/é):}?

R = (25 x 1073) (80)
R=20Q

© _ 1 _ % (f%)

B 80
~ (0.5)(3 x 108)
> (25x107%)?

G=—
R 2

-6

2

=625 X

=<

L

C



7.15

G =312.54V/m
GL  (312.5x 1076)(533.33 x 1077)

R 2
C = 83.33 pF
12520.5x3x108><10_6
f 100
A=15m

Exercise

(i) In not more than 15 words, define (explain) what is meant by transmission
line
(ii) Sketch and completely label 2 types of Transmission line
(iii) Name and explain the parameters involved in a typical transmission line.
(i) Define reflection coefficient
(ii) Under what load conditions will there be total reflection from the load
(iii) For lines of zero loss for a quarter wave transformer, determine the
expression for the characteristic impedance in forms of the input and load
impedance.
(iv) In what way does quarter the wavelength section of a transmission line
act as an impedance transformer?
(i) What is a stub, and how is it applied in transmission lines?
(ii) Derive the expression for reflection coefficient in terms of load and
characteristic impedances.
What does (i) VSWR =1 (ii) VSWR = oo, signify with reference to matching of
the transmission line to the load?

. Atransmission line with the characteristic impedance of 250 Q is terminated

in a load of 100 Q. If the load is dissipating a continuous sinusoidal power of
50 watts, calculate:

(i) The reflection coefficient

(ii) Voltage standing wave ratio

(iii) Reflected voltage |V, |
Two voltage waves having equal frequencies and amplitudes propagate in
opposite directions in a lossless transmission line.

(i) Determine the total voltage as a function of distance and time.

(ii) What kind of a wave results (relating its behaviour with respect to position

and time)?

(iii) Where do the zeros in the amplitude (i.e., null position) occur?



7. Alossless transmission line of 100 cm and operates at a frequency of 300 MHz,
the line parameters are L = 0.5 pH/m and C = 200 pF/m. determine

(a) The characteristic impedance

(b) the phase constant

(c) the phase velocity.

8. (i) Define the characteristic impedance of a typical transmission line
(ii) in what other way can it be viewed

9. An airline has a characteristic impedance of 60 () and a phase constant of 2 rad/m

at 80 MHz, calculate the inductance/meter and the capacitance/meter of the line.

(R=0=G,a=0)

10. What is meant by distortionless lines?

11. Adistortionless line (RC = GL) has Z, = 160 Q,a = 50m Np/m, u = 0.8,
where c is the speed of the light in a vacuum. Determine R, L, G, Cand A at
100 MHz, (¢ = 3 x 108 m/s)

12. (i) Show that at high frequencies:

(R < wL,G < wlL),y = <§\E + gﬁ) + jwVLC

(ii) Obtain a similar formula for Z,
13. (i) Define reflection coefficient

(ii) under what load conditions will there be total reflection from the load
14. Derive the expression for reflection coefficient in terms of load and characteristic
impedances.
15. (i) Define the characteristic impedance of a typical transmission line

(ii) In what other way can it be viewed

16. An airline has a characteristic impedance of 80 Q2 and a phase constant of 3.5
rad/m at 100 MHz, calculate the inductance/meter and the capacitance/meter of the
line.(R=0=G,a=0)
17. What is meant by distortionless lines?
18. A distortionless line (RC = GL) has Z, = 80 Q, @ = 25 m Np/m, u = 0.5¢, where
c is the speed of the light in a vacuum. Determine R, L, G, Cand A at
100 MHz, (¢ = 3 x 108 m/s)
19. An airline has a characteristic impedance of 200 Q and a phase constant of
4rad/m at 180 MHz, Calculate the inductance/meter and the capacitance/meter of
theline. (R=0=G,a=0)
20. A distortionless line (RC = GL) has Z, = 120 Q,a = 50 m Np/m, u = 0.75c,
where c is the speed of the light in a vacuum. Determine at 160 MHz, (¢ =
3 X 108 m/s)

(i) R

(i) L

(iii) G



(iv) C

(v) 4
21. Alossless transmission line is 100 cm and operates at a frequency of 400 MHz,
the line parameters are L = 0.75 pH/m and € = 300 pF/m. determine
(a) the characteristic impedance
(b) the phase constant
(c) the phase velocity.
22. A load of 25 + j50 ) terminates a 50 (1 line, given that the line is 60 cm long and
the signal wavelength 2 m, ¢ = 3 X 108 m/s. Determine analytically:

(i) The load admittance

(ii) The reflection coefficient (amplitude and phase)

(iii) Voltage Standing Wave Ratio

(iv) input impedance.
23. A lossless transmission line of characteristic impedance 150 () is terminated in a
load of 350 + j200 (, given that the length of the line is 80 cm and the signal
wavelength is 50cm, ¢ = 3 X 108 m/s determine analytically the:

(i) load admittance

(ii) reflection coefficient VSWR

(iii) distance between the load and the nearest voltage minimum to it

(iv) normalized input impedance.
24. A transmission line with the characteristic impedance of 120 Q is terminated in a
load of 80 Q. If the load is dissipating a continuous sinusoidal power of 40 watts,
calculate:

(i) The reflection coefficient

(ii) Voltage standing wave ratio

(iii) Reflected voltage |V, |
25. A lossless transmission line with Z, = 60 () is 80 m long and operates at 6 MHz,
the line is terminated with a load of Z; = 120 + j60 (. Given that u = 0.5 ¢ on the
line, determine analytically. c = 3 X 108 m/s:

(vii) Load admittance

(viii) voltage reflection coefficient (magnitude & phase)

(ix) VSWR and Z;,



CHAPTER 8

UHF LINES AND SMITH CHART

8.0 UHF Lines

The transmission lines are required to carry signals in ultra-high frequency (UHF) range
and its characteristics is entirely different from normal telephone communication. It
allows several simplifying approximations and salient features are:

(a) The line considered a considerable skin effect so that almost all the
current may be assumed to pass through the outer surface of the conductor
hence, the internal inductance of wires may be considered to be zero.

(b) With these high frequencies, reactance from wL is much larger than
resistance R. this is due to the fact that the a.c. resistance of the wires
increases in proportion to square root of frequency 'f because of the skin
effect while the inductive reactance increases directly as frequency f

(c) These lines are properly constructed so that the shunt conductance G may
be considered to be zero at all frequencies. Transmission lines are studied
under the consideration that at radio frequencies.

(d) Low dissipation lines—in which case R is small in comparison with wL

(e) Zero dissipation lines or lossless lines—in which case R is negligible in
comparison with wlL

8.1 Impedance Matching and the Smith Chart: The Key Note

At high radio frequencies, the elements like wire inductances, interlayer capacitances,
and conductors and resistances have a significant yet unpredictable impact on the
matching network. Higher than a few tens of megahertz, theoretical Calculations and
simulations are often insufficient. In-situ RF lab measurements, along with tuning work,
have to be considered for determining the proper final values. Computational values are
needed to set up the type of structure and target component values.

The various ways of impedance matching, includes:

° The Computer Simulations: This is Complex but simple to apply, as such
simulators are dedicated to differing design functions but not of that of
impedance matching. Designers have to get used to the multiple data inputs that
need to be entered and the correct formats. They equally need the expertise to
find the useful data among the tons of results coming out. That means that a
circuit-simulation software is not pre-installed on computers, unless they are
dedicated to such an application.



° The Manual Computations: Tedious due to the length ("kilometric") of the

equations and the complex nature of the numbers to be manipulated.

