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Preface 

This book originates from notes used in teaching Electrical Circuit Theory courses at the 
third-year level of Electrical and Electronics Engineering Department, Federal Polytechnic, 
Oko, Anambra State, Nigeria. Along with other materials gathered by the author during his 
degree and post-degree years of academic pursuit, and over fifteen (15) years of teaching 
experience in accordance with course curriculum guidelines from the National Board for 
Technical Education (NBTE), this text, “CIRCUIT THEORY with Application for 
Undergraduate Students”, was written. 

The content of each chapter was designed to accommodate Higher National Diploma 
(HND) and Bachelor of Science/Engineering (B.Sc./B.Eng.) undergraduate students as the 
materials presented were made comprehensive enough to cover both classes of programs 
at their mid-course levels. 

Chapters 1 and 2 cover the basic knowledge of transients in inductive and capacitive 
circuits in first-order systems as a function of circuit parameters and time constant. 
Chapters 3 and 4 discuss transients in 𝑅𝐿𝐶 circuits, in both series and parallel 
configuration. Damping factors in damping conditions are also investigated.  

Chapter 5 covers two-port networks in impedance-, admittance- and transmission-
parameters (𝑧-, 𝑦- and 𝑡-parameters) as functions of the proverbial “black box”. Also 
discussed are the image impedance and insertion loss of various networks. 

Chapters 6, 7 and 8 cover, respectively, pole-zero constellations, Bode plots and Filters. 

Chapter 9 discusses in detail, small-signal transmission lines, with primary and secondary 
constants. 

At the end of the chapters are enough review problems designed to help the students 
exercise their level of comprehension of the treated matters, and by so doing internalize 
the underlying principles of the lessons taught. 
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CHAPTER 1 

TRANSIENT ANALYSIS 
1.0 Introduction 

By “transient” is implied transitory with respect to processes or conditions that do not 

last, that is, phenomena that are temporary by their nature or circumstances. So, 

Transient Analysis has to do with the response of an (electrical) circuit between two 

distinct steady-state conditions. We usually require the behaviour of voltage or current 

signal during the transition that takes place between two steady states the first of which 

can be, for instance, opening or closing of a switch in a typical circuit that has, prior to 

the switching action, been closed or open (respectively as the case might have been) for 

a longtime. The “long time” here simply means long enough for the circuit to have settled 

down, “settling down” which in turn means that all the energy-storage elements in the 

circuit (typically capacitors and inductors) have been energized (that is, if previously de-

energized prior to the switching action) or fully de-energized (if previously energized 

before witching action). This might take just a few ticks of seconds-hand of the clock, or 

even subdivisions of this! 

After the switch is thrown (i.e., opened or closed), the circuit is “disturbed”, some 

process takes place, and thereafter the circuit once again settles down to a new steady 

state. In the absence of a driving source (voltage or current) the circuit is thereafter 

“deadened” and reverts to its state prior to the original energizing action. If, however, a 

driving source is present, its effect is then the sole result that remains after all the others 

have reverted to their original, de-energized state prior to the energizing action. 

The task before us is to investigate what takes place during the aforementioned 

transition between the two distinct steady states. When no driving source (this is known 

in calculus as forcing function) is present, then the response is entirely dependent on the 

initial conditions of the energy storage elements, and this is known as the “natural” (in 

mathematics, homogeneous) response. If, however, a driving source is present, the 

response would have two components namely:  

1. a homogeneous solution (explained above) that depends, as mentioned earlier, 

entirely on the initial conditions of the circuit elements (parameters); 

2. a complementary solution that replicates the nature of the forcing function.  
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By the last statement is meant, for instance, if the forcing function is a constant quantity, 

then the forced-response component of the total response would also be a (possibly 

scaled up/down) constant quantity. If a dc (direct current) potential difference (voltage 

source) is applied at the input, then a dc voltage (or current) would result at the output 

terminals. [Applying a dc current source would likewise give rise to a dc voltage (or 

current) response.] If, on the other hand, an ac (alternating current) signal is applied, 

then an ac forced response is obtained, again with a possibly scaled-up/down amplitude 

but strictly of the same frequency (and perhaps – in fact, usually – a different phase 

angle) as the input signal. [While we’re at it, it’s pertinent to point out here, as implicitly 

elucidated in the foregoing statements, as learnt in basic electrical circuit course, that a 

voltage source at the input can entirely result in current (does not have to be just voltage) 

at the output, and vice versa. There’s no hard and fast rule, it all depends on the 

designer’s objective. However, the article of faith is that, the frequency of the forced part 

must stay true to its origin regardless of the nature of the inputting signal]. 

We usually require a current response through an inductor or a voltage response across 

a capacitor, the obvious reason being, as learnt in an earlier course, that these quantities 

cannot change in zero time (i.e., instantaneously) through or across, these respective 

elements. (Law of energy conservation would not permit the above to be violated since 

that would imply the ability to come up with infinite amount or unlimited supply of 

energy!)  

Circuits with one energy storage element (capacitor or inductor) are known as first-order 

circuits, whereas those with two energy storage elements [including both capacitor(s) 

and inductor(s)] are called second order-circuits. A typical first order circuit has a voltage 

or current source in series or parallel with a resistor and a capacitor or an inductor, and 

possibly switch(es). Regardless of any number of resistors, switches and capacitors or 

inductors that are involved, it’s still a first-order circuit so long as it does not mix 

capacitor(s) and inductor(s). In this case, only one initial condition is required to 

determine the response. A second-order circuit would, on the other hand, contain both 

capacitor(s) and inductor(s) along with voltage and/or current sources(s), possibly in 

addition to other passive network elements. Any number of resistors involved, as was 

the case for a first-order circuit, is immaterial since a resistor only dissipates energy and 

cannot store. 
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1.1 First-Order System  

 Any system with the ability to store energy in one form or to dissipate energy 

stored, is a first-order system; so is any system with a single energy storage element 

[capacitor(s) or inductor(s)] and a combination of sources and resistors (and possibly 

switches). The three factors that uniquely determine the response of a first-order system 

are;  

1. initial conditions, 

2. steady-state solution, 

3. the time constant. 

The response can be with respect to the variation of either voltage or current. In this 

aspect it is convenient to consider the voltage across a capacitor, or current through an 

inductor since these quantities, as explained earlier, respectively do not charge in zero 

time (instantaneously) in these elements. Recall the relationship between voltage 

across, and current through, an inductor; and (dually) current through, and voltage 

across, a capacitor: 

𝑣𝐿(𝑡) = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
, 𝑖𝐿(𝑡) =

1

𝐿
∫𝑣𝐿(𝑡)𝑑𝑡 ;                          1.1 

      𝑖𝐶(𝑡) = 𝐶
𝑑𝑣𝐶(𝑡)

𝑑𝑡
,           𝑣𝐶(𝑡) =

1

𝐶
∫ 𝑖𝐶(𝑡)𝑑𝑡                          1.1𝑎      

Where 𝑣𝐿  , 𝑖𝐿 are voltage across, and current through, an inductor; 𝑖𝐶, 𝑣𝐶  being current 

through, and voltage across, a capacitor, respectively. (Note the duality between these 

two pairs of relationships). 

From elementary science, it was taught that if current through an inductor were to 

change instantaneously, this would require an infinite supply of energy since  
d𝑖𝐿(𝑡)

𝑑𝑡
  

would then be infinite. Infinite voltage means infinite driven current which in turn means 

infinite energy (𝑊 =
1

2
𝐿𝑖2), a physical impossibility that violates law that energy cannot 

be created (or destroyed, but can only be transformed from one form to another)! The 

duality of the foregoing applies to voltage across a capacitor. Instantaneous change vis-

à-vis voltage implies infinite current which in turn means infinite voltage resulting in 

unlimited supply of energy (𝑊 =
1

2
𝐶𝑣2), thereby again violating the law of energy 

conservation. 
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 What all the foregoing means is that the value of a typical voltage across a capacitor 

just prior to throwing a circuit switch (opening or closing), 𝑣𝐶(0
−), in the same just after 

the switch is thrown, 𝑣𝐶(0
+). So,  

    𝑣𝐶(0
+) = 𝑣𝐶(0

−) = 𝑣𝐶(0)    1.2 

The above applies to current with respect to an inductor:  

    𝑖𝐿(0
+) = 𝑖𝐿(0

−) = 𝑖𝐿(0)    1.2a 

Voltage and current in a circuit are due to the superposition of two effects, namely,

 (i) The presence of stored energy (which can either decay, or further accumulate if 

a  source is present) (ii) The action of external source(s) [forcing function(s) as they 

are called in mathematics]. The response is in two parts: a. Natural response – consider 

stored energy; b. Forced response – consider external sources.  

Complete response is the sum of the two. We bear in mind that, depending on the values 

and/or configuration of circuit elements, either of the two components of the total 

response might entirely predominate, thereby necessitating that the other ought to be 

ignored for all practical purposes! 

1.1.1 Source-Free RL Circuit  

+   v
R    -

R

i

L

+   v
L    -

 
Figure 1.1 a source-free inductive circuit 

Consider the series connection of a resistor and an inductor, as shown in Fig. 1.1. Our 

goal is to determine the circuit response, which we’ll assume to be the current 𝑖(𝑡) 

through the inductor (also obviously through the resistor). We select the inductor 

current as the response in order to take advantage of the idea that the inductor current 

cannot change instantaneously. At 𝑡 = 0, we assume that the inductor has an initial 

current 𝐼0, or 

𝑖(0) = 𝐼0   
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Applying KVL we have that   

 

                                                        𝑅𝑖 + 𝑣𝐿 = 0                                                               1.3       

                                               𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
= 0                                                               1.4 

𝑑𝑖

𝑑𝑡
+
𝑅

𝐿
𝑖 = 0                    

𝑑𝑖

𝑑𝑡
= −

𝑅

𝐿
𝑖                          

                                            
𝑑𝑖

𝑖
=
−𝑅

𝐿
𝑑𝑡                                                       1.5    

At 𝑡 = 0 the current is 𝐼𝑜 

Integrating Eq 1.5, we have Eq 1.6 

    ∫
𝑑𝑖

𝑖

𝑖(𝑡)

𝐼𝑜

= ∫
−𝑅

𝐿

𝑡

0

𝑑𝑡 

ln 𝑖|𝐼𝑜
𝑖(𝑡)

=
−𝑅 𝑡

𝐿
|
𝑜

𝑡

 

                                         ln 𝑖(𝑡) − ln 𝐼𝑜 =
−𝑅

𝐿
(𝑡 − 0)                                             

ln
𝑖(𝑡)

𝐼𝑜
=
−𝑅𝑡

𝐿
   

       
𝑖(𝑡)

𝐼𝑜
= 𝑒−𝑅𝑡/𝐿 

                                                          𝑖(𝑡) = 𝐼𝑜𝑒
−𝑅𝑡/𝐿                                                    1.6 

Thus, the natural response of the RL circuit is an exponentially decaying result of the 

initial current. The current response is shown in Fig. 1.2. It is evident from Eq 1.6 that the 

time constant for the RL circuit is 

                                                                𝜏 =
𝐿

𝑅
                                                               1.7    
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with 𝜏 again having the unit of seconds. Thus, Eq 1.6 may be written as 

                                                          𝑖(𝑡) = 𝐼0𝑒
−𝑡/𝜏                                                       1.8  

With the current in Eq 1.8, we can find the voltage across the resistor as 

                                                     𝑣𝑅(𝑡) = 𝑖𝑅 = 𝐼0𝑅𝑒
−𝑡/𝜏                                          1.9 

The power dissipated in the resistor is  

                                                    𝑝 = 𝑣𝑅𝑖 = 𝐼0
2𝑅𝑒−2𝑡/𝜏                                                 1.10 

The energy absorbed by the resistor is  

𝑤𝑅(𝑡) = ∫ 𝑝 𝑑𝑡 =
𝑡

0

∫ 𝐼0
2

𝑡

0

𝑅𝑒−
2𝑡

𝜏 𝑑𝑡 = −
1

2
𝜏 𝐼0

2𝑅𝑒−
2𝑡

𝜏 |
0

𝑡

= −
1

2
𝜏 𝐼0

2𝑅(𝑒−
2𝑡

𝜏 − 1) joules; 

 𝜏 =
𝐿

𝑅
 

or 

                                               𝑊𝑅(𝑡) =
1

2
𝐿𝐼0
2(1 − 𝑒−2𝑡/𝜏)J                        

 

t

i/I0

𝜏 

0.368

 

Figure 1.2 The Current response of RL circuit (decaying inductive current curve) 

 

At 𝑡 = 𝜏 

                                              
𝑖(𝜏)

𝐼𝑜
= 𝑒−1 = 0.3679  ⟹   𝑖(𝜏) = 0.3679𝐼𝑜 

Check for 𝑡 = 2𝜏, 3𝜏 

At, for instance, t = 5𝜏, 𝑖(𝜏) = (𝐼𝑜)𝑒
−5 ≈ 0.007𝐼𝑜, that’s less than one percent of the 

original magnitude of the signal of interest (i.e., it’s equally applicable to voltage). What 

it entails is that, although a decaying signal theoretically never get to be exactly zero 
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except at time ′𝑡′ tends to infinity), yet for all practical purposes it’s virtually that, as far 

as an engineering designer is concerned! 

Example 1.1: For the circuit of Fig 1.3, determine the voltage of the 40 Ω resistor as a 

function of time and the circuit parameters.  

+
   v    -

5 H40 Ω 

10 Ω 

24 V

t=0

iL

 

Figure 1.3 

Solution: 

The assumption is always made that circuit conditions are “long” enough to have settled 

down the circuit so that a steady state condition has been reached. In the above circuit, 

prior to opening the switch it is assumed that it had been closed long enough for the 

inductor (energy storage element) to have been fully energized (by the presence of the 

dc battery). The switching action then takes the battery entirely out of the circuit so that 

it becomes sources-free. The response 𝑣(𝑡) thus is entirely a natural (“transient”) one 

that depends on the initial conditions of the circuit elements, and whose duration 

depends on the time constant of this particular circuit (Leq/Req).  

𝐾𝑉𝐿 𝑎𝑡 𝑡 = 0+ :                        − 𝑣 + 10 𝑖𝐿 + 5
𝑑𝑖

𝑑𝑡
= 0                                                               

Ohm’s law:   

𝑖𝐿 = −
𝑣

40
          

⟹                                −𝑣 −
10𝑣

40
+ 5

𝑑

𝑑𝑡
(−

𝑣

40
) = 0                                                         

Rationalizing,                            − 40𝑣 − 10𝑣 − 5
𝑑𝑣

𝑑𝑡
= 0                                                          
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⟹   
𝑑𝑣

𝑑𝑡
+ 10𝑣 = 0, leading to the characteristic equation: 𝑠 + 10 = 0, 

producing the single root at 𝑠 = −10. 

⟹              𝑣(𝑡) = 𝐾𝑒−10𝑡 with K as yet-to-be determined constant.  

From the initial conditions, 𝑖𝐿(0
−) =

24𝑣

10Ω
= 2.4 A since the inductor presents a short 

circuit to the dc battery.  

 But 𝑖𝐿(0
+) = 𝑖𝐿(0

−) = 𝑖𝐿(0) = 2.4 A for the reason that has been severally 

adduced [current does not change instantaneously (finite change in zero time) through 

an inductor].  

⟹  𝑣(0+) = 𝑖(0+) × 40 Ω, by ohm’s law  

= (−2.4 A) × 40 Ω = −96 V = 𝐾𝑒0 = 𝐾           

⟹                  𝑣(𝑡) = −96𝑒−10𝑡 V 

Taking cognizance of the time constant, which is easily determined in this case of first 

order circuit by inspection, the nature of the answer could have been readily written 

down: 

                                                𝜏 =
𝐿(𝑒𝑞)

𝑅(𝑒𝑞)
=

5 H

(40 + 10) Ω
                                                         

after removing the battery. So, time constant  

                    𝜏 =
5

50
= 0.1 s                                                 

⟹         𝑖𝐿(𝑡) = 𝐾𝑒−
𝑡

0.1 = 𝐾𝑒−10𝑡, and the rest of the procedure is as the foregoing. 

and the rest of the procedure is as the foregoing. 

To determine the voltage across the 40 Ω resistor (which, incidentally, was the original 

requirement),  

𝑣40Ω(𝑡) = 40 × (−2.4 𝑒−10𝑡) = −96𝑒−10𝑡 V 

as before when it was derived directly. At, say, 𝑡 = 100 ms, 

                        𝑣(100 ms) = −96𝑒−10(100×10
−3) = −96𝑒−1 = −35.32 V            
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The negative result indicates a “wrong” orientation of the battery, meaning that a 

“positive” voltage would have been obtained simply by reversing the polarity of any of 

the network active elements. 