Instinct: This can be acquired only after one has devoted many years to the RF
industry. In short, this is for the super-specialist. Smith Chart: Upon which this article
concentrates.

1

Figure 8.1. Fundamentals of Impedance and the Smith Chart.

8.2 Smith Chart

The Smith chart, invented by Phillip H. Smith (1905-1987), and T. Mizuhashi, is a
graphical calculator or nomogram designed for electrical and electronics engineers
specializing in radio frequency (RF) engineering to assist in solving problems with
transmission lines and matching circuits. The Smith chart can be used to simultaneously
display multiple parameters including impedances, admittances, reflection coefficients,
scattering parameters, noise figure circles, constant gain contours and regions for
unconditional stability, including mechanical vibrations analysis. The Smith chart is most
frequently used at or within the unity radius region. However, the remainder is still
mathematically relevant, being used, for example, in oscillator design and stability
analysis. While the use of paper Smith charts for solving the complex mathematics
involved in matching problems has been largely replaced by software based methods,
the Smith charts display is still the preferred method of displaying how RF parameters


https://en.wikipedia.org/wiki/Phillip_Hagar_Smith
https://en.wikipedia.org/wiki/Nomogram
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Transmission_line
https://en.wikipedia.org/wiki/Impedance_matching
https://en.wikipedia.org/wiki/Electrical_impedance
https://en.wikipedia.org/wiki/Admittance
https://en.wikipedia.org/wiki/Reflection_coefficient
https://en.wikipedia.org/wiki/Scattering_parameters
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https://en.wikipedia.org/wiki/Stability_theory
https://en.wikipedia.org/wiki/Vibration
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Stability_theory

behave at one or more frequencies, an alternative to using tabular information. Thus,
most RF circuit analysis software includes a Smith chart option for the display of results
and all but the simplest impedance measuring instruments can display measured results
on a Smith chart display.

Smith transmission line chart is a graphical technique of solving transmission line
problems. The chart consists of three sets of circular arcs and one straight line, and any
value of impedance or admittance can be represented. The horizontal line that divides
the chat into upper and lower halves is the locus of impedances and admittances with
zero reactive and susceptive component, i.e.:

z;, =1 +j0,y, = g +j0 in normalized modes. (“Normalized” simply means dividing the
given quantity (ohms) by the characteristic impedance Z;). The sets of circles all have
their centers on the horizontal line, and they all meet at the right side of the chart. The
complete circles represent the normalized resistive or conductive components of
impedance or admittance (r or g). The center of the chart has coordinates (1, 0), meaning
that the complete circle represents unity normalized resistance or conductive, the zero
standing for zero reactance or susceptance. The goal of matching is to change the
impedance at the matching point to that of value of (1,0).

The second set of circular arcs above the horizontal line represents the positive
imaginary components of impedance or admittance. The third set of arcs below the
horizontal line represent the negative imaginary components of impedance or
admittance.

The centers of the arcs representing the positive and negative imaginary
components all lie on a vertical line at the right end.

With any circle drawn with centers at the middle of the chart (1,0), and a
diameter drawn to cut across the circle, then the normalized impedance and admittance
are at the opposite ends of the diameters of the circle. For example, given z; = 0.35 —
j0.75, on the lower half of the chart: with center at (1,0) (i.e, middle of the chart), radius
at z, draw a circle. From z draw a diameter cutting the circle and ending on the other side
of the circle. It is found that the diameter intersects the circle on the other side (positive
imaginary components of the impedance or susceptance) at coordinates about
0.5 ....4+j11

Since Smith chart is a circular plot with a lot of interlaced circles on it. When used
correctly, matching impedances, with apparent complicated structures, can be made
without any computation. The only effort required is the reading and following of
values along the circles.

The development of Smith chart was done by examining the load where the impedance
must be matched. Rather than considering its impedance directly, let its reflection


https://en.wikipedia.org/wiki/Table_(information)

coefficient denote p, which is used to characterize a load (such admittance, gain, and
transconductance). The p;, is more useful when dealing with RF frequencies.

Vinc

Vrefl

Figure 8.2 Impedance at the load

We know the reflection coefficient is defined as the ratio between the reflected voltage
wave and the incident voltage wave as shown in Fig. 8.2.

The amount of reflected signal from the load is dependent on the degree of - mismatch
between the source impedance and the load impedance. Its . expression has been
defined as follows:

_ Viesi _ 1, —Z, _
P = Ve Z+ Zo

pr + jpi 8.1

Because the impedances are complex numbers, the reflection coefficient will be a
complex number as well.

In order to reduce the number of unknown parameters, it is useful to freeze the
ones that appear often and are common in the application. Here Z, (the characteristic
impedance) is often a constant and a real industry normalized value, such as 50 (, 75 Q,

100 Q and 600 ). We can then define a normalized load impedance by:
Z, (R+]jX) .
ZL=Z—O=Z—O=T'+]X 8.2

For simplification, we can rewrite the reflection coefficient formula as:

Zy—Zy @L—-Zy)]Zy z—-1 r+jx—1

= - = 8.3
Z,+2Zy (Z,+29)]Zy z+1 r+jx+1

Py =pr+jpi =

Clearly, we can see the direct relationship between the load impedance Z; and its
reflection coefficient. Unfortunately, the complex nature of the relation is not useful
practically, so we can use the Smith chart as a type of graphical representation of the
above equation.



To build the chart, the equation must be rewritten to extract standard geometrical
figures.

l+pi _1+prtjp
1=pi 1=pr—Jpi

Z, =71 -|—]x = 8.4
And

_ 1-pt-p}
r= 2 2
1+ pi—2.pr +p;

8.5

By setting the real parts and the imaginary parts of equation obtain two independent,
new relationships:

1—p?—p?
. Zpr p; i 8.6
1+ pf —2.pr + p;

X =
1+ p? — 2.py + p?
Note that this equation is a relationship in the form of a parametric
equation (x —a)? + (y — b)? = R? in the complex plane (p,, p;) of a
circle centered at the coordinates (; + 1,0) and having a radius of 1/1 +

T.
r+r.pt=2r.p, +1.p7 =1—p2 —p? 8.8
p2+r.pt=2r.p,+r.pttpt=1-1 8.9
A+7).p2=2r.p+(T+1Di=1-7 8.10
,  2.17 , 1-=r
pr—T Pt =T 8.11
2.12 r2 r? 1—r
Pf‘m"’f+<r+1>z+pi2‘<r+1>2=E1+r§ o1
N r? 1
(pr_r+1> A :1+r+(1+r)2:(1+r)2 8.13
T \? 1 \2
(or=57) +ot = (579) 6.4

The points situated on a circle are all the impedances characterized by the same
real impedance part value. For example, the circle, r = 1, is centered at the coordinates



(0.5,0) and has a radius of 0.5. It includes the point (0, 0), which is the reflection zero
point (the load is matched with the characteristic Impedance). A short circuit, as a load,
presents a circle centered at the coordinate (0, 0) and has a radius of 1. For an open-
circuit load, the circle degenerates to a single point (centered at 1, 0 and with a radius of
0). This corresponds to a maximum reflection coefficient of 1, at which the entire
incident wave is reflected totally.

r=0 (short)

Ir

F=00

(open)

Figure 8.3 Smith Chart

When developing the Smith chart, there are certain precautions that should be noted.
These are among the most important:

° All the circles have one same, unique intersecting point at the Coordinate
° The zero W circle where there is no resistance (r = 0) is the largest one.

° The infinite resistor circle is reduced to one point at (1, 0)

° There should be no negative resistance. If one (or more) should occur, we
will be faced with the possibility of oscillatory conditions.

° Another resistance value can be chosen by simply selecting another circle

corresponding to the new value.



8.3 Back to the Drawing Board

Moving on, we use equations above to further develop equations into another
parametric equation. This results in

x+x.p2—2.x.p, +x.p7 = 2.p; 8.15
14 p2—2.p. + p? =2p;/x 8.16
2 2 2
pr—Z.pr+1+pi—;pi=0 8.17
, , 2 1 1
pr—2.pr+1+pi—;pi+F—F=0 8.18
, 1 1
(pr—1) +(pi—;) =7z 8.19

Again, Eq. 8.19 is a parametric equation of the type (x — a)? + (y — b)? = R% in the
complex plane (e, e;) of a circle centered at the coordinates (1,1/x) and having a
radius of 1/x

ri

\@ rr
/

7k

Figure 8.4 Smith chart

The points situated on a circle are all the impedances characterized by the same
imaginary impedance part value x. For example, the circle x =1 is centered at
coordinate (1, 1) and has a radius of 1. All circles (constant x) include the

point (1,0). Differing with the real part circles, x can be positive or negative. This explains
the duplicate mirrored circles at the bottom side of the complex plane. All the circle
centers are placed on the vertical axis, intersecting the point 1.



8.4 Get the Picture

To complete our Smith chart, we superimpose the two circles' families. It can
then be seen that all of the circles of one family will intersect all of the circles of the
other family. Knowing the impedance, in the form of r + jx, the corresponding reflection
coefficient can be determined. It is only necessary to find the intersection point of the
two circles corresponding to the values r and x

8.5 The Reciprocation

The reverse operation is also possible. Knowing the reflection coefficient, find the
two circles intersecting at that point and read the corresponding values r and x on the
circles. The procedure for this is as follows:

° Determine the impedance as a spot on the Smith chart.

° Find the reflection coefficient (G) for the impedance.

° Having the characteristic impedance and G, find the impedance.

° Convert the impedance to admittance.

. Find the component values for the wanted reflection coefficient (in

particular the elements of a matching network).

8.6 To Extrapolate

Because the Smith chart resolution technique is basically a graphical method, the
precision of the solutions depends directly on the graph definitions. Here is an example
that can be represented

Let’s compare the two coordinates:

0.35—;0.75and 0.5 .....+j 1.1
. . 0.75
z;, = 0.35 — j0.75 = 1/0.352 + 0.752 £tan™ ' ——
0.35
= 0.828 2 — 64.98°

1 1 B 1,64.98°

7,  0.8282—6498°  0.828

_ €0564.98" +jsin 64.98"
B 0.828 B

0.51+;1.095 =05...+j1.1=y




So, z; and its reciprocal y, which is the normalized admittance, are found to lie at the
opposite ends of the diameters of the circle centered at coordinates (1,0)! Herein lies
one great use of which the smith chart is made.

8.7 Black Magic Design

The Smith chart is plotted on the complex reflection coefficient plane in two dimensions
and is scaled in normalised impedance (the most common), normalised admittance or
both, using different colours to distinguish between them. These are often known as the
Z, Y and YZ Smith charts respectively. Normalised scaling allows the Smith chart to be
used for problems involving any characteristic or system impedance which is represented
by the center point of the chart. The most commonly used normalization impedance is
50 ohms. Once an answer is obtained through the graphical constructions described
below, it is straightforward to convert between normalised impedance (or normalised
admittance) and the corresponding unnormalized value by multiplying by the
characteristic impedance (admittance). Reflection coefficients can be read directly from
the chart as they are unitless parameters.

The Smith chart has a scale around its circumference or periphery which is graduated in
wavelengths and degrees. The wavelengths scale is used in distributed component
problems and represents the distance measured along the transmission line connected
between the generator or source and the load to the point under consideration. The
degrees’ scale represents the angle of the voltage reflection coefficient at that point. The
Smith chart may also be used for lumped-element matching and analysis problems.

Use of the Smith chart and the interpretation of the results obtained using it requires a
good understanding of AC circuit theory and transmission-line theory, both of which are
prerequisites for RF engineers.

As impedances and admittances change with frequency, problems using the Smith chart
can only be solved manually using one frequency at a time, the result being represented
by a point. This is often adequate for narrow band applications (typically up to about 5%
to 10% bandwidth) but for wider bandwidths it is usually necessary to apply Smith chart
techniques at more than one frequency across the operating frequency band. Provided
the frequencies are sufficiently close, the resulting Smith chart points may be joined by
straight lines to create a locus.
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The Normalised Impedance Smith chart

A wave travels down a transmission line of characteristic impedance Zp, terminated at a
load with impedance Z; and normalised impedance z = Z|/Zo. There is a signal reflection
with coefficient p. Each point on the Smith chart simultaneously represents both a value
of z; (bottom left), and the corresponding value of p (bottom right), related by z; = 1+—p

Using transmission-line theory, if a transmission line is terminated in an impedance (Zr)
which differs from its characteristic impedance (Zo), a standing wave will be formed on
the line comprising the resultant of both the incident or forward (vi) and the reflected or
reversed (vr) waves. Using complex exponential notation:

) _ R+ jwL

The normalised impedance = z; = Z—o

The Sl unit of impedance is the ohm with the symbol of the uppercase Greek letter
omega (Q) and the Sl unit for admittance is the Siemens with the symbol of an upper
case letter S or moh (0U). Normalised impedance and normalised admittance are
dimensionless. Actual impedances and admittances must be normalised before using
them on a Smith chart. Once the result is obtained it may be de-normalized to obtain the
actual result.
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The Complete Smith Chart
Black Magic Design
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Example 8.1: A lossless transmission line of characteristics impedance 100 Q is
terminated in a load of 300 + j 150 Q. Determine with the use of Smith Chart:

i. The reflection coefficient
ii. The load admittance
iii. VSWR
iv. Distance between the load and the nearest voltage minimum to it.
v. Normalized input impedance z;,,, given that the length of the line is 92cm
and the signal wavelength is 40 cm.
Solution:

Normalized load impedances,

7, (300 + j150)
A=z T T 100

ZL = 3 +]1.5
We plot the normalized impedance in the smith chart as shown in the Fig.8.6.

a circle drawn through z; cuts out S = 3.8 = VSWR next, draw a line from z; through
the center (1,0) to angle of reflection coefficient (the innermost ring on the outside of
the chart), giving ¥ = 16°.

The modulus (absolute value) of the reflection coefficient, |p|, measured on the
scale in Fig. 8.6 gives approximately 0.6.

= p = |ple¥
p = 0.6e/16°
p= 0.6ej0'28

Load admittance y; across the circle from z; on the opposite side is approximately

y, = 0.26 — j0.14.
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The length of the line is defined as: Number of wavelengths = (%) A=231

Wavelength towards generator (WTG) reading at the load point extension line is 0. 234
Therefore, z;, isat 2.3A + 0.23X = 2.53A
1 revolution = 0.541 (half a wavelength)
= 2.531 = 5revs + 0.034
Zin is therefore, at 0.03 on WTG scale of Fig. 8.6, reading z;,, = 0.26 + j0.19

Zmin = %[Eq. (7.31)] lies on the horizontal line to the left of (1,0) x,,;,, is determined by

reading the distance from z; to v,,;, on WTG scale, and v,,;, is at point C on the chart
which reads (0,0) on the scale.

Zmin = Vmin = 0.26 from the load.