The foregoing analysis has to do with a source-free circuit, that is, a circuit with no driving 

source (forcing function). The sole purpose of the dc source (i.e., the battery) in the just 

concluded example above, was to initially energize the elements (that are “energize-

able”), in this case just the series inductor, and thereafter it’s taken entirely out of the 

circuit.  

Example 1.2: In the circuit shown in Fig. 1.4, the switch has been open for a long time 

and then suddenly closed at 𝑡 = 0.  Determine 𝑖𝐿(𝑡). Hence at 𝑡 = 0.15 s find the 

values of (a) 𝑖𝐿 (b)  𝑖1 (c)  𝑖2 

2 Ω 

8 Ω 0.4 H
t=0

i2 i1 iL

2 A

 

Figure 1.4 

Solution: 

By current division rule, 

𝑖𝐿(0) = 𝐼0 =
8

2 + 8
× 2 = 1.6 A                                               

   𝑖𝐿(𝑡) = 𝐼0𝑒
−(

2

0.4
)𝑡 = 1.6e−5tA At t = 0.15 s,                             

(a)  𝑖𝐿(0.15) = 1.6𝑒
−(5×0.15) = 0.756 A     

(b)  𝑖1 = 0 A (Short circuit) 

(c)  𝑖2 = 2 − 0.756 = 1.244 A 

[Note: the current source plays no role after t= 0, so the response is entirely a natural 

one.] 
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Example 1.3: The switch in the RL circuit shown in Fig. 1.5 is moved from position 1 to 

position 2 at  𝑡 = 0. Obtain 

(a) 𝑣𝑅 and 𝑣𝐿 with polarities as indicated. 

(b) The powers dissipated   𝑃𝑅 and 𝑃𝐿 

100 Ω 

4 H

t=0

2 A

1 2

+
 v

R
   -

+
 v

L    -

 

Figure 1.5 

Solution: 

(ai)  For  𝑉𝑅 

At position 1 (i.e. 𝑡 < 0): 𝑖(0−) = 𝑖(0+) = 2 A 

At 𝑡 > 0 position 2 

𝜏 =
4

100
=
1

25
 

𝑖(𝑡) = 𝑖(0+)𝑒−𝑡/𝜏 = 2𝑒−25𝑡 A 

Since the same current passes through the resistor, 

𝑉𝑅 = 𝑖𝑅 = (2𝑒−25𝑡)(100) = 200𝑒−25𝑡 V 

(aii)   For 𝑉𝐿 

𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
= 4

𝑑(2𝑒−25𝑡)

𝑑𝑡
= −200𝑒−25𝑡 V 

(b) For 𝑃𝑅 and 𝑃𝐿 

Recall 𝑃𝑅 = 𝐼𝑉𝑅 = (2𝑒−25𝑡)(200𝑒−25𝑡) 𝑃𝑅 = 400𝑒
−25𝑡−25𝑡 = 400𝑒−50𝑡 W 

 𝑃𝐿 = 𝐼𝑉𝐿 

But, 𝑉𝐿 = 4
𝑑

𝑑𝑡
(2𝑒−25𝑡) = −200𝑒−25𝑡V 𝑃𝐿 = −200𝑒

−25𝑡 × 2𝑒−25𝑡 = −400𝑒−50𝑡 W 
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1.1.2 The Source-Free RC Circuit  

A source-free RC circuit occurs when its dc source is suddenly disconnected. The energy 

already stored in the capacitor is released to the resistors. 

+
       v           -

iC (t)  

R

iR(t)

C

 
Figure 1.6: Source-free RC circuit 

Consider a series combination of a resistor and an initially charged capacitor, as shown 

in Fig. 1.6. (The resistor and capacitor may be the equivalent resistance and equivalent 

capacitance of combinations of resistors and capacitors.) Our objective is to determine 

the circuit response, which, for pedagogical reasons, we assume to be the voltage 𝑣(𝑡) 

across the capacitor. Since the capacitor was initially charged, we can assume that at 

time 𝑡 = 0, the initial voltage is 

                                              𝑣(0) = 𝑉0                                                                           1.11 

with the corresponding value of the energy stored as 

                                                 𝑤(0) =
1

2
𝐶𝑉0

2                                                                  1.12   

Applying KCL at the top node of the circuit in Fig. 1.6 yields 

                                                     𝑖𝐶 + 𝑖𝑅 = 0                                                                   1.13   

From 𝑖𝑐 = 𝐶
𝑑𝑣

𝑑𝑡
 and 𝑖𝑅 =

𝑣

𝑅
 ,                           

                                                         𝐶
𝑑𝑣

𝑑𝑡
+
𝑣

𝑅
= 0                                                             1.14a    

                                                        
𝑑𝑣

𝑑𝑡
+
𝑣

𝑅𝐶
= 0                                                            1.14b 

This is a first-order differential equation, since only the first derivative of υ is involved. 

Rearranging, 
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 𝑑𝑣

𝑣
= −

1

𝑅𝐶
𝑑𝑡                                                         1.15 

ln 𝑣 = −
𝑡

𝑅𝐶
+ 𝑙n A       

with 𝑙𝑛 A as the integration constant of the indefinite integral. (What do you think would 

have resulted if we chose simply A, instead of in A, as the constant of integration? Let 

the reader discern!) Thus,  

                                                    𝑙𝑛
𝑣

𝐴
= −

𝑡

𝑅𝐶
                                                                 1.16    

Taking power of exponential 𝑒 [so-called “natural number” (find out its value by raising 

same to the power of 1 using your pocket calculator!), not to be confused with natural 

response as their technical relationship is merely mathematically coincidental!] 

produces 

            𝑣(𝑡) = 𝐴𝑒−𝑡/𝑅𝐶  

But from the initial conditions, 𝑣(0) = 𝐴 = 𝑉0.     

Hence,                                                              𝑣(𝑡) = 𝑉0𝑒
−𝑡/𝑅𝐶                                                1.17 

So, the voltage response of the RC circuit is an exponentially decaying result of the initial 

voltage. Since the response is due to the initial energy stored and the physical 

characteristics of the circuit, and not due to some external voltage or current source, it’s 

called the natural response of the circuit. 

The natural response of a circuit refers to the response (in terms of voltages and currents) 

of circuit itself, with no external sources of excitation. 

𝑉0𝑒
−
𝑡
𝜏  

𝑉0 

0.368V0

0 𝜏 t

v

 

Figure 1.7 The voltage response of RC circuit  
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The natural response is illustrated graphically in Fig. 1.7. Note that at 𝑡 = 0, we have the 

correct initial condition as in Eq (1.11). As 𝑡 increases, the voltage decreases toward zero. 

The rapidity with which the voltage decreases is expressed in terms of the time constant, 

denoted by 𝜏, the lowercase Greek letter tau. The time constant of a circuit is the time 

required for the response to decay to a factor of  
1

𝑒
 , or approximately 36.8 percent, of its 

initial value. 

That is, at 𝑡 = 𝜏, Eq (1.17) becomes 

𝑉0𝑒
−𝜏/𝑅𝐶 = 𝑉0𝑒

−1 = 0.368𝑉0 

or 

               𝜏 = 𝑅𝐶                  1.18 

In terms of the time constant, Eq (1.17) can be written as 

                                                                𝑣(𝑡) = 𝑉0𝑒
−𝑡/𝜏                                                1.19   

With a calculator it is easy to show that the value of 
𝑣(𝑡)

𝑉0
 is as shown in Table 1.1. It is 

evident from Table 1.1 that the voltage 𝑣(𝑡) is less than I percent of 𝑉0 after 5𝜏 (five 

time-constants). Thus, it is customary to assume that the capacitor is fully discharged (or 

charged) after five-time constants. In other words, it takes approximately 5𝜏 for the 

circuit to reach its final state or steady state when no changes take place with time (i.e., 

in the absence of a forcing function). Notice that for every time interval of 𝜏, the voltage 

is reduced by 36.8 percent of its previous value: 𝑣(𝑡 + 𝜏) =
𝑣(𝑡)

𝑒
= 0.368𝑣(𝑡), regardless 

of the value of t. 

Table 1.1 

Values of 
𝑣(𝑡)

𝑉𝑜
= 𝑒−𝑡/𝜏                                                                                                                     

𝑡 𝑣(𝑡)

𝑉𝑜
 

𝜏 0.36788 

2𝜏 0.13534 

3𝜏 0.04979 

4𝜏 0.01832 
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5𝜏 0.00674 

Observe from Eq (1.18) that the smaller the time constant, the more rapidly the voltage 

decreases, that is, the faster the response.  

This is illustrated in Fig. 1.9. A circuit with a small-time constant gives a comparatively 

fast response in that it reaches the steady state (i.e., final value) due to quick dissipation 

of energy stored, whereas a circuit with a large time constant by comparison, gives a 

slow response because it takes longer to reach steady state. Whether time constant is 

small or large, however, the circuit reaches steady state in five time-constants. 

𝑣

𝑉0
 

0.37

0 𝜏 t

v

0.25

0.50

0.75

1.0

5𝜏 4𝜏 3𝜏 2𝜏 

Tangent at t=0

 

Figure 1.8 Graphical determination of the time constant 𝝉 from the response curve 

With the voltage 𝑣(𝑡) in Eq (1.19), we can find the current 𝑖𝑅(𝑡), 

                                       𝑖𝑅(𝑡) =
𝑣(𝑡)

𝑅
=
𝑉0
𝑅
𝑒−𝑡/𝜏                                                         1.20 

The time constant may be viewed from another perspective. Evaluating the derivative of 

𝑣(𝑡), in Eq (1.17) at 𝑡 = 0 we obtain 

𝑑

𝑑𝑡
(
𝑣

𝑉0
)|
𝑡=0

= −
1

𝑅𝐶
𝑒−𝑡/𝑅𝐶|

𝑡=0
= −

1

𝑅𝐶
= −

1

𝜏
 

(Employ Duality Principle to predict that for RL circuit.) Thus, the (negative) reciprocal of 

the time constant is the initial rate of decay, or the time taken for 
𝑣

𝑉0
 to decay from unity 

to zero, assuming a constant rate of decay. So, viewed from another perspective, time 

constant is the time taken by a signal to decay to zero, if it were to theoretically keep 
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decaying at the same initial rate. But we know that, in reality, the rate of decay is not 

constant but rather keeps changing and getting (in this particular case) less negative (i.e., 

increasing) as its approaches zero.  

This initial slope interpretation is used in the laboratory to find 𝜏 graphically from the 

response of an oscilloscope. To find 𝜏 from the response curve, draw the tangent to the 

curve at 𝑡 = 0, as shown in Fig. 1.8. The tangent intercepts with the time axis at 𝑡 = 𝜏. 

𝑣

𝑉0
= 𝑒− 

𝑡
𝜏  

0

𝜏 = 0.5 

t

v

𝜏 = 2 

𝜏 = 1 

1

1 2 3 4 5

 

Figure 1.9 Plot of  
𝒗

𝑽𝟎
= 𝒆−𝒕/𝝉 for various values of the time constant 

 

The power dissipated in the resistor is 

                                        𝑝(𝑡) = 𝑣𝑖𝑅 =
𝑉0
2

𝑅
𝑒−2𝑡/𝜏                                                       1.21 

The energy absorbed by the resistor up to time t is 

𝑤𝐶(𝑡) =  ∫
𝑉0
2

𝑅
𝑒−2𝑡/𝑅𝐶𝑑𝑡 = −(

𝑅𝐶

2
)
𝑉0
2

𝑅
𝑒−

2𝑡

𝑅𝐶  +  k =  −
1

2
𝐶𝑉0

2𝑒−
2𝑡

𝑅𝐶  +  k           1.22       

With k, the constant of the indefinite integral, as the initial (internal) energy stored in 

the system. k is ideally nonzero for this particular circuit [a practical capacitor is modeled 



  Circuit Theory with Application  

16 
 

as an ideal capacitor in parallel with some (internal) resistance]. Ignoring k, however, and 

the minus sign since energy is a scalar quantity (or it can be viewed as capacitor 

dissipating energy to, instead of absorbing from, the resistor), capacitor energy is 

expressed as 

                                    𝑤𝐶(𝑡) =
1

2
𝐶𝑉0

2𝑒−2𝑡/𝑅𝐶   joules (J)                                         1.23 

Note: If the capacitor is replaced with a practical inductor – modeled as an ideal inductor 

in series with some (internal) resistance – then the required response would be current, 

meaning that duality principle would tell us that the corresponding energy expression is 

                                       𝑤𝐿(𝑡) =
1

2
𝐿𝑉0

2𝑒−2𝑡𝑅/𝐿 J                                                     1.24 

Notice that as 𝑡 → 0,  𝑤𝑅(0) →
1

2
𝐶𝑉0

2  which is the same as 𝑤𝐶(0), the energy “initially” 

stored in the capacitor. The energy that was initially stored in the capacitor is eventually 

dissipated in the resistor. In summary: 

The keys to working with a source-free RC circuit are: 

(1) The initial voltage 𝑣(0) = 𝑉0 across the capacitor  

(2) The time constant 𝜏 

With these two items sorted out from the particular circuit configuration, we readily 

obtain the response of the capacitor voltage 𝑣𝐶(𝑡) = 𝑣(𝑡) = 𝑉0𝑒
−𝑡/𝜏 With this, other 

variables (capacitor current 𝑖𝐶, resistor voltage 𝑣𝑅, and resistor current 𝑖𝑅) can be 

determined. In finding the time constant; 𝜏 = 𝑅𝐶, 𝑅 is often the Thevenin equivalent 

resistance at the terminals of the capacitor; that is, we take out the capacitor 𝐶 and find 

𝑅 = 𝑅Th at its terminals. 

Example 1.4: In Fig. 1.10, let 𝑣𝐶(0) = 15 V. Find 𝑣𝐶 , 𝑣𝑥and 𝑖𝑥 for 𝑡 > 0. 

8 Ω 

12 Ω 5 Ω 
0.1 F

+
  v

C   -

+
  v

x   -

iX

 

Figure 1.10 
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Solution:   

We first need to make the circuit in Fig 1.10 conform to the standard RC circuit in Fig 1.6. 

We find the equivalent resistance or the Thevenin resistance at the capacitor terminals. 

Our objective is always to first obtain capacitor voltage 𝑣𝐶 . From this, we can determine 

𝑣𝑥 and 𝑖𝑥. The 8 Ω and 12 Ω resistors in series can be combined to give a 20 Ω resistor. 

This 20 Ω resistor in parallel with the 5 Ω resistor can be combined so that the equivalent 

resistance is 

𝑅𝑒𝑞 =
20 × 5

20 + 5
= 4 Ω 

Hence, the equivalent circuit is as shown in Fig. 1.10a, which is analogous to Fig.1.6. 

The time constant is 

𝜏 = 𝑅𝑒𝑞𝐶 = 4(0.1) = 0.4 s 

R𝑒𝑞  
0.1 F

+
          v

             -

 

Figure 1.10a Equivalent circuit for the circuit in Fig. 1.10 

 

Thus,  

𝑣 = 𝑣(0)𝑒−𝑡/𝜏 = 15𝑒−𝑡/0.4 V, 𝑣𝐶 = 𝑣 = 15𝑒−2.5𝑡 V 

From Fig. 1.10 we can use voltage division to get 𝑣𝑥: 

𝑣𝑥 =
12

12 + 8
𝑣 = 0.6(15𝑒−2.5𝑡) = 9𝑒−2.5𝑡 V 

Finally,  

𝑖𝑥 =
𝑣𝑥
12

= 0.75𝑒−2.5𝑡 A 
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Example 1.5: The switch in the circuit in Fig.1.11 has been closed for a long time, and it 

is opened at 𝑡 = 0. Find 𝑣(𝑡) for 𝑡 ≥ 0. Calculate the initial energy stored in the 

capacitor. 

9 Ω 
20 mF

+
   v

    -

3 Ω 1 Ω 
t=0

20 V

 

Figure 1.11 

Solution: 

For 𝑡 < 0 the switch is closed; the capacitor is an open circuit to dc, as represented in 

Fig.1.11.1(a). Using voltage division, 

𝑣𝐶(𝑡) =
9

9 + 3
(20) = 15 V, 𝑡 < 0 

Since the voltage across the capacitor cannot change instantaneously, the voltage across 

the capacitor at 𝑡 = 0− is the same at 𝑡 = 0+ (or 0), or  

𝑣𝐶(0) = 𝑉0 = 15 V 

For 𝑡 > 0, the switch is opened, and we have the RC circuit shown in Fig. 1.11.1(b). 