Example 8.2: A lossless transmission line of length 0.454 and characteristic impedance
75 Q is terminated in an impedance 195 + j135 (. Find using Smith Chart:

(a) The voltage reflection coefficient
(b) The standing wave ratio

(c) Input impedance
(d) Location of voltage maximum on line
(e) Zmin

Solution: given
Z' = 0.441
Z, =750
z; =195+ 135 Q

(a) Let us first find the voltage reflection coefficient

1. Plot a smith chart z; = % = 2.6 + j1.8 see point P
0
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The load admittance is at point T which reads y;, = 0.26 — j0.18
2. With center at origin, draw a circle of radius Op = |p| = 0.6 Measured from the

voltage or current reflection coefficient scale of the complete smith chart shown in
Fig.8.5 which is the radius of chart OPs. = unity).

3. Draw line (straight) OP and extend it to OP on the periphery. Read 0.220 on WTG
scale.

4.  Phase angle Y of reflection coefficient note that 4m — 1rev of 2 X 360°
1 = (change in wavelength) X 4w
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= (0.25 - 0.22) X 4m

0.127 (rad)
= 21°
Therefore p = |ple’?¥
p = 10.6]e137
or
p=06221°

(b) The |p| = 0.6 circle intersects with positive real-axis OP' at r = S = 4.
Two, voltage standing wave ratio is 4

(c) To find input impedance more P’ by total of 0.451 WTG, i.e. 0.451 +
0.224 = 0.67A =1rev+ 0.171 or (0.5—-0.22) +0.17 or first to 0.5 (i.e
0.0,0.0) and then furtherto 0.17 to Q, z;;, = 0.9 + j1.4 which is at point R

(d) Maximum voltage (z,,4,) is the same thing as the VSWR i.e the voltage
standing wave. Therefore, z,,,, = 4

(e)  The minimum voltage (z,,iy) is at point U on the smith chart. z,,;,, = 0.25

Example 8.3: A lossless transmission line of characteristic impedance 125Q is
terminated in a load of 350 — j200 . By the smith chart determine the:

(a) The load Admittance
(b) Reflection coefficient

(c) VSWR
(d) Normalize input impedance. Given that the length of the line is 1.64
(e) Distance between the load and the nearest voltage minimum to it

Solution: given
Z'=1.61

Z, = 1250
Z, =350 — j200 Q

(a) Just as in the foregoing Example 8.2 solution, let us first of all find the

voltage reflection coefficient by plotting the load impedance on the smith
chart.
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Figure 8.8

Zy

Zy

1. Plot a smith chart z; = —= = 2.8 — j1.6 see point

The load impedance is at point N which reads y; = 0.26 + j0.15

(b)
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2. With center at origin, draw a circle of radius 0X = |p| = 0.58 Measured
from the voltage or current reflection coefficient scale of the complete smith
chart shown in Fig.8.5 which is the radius of chart OXs. = unity).

3. Draw line (straight) OX and extend it to OX on the periphery. Read 0.224
on wavelength towards load (WTL) scale.
4. Phase angle y of reflection coefficient note that 4m — 1rev of 2x360°

Y = (change in wavelength) x 41
= (0.25 - 0.224) x 41
0.026m (rad)

P = —18°

Therefore p = |ple’?¥

or

p = |0.58]e /032

p=0.58,-18°

(c) The |p| = 0.58 circle intersects with positive real-axis OP' at

r =T = 3.8. Two, voltage standing wave ratio is 3.8
(d) To find input impedance more X' by total of 1.64 “WTL”, which is the
anticlockwise i.e. 1.64 + 0.224A1 = 1.8241 = 3 rev + 0.324A or first to 1.5 (i.e.
0.0,0.0) and then further to 0.324 to Y which reads input impedance z;, =1+
j1.4 at point Z
(e)  The minimum voltage (z,,i) is at point K on the smith chart. z,,;, = 0.26

Example 8.4: A lossless transmission line with Z, = 60 (1 is 80 m long and operates at 6
MHz, the line is terminated with a load of Z; = 120 + j60 Q.

Given that u = 0.5c on the line, c = 3 X 108 m/s determine by the use of smith
chart:

(i) Load admittance

(ii) Voltage reflection coefficient

(iii)  VSWR
(iv) 2z

(v) Zmax
(Vi) Zmin

Solution:

Given thatu = 0.5c on the line, c = 3 X 108 m/s
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(i) Load admittance is at point Z which reads y; = 0.4 — ;0.2 0

(i) Phase angle Y of reflection coefficient note that
At - 1lrev  of 2 X 360°
Y = (change in wavelength) X 4m

= (0.25 — 0.218) X 47
= 0.0327 (rad)

Y = 28°
Therefore p = |ple’¥
p = |0.44|e/049
or
p = 0.44 228°
(iii)  VSWR s at point Y on the chart at it reads 2.6
(iv)  To find input impedance (z;;,) more T' by total of 3.24 WTG, i.e.
3.2A 4+ 0.2141 = 3.4144 = 6rev + 0.4144 or first to 3.0 (i.e.
0.0,0.0). And then further to 0.414 to N which reads input
impedance z;,, = 0.35 — j0.5 as seen in point X
(V)  Zpax isatpointYi.e., 2.6
(vi)  zpin is at pointKi.e., = 0.24
8.8 Uses of Smith Chart

1. For impedance, the intersection of the circles with the line r + jO gives
the maximum impedance on the line at the intersection to the right of (1,0) and
the minimum impedance at the intersection to the left. Voltage minima occur at
impedance maxima.

2. For admittance, the intersection of the circles with the line g + jO gives
the maximum admittance at the intersection to the right of (1,0) and the
minimum admittance at the intersection to the left. Voltage minima are at
admittance maxima.

A locus of points on a Smith chart covering a range of frequencies can be used to
visually represent:

3. how capacitive or how inductive a load is across the frequency range
4, how difficult matching is likely to be at various frequencies
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5. how well matched a particular component is!

Exercise

1. A lossless transmission line with Z; = 60 (1 is 80 m long and operates at 6
MHz, the line is terminated with a load of Z;, = 120 + j60 Q.
Given that u = 0.5c¢ on the line, ¢ = 3 x 108 m/s determine by the use of Smith
chart:

(i) Load admittance

(ii) voltage reflection coefficient (magnitude & phase)

(iii) VSWR

(iv) zin

2. A lossless transmission line with Z, = 80 (1 is 40 m long and operates at 3
MHz, the line is terminated with a load of Z; = 120 + j60 Q.
Given that u = 0.8¢ on the line, ¢ = 3 X 108 m/s determine by the use of smith
chart:

(vii) Load admittance

(viii) Voltage reflection coefficient

(ix)  VSWR
(x) Zin
(xi) Zmax
(xii)  Zmin
3. A lossless transmission line with Z, = 100 (1 is 40 m long and operates at

3 MHz, the line is terminated with a load of Z; = 300 + j150 Q.
Given that u = 0.8¢ on the line, c = 3 x 108 m/s determine by the use of smith
chart:

(i) load admittance
(ii) Voltage reflection coefficient
(iii) VSWR
(iv) Zin
(v) Zmax
(vi) Zmin
4, A lossless transmission line of characteristic impedance 150 is

terminated in a load of 350 - j200(), 92 cm long and operates at 3 MHz
Determine using Smith Chart:
(a) Load impedance



(b) reflection coefficient
(c) VSWR

5.