[Notice that the RC circuit in Fig. 1.11.1(b) is source-free; the independent source in Fig. 

1.11 is needed to provide the initial energy in the capacitor.] The 1 Ω and 9 Ω resistors in 

series give 

𝑅𝑒𝑞 = 1 + 9 = 10 Ω 
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 9Ω 

+
   v

C (0
)   -

3 Ω 1 Ω 

20 V

9 Ω 

1 Ω 

20 mF

+
   v    -

   V0=15 V   

(a)

(b)  

Figure 1.11.1 (𝐚)  𝒕 < 𝟎, (𝒃)  𝒕 > 𝟎 

The time constant is 

𝜏 = 𝑅𝑒𝑞𝐶 = 10 × 20 × 10−3 = 0.2 s 

Thus, the voltage across the capacitor for 𝑡 ≥ 0 is  

𝑣(𝑡) = 𝑣𝐶(0)𝑒
−𝑡/𝜏 = 15𝑒−𝑡/0.2 V 

or𝑣(𝑡) = 15𝑒−5𝑡 V 

The initial energy stored in the capacitor is 

𝑤𝐶(0) =
1

2
𝐶𝑣𝐶

2(0) =
1

2
× 20 × 10−3 × 152 = 2.25 J 

 

Example 1.6:  At 𝑡 = 0, the switch in Fig.1.12 is moved from position 1 to 2. Solve for 

𝑖(𝑡); determine voltage across each 250 kΩ resistor of the circuit at 𝑡 = 1 s 
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1 2t=0

250 KΩ 250 KΩ 

500 μF 

20 V

𝑖 

 

Figure 1.12 

At  𝑡 < 0 𝑣C (0) = 20 V 

At 𝑡 > 0𝜏 = 𝑅𝑒𝑞 . 𝐶 

𝜏 = (500 × 103)(500 × 10−6) 

𝜏 = 250 s 

𝑣(𝑡) = 20𝑒−
𝑡

250 V = 20𝑒−0.004𝑡 V 

𝑖𝑐(𝑡) = 𝐶 
𝑑𝑣

𝑑𝑡
= 500 × 10−6

𝑑(20𝑒−0.004𝑡)

𝑑𝑡
 

𝑖𝑐(𝑡) = 500 × 10−6 × 20 × (−0.004)𝑒−0.004𝑡 

𝑖𝑐(𝑡) = −4 × 10
−5𝑒−0.004𝑡  

= −40𝑒−0.004𝑡 μA 

The voltage across resistor is 𝑣𝑅(𝑡) = 𝑖𝑐(𝑡)𝑅 

 𝑣𝑅(𝑡) = (−40 × 10
−6𝑒−0.004𝑡) V × 250 kΩ    At t = 1 s    

𝑣𝑅(1) = −40 × 10
−6𝑒−0.004(1) × 250 × 103 

𝑣𝑅(1) = −10𝑒−0.004 = −9.96 V 

 

Example 1.6: For the circuit in Fig. 1.13, the switch has been open for a long time. 

Determine 𝐼 at 𝑡 = 0+ 
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3 Ω 

t=0

3 A
2 Ω 

1 Ω 

 

0.5 μF 

I

 

Figure 1.13 

Solution: 

𝐼(0−) = 3 × (
3

3 + 1 + 2
) = 1.5 A  

⟹   𝑉2Ω(0
−) = 1.5 × 2 = 3 V 

𝑉2Ω(0
+) = 3 V 

⟹ 𝐼(0+) = −(
3 V

1 Ω
) = −3 A 

Example 1.7: For the circuit Fig.1.14, given that 𝑉 = 10 V, determine 
𝑑𝑣(𝑡)

𝑑𝑡
 at the given 

instant in time  

10 Ω 

5 Ω 

1

4
 F 

20 V

+               V
               -

 

Figure 1.14 

Solution: 

𝑖10Ω =
10 V

10 Ω
= 1 A 

𝑖5Ω =
(20 − 10)

5
= 2 A 
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𝑖𝑐 = 𝐶
𝑑𝑣𝑐
𝑑𝑡

= 𝑖5Ω − 𝑖10Ω 

𝑖𝑐 =
1

4

𝑑𝑣𝑐
𝑑𝑡

= 2 A − 1 A = 1 A 

⟹ 
𝑑𝑣

𝑑𝑡
= 4 × 1 A = 4 V/s 

Alternatively, applying KVL to the loop 

−20 + 5𝑖1 + 10(𝑖1 − 𝑖2) = 0   ⟹     15𝑖1 − 10𝑖2 = 20                          ∗ 

𝑉 + 10(𝑖2 − 𝑖1) = 0 

−10𝑖1 + 10𝑖2 = −10            

   for        𝑉 = 10 V                                                                                                ∗∗ 

Solving Eqs ** and * simultaneously,  

𝑖2 = 𝑖𝐶 = 1 A  &   𝑖1 = 2 A = 𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
 

𝑑𝑣𝑐(𝑡)

𝑑𝑡
=
𝑖𝐶
𝐶
=

1

0.25
= 4 V/s 

 

1.2 Exercises 

1. (a) For the circuit Fig. 1, express the 

voltage of the 50 Ω resistor as a 

function of time and circuit 

parameters. (b)  What are the initial 

currents through each of the two 

resistors and the inductors in Fig. 1? 

20 Ω 

 

50 Ω 

+

-

v(t)
5 H

𝑖𝐿 

t=0

30 V

Figure. 1 

2. For the circuit Fig. 2 the switch has 

been open for a long time. Determine I 

at 𝑡 = 0+. 

1 Ω 

3 Ω 

𝐼 

t=0

2 Ω 

3 A

0.5 μF 

 

Figure. 2 

3. For the circuit of Fig. 3, switch is 

closed for a long time, then opened at 
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𝑡 = 0. Determine current through the 

1μF capacitor at 𝑡 = 0+. 

6. In Fig. 4, identify the element/parts 

A, B, C, D and E; j, k, l, m and n. Then 

match each electrical component with 

its mechanical counterpart. 

1 Ω 

 

t=0

4 Ω 
1 μF 5 V

Figure. 3 

4. Given the voltage signal 𝑣(𝑡) =

5 sin(0.5𝜋 + 𝜋/3) V determine (i) 

radian frequency (ii) phase (iii) 

frequency in hertz (iv) the period  

5. Why is it usually required, as a 

transient response, either current 

through an inductor, or voltage across 

a capacitor? 

E
A

B D

C

n

h2

m
k

h1

Coupled tank diagram 
Electrical equivalent circiut

i

j

 
Figure. 4 

7. Given 𝑅 = 2 MΩ in RC circuit of the form of Fig. 5, 𝐶 if we want a time constant of 10 s 

Answer: 𝑪 = 𝟓 × 𝟏𝟎−𝟔𝐅 = 𝟓 𝛍𝐅 

8. To what voltage 𝑉𝑜 of the capacitor of Fig. 5 decay over a period of one time constant?  

Answer: 𝑽𝒄(𝝉) = 𝟎. 𝟑𝟔𝟖𝑽𝒐 
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CHAPTER 2 

DRIVEN R-L AND R-C CIRCUITS 
 

2.0 R-C Circuit with Step Response 

 We now consider a simple R-C series circuit shown Fig. 2.1:  

+ VR   -

+
 V

C    -

R

vs

iR(t)

C

                                                                            
Figure 2.1 RC Driven Circuit  

 

Applying Kirchhoff’s Voltage Law (KVL) to the single loop gives: 

                                  −𝑣𝑠(𝑡) + 𝑖𝑅(𝑡)𝑅 +
1

𝐶
∫ 𝑖𝑅(𝑡)
𝑡

−∞

𝑑𝑡 = 0                                2.1 

Rearranging, and noting that the derivative of an integral expression would produce the 

original (zeroth derivative) function, we then differentiate across to obtain:  

                                  𝑅
𝑑𝑖𝑅(𝑡)

𝑑𝑡
+
1

𝐶
𝑖𝑅(𝑡) =

𝑑𝑣𝑠(𝑡)

𝑑𝑡
                                                2.2 

When the dc source of an RC circuit is suddenly applied, the voltage or current source 

can be modeled as a step function, and the response is known as a step response. 

The step response of a circuit is its behaviour when the excitation is the step function, 

which may be a voltage or a current source. The step response is the response of the 

circuit due to a sudden application of a dc voltage or current source. 
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Vs

R t=o

+   v   -

C
Vsu(t)

R

+   v   -

C

(a) (b)  

Figure 2.1.1(a) An RC circuit with voltage step input; (b) an equivalent circuit 

Consider the RC circuit in Fig. 2.1.1(a) which can be replaced by the circuit in Fig. 2.1.1(b), 

where Vs is a constant dc voltage source. Again, we select the capacitor voltage as the 

circuit response to be determined. We assume an initial voltage 𝑉𝑜 on the capacitor, 

although this is not necessary for the step response. Since the voltage of a capacitor 

cannot change instantaneously, 

                                                         𝑣(0−) = 𝑣(0+) = 𝑉𝑜               2.3 

Where 𝑣(0−) is the voltage across the capacitor just before switching and 𝑣(0+)is its 

voltage immediately after switching. Applying KCL, we have  

                                                    𝐶
𝑑𝑣

𝑑𝑡
+
𝑣 − 𝑉𝑠𝑢(𝑡)

𝑅
= 0 

Or 

                                                            
𝑑𝑣

𝑑𝑡
+
𝑣

𝑅𝐶
=
𝑉𝑠
𝑅𝐶

                                               2.4 

where 𝑣 is the voltage across the capacitor. Rearranging terms, Eq (2.4) becomes, for 

𝑡 > 0,            

                                                   −
𝑑𝑣

𝑑𝑡
=
𝑣 − 𝑉𝑠
𝑅𝐶

                                                         2.5 

or         

                                                       
𝑑𝑣

𝑣 − 𝑉𝑠
= −

𝑑𝑡

𝑅𝐶
                                                         2.6     

 

Integrating both sides and introducing the initial conditions, 

ln(𝑣 − 𝑉𝑠)|𝑉𝑜
𝑣(𝑡) = −

𝑡

𝑅𝐶
|
0

𝑡

 

ln[𝑣(𝑡) − 𝑉𝑠 ] − ln (𝑉𝑜 − 𝑉𝑠) = −
𝑡

𝑅𝐶
+ 0 
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Or 

                                       In
𝑣 − 𝑉𝑠
𝑉0 − 𝑉𝑠

= −
𝑡

𝑅𝐶
                                                               2.7 

 

Taking the exponential of both sides   

𝑣 − 𝑉𝑠
𝑉0 − 𝑉𝑠

= 𝑒−𝑡/𝜏,   𝜏 = 𝑅𝐶 

𝑣 − 𝑉𝑠 = (𝑉0 − 𝑉𝑠)𝑒
−𝑡/𝜏 

Or  

                                    𝑣(𝑡) = 𝑉𝑠 + (𝑉0 − 𝑉𝑠)𝑒
−𝑡/𝜏, 𝑡 > 0                                       2.8 

Thus,                         𝑣(𝑡) = {
𝑉0                                         𝑡 < 0

𝑉𝑠 + (𝑉0 − 𝑉𝑠)𝑒
−𝑡/𝜏          𝑡 > 0

                                   2.9a 

 

or, more compactly,      

                           𝑣(𝑡) = 𝑉0𝑢(−𝑡) + [𝑉𝑠 + (𝑉0 − 𝑉𝑠)𝑒
−𝑡/𝜏]𝑢(𝑡) V                     2.9b 

   [*NB: A quick review of the unit-step function might be helpful here!] 

This is known as the complete response (or total response) of the RC circuit to a sudden 

application of a dc voltage source, assuming the capacitor is initially charged. The reason 

for the term "complete" will become evident a little later. Assuming that Vs> V0, a plot 

of 𝑣(𝑡) is shown in Fig. 2.2. [Food for thought: What would the Fig 2.2 look like for the 

case Vs< V0!] 

vs

v0

v(t)

t0

 

Figure 2.2 Response of an RC with initially charged capacitor 

If the capacitor is uncharged initially, then 𝑉0 = 0 in Eq (2.9) so that 

                                 𝑣(𝑡) = {
0,                       𝑡 < 0

𝑉𝑠(1 − 𝑒
−𝑡/𝜏), 𝑡 > 0

                                                    2.10 
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which can be written more compactly as 

                 𝑣(𝑡) = 𝑉𝑠(1 − 𝑒
−𝑡/𝜏)𝑢(𝑡) V                                                           2.11 

This is the complete step response of the RC circuit when the capacitor is initially 

uncharged. The current through the capacitor is obtained from Eq (2.11) using current-

voltage relation for capacitor: 

𝑖(𝑡) = 𝐶
𝑑𝑣

𝑑𝑡
= 𝐶 (0 − −

1

𝜏
)𝑉𝑠𝑒

−𝑡/𝜏𝑢(𝑡), 

With 𝜏 = 𝑅𝐶, 

𝑖(𝑡) =
𝑉𝑠
𝑅
𝑒−𝑡/𝑅𝐶𝑢(𝑡) A 

Eq 2.2 can be seen as a typical first-order differential equation, whose general form is: 

                                         𝑎1
𝑑𝑥 (𝑡)

𝑑𝑡
+ 𝑎0𝑥(𝑡) = 𝑓(𝑡)                                               2.12 

where 𝑥(𝑡) represents either the capacitor voltage or inductor current, and 𝑓(𝑡) may be 

a voltage or current source (called forcing function in calculus), the reason being, as has 

been severally adduced, that these quantities cannot change in zero time (i.e., 

instantaneously) across and through, the respective circuit elements. It is called a linear 

first-order ordinary constant-coefficient differential equation. It’s linear because terms 

like [𝑥(𝑡)]2 or [
𝑑𝑥(𝑡)

𝑑𝑡
]
2

, do not appear in the equation. It is first-order because the highest 

derivative is once; and ordinary because no partial derivatives are involved, that is, the 

function is differentiated just with respect to time, and not with respect to any other 

variable(s) or network parameter(s). 

The coefficients (𝑎𝑛, 𝑎𝑛−1, … 𝑎1, 𝑎0) are constants because they are not functions of 

time (i.e., time-independent). 

2.0.1 Solving First-Order Differential Equation  

As earlier mentioned, the response is of two parts, namely, (1) the natural response, 

determined by setting the driving source (forcing function) equal to zero, and (2) forced 

response (called particular solution in mathematics). 

The latter is a response to a (particular) forcing function, say, voltage or current source, 

without regard to the initial conditions of the circuit elements, and this component of 
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the total response remains after the transient portion of the response (solution) must 

have died off. Thereafter the solution (response) depends entirely on the nature of the 

driving source. By the last statement is meant that, for instance, if the driving source is a 

dc source, then the forced response would also be a dc type; on the other hand, if the 

driving source is an ac source, voltage or current, then the resulting forced response 

would also be ac in nature with the same frequency, only differing, perhaps, in its 

amplitude and phase. 

For the typical first-order differential equation stated earlier in Eq 2.2, to solve for the 

natural response, we make the equation homogeneous by setting the forcing function 

 𝑓(𝑡) equal to zero: 

                                                      𝑎1
𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑎0𝑥(𝑡) = 0                                        2.13 

Because the parts are separable, a straightforward rearranging and integration would 

yield: 

∫
𝑑𝑥′

𝑥
= −

𝑎0
𝑎1

𝑥

𝑥0

∫ 𝑑𝑡′
𝑡

0

 

where 𝑥′ is typically understood to be a function of time [i.e.,𝑥′(𝑡)] despite the (𝑡) 

omission, and 𝑥0 is its initial value. (𝑥′, 𝑡′are so-called “dummy variables”.)  

⟹                                         ln 𝑥′|𝑥0
𝑥 = −(

𝑎0
𝑎1
) 𝑡′|

0

𝑡

= −𝑎0
𝑡

𝑎1
                                                   

ln 𝑥 − ln 𝑥0 = ln (
𝑥

𝑥0
) = −𝑎0

𝑡

𝑎1
 

⟹
𝑥

𝑥0
= 𝑒

−
𝑎0
𝑎1
𝑡
           

Finally,   

                                               𝑥 = 𝑥(𝑡) = 𝑥0𝑒
−
𝑎0
𝑎1
𝑡
                                                     2.14 

An alternative approach to determining the natural response is to look for a function 

that replicates itself upon differentiation (and, therefore, integration). The only function 

with this peculiar behaviour in all of mathematics, is the exponential function 𝑎𝑛 in 

general, and in particular the natural number-based exponential 𝑒𝑛. (The trigonometric 
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functions sine and cosine do not satisfy this requirement because they only replicate 

their own negatives, and even then, after differentiating or integrating twice). 

So, we assume a solution in the form of: 𝑥(𝑡) = 𝐾𝑒𝑝𝑡, where K and p are yet-to-be 

determined constants. Substituting this in the given first-order differential equation, 

we obtain:  

 𝑎1
𝑑

𝑑𝑡
(𝐾𝑒𝑝𝑡) + 𝑎0(𝐾𝑒

𝑝𝑡) = 0 ⟹ 𝑎1𝐾𝑝𝑒
𝑝𝑡 + 𝑎0𝐾𝑒

𝑝𝑡 = 𝐾𝑒𝑝𝑡(𝑎1𝑝 + 𝑎0) = 0 

Three possibilities are:  

(1) K equals zero — unacceptable because it results in the triviality of 0 = 0, indicating 

an identically zero response! 

(2) 𝑒𝑝𝑡 is zero — again unacceptable since this can only be true if time tends to 

negative infinity for a positive value of 𝑝,or positive infinity for a negative value of 𝑝, on 

account of the fact that the operating exponential factor must of necessity – left on its 

own as this is the case here – depreciate in order to avoid violating the law of energy 

conservation. 

(3) 𝑎1𝑝 + 𝑎0 = 0 ⟹ 𝑝 = −
𝑎0

𝑎1
, which is most reasonably acceptable! 

So,𝑥(𝑡) = 𝐾𝑒−𝑎0𝑡/𝑎1  

It remains to determine the value of the unknown constant K. This is accomplished by 

resorting to just one initial condition of the network quantity. For a first-order system, 

just one initial (boundary, as called in mathematics) condition, as the name implies, is 

adequate, whereas in yet-to-be-looked-into second-order system, we’d need an 

additional boundary (extreme, viz. terminal) condition in order to be able to evaluate the 

values of two resultant unknown constants. 

Therefore, given that 𝑥(0) [or more precisely, x(0+)] = 0, 𝑥(0) = 𝐾𝑒0 = 𝐾 = 𝑥0. Once 

again, finally,   

𝑥(𝑡) = 𝑥0𝑒
−𝑎0𝑡/𝑎1  

Be reminded, once more, that the above expression strictly applies to just the natural 

response (called homogeneous response in mathematics) and does not consider any 

forced portion that’s generally a component of the total response. Here, the response 

depends entirely on the initially energized state(s) of the circuit element(s), or lack 

thereof.  
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For the circuit of Fig. 2.1, R corresponds to 𝑎1, and 1/C (please, not C!) corresponds to 

𝑎0. So, 𝑖(𝑡) = 𝑖(0)𝑒−(
1

𝑐
)
𝑡

𝑅 = 𝐼0𝑒
−𝑡/𝑅𝐶, with 𝐼0 understood to be the initial value of the 

(series) current. Since the power (index) of the exponential term must necessarily be a 

numeric (“unitless”), RC therefore must have the dimension of time. To show this to be 

consistent by other means is left as an exercise.  

In summary, (at the risk of repetition) the above analysis applies strictly to source-free 

circuits, so 𝑖(𝑡) ought to be more properly written as 𝑖𝑁(𝑡), with the subscript 𝑁 

indicating “natural” (response).  

A further investigation of “RC”: Setting t = RC,                                                                          

𝑖(𝑡) = 𝐼0𝑒
−1 ⟹

𝑖(𝑡)

𝐼0
= 𝑒−1 =

1

𝑒1
≈ 0.37 So, at time 𝑡 = 𝑅𝐶 (or ReqCeq for multiple R’s 

and/or C’s) for a typical R-C circuit, a responding signal (be it current or voltage) would 

have decayed to approximately 37% of its initial value. Viewed from an alternative 

perspective, this is the time required for an exponentially rising signal to reach 

approximately 63% (why?) of its final value.  

In the foregoing case (and as met previously), RC is a product known as the time 

constant, designated by the Greek letter 𝜏 (tau). 

Fig.2.2.1 shows the plots of capacitor voltage 𝑣(𝑡) and capacitor current 𝑖(𝑡). 

Vs

v0

v(t)

t0

𝑉𝑆
𝑅

 

i(t)

(a)
(b)

  
Figure 2.2.1 Source-free RC circuit: (a) voltage response (b) current response 

 

Rather than going through the derivations above, there’s a systematic approach – or 

rather, a short-cut method – for finding the step response of an RC or RL circuit. Let’s re-

examine Eq 2.6 which is more general than Eq 2.11. It is evident that v(t) has two 

components. Classically there are two ways of decomposing this into two components. 
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The first is to break it into a "natural response and a forced response" and the second is 

to break it into a "transient response and a steady-state response." Starting with the 

natural response and forced response, we write the total or complete response as 

Complete response = natural response + forced response
(stored energy)

 

Or                                                             𝑣 = 𝑣𝑁 + 𝑣𝐹                                                        2.15 

where     𝑣𝑁 = 𝑉0𝑒
−𝑡/𝜏 

 and                                                        𝑣𝐹 = 𝑉𝑠(1 − 𝑒
−𝑡/𝜏)   

We are already familiar with the natural response 𝑣𝑁 of the circuit, as discussed in 

chapter 1.  𝑣𝐹 is known as the forced response because it is produced by the circuit when 

an external "force" (a voltage source in this case) is applied. It represents what the circuit 

is forced to do by the input excitation. The natural response eventually dies out along 

with the transient component of the forced response, leaving only the steady-state 

component of the forced response.  

Another way of looking at the complete response is to break it into two components, 

one temporary and the other permanent: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 +  𝑆𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑡𝑎𝑡𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

                                               ⟹Temporary part     +   Permanent part  

Or                                        𝑣 = 𝑣𝑇 + 𝑣𝑆𝑆                 2.16 

where                               𝑣𝑇 = (𝑉0 − 𝑉𝑠)𝑒
−𝑡/𝜏                                                              2.17a  

and                                             𝑣𝑆𝑆 = 𝑉𝑠                                                                  2.17b 

The transient response 𝑣𝑇  is temporary; it is the portion of the complete response that 

decays to zero as time approaches infinity. Thus, the transient response is the circuit’s 

temporary response that will die out with time. 

The steady-state response 𝑣𝑆𝑆 is the portion of the complete response that remains after 

the transient response has died out. Thus, the steady-state response is the behaviour of 

the circuit a “long time” after an external excitation is applied. 

The first decomposition of the complete response is in terms of the source of the 

responses, while the second decomposition is in terms of the permanency of the 

responses. Under certain conditions, the natural response and transient response are 

the same. The same can be said about the forced response and steady-state response. 

Whichever way we look at it, the complete response in Eq (2.8) may be written as 
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                                    𝑣(𝑡) = 𝑣(∞) + [𝑣(0) − 𝑣(∞)]𝑒−𝑡/𝜏                                  2.18 

 

where 𝑣(0) is the initial voltage at 𝑡 = 0+and 𝑣(∞) is the final or steady-state value. 

Thus, finding the step response of an RC circuit requires three things: 

1. the initial capacitor voltage 𝑣(0) 

2. the final capacitor voltage 𝑣(∞) 

3. the time constant 𝜏 

We obtain item 1 from the given circuit for 𝑡 < 0 and items 2 and 3 from the circuit 

for𝑡 > 0. Once these items are determined, we obtain the response using Eq (2.18). This 

technique equally applies to RL circuits as we shall see in the next section. 

Note that if the switch changes position at time 𝑡 = 𝑡0instead of 𝑡 = 0, there is a time 

delay in the response, so that Eq 2.18) is adjusted to 

                           𝑣(𝑡) = 𝑣(∞) + [𝑣(𝑡0) − 𝑣(∞)]𝑒
−(𝑡−𝑡0)/𝜏                                   2.19 

where 𝑣(𝑡0) is the initial valueat  𝑡 = 𝑡0 (not necessarily 0). Keeping in mind that Eq 

(2.18) or (2.19) applies only to step responses, that is, when the input excitation is 

constant (i.e., a dc source). 

[If the term “transient” is at all used in describing natural response, then it properly 

belongs inside quotation marks to indicate just its fleeting nature and not its actual, 

purely technical characteristics. A purely natural response is not one and the same as 

the transient component, despite the erroneous habit of some texts that tend to use the 

two interchangeably. When there’s a case where the two are equal, then it’s strictly 

coincidental and nothing more! By the same token, forced response is not identical with 

steady-state response; the two components approach equality only as time tends to 

infinity. This is because, whereas steady-state response is a constant value, forced 

response has a transient portion in addition to a constant part (strictly note here that I 

didn’t say “component”, but “part”!) within its whole, the latter of which remains 

following the disappearance of the transient portion as time tends to “infinity”. It’s this 

remaining portion that equates to steady-state response.] 

We shall illustrate these differences with an example:  

Example 2.1: In the circuit on the Fig. 2.3, it’s required to determine (a) 𝑣𝑐(𝑡) as the 

output being the capacitor voltage; (b) The series current 𝑖(𝑡). 
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t=0

i(t)

𝑅 = 1 𝑘Ω 

𝑅 

𝐶 𝐶 = 470 𝜇F 

𝑣𝑐(0) = 5 V 

+ 

𝑣𝑐(𝑡) 

- 
𝑉0 = 12𝑉 

 

Figure 2.3 

Solution: 

Either 𝑖(𝑡) or 𝑣𝑐(𝑡) can be determined, and the other then derived from the 

relationship: 

𝑖𝐶(𝑡) = 𝐶
𝑑𝑣 (𝑡)

𝑑𝑡
⟹  𝑣𝐶(𝑡) =

1

𝐶
∫ 𝑖𝐶(𝑡)𝑑𝑡 

To determine 𝑖(𝑡) directly,  

−𝑉0 + 𝑖(𝑡)𝑅 +
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡
𝑡

0

= 0 

−𝑉0 + 𝑖(𝑡)𝑅 + 𝑣𝐶(𝑡) = 0 = −𝑉0 + [𝐶
𝑑𝑣(𝑡)

𝑑𝑡
] 𝑅 + 𝑣𝐶(𝑡) 

For determining 𝑣𝑐(𝑡) as the response [note that 𝑖(𝑡) is here necessarily 𝑖𝐶(𝑡)!]: 

From (a), differentiating across to clear the integral 

 𝑅
𝑑𝑖(𝑡)

𝑑𝑡
+
1

𝐶
 𝑖(𝑡) = 0 

                           
𝑑𝑖(𝑡)

𝑑𝑡
+
1

𝑅𝐶
𝑖(𝑡) = 0 ⟺ 𝑠 +

1

𝑅𝐶
= 0        (s is the differential operator) 

with a single root at 

𝑠 = −
1

𝑅𝐶
= −

1

103 × 470 × 10−6
 

The time constant 𝜏 = 𝑅𝐶 = 103 × 470 × 10−6 = 0.47 s 
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⟹ 𝑖(𝑡) = 𝐾𝑒−𝑡/0.47                                                                                                                                                                                  

But 

               𝑖(0+)  =
[12 − 𝑣(0+)] V

1 kΩ
=
[12 − 𝑣(0−)]

103
=
(12 − 5)

1000
= 0.007 A 

                             ⟹   𝑖(𝑡) = 0.007𝑒−
𝑡

0.47  = 7𝑒−
𝑡

0.47  mA 

𝑣𝑐(𝑡) =
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡 =

106

470
∫0.007𝑒−𝑡/0.47𝑑𝑡 

𝑣𝑐(𝑡)  =
106

470
(0.007) (−

0.47

1
) 𝑒−𝑡/0.47 + 𝐾 = −7𝑒−𝑡/0.47 +𝐾 

𝑣𝑐(0
+) = 𝑣𝑐(0

−) = 5 = −7𝑒0 + 𝐾 ⟹ 𝐾 = 12 

Finally,      

𝑣𝐶(𝑡) = (12 − 7𝑒−𝑡/0.47)𝑢(𝑡) V 

Alternatively, from equation (b)  

         𝑅𝐶 
𝑑𝑣𝐶(𝑡)

𝑑𝑡
+ 𝑣𝐶(𝑡) = 𝑉0 ⟹

𝑑𝑣𝐶(𝑡)

𝑑𝑡
+
1

𝑅𝑐
𝑣𝐶(𝑡) =

𝑉0
𝑅𝐶

 

Transient response 𝑣𝐶𝑇(𝑡) = 𝐾𝑒−𝑡/𝑅𝐶 = 𝐾𝑒−𝑡/0.47 

Steady-state response 𝑣𝑐𝑠𝑠 = 12 V (as the capacitor is now an open circuit)  

𝑣𝐶(𝑡) = 𝑣𝐶𝑆𝑆 + 𝑣𝐶𝑇(𝑡) = 12 + 𝐾𝑒
−𝑡/0.47 

𝑣𝐶(0
+) = 𝑣𝐶(0

−) = 5 = 12 + 𝐾 ⟹ 𝐾 = −7 

𝑣𝐶(𝑡) = (12 − 7𝑒−𝑡/0.47)𝑢(𝑡) V, as before 

                      𝑖(𝑡) = 𝑖𝐶(𝑡) = 𝐶
𝑑𝑣𝐶(𝑡)

𝑑𝑡
= 470 × 10−6

𝑑

𝑑𝑡
(12 − 7𝑒−𝑡/0.47) 

                              = 470 × 10−6 [0 − 7 (−
1

0.47
𝑒−𝑡/0.47)] 

                              = 0.007𝑒−𝑡/0.47 A 

as previously determined directly above. The natural response 𝑣𝐶𝑁(𝑡) is evaluated by 

ignoring the source 𝑉0: 
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𝑅𝐶
𝑑𝑣𝐶𝑁(𝑡)

𝑑𝑡
+ 𝑣𝐶𝑁(𝑡) = 0, which leads to: 

𝑣𝐶𝑁(𝑡) = 𝐴𝑒
−𝑡/0.47, with A a different constant from K above. 

𝑣𝐶𝑁(0) = 5 ⟹ 𝑣𝐶𝑁(𝑡) = 5𝑒
−𝑡/0.47A 

Total response is the sum of either: ⟹ natural response plus forced response or  ⟹ 

transient response plus steady-state response                                                                                                                                    

the second component of the latter of which is necessarily constant, i.e., time-

independent.  

For the example above: Transient response: −7𝑒−
𝑡

0.47 V  

Steady-state response: 12 V Natural response: 5𝑒−𝑡/0.47V To evaluate the forced 

response 𝑣𝐶𝐹(𝑡), we equate the two sums:  

                                   12 − 7𝑒−𝑡/0.47 = 5𝑒−𝑡/0.47 + 𝑣𝐶𝐹(𝑡) 

⟹ 𝑣𝐶𝐹(𝑡) = [12 − 7𝑒−𝑡/0.47] − 5𝑒−𝑡/0.47 = 12 − 12𝑒−𝑡/0.47 = 12(1 − 𝑒−𝑡/0.47) 

So, 𝑣𝐶(𝑡) (complete response) = 𝑣𝐶𝑁(𝑡) + 𝑣𝐶𝐹(𝑡) = [5𝑒
−𝑡/0.47 + 12(1 −

𝑒−𝑡/0.47)]𝑢(𝑡) V  

For a quick comparison: 

𝑣𝐶(𝑡) = {or   
(12 − 7𝑒−𝑡/0.47)𝑢(𝑡)V

[5𝑒−𝑡/0.47 + 12(1 − 𝑒−𝑡/0.47)]𝑢(𝑡) V
 

Forced response,12(1 − 𝑒−𝑡/0.47), therefore, has a “transient” (as in temporary and not 

in the technical sense) portion within it (−12𝑒−𝑡/0.47), and approaches equality with the 

steady-state value of 12 V only after that particular transient portion has decayed 

toward zero as time tends to infinity. (Here’s once again upbraiding those texts that 

erroneously equate the two, as well as implying that natural and transient responses are 

one and the same and proceed to use them interchangeably. If, in the latter case, they 

happen to be equal, then it’s purely coincidental as they can sometimes – depending on 

the choice of network parameters thereby affecting the particular time constant – even 

be each other’s negative!) Two graphs below give a quick overview of these two different 

routes of getting to the same destination. 
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To check for the correctness of the results and the legitimacy of Fig. 2.4, boundary (i.e., 

extreme) conditions have to be considered. Knowing the values of the signal at the time 

equal to zero (initial value), and then at the time tending to infinity (final value), as well 

as at the times at which the values become (if applicable as done in calculus), 

respectively, maximum and minimum, helps in quickly appraising the graphical 

behaviour of the signal response in each case, and hence a sketch of same. 