A lossless transmission line with Z; = 100 (1 is 80 m long and operates at

6 MHz, the line is terminated with a load of Z;, = 300 — j150 Q.
Given that u = 0.8c on the linec = 3 x 108 m/s, determine by the use of smith

chart:

6.

(i) load impedance

(ii) Voltage reflection coefficient

(iii) VSWR

(iv) Zin

(v) Zmax

(vi) Zmin

A lossless transmission line with Z, = 60 (1 is 85 m long and operates at 5

MHz, the line is terminated with a load of Z; = 120 + j60 Q.
Given that u = 0.8c on the line, c = 3 x 108 m/s ,determine by the use of smith

chart:

(i) Load admittance

(ii) Voltage reflection coefficient

(i) VSWR

(iv)  zy

(v) Zmax

(vi) Zmin

A load of 25+ ;50 terminates at 50 () line, use Smith chart to

determine:

(i) The load admittance

(ii) The reflection coefficient (amplitude and phase)

(iii) Voltage Standing Wave Ratio

(iv) Input impedance, given that the line is 60 cm long and the signal
wavelength 2 m

(i) Load Impedance

(ii) Reflection coefficient

(i)  VSWR

(iv) Distance between the load and the nearest voltage minimum to it
(v) Normalized input impedance. Given that the length of the line is
80 cm and the signal wavelength is 50 cm



MULTICHOICE QUESTION A

1. The Laplace transform of the function f(t) is defined to be (a)
(o] oo _ [oe) _ ot _

Jo- f@) dt (b) [[Ze St f (&) dt (c) [~ f(t) e (d) [_ et f(t) dt

2. s in the function in the options in question 1: (1) may be complex

number (2) may be real number (3) is cyclic frequency (4) complex frequency
(a) 1&2 above (b) 2&3(c) 1,2 &3(d)1,2&4

3. Laplace transform of f(t) is a function of (a) time (b) complex
frequency (c) time and complex frequency (d) none of these
4, For complex frequency s = o + jw, the following represents the

nature of o:0 (1) has a damping effect (2) causes the convergence of the
integral ft_oof(t)e_“dt (3)< 0:(a) 1,2,3(b) 1,2 (c) 2,3 (d) 1,3

5. Double integration of a unit step function leads to (a) an impulse (b) a
parabola (c) a ramp (d) a doublet
6. The open circuit voltage ratio V,(s)/V;(s) of the network shown in fig

Alis(a)1+2s?2(b)1/(1+s?)(c)1+ 2s(d)1/(1+ 25)

1H
Vi (s) 40 1F = Vy(s)
Figure Al
7. The response of an initially relaxed linear circuit to a signal 1 is

e 2ty(t). If the signal is changed to (VS + 2%), the response will be (a)
—4e2ty(t) (b) —3e2tu(t) (c) 4e~2tu(t) (d) 5e2tu(t)

8. A first-order linear system is initially relaxed system for a unit step
signal u(t). The response if V;(t) = (1 — e™3%) for t > 0. If a signal 3u(t) +
§(t) is applied to the same initially relaxed system, the response will be: (a)
(3 —6e3)u(t) (b) (3 —3e 3 u(t) (c) 3ult) (d) (3 + 3e3H)u(t)

9. The Laplace transform of (t?2 —2t)u(t—1) is: (a) (2e75/s?) —

(2e~5/s1) (b) (Ze_zs Zj;t) (c) (2e75/s1) — (e~5/s) (d) none of the above

s3



10.  The unit impulse response of a system is c(t) = 4e~t + 6e72t. The
step response of the same system for t > 0 is: (a) —3e 2t +4e t+1 (b)
—3e %t —4e t+1(c)—3e ' —4et—1(d)3e ¥ +4et -1

11.  Given I(s) = (10s+4)/s(s + 1)(s? + 4s +5) the final value of
i(t)is: (a) 4/5 (b) 5/4 (c) 4 (d) 5

12. Given F(s) = (s + 4)/s(s + 2) final and initial values of f(t) will be:
(a)1,1(b) 1,2 (c) 2,2(d) 2,1

13. The d.c gain of a system represented by the transfer function
10(s +1)(s+2)is(a)1(b)2(c)5(d) 10

14.  The current response for the circuit shown in fig A2 is: (a) 1 — et (b)
1+e EDut—5)(c)(1—e Hut—5)(d)1—e

10Q

Figure A2

15.  The response of an initially relaxed system to a unit ramp excitation is
(t + e™t), its step response is: (a) %tz —etb)l1—et(c)—e t(d)t
16. The impulse response of an RL circuit is: (a) rising exponential function

(b) decaying exponential function (c) step function (d) parabolic function

17.  The Laplace transform of a rectangular current pulse of duration T and
magnitude t is (a) 1/s (b) (1/s)e™5T (c) (1/s)e*T (d) G) /(1 —e~5T)

18.  Given L[x(t)] = X(s), L[x(t — t)] equals (a) e5TX(s) (b) e~5TX(s) (c)
X()/(1+eT) (d) X(s)/(1 —e™T)

19.  The response of a network for t > 0 is v(t) = Kte™*, with « real and
positive. The value of t that results in maximum value of v(t) is (a) (<) (b) 2 x
(c) 1/ (d) oc?

20. Given H(s) = a/(s? + a?) then the final value of h(t) is (a) zero (b)
indeterminate (c) unity (d) co(undefined)

21. The Laplace transform of a unit ramp function at t=a is (a)
1/(s +a)? (b)e /(s + a)? (c) a/s? (d) e™ % /s?

22.  The Laplace transform of the voltage across a capacitor of 0.5F is:
V.(s) = (s +1)/(s? + s + 1). Then current i(0*) through the capacitor is (a)
0OA(b)O.5A(c)2A(d)1A



23.  The response of an initially relaxed linear constant parameter network

to a unit impulse applied at t = 0 is 4e~%*u(t). The response to a unit step

function will therefore be: (a) 2[(1 — e 29)u(t)] (b) 4le™t — e — 172t |u(t) (c)

cos 2t (d) (1 — 4e*Hu(t)

24, The closed loop transfer function of a control system is given by: % =

2(s = 1)/(s + 2)(s + 1). Given that g(t) = u(t), then response y(t) is (a)

—3e %t +4e7t — 1 (b) —=3e7%t — 4e~t + 1 (c) undefined (infinity) (d) zero

25.  Given X(s)= (Sgs__ss_)z),x(t) is: (@)  e?tu(t) —2e tu(t) (b)

—e?tu(—t) + 2e tu(t) (c) —e?u(—t) — 2e~tu(t) (d) none of the above

; __ (+5 . —t _ ,-3t —t -3t

26. GivenY(s) = (s+1)(5+3'),y(t) is: (a) 2e et (b)2e " +e
(c)e t —e 3t (d)et +e3

. _ (2s+1)

27. Given X(s) = (s2+8524+165+5)’

28. Reflection coefficient for the transmission line shown in fig A3, is (a) 1

(b) —1(c)0 (d) 0.5

x(o0) equals (a) o (b) unity (c) zero (d) 2

Zo =300 Q
Load
300 Q

Figure A3

29. For a 200Q line with a pure capacitive impedance of —j200 Q
determine the reflection (a) 0 (b) 1 (c) 12 — /2 (d) 1£290°

30. Transmission of power to a load over a transmission line achieves
optimum value when standing wave ratio (SWR) is (a) 2:1 (b) 1: 2 (c) 1: 1 (d)
1:4/2