5

10 10

5

-5

12 12

-7

00

𝑣𝑐𝑆𝑆  
𝑣𝐶(𝑡) 

𝑣𝑐 𝑇(𝑡) 

𝑣𝑐𝑁(𝑡) 

𝑣𝑐𝑓(𝑡) 

𝑣𝑐(𝑡) 

𝑣𝐶(𝑡) 

𝑣𝐶(𝑡) 

tt

  

Figure 2.4 [𝒗𝑪(𝒕) = 𝒗𝑪𝑻(𝒕) + 𝑽𝑪𝑺𝑺];         [𝒗𝑪(𝒕) = 𝒗𝑪𝑵(𝒕) + 𝒗𝑪𝑭(𝒕)] 

 

2.1 Step Response of an R-L Circuit  

Consider the RL circuit in Fig. 2.5(a), which may be replaced by the circuit in Fig. 2.5(b). 

Again, our goal is to find the inductor current 𝑖 as the circuit response. Rather than apply 

Kirchhoff's laws, we will use the simple technique in Eqs. (2.15) through (2.19). Let the 

(total) response be the sum of the transient and the steady-state responses: 

t=0R

L

+
   v(t)   -

i

VS

R

L

+
   v(t)   -

i

VSu(t)

(a) (b)                      

Figure 2.5 an RL circuit with a step input voltage 
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Method 1  

                                                                  𝑖 = 𝑖𝑇 + 𝑖𝑆𝑆                                                    2.20 

We know that the transient response is always a decaying exponential, that is, 

                                            𝑖𝑇 = 𝐾𝑒
−𝑡/𝜏,         𝜏 =

𝐿

𝑅
                                                   2.21 

where K is a constant to be determined. 

The steady-state response is the value of the current a longtime after the switch in Fig. 

2.5(a) is closed. We know, furthermore, that the transient response essentially, 

practically dies out after about five-time constants. At that time, the inductor 

approximates a short circuit, and the voltage across it is, therefore zero. The entire 

source voltage 𝑉𝑠 appears across R. Thus, the steady-state response is 

                                                         𝑖𝑠𝑠 =
𝑉𝑠
𝑅
                                                                   2.22 

Substituting Eqs (2.21) and (2.22) into Eq. (2.20) gives 

                                                       𝑖 = 𝐾𝑒−𝑡/𝜏 +
𝑉𝑠
𝑅
                                                      2.23 

We now determine the constant 𝐾 from the initial value of 𝑖. Let 𝐼0 be the initial current 

through the inductor, which may come from a source other than 𝑉𝑠. Since the current 

through an inductor cannot change instantaneously, 

                                            𝑖(0+) = 𝑖(0−) = 𝐼0                                                          2.24                              

Thus, at 𝑡 = 0, Eq (2.23) becomes  

 𝐼0 = 𝐾 +
𝑉𝑠
𝑅
⟹  𝐾 = 𝐼0 −

𝑉𝑠
𝑅

 

𝐼0 

𝑉𝑠
𝑅

 

𝑖(𝑡) 

t
0

  

Figure 2.6 Total response of the RL circuit with initial inductor current 𝑰𝟎 



  Circuit Theory with Application  

38 
 

 

Substituting for 𝐾 in Eq. (2.23), we get  

                                        𝑖(𝑡) =
𝑉𝑠
𝑅
+ (𝐼0 −

𝑉𝑠
𝑅
) 𝑒−𝑅𝑡/𝐿𝑢(𝑡) A                                    2.25 

 

This is the complete response of the RL circuit. It is illustrated in Fig. 2.6. The response in 

Eq. (2.25) may be written as 

                                   𝑖(𝑡) = 𝑖(∞) + [𝑖(0) − 𝑖(∞)]𝑒−𝑡/𝜏                                      2.26 

where 𝑖(0) and 𝑖(∞) are the initial and final values of 𝑖 respectively. Thus, finding the 

step response of an RL circuit requires three things: 

i.The initial inductor current 𝑖(0) at 𝑡 = 0 

ii.The final inductor current 𝑖(∞) 

iii.The time constant 𝜏 

We obtain item 1 from the given circuit for 𝑡 < 0, and items 2 and 3 from the circuit for 

𝑡 > 0. Once these items are determined, we can then readily put down the expression 

for the complete response using Eq. (2.26). Keep in mind that this technique applies only 

for step responses. 

Again, if the switching takes place at time 𝑡 = 𝑡0 instead of 𝑡 = 0, Eq. (2.26) becomes 

                                 𝑖(𝑡) = 𝑖(∞) + [𝑖(0) − 𝑖(∞)]𝑒−𝑅(𝑡−𝑡0)/𝐿                                2.27 

If 𝑖0 = 0, then  

                               𝑖(𝑡) = {
0,                                              𝑡 < 0
𝑉𝑠
𝑅
(1 − 𝑒−𝑅𝑡/𝐿)A,                 𝑡 > 0

                                    2.28a 

Or more compactly, 

                                  𝑖(𝑡) =
𝑉𝑠
𝑅
(1 − 𝑒−𝑅𝑡/𝐿)𝑢(𝑡) A                                                       2.28b 

This is the step response of the RL circuit with no initial inductor current. The voltage 

across the inductor is obtained from Eq. (2.28b) using 𝑣 = 𝐿 𝑑𝑖/𝑑𝑡. We get 

                              𝑣(𝑡) = 𝐿
𝑑𝑖

𝑑𝑡
= 𝑉𝑠

𝐿

𝜏𝑅
𝑒−𝑅𝑡/𝐿 , 𝜏 =

𝐿

𝑅
,   𝑡 > 0                 

or 

                                        𝑣(𝑡) = 𝑉𝑠𝑒
−𝑅𝑡/𝐿𝑢(𝑡) V                                                         2.29 

 

Fig.2.7 shows the step responses in Eqs (2.28) and (2.29) 
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𝑉𝑠 
𝑉𝑠
𝑅

 

𝑣(𝑡) 

t

𝑖(𝑡) 

0 0

(a) (b)

t

 
Figure 2.7 Step responses of an RL circuit with no initial inductor current: (a) current 

response (b) Voltage response. 

Method 2 

Refer to the RL circuit Fig. 2.5: 

(KVL):                      𝑉0 = 𝑖(𝑡)𝑅 + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
                                                                2.30 

Separation of variables allows us to write:  

𝐿𝑑𝑖(𝑡)

𝑉0 − 𝑖(𝑡)𝑅
= 𝑑𝑡 ⟹ 𝐿∫

𝑑𝑖(𝑡)

𝑉0 − 𝑖(𝑡)𝑅

𝑖(𝑡)

𝑖(0)

= ∫ 𝑑𝑡
𝑡

0

                                                   2.31 

A simple change of variables [𝑥 = 𝑉0 − 𝑖(𝑡)𝑅 ⟹ 𝑑𝑥 = −𝑅𝑑𝑖(𝑡)] leads to: 

                                 −
𝐿

𝑅
In [𝑉0 − 𝑖(𝑡)𝑅]|𝑖(0)

𝑖(𝑡) = 𝑡                                                       2.32 

−
𝐿

𝑅
{In [𝑉0 − 𝑖(𝑡)𝑅] − In(𝑉0 − 𝑖(0)𝑅)} = 𝑡 (s is the differential operator) 

⟹ In [
𝑉0 − 𝑖(𝑡)𝑅

𝑉0 − 𝑖(0)𝑅
] = −

𝑅𝑡

𝐿
 

⟹ [
0 − 𝑖(𝑡)𝑅

𝑉𝑠 − 𝑖(0)𝑅
] = 𝑒−𝑅𝑡/𝐿 

                           ⟹   𝑖(𝑡)𝑅 = 0 − (0 − 𝑖(0)𝑅)𝑒−
𝑅𝑡

𝐿                                                  2.33 

But 𝑖(0+) = 𝑖(0−) = 𝑖(0) = 0, because, prior to the closing of the switch, no current 

was flowing, and still no current flows immediately after closing the switch because, as 

has been severally pointed out, current does not change instantaneously through an 

inductor.  
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  ⟹ 𝑖(𝑡) =
𝑉0

𝑅
−
𝑉0

𝑅
𝑒−𝑅𝑡/𝐿 =

𝑉0

𝑅
(1 − 𝑒−𝑅𝑡/𝐿)𝑢(𝑡) A                                2.34 

Method 3 

Making the left-hand side of Eq. (2.31) a definite integral while the right side is indefinite, 

we have: 

                                           −
𝐿

𝑅
In [𝑉0 − 𝑖(𝑡)𝑅] = 𝑡 + 𝐾                                               2.35 

⟹       𝑉0 − 𝑖(𝑡)𝑅 = 𝑒−𝑅(𝑡+𝐾)/𝐿 

𝑖(0+) = 𝑖(0−) = 𝑖(0) = 0 ⟹ 𝑉0 = 𝑒
−𝑅𝐾/𝐿 

                            ⟹   −
𝑅𝐾

𝐿
= In𝑉0 ⟹𝐾 = −

𝐿

𝑅
In𝑉0                                                 2.36 

 −
𝐿

𝑅
In[𝑉0 − 𝑖(𝑡)𝑅] = 𝑡 −

𝐿

𝑅
In𝑉0 

𝐿

𝑅
{In[𝑉0 − 𝑖(𝑡)𝑅] − In𝑉0} = −𝑡 

𝐿

𝑅
In [

𝑉0 − 𝑖(𝑡)𝑅

𝑉0
] = −𝑡 

                                              ⟹             In [
𝑉0 − 𝑖(𝑡)𝑅

𝑉0
] = −

𝑅𝑡

𝐿
 

 ⟹               
𝑉0 − 𝑖(𝑡)𝑅

𝑉0
= 𝑒−𝑅𝑡/𝐿 

⟹            𝑖(𝑡)𝑅 = 𝑉0 − 𝑉0𝑒
−𝑅𝑡/𝐿 

                                     𝑖(𝑡) =
𝑉0
𝑅
(1 − 𝑒−𝑅𝑡/𝐿)𝑢(𝑡) A                                               2.37 

“Reading” the circuit, before closing the switch, no current flows, and immediately after 

the closure, still no current flows because of the presence of the inductor. Substituting 

zero for 𝑡 in the above expression for 𝑖(𝑡), results in  

  𝑖(0) =  
𝑉0
𝑅
(1 − 𝑒0) = 0 
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At the (terminal) steady state, i.e., as 𝑡 → ∞, transient portion has died off, leaving just 
𝑉𝑠

𝑅
 as the (steady-state) response. Reading from the circuit, the inductor appears as a 

short circuit in the steady state, and a simple application of Ohm’s law results in  
𝑉𝑠

𝑅
  as 

the current response. 

At two-time constants, a signal must have decayed, therefore, to (0.37)2 = 0.1369, 

approximately 14 of its initial value, at three-time constants, (0.37)3 = 0.0506, 

approximately 5% of the original value. At five time-constants, a typical signal has gone 

down to (0.37)5 = 0.007, approximately 0.7% of its initial value. In essence, even 

though, theoretically, a decaying exponential signal (function) gets to be zero only at 

time infinity, yet for all practical purposes, the time “infinity” might just be a few ticks of 

the seconds hand of the clock representing five-time constants! It is worthy of note to 

be mindful that the “second” above might in some circumstantial configuration, be 

replaced by “micro-seconds”! 

So, by inspection, time constant for a first order circuit is the quotient of the coefficient 

of the derivative term and that of the (zeroth derivative) function. Note that 𝑥(𝑡) can be 

expressed in a lightly varying, more tell-tale form as: 

𝑥(𝑡) = 𝑥(0)𝑒
−𝑡/(

𝑎1
𝑎0
)
 Thereby immediately discerning the time constant term 𝜏 =

𝑎1

𝑎0
. 

Time constant, therefore, depends on the values of the network parameters (elements), 

and in the foregoing case these are resistance and capacitance. Investigate that for RL 

circuit, the equivalent time constant would be  𝜏 =L/R (the dual of RC). Also investigate 

(as an exercise) that L/R (as well as RC) also has the dimension of time, that is, seconds. 

So, for series RL circuit (actually parallel with current source, if viewed strictly from its 

dual perspective!), 

𝑖(𝑡) = 𝑖(0)𝑒−
𝑅𝑡

𝐿           

            𝜏 =
𝐿

𝑅
 

In the typical first-order homogeneous differential equation, 𝑎1
𝑑𝑥

𝑑𝑡
+ 𝑎0𝑥 = 0, where we 

ended up with 𝑎1𝑝 + 𝑎0 = 0 as the characteristic equation in determining the response, 

a cut-to-the-chase determination of the root can be made simply by replacing the “
𝑑𝑥

𝑑𝑡
” 

with 𝑝 (differential operator) — [and hence 𝑥 by unity (1)]— or an  "𝑠"  as is commonly 

done to account for the general complex nature of the root(s) of the equation. 
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2.1.1 Driven RL, RC, RLC Circuits 

t=0 R R

LL

V0
V0u(t)

i(t) i(t)

 

Figure 2.8 

The equivalence of the two circuits in Fig. 2.8 can be established by noting a quick review 

of the unit step function:  

                                           𝑢(𝑡 − 𝑎) = {
0, 𝑡 < 𝑎
1, 𝑡 ≥ 𝑎

                                                       2.38 

The value of 𝑢(𝑡 − 𝑎) at exactly 𝑡 = 𝑎 is, strictly speaking, not determinate (undefined, 

or “infinity”), although it’s generally, practically assumed that 𝑢(𝑡 − 𝑎) starts to take on 

the value of unity from 𝑡 = 𝑎.  

In the above circuits, the switch is turned on at 𝑡 = 0, resulting in a driving source voltage 

of 𝑉0 volts which is a dc (i.e., constant) potential. It may be safely assumed that the 

inductor was initially fully energized, and its reactive nature would induce an 

exponentially decaying response. The response of the current through the inductor, are 

of two parts (components): 

1. A natural response (“transient”) due to the initial (energy) condition(s) of the 

network element(s) that would eventually die off at time “infinity”, leaving … 

2. … a forced response, that replicates the very nature of the forcing function (driving 

source). By this is meant that, a dc forcing function would induce a dc forced response, 

whereas an ac forcing function would likewise give rise to an ac forced response. So, the 

input and output signals would possess similar frequency (and therefore similar basic 

character), only, possibly, differing in their amplitudes and phase angles.  

The total response is the sum of the two component responses (natural and forced):  

  𝑖(𝑡) = 𝑖𝑁(𝑡) + 𝑖𝐹(𝑡) with both term general being time-dependent.  
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2.1.2 A More General Approach 

For a general equation with a forcing function (i.e., source, as we’re now beyond age of 

homogeneity!):         

                                                            
𝑑𝑦

𝑑𝑡
+ 𝑝𝑦 = 𝑄                                                2.39 

where 𝑦 [understood to be actually 𝑦(𝑡) since it’s in general time-dependent] stands for 

either current or voltage signal. Rearranging Eq. 2.39, 

                                                    𝑑𝑦 + 𝑝𝑦𝑑𝑡 = 𝑄𝑑𝑡                                                2.40 

with the forcing function 𝑄 = 𝑄(𝑡), since it’s in general, again, time-dependent. It’s 

further assumed that 𝑝 is a positive constant, and momentarily and for simplicity 

that 𝑄 is also a constant. Multiplying Eq. 2.40 across by the integrating factor 

                      𝑒∫𝑝𝑑𝑡 = 𝑒𝑝𝑡: 𝑒𝑝𝑡𝑑𝑦 + 𝑦𝑝𝑒𝑝𝑡 = 𝑄𝑒𝑝𝑡𝑑𝑡                                           2.41 

Using the rule for the differentiation of a product (chain rule) on Eq. 2.41:                        

                           𝑑(𝑦𝑒𝑝𝑡) = 𝑒𝑝𝑡𝑑𝑦 + 𝑦𝑝𝑒𝑝𝑡𝑑𝑡 = 𝑄𝑒𝑝𝑡𝑑𝑡                                  2.42 

 Integrating both sides of Eq. 2.42:  ∫𝑑(𝑦𝑒𝑝𝑡) = ∫𝑄𝑒𝑝𝑡𝑑𝑡                                                

⟹                                𝑦𝑒𝑝𝑡 = ∫𝑄𝑒𝑝𝑡𝑑𝑡 (+𝐾)                                                       2.43 

                                 𝑦 = 𝑒−𝑝𝑡∫𝑄𝑒𝑝𝑡 𝑑𝑡 + 𝐾𝑒−𝑝𝑡                                                  2.44 

where 𝐾 is the constant of the indefinite integration. 

For the natural response (no forcing function),  

                                  𝑄 = 0 ⟹ 𝑦𝑁(𝑡) = 𝐴𝑒
−𝑝𝑡 = 𝐾𝑒−𝑝𝑡                                        2.45 

and 𝑝 is never negative for any circuit with only resistors, inductors and capacitors, and 

that depends only on the passive circuit elements, meaning, therefore, that we’re here 

concerned only with forward-looking time.  

For the steady-state response, assuming momentarily that 𝑄 is constant (dc forcing 

function):  
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 𝑦𝑠𝑠 =  𝑦(𝑡 → ∞) = 𝑒−𝑝𝑡𝑄∫𝑒𝑝𝑡𝑑𝑡 + 𝐾𝑒−𝑝𝑡(𝑡 → ∞) = 𝑒−𝑝𝑡
𝑄𝑒𝑝𝑡

𝑝
=
𝑄
𝑝⁄  

          ⟹             𝑦(𝑡) = 𝑦𝑠𝑠 + 𝑦𝑇 =
𝑄
𝑝⁄ + 𝐾𝑒−𝑝𝑡                                                 2.46 

For the circuit of Fig. 2.8   𝑦𝑠𝑠 = 
𝑄
𝑝⁄  =

𝑉𝑜
𝑅⁄ (𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑖𝑠 𝑠ℎ𝑜𝑟𝑡) 𝑝 = 

1

𝜏
⟹ 𝜏 

= 1/𝑝 Applying initial condition𝑦(0) = 𝑌0,  𝑦(0) =
𝑄
𝑝⁄ + 𝐾 ⟹ 𝐾 = 𝑌𝑜 −

𝑄
𝑝⁄   

Finally,  

            𝑦(𝑡) =
𝑄
𝑝⁄ + (𝑌0 −

𝑄
𝑝⁄ ) 𝑒−𝑝𝑡 = 𝑦𝑠𝑠 + 𝑦𝑇(𝑡)                                           2.47a 

Rearranging, 

             𝑦(𝑡) = (
𝑄
𝑝⁄ ) (1 − 𝑒−𝑝𝑡) + 𝑌0𝑒

−𝑝𝑡  =  𝑦𝐹(𝑡) + 𝑦𝑁(𝑡)                            2.27b 

i.e., two different summations of the same result.   

So, given a circuit with a driving source (mathematically known as forcing function), these 

steps need to be taken in order to be able to readily put down the expression for the 

complete response, either way:  

1. Determine the time constant 𝜏 = (𝑅𝑒𝑞)(𝐶𝑒𝑞) 𝑜𝑟
(𝐿𝑒𝑞)

(𝑅𝑒𝑞)
  ;  

2. determine the initial value (𝑌𝑜 in the foregoing case); 

3. Evaluate the steady state-response, which is achieved by zeroing all the reactive 

elements in the circuit (shunting all the inductors and open-circuiting all the capacitors).  

Then, any or all of the fundamental laws of electrical circuits can be applied to 

determine the above. (Remember that the three laws that govern any circuit, namely, 

KVL, KCL and Ohm’s law, are applicable at any point in time and space, i.e., 

instantaneously or at a steady state. 

Having done all of these, then:  

𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = (𝑺𝒕𝒆𝒂𝒅𝒚 − 𝒔𝒕𝒂𝒕𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆) + (𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒗𝒂𝒍𝒖𝒆 𝒎𝒊𝒏𝒖𝒔 𝑺𝒕𝒆𝒂𝒅𝒚 − 𝒔𝒕𝒂𝒕𝒆 𝒗𝒂𝒍𝒖𝒆)𝒆−𝒑𝒕  

𝑜𝑟  

= (𝑆𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑡𝑎𝑡𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)(1 − 𝑒−𝑝𝑡) + (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)𝑒−𝑝𝑡 
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Comparing and contrasting the two different expressions for the complete response 

shown in Eq. 2.47, would enable one to quickly appreciate what the writer have 

previously emphasized: steady-state response 
𝑄
𝑝⁄  and the forced response (

𝑄
𝑝⁄ ) (1 −

𝑒−𝑝𝑡), are not, as made obvious here, one and the same! They become equal only after 

the transient portion of the forced response (−
𝑄
𝑝⁄ ) (𝑒−𝑝𝑡), has died off as time tends 

to infinity. Similarly, natural response (𝑌𝑜𝑒
−𝑝𝑡) and the transient response (𝑌0 −

𝑄
𝑝⁄ ) 𝑒−𝑝𝑡, are obviously not interchangeable (as some texts erroneously assumed based 

on a situation that may be peculiar to a particular circuit and therefore offer a special 

case). If, for instance, steady-state value (
𝑄
𝑝⁄ ) equates to zero – as in a dc current 

through a capacitor, or – dually – a dc voltage across an inductor– then and only then 

will the natural and transient responses be each other’s equal. Furthermore, if perchance 

the steady-state value is twice the initial value, then natural and transient responses 

actually become each other’s negative! (This of course would depend on the choice of 

elemental circuit parameters.) So, touché! – for some texts that tend to use the two 

interchangeably. (Analogously, it’s exhibiting mathematical dishonesty, for instance, to 

employ a rectangle, or even more grievously a square, when required to prove a property 

of a four-sided figure! Upholding of scientific integrity dictates that we should use, by 

way of generalising, a figure with four unequal sides, because every rectangle is a four-

sided figure but not vice versa.) 

Example 2.2: In the circuit of Fig. 2.9, determine 𝑖𝐿(𝑡) for all time (−∞ < 𝑡 < ∞) 

25V

25𝑢(𝑡)𝑉 4Ω 

12Ω 
6 H

𝑖𝐿(𝑡) 

 

Figure 2.9 

Solution: 

To get the time constant,  𝜏 =
𝐿𝑒𝑞

𝑅𝑒𝑞
, 
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when all the sources (both voltage sources) are zeroed by short circuiting them, and their 

Thevenin equivalent resistance 𝑅𝑒𝑞 is thereby determined:  

𝑅𝑒𝑞 = 4||12 =
(4)(12)

(4 + 12)
=
48

16
= 3 Ω 

𝐿𝑒𝑞 = 6 H ⟹ 𝜏 =
6 H

3 Ω
= 2 s 

Transient response:                        

𝑖𝑇(𝑡) = 𝐾𝑒−𝑡/𝜏 = 𝐾𝑒−
𝑡

2 

To evaluate the steady-state response, we note that the inductor presents a short circuit 

to the dc (total) voltage, the 12 Ω resistor is therefore shorted out leaving only the 4 Ω 

“seen” by 25 + 25 = 50 V. So,  

𝑖𝐿𝑠𝑠 =
50 V

4 Ω
= 12.5 A 

Total response:                          

𝑖𝐿(𝑡) = 𝑖𝐿𝑠𝑠 + 𝑖𝐿𝑇(𝑡) = 12.5 + 𝐾𝑒−
𝑡

2 

To evaluate the constant K (note carefully that the K here is different from the constant 

attached with respect to the natural response), the initial value of the current prior to 

𝑡 = 0− must be determined. Only the 25 V supply is operating as the step voltage is zero 

prior to the time 𝑡 = 0. In this first steady-state situation the 6 Ω resistor is shorted out 

by the inductor seen as a shunt by the dc battery resulting in  

𝑖𝐿(0
−) =

25 V

4 Ω
= 6.25 A 

𝑖𝐿(0
+) = 𝑖𝐿(0

−) = 6.25 = 12.5 + 𝐾 ⟹ 𝐾 = −6.25 

Finally,   

𝑖𝐿(𝑡) = 12.5 − 6.25𝑒−
𝑡

2, 𝑡 > 0 

That is, 

𝑖𝐿(𝑡) = {
6.25 A,                          𝑡 < 0

12.5 − 6.25𝑒−
𝑡

2 A,   𝑡 ≥ 0
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Combining these two expressions, 𝑖𝐿(𝑡) = 6.25 + (6.25 − 6.25𝑒
−
𝑡

2) 𝑢(𝑡) A 

   𝑖𝐿(𝑡) = 6.25 + 6.25 (1 − 𝑒−
𝑡

2) 𝑢(𝑡) A 

The validity of the above expressions can be ascertained by applying “special” times at 

𝑡 = 0 and 𝑡 → ∞ to determine the initial and steady-state responses, respectively. 

Notes on natural and forced responses: As some texts erroneously equate natural and 

transient responses, and forced and steady-state responses, and proceed to same use 

interchangeably, let’s use the just-concluded example to clearly show the respective 

differences: 

⟹ Natural response is evaluated “independently” by equating 𝐴𝑒−𝑡/2 = 6.25 at 𝑡 = 0+ 

(note that 𝐴 is a different constant from 𝐾) giving 𝐴 = 6.25, whereas the total response 

was summed up before evaluating the plain 𝐾 

So, 𝑖𝐿𝑁(𝑡) = 6.25𝑒
−𝑡/2 (for inductor current), 

𝑖𝐿𝐹(𝑡) = 𝑖𝐿𝑠𝑠(1 − 𝑒
−𝑡/2) = 12.5(1 − 𝑒−𝑡/2) A, 𝑡 > 0 

For 𝑡 > 0, 𝑖𝑠𝑠 = 12.5 A (constant, i.e., time-independent)  

𝑖𝐿𝑇(𝑡) = [𝑖𝐿(0) − 𝑖𝐿𝑠𝑠]𝑒
−𝑡/2 = (6.25 − 12.5)𝑒−𝑡/2 = −6.25𝑒−𝑡/2 A 

 Thus 𝑖𝐿𝑠𝑠 becomes equal to 𝑖𝐿𝐹(𝑡) only as 𝑡 → ∞, and 𝑖𝐿𝑇(𝑡) and 𝑖𝐿𝑁(𝑡) are actually each 

other’s negative! This is because, as I pointed out previously, the steady-state response 

(12.5 A) is twice the initial value of 6.25 A [evaluated by substituting 𝑡 = 0 in the 

expression for (total) 𝑖𝐿(𝑡)]   

Example 2.3: In the circuit of Fig. 2.10, the coil has a 10 Ω resistance and a 

6 H inductance. If 𝑅 = 14 Ω, V =  24 V and the switch is opened at 𝑡 = 0, determine:(a) 

𝑖𝑅(𝑡) (b) the voltage across coil of the circuit at  𝑡 = 0.1 s 

10Ω 𝑅 

𝑖 

24𝑉 

coil

𝑡 = 0 

 

Figure 2.10 
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Solution: 

(a) 𝑡 < 0 (Switch is closed):  

                                                   𝑖(0+) = 𝑖𝑅(0
−) =

24

10
= 2.4 A 

𝑡 > 0 (Switch is open): 

𝑖𝑠𝑠 =
24

14 + 10
= 24/24 = 1 A 

𝑖𝑇 = 𝐾𝑒
−𝑡/𝜏, where 𝜏 = 6 H/(10 + 14) Ω = 0.25 s 

𝑖𝑅(𝑡) = 𝑖𝑠𝑠 + 𝑖𝑇(𝑡) 

𝑖𝑅(𝑡) = 1 + 𝐾𝑒−4𝑡 

𝑖𝑅(0) = 1 + 𝐾𝑒
𝑠0 

  2.4 = 1 + 𝐾 

 𝐾 = 1.4 

𝑖𝑅(𝑡) = 1 + 1.4𝑒−4𝑡 A 

(b)                                     𝑖(0.1) = 1 + 1.4𝑒−4(0.1) = 1.94 A 

Thus, 

𝑉10Ω + 𝑉𝑅 = 𝑖𝑅(10 + 14) = 1.94 × 24 = 46.52 V 

But  

𝑉𝑐𝑜𝑖𝑙 = 𝑉 − (𝑉10Ω + 𝑉𝑅) = 24 − 46.52 

      𝑉𝑐𝑜𝑖𝑙 = −22.52 V 

Example 2.4: For the circuit shown in the Fig 2.11 below, the switch has been open for 

a long time and is then suddenly closed at t = 0. Calculate: 

24𝑉 
4Ω 

12Ω 
8H

𝑖2 

𝑖1 𝑖 

t=0

 

  Figure 2.11 
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(a) 𝑖2 at 𝑡 = 0.3 s 

(b) the steady state power supplied by the source of the circuit  

(c) energy stored in the inductor  

Solution:                                                                                                                                                                                                                                                   

(a) 𝑡 < 0 (switch is open):  𝑖2(0
−) = 0 = [𝑖2(0

+)] = 𝑖2(0)         

𝑡 → ∞ (Switch is closed): 𝑖2(∞) = 24 V/4 Ω = 6 A   

  𝑖2(𝑡) = 𝑖2(∞) + [𝑖2(0) − 𝑖2(∞)]𝑒
−𝑡/𝜏, 

where 𝜏 =
𝐿

𝑅𝑒𝑞
 =

8

4
=  2 s  

𝑖2(𝑡) = 6 + (0 − 6)𝑒
−0.5𝑡 = 6 − 6𝑒−0.5𝑡 ⟹  𝑖2(𝑡) = 6(1 − 𝑒

−0.5𝑡) A  

 At 𝑡 = 0.3 s: 𝑖2(0.3) = 6(1 − 𝑒
−0.5×0.3) ⟹ 𝑖2(0.3) = 0.836 A 

(b) 𝑃 = (𝐼1 + 𝐼2) 𝑉 

 𝑃 = (
24

12
+
24

4
)A × 24 V = 8 × 24 = 192 W 

(c)𝑊𝐿 =
1

2
𝐿𝑖𝐿
2 

𝑊𝐿(𝑡) =
1

2
× 8 × [6(1 − 𝑒−0.5𝑡)]2 

𝑊𝐿(𝑡) = 144(1 − 2𝑒−0.5𝑡 + 𝑒−𝑡) J 

Example 2.5: The circuit of Fig. 2.12 is under steady state with the switch at position 1. 

At 𝑡 = 0, the switch is moved to position 2. Find 𝑖(𝑡) 

40Ω 

20mH

1

2

10V50V

 

Figure 2.12 

At 𝑡 < 0 (at point 1)  
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𝑖(0) =
50

40
= 1.25 A 

At  𝑡 = ∞ (at point 2)  

𝑖(∞) =
10

40
= 0.25 A 

𝜏 =
20 × 10−3

40
=

1

2000
 

𝑖(𝑡) = 0.25 + (1.25 − 0.25)𝑒−2000𝑡 

𝑖(𝑡) = 0.25 + 𝑒−2000𝑡 A 

Example 2.6: The circuit of Fig.2.13 is under steady state with the switch at position 1. 