31. For an open-circuited load, voltage reflection coefficient is (a) |p| =
Lp=nb)lpl=0=m()lpl=1-—m(d)|pl=1p=m

32. On the smith chart, the area on the upper half stand for (a) inductive
reactance and capacitive reactance (b) inductive reactance and capacitive
susceptive (c) inductive susceptance and capacitive susceptance

33.  For a given voltage signal: V4, (a) V1,(1—|p]) (b) V1(1 + |p]) (c)
Vi(1 = 1pD? (d) V1 (1 + |p])?

34. The inverse Laplace transform of F(s) is (a) L{F(s)} = f(s) (b)
L7THF(s)} = f(8) (c) LIF ()} = f(©) (d) LIF ()} = f(®)



35. Laplace transform of 1 is (a) s(s > 0) (b) s(s < 0) (c) %(s > 0) (d)

(s <0)

36. L(e*) = (a) 1/(s—a)(s<a) (b) 1/(s—a)(s>a) (c) 1/(s+
a)(s>a)(d)(s—a)(s > a)

37.  Llaplace transform of e % is (a) 1/(s —a)(s < —a) (b) 1/(s + a)(s >
a)(c)1/(s—a)(s>a)(d)1/(s+a)(s > —a)

38. L(e*)=(a)2/(s—a)*(b)2/(s—a)(c)1/(s —a)?(d)1/(s + a)?
39. Laplace transform of sinat is (a) s/(s? —a?) (b) s/(s?+ a?) (c)
a/(s? —a?) (d) a/(s? + a?)

40. L{e*sinbt}= (a) a/[(s—b)>+a?] (b) b/[(s—a)*+b?] (c)
a/[(s = b)? + b*] (d) b/[(s — a)* + a?]

41.  laplace transform of cosbht is (a) s/(s?> —b?) (b) s/(s? + b?) (c)
b/(s? —b?) (d) b/(s? + b?)

42.  L{e*cosht}= (a) a/[(s—=b)>+a?] (b) b/[(s —a)?+b?] (c)
(s —a)/[(s —a)* + b*] (d) (s = b)/[(s — a)* + a?]

43.  Llaplace transform of sinh bt is (a) b/(s? — b?)(s > |b|) (b) b/(s? +
b*)(s > |b|) (c) b/(s* = b*)(s < |b]) (d) b/(s* + b*)(s < |b])

44. L [coshat] =(a) a/(s?> —a?)(s > lal|) (b) s/(s?+a?)(s>|al) (c)
s/(s* —a*)(s > |al) (d) a/(s* + a*)(s > |a])

45.  Laplace transform of e % f(t) is (a) F(s—a) (b) 2F(s+a) (c)
eBF(s—a)(d)e*F(s+a)

46. L71(1/s) =(a)6(t) (b)t(c)1(d)et

2t 3 1 6 1 24 1
47. Laplace transform of e“* + 4t~ is (a) i) + = (b) Tt (c) o +
24 1 6
;Z(d)(s—2)4-;§
48. L{2sin3t+ 3cos3t} =? (a) 2 3s (b) 2 3s ()

(s2-9)  (s2-9) (s2+9)  (s249)

6 3s (d) 6 3s
(s249)  (s249) (s2=9)  (s2-9)
49. The response of an initially relaxed linear circuit to a signal V. is

e 3tu(t). If the signal is changed to V; + 2%, the response becomes (a)
—3e2tu(t) (b) —4e2tu(t) (c) 5e~2tu(t) (d) 4e2tu(t)

50. A first order linear system is initially relaxed for a unit step signal u(t).
The response is v;(t) = (1 —e™*t) for t> 0. If a signal 4u(t) + &(t) is
applied to the same initially relaxed system, the response will be (a)
(4 — 8e *u(t) (b) (4 — 4e*Hu(t) (c) (4 + 4e~*u(t) (d) 4u(t)

-s -s -s -s

51. Laplace transform of (t? — 2t)u(t — 1) is (a) 2; — 2; (b) e _ ¢
2e”S  2e7S

(c)

s3 s

3 =z (d) none of the above



52.  The unit impulse response of a system is y(t) = —4e~* + 3e~2t. The
step response of the same system for t > 0 will be (a) 4e 2t —3e72t + 1 (b)
4e 2t —3e72t — 1 (c) —4e %t +3e7 2t (d) —4e 2t —3e7 2t + 1

. _ (10s+4) .
53.  The final value of y(t) for Y(s) = SGTD(244575) will be (a) 0 (b) oo (c)
0.8 (d) 4,5

54.  The unit step response of a network is (1 —e~%"). Its unit impulse
t
1 Q _ —at
—a () — (d) (1 —a)e
55. The voltage through a resistor with current i(t) in the s-domain is (a)
SRI(s) (b) s2RI(s) (c) RI(s) (d) V/I(s)

A

response will be (a) ae ™% (b)

Figure A4

56. Laplace transform of the waveform shown Fig A4 is (a) T% + (;—OS) e Ts
I _ I I _ I
(b) 2% + (Io/Ts?)e T(S (c))# + (%) e ™ (@ +sT) (d) (55) — Lo
. _ (s+2
57. GivenY(s) = Y
respectively: (a) 2,1 (b) 1,2 (c) 2,2 (d) 1,1
58. The impedance of a 10 — H inductor is (a) 15—0 (b) 15—0 (c) ﬁ (d) 10s
59. Llaplace transform of e % f(t) is (a) F(s—a) (b) F(s+a) (c)
eBF(s—a)(d)e*F(s+a)
60. £7(3)=1(a)8(t) (bt (c)1(d)e’

the initial and final values of y(t) will be

MULTICHOICE QUESTION B

1. The Laplace transform of the function f(t) is defined to be (a) foof f(t) dt (b)
CeTStF()dt () [ F(De5 (d) [ e~ f(e)dt

2. Sabove (1) may be complex number (2) may be real or complex number (3) is
cyclic frequency (4) is complex frequency (a) 1&2 above (b) 2&3 (c) 1,2&3 (d)
1,2&4



3. Laplace transform of f(t) is a function of (a) time (b) complex frequency (c)

time &complex frequency (d) none of the above

4. The inverse Laplace transform of F(s) is (a) L{F(s)} = f(s) (b) L7H{F(s)} =
f(®) (c) LIF($)} = f(@) (d) LIF()} ™! = f(B)

5. Laplace transform of 1is (a) s(s > 0) (b) s(s < 0) (c)%(s >0)(d)1/s(s <0)

6. Le*)=(@)1/(s—a)(s<a)(b)l/(s—a)(s>a)(c)1/(s+ a)(s>a)(d)
(s—a)(s>a)

7. Laplace transformofe % is(a) 1/(s —a)(s < —a) (b) 1/(s + a)(s > a) (c)
1/(s—a)(s>a)(d)1/(s+a)(s > —a)

8. L(te™) =(a)2/(s—a)?(b)2/(s —a) (c) 1/(s — a)* (d) 1/(s + a)?

9. Laplace transform of sinat is (a) s/(s? — a?) (b) s/(s? + a?) (c) a/(s? — a?)
(d) a/(s* + a?)

10. L{e* sin bt} = (a) a/[(s — b)? + a?] (b) b/[(s — a)? + b?] (c) a/[(s — b)? +
b?] (d) b/[(s — a)* + a?]

11. Laplace transform of cos bt is (a) s/(s? — b?) (b) s/(s? + b?) (c) b/(s? — b?)
(d) b/(s% + b?)

12. L{e* cos bt} = (a) a/[(s — b)? + a?](b) b/[(s — a)? + b?](c) (s —a)/
[(s —a)? + b*] (d) (s = b)/[(s — a)* + a?]

13. Laplace transform of sin h bt is (a) b/(s? — b?)(s > |b|) (b) b/(s? + b?)(s >
1b]) (c) b/(s* = b*)(s < |b]) (d) b/(s* + b*)(s < |b])