At 𝑡 = 0, the switch is moved to position 2. Determine  

(i) 𝑣𝑐  

(ii) The current in the circuit 𝑖𝑐 

(iii) The energy stored in the capacitor and resistor 

1

2

1 𝜇𝐹 

+ 

𝑣𝑐  

- 

 

5 𝑘Ω 

50 V 

 

100 V 

 

t=0

 

 Figure 2.13 

Solution: 

At 𝑡 < 0 (at point 1) 

𝑣𝑐(0
−) = 𝑣𝑐(0

+) = 100 V 

At 𝑡 = ∞ (at point 2)  

𝑣𝑐(∞) = −50 V 

𝜏 = 𝑅𝐶 = (5 × 103)(1 × 10−6) 
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𝜏 =
1

200
 

𝑣𝑐(𝑡) = −50 + (100 + 50)𝑒
−200𝑡 

𝑣𝑐(𝑡) = −50 + 150𝑒
−200𝑡 V 

(ii) The current in the circuit at 𝑡 > 0 

𝑖 = 𝑖𝑐 = 𝐶
𝑑𝑣𝑐
𝑑𝑡

 

𝑖𝑐 = 1 × 10
−6
𝑑

𝑑𝑡
{150𝑒−200𝑡 − 50} 

= 1 × 10−6 × 150 − 200𝑒−200𝑡 

𝑖𝑐 = −0.03𝑒
−200𝑡 A 

𝑖𝑐 = 30𝑒−200𝑡 mA 

(iv) Energy in capacitor 𝑤𝑐 =
1

2
𝐶𝑣𝑐

2 

𝑤𝑐 =
1

2
× 1 × 10−6(−50 + 150𝑒−200𝑡)2 

𝑤𝑐 =
1

2 × 1 × 10−6
[50(3𝑒−200𝑡 − 1)]2 

𝑤𝑐 = 5 × 10−7 × 2500 (3𝑒−200𝑡 − 1)2 

𝑤𝑐 = 1.25 × 10−3(3𝑒−200𝑡 − 1)2 

𝑤𝑐 = 1.25 (9𝑒−400𝑡 − 6𝑒−200𝑡 + 1) mJ 

 Energy in resistor  

𝑤𝑅 = ∫
𝑣𝑅

2

𝑅

𝑡

0

𝑑𝑡 

But 𝑣𝑅 = 𝑖𝑅 = (−0.03𝑒
−200𝑡)(5 × 103) 

𝑣𝑅 = −150𝑒−200𝑡 V 

𝑤𝑅 = ∫
(−150𝑒−200𝑡)2

5000

𝑡

0
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𝑤𝑅 =
22500

500
∫ 𝑒−400𝑡
𝑡

0

𝑑𝑡 

𝑤𝑅 =
4.5𝑒−400𝑡

−400
|
0

𝑡

 

Evaluating the boundaries  

𝑤𝑅 = −0.01125 𝑒
−400𝑡 + 0.01125𝑒0 

𝑤𝑅 = 0.01125 − 0.1125 𝑒−400𝑡J 

𝑤𝑅 = 0.01125 (1 − 𝑒
−400𝑡) J 

𝑤𝑅 = 11.25(1 − 𝑒
−400𝑡) mJ 

Example 2.7: For the circuit of Fig. 2.14, determine the 

2 MΩ 

24 V

35 𝜇F 

t = 0

+ -

                                                                                
Figure 2.14 

(i) Current through the and voltage across the capacitor at 𝑡 = 0+𝑎𝑛𝑑 𝑡 = 0− 

(ii) The current in the circuit at 𝑡 = 70 s 

Solution: 

(i) At 𝑡 < 0 

𝑣(0−) = 𝑣(0+) = 0 V   𝑖(0) = 0 A 

At 𝑡 = 0+ [immediately the switch’s is close] 

𝑖(0+) = 𝑖𝑐(0
+) =

𝑉

𝑅
=

24

2 × 106
 

𝑖(0+) = 𝑖𝑐(0
+) = 1.2 × 10−6 A 

𝑖(0+) = 𝑖𝑐(0
+) = 12 μA 
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(ii) 𝑣(0) = 0 V 

𝑣(∞) = 24 V 

𝑣(𝑡) = 𝑉0 + (𝑉0 − 𝑉∞)𝑒
−
𝑡

𝜏 

Where  𝜏 = 𝑅𝐶 = (35 × 10−6)(2 × 106) 

𝜏 = 70 

𝑣𝑐(𝑡) = 24 − 24𝑒
−

1

70𝑡 𝑉 

𝑖𝑐(𝑡) =
𝐶𝑑𝑣

𝑑𝑡
= 35 × 10−5

𝑑

𝑑𝑡
(24 − 24𝑒−

𝑡

70) 

𝑖𝑐(𝑡) = 35 × 10−6 × −24 × −
1

70
𝑒−

𝑡

70 

𝑖𝑐(𝑡) = 1.2 × 10−5𝑒−
𝑡

70  A 

At  𝑡 = 70𝑠 

𝑖𝑐(70𝑠) = 1.2 × 10
−5𝑒−1 

𝑖𝑐(70𝑠) = 4.415 × 10
−6 A 

𝑖𝑐(70𝑠) = 4.415 μA 

Example 2.8: The circuit of Fig. 2.15 is under steady state with the switch at position 1. 

At 𝑡 = 0, the switch is moved to position 2. Determine  

(i) 𝑖(𝑡) 

(ii) How much energy is dissipated in the 2 Ω resistor at 𝑡 = 2 s 

5 Ω 

40 V 

t = 01

2

20 V 

2 Ω 

0.5 H 

 

Figure 2.15 
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Solution: 

(i) At point 1 (i.e., 𝑡 < 0) 

𝑖(0−) = 𝑖(0+) =
20

5
= 4 A 

At point 2 (i.e.,  𝑡 = ∞) 

𝑖(∞) =
40

2
= 20 A 

𝜏 =
0.5

2
=
1

4
 

𝑖(𝑡) = 20 + (4 − 20)𝑒−4𝑡 

𝑖(𝑡) = 20 − 16𝑒−4𝑡 A 

𝑖(𝑡) = 20 − 16𝑒−4𝑡 A 

(ii) Energy at 2 Ω resistor at 𝑡 = 0.25 s 

𝑤𝑅 = ∫ 𝑖2
𝑡

0

 𝑅𝑑𝑡 

𝑤𝑅 = ∫ 2 × (20 − 16𝑒−4𝑡)2𝑑𝑡
𝑡

0

 

= ∫ 2 × (400 − 640𝑒−4𝑡 + 256𝑒−8𝑡)
𝑡

0

𝑑𝑡 

= 2 [400𝑡 +
640𝑒−4𝑡

4
−
256𝑒−8𝑡

8
]
0

𝑡

 

= 2[400𝑡 + 160𝑒−4𝑡 − 32𝑒−8𝑡]|0
𝑡  

Evaluating the boundaries  

𝑤𝑅 = 800𝑡 + 320𝑒
−4𝑡 − 64𝑒−8𝑡 − 320 + 64 

At 𝑡 = 0.25 s 

𝑤𝑅 = 53.0599 J 
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Example 2.9: The switch in the circuit of Fig.2.16 is closed at 𝑡 = 0, at which moment 

the capacitor has charge 𝑄0 = 500 μC, with the polarity indicated. Determine 𝑞 and 𝑖 

at 𝑡 > 0 

1 𝑘Ω t = 0

50 V 
20 𝜇F 

-   Q
0   +

𝑖 

 

 Figure 2.16 

Solution: 

Given 𝑄0 = 500 μC at 𝑡 < 0 

Recall  𝑄0 = 𝐶𝑣𝑐(0) 

𝑣𝑐(0) =
𝑄0
𝐶
=
500 × 10−6

20 × 10−6
 

𝑉𝑐(0) = −25 V 

At 𝑡 = ∞ 

𝑣(𝑡) = 𝑉∞ + (𝑉0 − 𝑉∞)𝑒
−𝑡/𝜏 

𝜏 = 1 × 103 × 20 × 10−6 =
1

50
 

𝑣(𝑡) = 50 + (25 − 50)𝑒−50𝑡 

𝑣(𝑡) = 50 − 75𝑒−50𝑡 V 

But 𝑄∞ = 𝐶𝑣∞ 

𝑄∞ = (20 × 10
−6)(50 − 75𝑒−50𝑡) 

= 0.001 − 0.0015𝑒−50𝑡 C 

𝑄∞ = 1000 − 1500𝑒
−50𝑡 μC 
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𝑖𝑐 = 𝐶
𝑑𝑉

𝑑𝑡
= 20 × 10−6

𝑑[50 − 75𝑒−50𝑡]

𝑑𝑡
 

𝑖𝑐 = 20 × 10
−6 × −75 × −50𝑒−50𝑡 

𝑖𝑐 = 0.075𝑒
−50𝑡 A 

= 70𝑒−50𝑡 mA 

𝑖𝑐 = 0.5 × 10
−6 × 52.64 × −4000𝑒−4000𝑡 

𝑖𝑐 = −0.10528𝑒−4000𝑡 

𝑖𝑐 = −105.28𝑒−4000𝑡 mA 

Example 2.10: Obtain the current 𝑖(𝑡), for all values of 𝑡, in the circuit shown in the 

Fig.2.17. 

To obtain 𝑖(𝑡) below for all time  

10 Ω 

2(−𝑡) A 10 Ω 

50u(t) V 

0.2 H 

 

Figure 2.17 

At 𝑡 < 0 

𝑖(0) =
10

10 + 10
× 2 =

20

20
= 1 A 

𝑖(0+) = 𝑖(0−) = 1 A 

At 𝑡 > 0 

−𝑉 = 𝑖 𝑅𝑒𝑞 

𝑖∞ =
−𝑉

𝑅𝑒𝑞
=

−50

10 + 10
=
−50

20
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𝑖∞ = −2.5 A 

For time 𝑡 

𝑖(𝑡) = 𝑖∞ + (𝑖0 − 𝑖∞)𝑒
−𝑡/𝜏 

𝜏 =
𝐿

𝑅𝑒𝑞
=

0.2

10 + 10
=
0.2

20
=

1

100
 

𝑖(𝑡) = −2.5 + (1 + 2.5)𝑒−100𝑡 

𝑖(𝑡) = −2.5 + 3.5𝑒−100𝑡 A 

2.2 Exercise  

1. For Fig. 1: (a) Determine the time 

constant of the network 

 (b) With C changed to L, 

determine the time constant  

 (c) With C again changed to 2L, 

determine 𝜏 

10 V

t=0

2𝑅 

𝑅 

C

                                                               

Figure 1 

2. For the circuit of Fig. 2, given that 

V = 10 V determine 
𝑑𝑣

𝑑𝑡
 at the 

given instant in   time. 

40 V 20 Ω 

10 Ω 

1

4
 F 

+

-

V

 

Figure 2 

3.  For the circuit shown in Fig. 3, 

determine 𝑣(𝑡)  when the switch 

has been opened for a long time 

and then suddenly closed at t = 

0+. 

12 Ω 

4 Ω 

5
 𝜇

F
 

+

-

𝑣(𝑡) 12 A

t=0

8 Ω 

                                       

Figure 3 

4.  The circuit of Fig. 4 was under 

steady state before the switch 

was opened. If 𝑅1 = 1 Ω, R2 =

2 Ω, C = 0.167 F, and the battery 

voltage is 24 V, determine 𝑣𝑐(0
−) 

and 𝑣𝑐(0
+). Also find 𝑖(0+) 

t=0

C
𝑅2 

𝐸𝑏𝑎𝑡  

𝑅1 

i

                                                                         
Figure 4 
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Answer: 𝒊(𝟎+) = −𝟖 𝐀 

5.  Determine 𝑖 of Exercise (4)1𝑠 

after the switch is opened. 

Answer: 𝒊 = −𝟏. 𝟎𝟖 𝐀 

6. The initial current in the inductor 

L of the circuit of Fig. 5 with 𝑆 

open 𝐼0. Determine the current 

after 𝑆 is closed  

t=0

𝑖𝐿  

𝑅1 

24 V

S

R

L

 
 Figure 5 

Answer: 𝒊𝑳 = 𝑰𝒐𝒆
−(𝑹/𝑳)𝒕 

7.  In the circuit of Fig. 6, the switch 

is closed at 𝑡 = 0 when the 2 H 

inductor has a current 𝐼𝑜 = 10 A. 

Find the voltage across the 

resistor. 

t=0

4 Ω 

𝐼0 = 10 A 6 H
2 H

3 H

 
 Figure 6 

Answer: 𝑽𝑹(𝒕) = 𝟒𝟎𝒆
−𝒕 𝐕 

8.  A 240 V dc generator supplies 

current to a parallel circuit 

consisting of a resistor and a coil 

as shown in Fig.7. The system is in 

a steady state. Determine the 

current in the coil one second 

after the breaker is tripped. 

+

- 300 Ω 

240 V 200 H
600 Ω 

Circuit breaker

i

 
 Figure 7 

Answer: 𝒊 = 𝟎. 𝟎𝟎𝟖𝟗 𝐀 

9.  What is the voltage induced in 

the coil and the voltage across the 

coil 1𝑠 after the breaker is tripped 

in the circuit of Fig.7 

Answer: 𝒗𝒄𝒐𝒊𝒍 = −𝟓. 𝟑𝟒 𝐕 

10.  The circuit of Fig 8 is under steady 

state with the switch at position 

1. At 𝑡 = 0, the switch is moved to 

position 2. Find 𝑖 

50 V

20 mH

40 Ω 1

2

10 V

i

                                                                
Figure 8 

Answer: 𝑽𝒄 = −𝟓𝟎 + 𝟏𝟓𝟎𝒆−𝟐𝟎𝟎𝒕 𝐕 

11. Find 𝑡 > 0 in the circuit of Fig. 9. 

Assume the switch has been open 

for a long time and is closed at 

𝑡 = 0. Calculate 𝑣(𝑡) at 𝑡 = 0.5 s. 

10 V 5 V

t=02 Ω 6 Ω 

1 

3
F 

+

-

𝑣 

 

Figure 9 
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CHAPTER 3 

TRANSIENT IN R-L-C SOURCE-FREE CIRCUIT  
 

3.0 Introduction 

In the previous chapter we considered circuits with a single storage element (a 

capacitor or an inductor). Such circuits are first-order because the differential 

equations describing them are first-order. In this chapter we will consider circuits 

containing two energy-storage elements. These are known as second-order circuits 

because their responses are described by differential equations that contain second 

derivatives. 

Typical examples of second-order circuits are RLC circuits in which two or more passive 

elements are present. Examples of such circuits are shown in Figs. 3.1 and 3.5  

3.1 Source-Free (Parallel) R-L-C Circuit  

Areas of application that have to do with the understanding of the natural behavior of 

the parallel R-L-C circuit include filter designs, communication networks etc.  

Consider the parallel RLC circuit shown in Fig 3.1. Assume initial inductor current 𝐼0 and 

initial capacitor voltage 𝑉0: 

                                    𝑖(0) = 𝐼0 =
1

𝐿
∫ 𝑣(𝑡)𝑑𝑡
0

−∞

                                                       3.0a 

                                                              𝑣(0) = 𝑉0                                                         3.0b 

𝑖𝐿 

𝑖𝐶  𝑖𝑅  v

R L C

 

Figure 3.1 

For the parallel-connected circuit shown above, an assumption can be made that the 

resistor is used to “practicalize” the “ideal” capacitor*. [*Recall: A practical capacitor is 

modelled as an ideal (i.e., zero internal resistance) capacitor in parallel with some 

resistance, and a practical inductor is, on the other hand, modelled as an ideal inductor 
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in series with some (internal) resistance]. Therefore, the implication of the circuit in Fig. 

3.1 is that a practical capacitor is in parallel with an ideal inductor. Obviously, it would 

be best to determine the voltage as the response since this is common to all three 

network elements, and thereafter, if need be, each of the branch currents can then be 

evaluated. Were we to set up any of the branch currents as the object for determination, 

the intermediate step would still involve determining the voltage, which then exposes 

the redundancy of the initial step! 

To obtain the integral-differential equation that describes the response of the above 

network (either current or voltage), we take a single KCL involving nodal equation:  

                                   
𝑣

𝑅
+
1

𝐿
∫ 𝑣 𝑑𝑡
𝑡

𝑡𝑜

− 𝑖(𝑡𝑜) + 𝐶
𝑑𝑣

𝑑𝑡
= 0                                      3.1 

 With the assumed direction of the current at time 𝑡𝑜 shown. Differentiating Eq. 3.1 

across to clear the integral term: 

                                 
1

𝑅

𝑑𝑣

𝑑𝑡
+
1

𝐿
𝑣 + 𝐶

𝑑2𝑣

𝑑𝑡2
= 0                                                       3.2 

with 𝑖(𝑡𝑜) “zapped” out, being a constant term.  

Rearranging Eq. 3.2,  

                                 𝐶 
𝑑2𝑣

𝑑𝑡2
+
1

𝑅

𝑑𝑣

𝑑𝑡
+
1

𝐿
𝑣 = 0                                                        3.3 

The characteristic eq. 3.3 is                                                                                                                                       

                                    𝐶𝑠2 + (
1

𝑅
) 𝑠 + (

1

𝐿
) = 0                                                       3.4 

Applying the “almighty formula” for 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 to determine the roots of 𝑥 (in 

our case𝑠, representing complex frequency 𝑠 = (𝛼 + 𝑗𝜔) 

        𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

{
 
 

 
 
𝑎 ⟹ 𝐶

𝑏 ⟹
1

𝑅

𝑐 ⟹
1

𝐿}
 
 

 
 

                                                                 3.5 

So,    
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                       𝑠1, 𝑠2 =
−
1

𝑅
± √(

1

𝑅
)
2

−
4𝐶

𝐿

2𝐶
                                                                 3.6a 

Rearranging,  

                        𝑠1, 𝑠2 =
−1

2𝑅𝐶
± √

(
1

𝑅
)
2

−
4𝐶

𝐿

(2𝐶)2
                                                               3.6b 

                           𝑠1, 𝑠2 =
−1

2𝑅𝐶
± √

𝐿 − 4𝐶𝑅2

(2𝐶𝑅)2𝐿
                                                             3.6c 

        ⟹           𝑠1, 𝑠2 =
−1

2𝑅𝐶
± √(

1

2𝑅𝐶
)
2

−
1

𝐿𝐶
                                                      3.7 

for a parallel connection.                                                                                                                                                                      

Keeping faith on expression of the response, for example voltage in the case above, we 

write the response: 

                                     𝑣(𝑡) = 𝐾1𝑒
𝑠1𝑡 + 𝐾2𝑒

𝑠2𝑡                                                         3.8 

Where;                       

                            𝑠1 = −
1

2𝑅𝐶
+ √(

1

2𝑅𝐶
)
2

−
1

𝐿𝐶
                                                      3.9a 

                          𝑠2 = −
1

2𝑅𝐶
− √(

1

2𝑅𝐶
)
2

−
1

𝐿𝐶
                                                       3.9b 

Each of the terms for 𝑣(𝑡) in Eq. 3.8 is a solution, therefore, their linear combination is 

also a solution. 