14. L[coshat] = (a) a/(s? — a?®)(s > |a|) (b) s/(s? + a?®)(s > |a|) (c)
s/(s* = a®)(s > |al) (d) a/(s* + a®*)(s > |al)

15. Laplace transform of e "2t f(t) is (a) F(s — a) (b) F(s + a) (c) e**F (s — a) (d)
e®F(s+ a)

16.L71(1/s) = (a) 6(¢) (b) t (c) 1 (d) et

17. Laplace transform of e?t + 4t3 is (a) ﬁ + 6/s3 (b) Flz) + 24/s* (c)

24/s% (d) ﬁ +6/s3

18. L{2sin 3t + 3 cos 3t} = (a) ot 3s5/(s? —9) (b)
6 2 6 2
219) + 3s/(s*+9) (d) %) + 3s/(s 9)

19. The response of an initially relaxed linear circuit to a signal V; is e 72tu(t). If

1
(s+2) t

2 2

(s249)

+ 3s/(s? +9) (c)

the signal is changed to V; + 2 %, the response becomes (a) —3e~%tu(t) (b)
—4e2ty(t) (c) 5e2tu(t) (d) 4e2tu(t)

20. The first order linear system is initially relaxed for a unit step signal u(t). The
response if V;(t) = (1 —e~* for t > 0). If a signal 4u(t) + 5(t) is applied to
the same initially relaxed system, the response will be (a) (4 — 8e~*)u(t) (b)
(4 — 4e™*)u(t) (c) (4 + 4e™*u(t) (d) (4u(®))



2e”S
3

s -1

—2e75/s% (b) Zj:

21. Laplace transform of (t2 — 2t)u(t — 1) is (a)
2e72S _2e78
s3 s2
22.The unit impulse response of a system is y(t) = —4e~t + 6e~2¢. The step
response of the same system for t > 0 will be (a) 4e7%t — 3e™2t + 1 (b)
4e 2t —3e72t — 1 (c)—4e 2 +3e 2t +1(d) —4e 2t —3e7 2t +1

23.The final value of y(t) forY(s) = S(HS(()SSZT:HS) will be (a) 0 (b) oo (c) 0.8 (d)
4.5

24.The unit step response of a network is (1 — e~%%). Its unit impulse response
will be (a) ae~%(b) 1/ae~% (c) e t/%/a (d) (1 — a)e~ ™

25. The impulse response of an R — L circuit is a (a) rising exponential function (b)
decaying exponential function (c) step function (d) parabolic function

26. Laplace transform of the waveformin Fig 9is .........

A

(d) none of the above

Vo

T t
Figure 9

(a) 2 + (%) e TS (b) 22 + (&) e TS () 22 + (ﬁ) e~T5(1 + sT) (d)

V732 Ts2 Ts2 Ts? Ts2

(7ez) = Vo

27.Given Y (s) = (s + 2)/s(s + 1), the initial and final values of y(t) will be
respectively: (a) 2,1 (b) 1,2 (¢) 2,2, (d) 1,1

28. A linear time-invariant system has impulse response e?¢,t > 0. Given zero
initial conditions and imput of 3e3! the output for t > 0 is (a) >t (b) e3t —
(c) e3t + e?t (d) none of the above

29. The d.c gain of a system represented by the transfer function 8/(s + 1)(s +
2)is(a)2(b)1(c)4(d)8
(For Question 30&31) the plot of the signal y(t) is in Fig.10

y(tt

eZt




Figure 10
30. Then the pot of y(—t) will be:

y(-t) y(-t)
y(-t)
‘y(-t)
. t - t

\ Vt t
(@

(b) () (d)

31.The plot of y(1 — t) will be:

Y1) v "
y(1-t
. > , t " - t

(a) (b) (c) (d)

32. Voltage transfer function of a simple R — C integrator has: (a) a finite zero and
a pole at the origin (b) a finite zero and a pole at infinity (c) a zero at the origin
and a finite pole (d) a zero at infinity and a finite pole.

33. The current response for the circuit shown in Fig.11 is:

R
M\

VoO T‘

Figure 11
(@) Vo/R (b) (2) (e77¢) () (2) (1 — e7¥/%€) (d) (£) (1 + e~4/7€)

2
34.The response x(t) of a network is expressed by ddigt) +x(t). Ifv(t) = Ke 2,

then the dominant solution of x (A’s are constants) for t > 0 resembles (a)
Aset (b) A,et (c) Ae?t (d) A, cost + Agsint




35. A unit step function u(t — a) is applied to the circuit in Fig 12. The current
response i(t) is given by:

ut-4) vO

Figure 12

@1—etb)[1—e EP]ult—4)(c)1—e T (d)(1—eult —4)
36. The response of an initially relaxed system to a unit ramp excitation is
(t + e7 ). Its step response will be (a) 1-et (b) ; —e t(c)t(d) —et
37.The response of a network is i(t) = Ate~%t for t > 0, with a real and positive.
The value of t for which i(t) will be maximum is (a) a? (b) 2a (c) 1/a (d) a
38. A rectangular pulse of duration T and magnitude I has the Laplace transform
(a) (1/5)e=>T (b) (1/5)e*" (c) (1/s) (d) (5) (1 — e=T)
39.Given L[f(t)] = F(s),L[f(t — T)] equals (a) e STF(s) (b) e5TF(s) (c)
F(s)/(1—e°T) (d) F(s)/(1 +e°T)
40. The unit impulse response of a linear time-invariant system is unit stop
function u(t). For t > 0, the response of the system to an excitation
e %u(t),a > 0, will be (a) ae™% (b) a(1 — ae™%") (c) 1 — ae™ % (d)
(1-e")/a
41.For F(s) =

1,0

42. Laplace transform of a unit ramp function at t = a, is (a) a/s? (b) e =% /s? (c)
e % /(s+a)?(d)1/(s + a)?

43, For a voltage across a capacitor of value 0.5F,V.(s) = 1/(s? + 1). Then
i-(0*) is (a) O (b) 2A (c) 0.5A (d) 1A

44. The poles of the transfer function (s + 1)/(s? — 5s + 6)(s — 4) are (a) 1 (b)
1,2,3,4 (c) 1,5,6,4 (d) 2,3,4

45. The voltage through a resistor with current i(t) in the s-domain is (a) sRI(s)
(b) s?RI (c) RI(s) (d) V/I(s)

46.The current through an R — L series circuit with input voltage v(t) is given in
the s domain as: (a) V(s) (R + SiL) (b) V(s)(R+sL) (c) V(s)/(R + 1/sL) (d)
V(s)(R + sL)

47.The impedance of a 10F capacitor is (a) 10/s (b) s/10 (c) 1/10s (d) 10s

48.The impedance of a 10-H inductor is (a) 10/s (b) s/10 (c) 1/10s (d) 10s

2(s+1)
(s2+42s5+5)

, f(01), f(o0), are respectively, (a) 2,0 (b) 0,2 (c) 2/5,0 (d)



49,

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

The Laplace transform of u(t — 2)is (a) 1/(s + 2) (b) 1/(s — 2) (c) 5 /s (d)
e—ZS/S

The inverse Laplace transform of (s + 2)[(s + 2)? + 4] is (a) et cos 2t (b)
e~ tsin 2t (c) e~ %' cos 2t (d) e ?t sin 2t

Reflection coefficient for the transmission line shown in Fig 13 is.........

Zo =150 Q
Load
250 Q

Figure 13

(@) 1 (b) =1 (c)0(d) 0.5

For a —400(} line with a pure capacitive impedance of —j400(), the reflection
coefficient is (a)0 (b) 1 (c) oo (d) —1

Transmission of power to a load over a transmission line achieves optimum
value standing wave ratio (SWR) is (a) 2: 1 (b) 1: 2 (c) 1: 1 (d) 1: V2

For an open circuited load, voltage reflection coefficient is |p|, B, respectively,
(@) 1,7 (b) 0, (c) —1,m (d) 1,0

For a given voltage signal, V. =(a) V;(1 + |p]) (b) V:(1 + |p]) (c)

Vi(1 = 1pD)? (d) V1 (1 + |p])?

For a reflection coefficient of 0.6/45° VSWR equals (a) 1.67 (b) 0.25 (c) 4 (d) 6
For a VSWR of 5, the magnitude of the reflection coefficient is (a) 0.2 (b) 2 (c)
0.33 (d) 0.67

For a characteristic impedance of 200() and voltage standing wave ratio of 4,
the normalizes minimum, maximum impedances will be respectively, (a)
50Q,200Q (b) 0.25,4 (c) 200,800 (d) 20, 8Q

(For Questions 59 and 60) A transmission line has a characteristic impedance
of 1004 and load impedance of 35 — 75£). On the smith chart.

The corresponding load admittancesis (a) 10 + j11Q (b) 0.5 + 1.1 (c) 1.1 +
j0.51(d) 50 + ;110

The voltage standing wave ratio is (a) 4.6 (b) 3.6 (c) 5.6 (d) 6.6

LAPLACE TRANSFORM CONCEPT

Find the Laplace transform of (1 + cos 2t) using first principle.

Find the Laplace Transform of cos?t.
1

Find the Laplace Transform of 4t 2



4. ind the Laplace Transform of 5t2 cos 2t

5. Find the Laplace Transform of: 8 +t + 9t? + t3
6. sin4t using first principles

7. 4 cos4t using Euler’s rule

8 t3 e~ 2t

9. 7sin32t

10. 6e~* cos?t

SOLUTION OF DIFFEREBTIAL EQUATIONS BY LAPLACE
TRANSFORMS

Solve the following differential equations using Laplace Transform:

d?y . _ dy _ _
1. ﬁ+y—0,wherey—1and ol lat x=0
2 dz—y—4 =0, where y=0and 2 =6 at x=0
) d%cz y=uw y= dx o
3. 3732/+y=0 where y =1, d—y=1atx=0
2
4, ijzl+2—+5y—0 Wherey—Z Y= 4atx=0
5. vy +2y' +y—tetlfy(0)—1,y(0)—
d?y . ay _ —
6. d§2+y xcos2x, Wherey—dx—Oatt—O. 2
Py &y gdy__ 2.0x =1%o LY_ _ =
7. gx3 36”2 3dx y = x°x**, wherey 1,dx 0, a2 2at x =0
8. d—:+ 4y—0 ——9x=0. givenx =2andy=1att=0.
9.

4E+ = 4 3y=0, %+ 2x+%=1,underthecondition x=y=0att=0

[y
o

.E+5x—2y=t, Z—Z+2x+y=0 being given whenx =y =0 whent =0

11. %+y—sint d—y+x:costgiventhatx=2, and y =0 whent = 0.
dx dy

12. 3—+3 +5x—25cost 2——3—==>5sint
dt dt

with x (0) =2,y(0) =3

2

y(0) = 2,y'(0) = 5, determine the response y(t)

13. For the second-order differential equation d

14. For the second-order differential equation Z f - 7% + 12y = 2sin4t

y(0) = 2,y'©® =5, determine the response y(t)



15. Solve the following differential equation using the Laplace transform method.

d%v(t) dv(t) _ —t . _
— + 4 - T 4u(t) = 2e7 Y, Ifv(0) =v(0) =2

APPLICATION OF LAPLACE TRANSFORM

1. Inthe circuit of figure 5.3 of your textbook, the coil has 10 () resistance and a
8 H inductance. If R = 14 () and the source voltage is 30 V and the switch is
open at t = 0. Determine i(t) using Laplace transform method.

2. The circuit shown in Fig. N is under steady state with the switch at position 1.
At t = 0 the switch, is moved to position 2. Find i(t) using Laplace transform
method.

100V 5

Figure N
3. Inthe RL circuit of Fig. O below the switch is in position 1 long enough to
establish steady state-state conditions and t = 0 it is switched to position 2.
Find the resulting current i(t) using the Laplace transform method.
%/\5/{1

100V 180V 10mH

Figure O
4. Find i(t) using Laplace transform method by first Laplacing the circuit of Fig.R
and then taking the loop equation in the circuit of figure below if the initial
conditions are all zero and the switch is closedatt = 0



100\ 50 00

Figure R
5. In the circuit of the Fig.S, obtain the differential equation for i; and i,. Find
the current i; and i, at t = 0 using Laplace transform. Given that all initial
conditions are

di; (0% 1%
i1(0+) = 11(0_) =0 12(0+) — lz(o—) — 0’ 1( ) _
dt L,
500
4 AV
t=0 — |
ﬁ 500
100V — Y I
i1 §O.ZH 0.4H
Figure S

6. For the two-mesh network of Fig.P, determine the values of the loop current
i; & i, using Laplace transform and hence, write the s-domain equation in

matrix form.
3
50
1200 "ORaE 3,y
Figure P

7. Determine the Laplace transform of the ramp function in Fig. L.



Figure L

8. The step response of a system is given by f(t) = 2t? + 3t + 1. Determine its
impulse response.

9. Determine the Laplace transform of the ramp function in Fig. M.

v(t)

Figure M

10. Determine the Laplace transform of the function in Fig. N

v(t)

Figure N
11. Find the Laplace transform of f(t) = (cos 3t + e *)u(t)

12. Find the Laplace transform of f(t) = t? cos 4t u(t)



13. Find the Laplace transform of the function h(t) in Fig. O.

h(t) 4

Figure O

Transmission Lines Solution with Smith Chart

1. Alossless transmission line of characteristics impedance 75 Q is terminated in a
load of 300 + j 150 (). determine the:

i Reflection coefficient

ii. The load admittance

iii. VSWR
iv. Distance between the load and the nearest voltage minimum to it.
V. Normalized input impedance Z;,, given that the length of the line is 92 cm

and the signal wavelength is 40 cm.
Use the smith chart in Fig. Qs to answer question 1

2. Alossless transmission line of characteristic impedance 125 Q is terminated in a
load of 350 + j200 Q. By the smith chart determine the:

(a) The load impedance

(b) Reflection coefficient

(c) VSWR

(d) Normalize input impedance. Given that the length of the line is 1.64

(e) Distance between the load and the nearest voltage minimum to it.
Use the smith chart in Fig. Q2 to answer question 2

3. Alossless transmission line with Z, = 100 Q is 80 m long and operates at 6 MHz
the line is terminated with a load of Z;, = 120 + j60 ().



Given that u = 0.8¢ on the line, ¢ = 3 X 108 m/s determine by the use of smith

chart:

(i) Load admittance

(i) Voltage reflection coefficient
(i)  VSWR

(iv) Zin » Zmax, Zmin  Use the smith chart in Fig. Q1 to answer question 3
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