For simplicity and ease of reference, let’s designate the expressions in Eqs. 3.9a and 

3.9b involving the network parameters R, Land C with terms:   

                                                           
1

2𝑅𝐶
= 𝛼                                                                3.10a 
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where 𝛼(Greek letter alpha) is the neper frequency, also called exponential damping 

coefficient       

                                                       𝜔0 =
1

√𝐿𝐶
                                                                 3.10b 

where 𝜔0 (omega zero) is the resonant frequency already met in an earlier course. 

(Complex frequency 𝑠 = 𝛼 + 𝑗𝜔) 

So,  𝑠1 = −𝛼 + √𝛼2 − 𝜔02;  𝑠2 = −𝛼 − √𝛼2 − 𝜔02                          3.11a, b 

With the expressions Eq. 3.11 for the two roots 𝑠1 and 𝑠2, three different possibilities 

exist of the types of responses depending on the relationship of 𝛼 and 𝜔𝑜: 

1. 𝛼 > 𝜔𝑜 ⟹ two real and unequal roots, and the responding signal is called over-

damped circuit signal; 

2. 𝛼 = 𝜔0 ⟹ two real and equal roots, leading to critically damped circuit signal; 

3. 𝛼 < 𝜔0 ⟹ two complex conjugates (and therefore, unequal) roots, leading to a 

signal called under-damped sinusoid.  

3.1.1 For Over-damped Condition  

Example 3.1: Assigning values to the circuit of Fig.3.1 to be 𝑅 = 4 Ω, 𝐿 = 5 H, 𝐶 =
1

20
F,  with initial current  𝑖𝐿(0) = 5 A, and initial voltage 𝑣(0) = 0,  𝛼 =

1

2𝑅𝐶
=

20

2×4
= 2.5 𝜔𝑜 =

1

√𝐿𝐶
=

1

√
5

20

= √4 = 2 rad/s 

𝑠1 = −𝛼 + √𝛼2 − 𝜔02 = −2.5 + √2.52 − 22 = −2.5 + 1.5 = −1  

 𝑠2 = −2.5 − 1.5 = −4 

𝑣(𝑡) = 𝐾1𝑒
−𝑡 +𝐾2𝑒

−4𝑡 

𝑣(0) = 0 = 𝐾1 +𝐾2 ⟹ 𝐾1 = −𝐾2 

𝑑𝑣

𝑑𝑡
= −𝐾1𝑒

−𝑡 − 4𝐾2𝑒
−4𝑡                                                                                                                                                                                             

as this, being a second-order differential equation, needs two initial conditions to 

compute the response. We make use of 𝑖𝑐(𝑡) = 𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
 and evaluate at 𝑡 = 0+: 

                 𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
|
𝑡=0+

= 𝑖𝑐(0
+) 
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= 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
|
𝑡=0+

= (
1

20
) (−𝐾1 − 4𝐾2) 

𝑖𝑐(0
+) = 𝑖𝑅(0

+) + 𝑖𝐿(0
+) 

𝑖𝑐(0
+) =

𝑣(0)

4
+ 5 = 0 + 5 = 5 ⟹ −𝐾1 − 4𝐾2 = −𝐾1 + 4𝐾1 

20𝑖𝑐(0
+) = 20 × 5 = 100 = 3𝐾1 

𝐾1 =
100

3
, 𝐾2 = −

100

3
 

Finally,                             𝑣(𝑡) = (
100

3
) 𝑒−𝑡 − (

100

3
) 𝑒−4𝑡 V                                                       

                                        𝑣(𝑡) =
100

3
(𝑒−𝑡 − 𝑒−4𝑡) V 

To sketch the response in Fig. 3.2, we identify the critical points, namely, 

1. The initial value of the sum (i.e., difference, actually, of the two terms); 

2. Final value of the signal (zero, since both are decaying exponential terms); 

3. The time at which the maximum value occurs; and… 

4. The maximum value itself. 𝑣(0) = 0 obviously, and 𝑣(∞) = 0 as the two terms 

have both damped out. 

For time at maximum:  

𝑑𝑣(𝑡)

𝑑𝑡
=
100

3
(−𝑒−𝑡 + 4𝑒−4𝑡) 

At maximum point,  

𝑑𝑣(𝑡)

𝑑𝑡
= 0 

100

3
(−𝑒−𝑡𝑚𝑎𝑥 + 4𝑒−4𝑡𝑚𝑎𝑥) = 0 ⟹ −𝑒−𝑡𝑚𝑎𝑥 + 4𝑒−4𝑡𝑚𝑎𝑥 = 0 

⟹ 𝑒−𝑡𝑚𝑎𝑥 = 4𝑒−4𝑡𝑚𝑎𝑥 ⟹ 1 = 4𝑒−4𝑡𝑚𝑎𝑥/𝑒−𝑡𝑚𝑎𝑥  

1 = 4𝑒−3𝑡𝑚𝑎𝑥 ⟹ 𝑒−3𝑡𝑚𝑎𝑥 =
1

4
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⟹−3𝑡𝑚𝑎𝑥 = In
1

4
 

3𝑡𝑚𝑎𝑥 = In 4 

𝑡𝑚𝑎𝑥 =
ln 4

3
= 0.46 s 

where 𝑡𝑚𝑎𝑥 stands for time at which maximum voltage response occurs.  

          𝑣(0.46) =

100

3
1

𝑒0.46
−

1

𝑒4×0.46

 

= (100/3)(0.63 − 0.16) = 15.67 V 

15

30

v(t)

t

100

3
𝑒−𝑡  

|
−100

3
𝑒−4𝑡|  (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑜𝑠

−100

3
𝑒−4𝑡) 

𝑣(𝑡) (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠)  

1 2 3

    

Figure 3.2 The graph of Over-Damped Response 

3.1.2  Critically-Damped Response (Parallel Circuit)  

 For critical damping, the term inside the square root sign, 𝛼2 −𝜔0
2 is theoretically 

set equal to zero, making the two roots (value of −𝛼) equal to each other. We say, 

theoretically, because it’s physically impossible to construct a parallel R-L-C circuit 

whereby the neper frequency 𝛼 is exactly equal to the radian frequency 𝜔𝑜 . 

So,                                            𝑠1 = 𝑠2 = −𝛼 = −𝜔0                                         3.12 

⟹                              
1

2𝑅𝐶
=

1

√𝐿𝐶
                                                     

1

4𝑅2𝐶2
=
1

𝐿𝐶
 

                                                        𝐿 = 4𝑅2𝐶                                                            3.13 
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Example 3.2: From Example 3.1, in order to make  𝐿 = 4𝑅2𝐶 (thereby effecting 𝛼 = 𝜔0 

for critical damping), we alter the values of 𝑅, leaving 𝐿 and 𝐶 (thus 𝜔𝑜) unchanged 

until 𝛼 and 𝜔𝑜 become equal. Using the same initial conditions as in Example 3.1: 

 𝐿 = 4𝑅2𝐶 ⟹ 𝑅 =
1

2
√
𝐿

𝐶
=
1

2√
5

(
1

20
)
=
1

2
√100 = 5 𝛺 

Check: 𝛼 =
1

2𝑅𝐶
= [

1

2
×
1

5
×
20

1
] =

20

2 × 5
= 2 

  𝜔𝑜 =
1

√𝐿𝐶
== √

20

5
= √4 = 2 rad/s 

Refer to Eqs. 3.2 and 3.3 

                            𝐶
𝑑2𝑣

𝑑𝑡2
+
1

𝑅

𝑑𝑣

𝑑𝑡
+
1

𝐿
= 0                                                                     3.14 

⟹                   
𝑑2𝑣

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+
1

𝐿𝐶
𝑣 = 0                                                                 

          ⟹                   
𝑑2𝑣

𝑑𝑡2
+ 2𝛼

𝑑𝑣

𝑑𝑡
+ 𝛼2𝑣 = 0                                                           3.15 

where 𝛼 = 𝜔0=
1

√𝐿𝐶
 

The general solution for critically damped case is:    

                          𝑣 = 𝑒−𝛼𝑡(𝐾1𝑡 + 𝐾2) = 𝑒−2𝑡(𝐾1𝑡 + 𝐾2)                                        3.16 

𝑣(0) = 0 ⟹ 𝑒𝑜[𝐾1(0) + 𝐾2] = 0 ⟹ 𝐾2 = 0 

So, 𝑣(𝑡) is simply:                      𝑣(𝑡) = 𝐾1𝑡𝑒
−2𝑡 

𝑑𝑣(𝑡)

𝑑𝑡
= −2𝐾1 𝑡𝑒

−2𝑡 + 𝐾1𝑒
−2𝑡 

𝐶
𝑑𝑣(𝑡)

𝑑𝑡
|
𝑡=0

=
1

20
(𝐾1) = 𝑖𝐶(0

+) 

𝐾1
20

= 𝑖𝐶(0
+) = 𝑖𝑅(0

+) + 𝑖𝐿(0
+) 
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=
𝑣𝑅(0

+)

4
+ 5 = 0 + 5 = 5 

𝐾1 = 20 × 5 = 100, with the same initial conditions imposed on 𝑣, 𝑖𝐿 . 

 Finally, 𝑣(𝑡) = 100𝑡𝑒−2𝑡 V 

To sketch the response  

 𝑑𝑣(𝑡)

𝑑𝑡
= 100 (−2𝑡𝑒−2𝑡 + 𝑒−2𝑡) = 0 at maximum value. 

𝑡𝑚𝑎𝑥 =
𝑒−2𝑡

2𝑒−2𝑡
= 0.5 s 

𝑣(0.5) = 100 ×
0.5

𝑒2×0.5
=
50

𝑒1
= 18.39 V 

15

20

v(t)

t1 2 3

5

10

                       

Figure 3.3 Graph of Critically-Damped Response 

3.1.3 Under-damped Parallel Circuit   

 Here, 𝛼 < 𝜔𝑜, making the term inside the square root sign negative, signing rise to 

complex roots for 𝑠1, 𝑠2: 

𝑠1, 𝑠2 = −𝛼 ± √𝛼2 − 𝜔𝑜2 = −𝛼 ± √(−1)(𝜔𝑜 − 𝛼2) 

                       = −𝛼 ± √−1√𝜔𝑜2 − 𝛼2 = −𝛼 ± 𝑗𝜔𝑑                                           3.17 

Where 𝜔𝑑 = √𝜔𝑜2 − 𝛼2  is called the natural resonant frequency.   

                                               𝑠1 = −𝛼 + 𝑗𝜔𝑑;  𝑠2 = −𝛼 − 𝑗𝜔𝑑                               3.18a, b 

[The roots are complex conjugates; strictly note that 𝜔𝑑, the square root term, is itself 

real, as is always the case with the imaginary part of any complex quantity!] 
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The response can be written in the same manner as for the over-damped case, since the 

roots here are different (even if conjugate):  

                                            𝑣(𝑡) = 𝐾1𝑒
𝑠1𝑡 + 𝐾2𝑒

𝑠2𝑡 

                                𝑣(𝑡) = 𝐾1𝑒
(−𝛼+𝑘𝜔𝑑)𝑡 +𝐾2𝑒

(−𝛼−𝑗𝜔𝑑)𝑡 

                                 𝑣(𝑡) = 𝑒−𝛼𝑡(𝐾1𝑒
𝑗𝜔𝑑𝑡 + 𝐾2𝑒

−𝑗𝜔𝑑𝑡) 

(Euler′s identity: 𝑒𝑗𝑎 = cos 𝑎 + 𝑗 sin 𝑎) 

𝑣(𝑡) = 𝑒−𝛼𝑡[𝐾1(cos𝜔𝑑𝑡 + 𝑗 sin𝜔𝑑𝑡) + 𝐾2(cos𝜔𝑑𝑡 − 𝑗 sin𝜔𝑑𝑡)] 

                    𝑣(𝑡) = 𝑒−𝛼𝑡[(𝐾1 + 𝐾2) cos𝜔𝑑𝑡 + (𝐾1 − 𝐾2)𝑗 sin𝜔𝑑𝑡]  3.19a 

              𝑣(𝑡) = 𝑒−𝛼𝑡(𝐴1 cos𝜔𝑑𝑡 + 𝐴2 sin𝜔𝑑𝑡)                                                     3.19b 

Where 𝐴1 = 𝐾1 + 𝐾2, 𝐴2 = 𝑗(𝐾1 − 𝐾2), replace the former constants in Eq. 3.19a.  

Question: Why is there no complex term in the final expression for 𝑣(𝑡) in Eq. 3.19b? 

Explanation: 𝑠1, 𝑠2;   𝐾1 and 𝐾2 are generally all complex quantities, and it’s entirely 

possible to obtain real numbers from the addition (or multiplication) of complex 

numbers. In general, 𝑠1 and 𝑠2; 𝐾1 and 𝐾2 are respectively one another’s complex 

conjugate; and addition of complex conjugates results in a real number (twice their real 

parts). (For actual physical system, this can be viewed as being “self-practicalized”!) As 

in the previous case, the two constants 𝐴1 and 𝐴2 are evaluated from initial (and maybe 

also, final) conditions. 

Example 3.3: Assign the values of 𝐿 = 5 H, 𝐶 =
1

20
F  to the circuit of Fig.3.1, but this time 

around force 𝛼 to become less than 𝜔𝑜(𝛼 < 𝜔𝑜) by increasing the value of 𝑅 to, say 6 Ω. 

⟹ 𝛼 =
1

2𝑅𝐶
=

20

2 × 6
=
5

3
 

⟹   𝜔𝑑 = √𝜔𝑜2 − 𝛼2 

= √22 − 1.6672 = 1.105 rad/s 

𝑣(𝑡) = 𝑒−1.667𝑡(𝐴1 cos 1.105𝑡 + 𝐴2 sin 1.105𝑡) 

With the same initial conditions as in Example 3.1: 

𝑣(0) = 𝑒0(𝐴1 cos 0 +𝐴2 sin 0) = 𝐴1 = 0 
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So, 𝑣(𝑡) is simply:                    𝑣(𝑡) = 𝐴2𝑒
−1.667𝑡 sin 1.105𝑡 

𝑑𝑣(𝑡)

𝑑𝑡
= 𝐴2(1.105𝑒

−1.667𝑡 cos 1.105𝑡 − 1.667𝑒−1.667𝑡 sin 1.105𝑡) 

(
1

20
)
𝑑𝑣(𝑡)

𝑑𝑡
|
𝑡=0

= 𝑖𝐶(0
+) = 𝑖𝑅(0

+) + 𝑖𝐿(0
+) = 0 + 5 = 5 V/s 

⟹   (
1

20
)𝐴2(1.105𝑒

0 cos 0 − 1.667𝑒0 sin 0) = (
1

20
)(1.105𝐴2) = 5 

𝐴2 =
20 × 5

1.105
= 90.50 

Finally, 𝑣(𝑡) = 90.50𝑒−1.667𝑡 sin 1.105𝑡 V 

Notice that the above expression for 𝑣(𝑡) involves both a damped part (𝑒−1.667𝑡) and 

asinusoidal factor (sin 1.105𝑡), resulting in a damped sinusoid. 

Sketching under-damped signal (see Fig.3.4):                                                                                                                                                         

The sinusoidal factor, considered alone, 

starts at zero for 𝑡 = 0; is zero again for  𝑡 =
𝑛𝜋

1.105
, where 𝑛 is any integer; 

becomes maxima(+) 𝑎𝑡 𝑡 =
𝑛𝜋

2 × 1.105
, 𝑛 = 3,7,11,…  

 Setting
𝑑𝑣(𝑡)

𝑑𝑡
= 0, and after the requisite manipulation: 

tan 1.105𝑡 = 1.105/1.667 

            ⟹ maximum occurs at𝑡 =  
tan−1 (

1.105

1.667
)

1.105
= 0.530 s 

Maxima: 𝑡 = 0.530 + 𝑛𝜋, 𝑛 even Minima: 𝑡 = 0.53 + 𝑛𝜋, 𝑛 odd 
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v(t)

t0.530

0.42

-0.04

0

 

Figure 3.4 Underdamped Response Curve 

3.2 Source Free R-L-C Series Circuits  

An understanding of the natural response of the series RLC circuit is a necessary 

background for future studies in filter design and communications networks.  

Consider the series RLC circuit shown in Fig. 3.5. The circuit is being excited by the energy 

initially stored in the capacitor and inductor. The energy is represented by the initial 

capacitor voltage 𝑉0 and initial inductor current 𝐼0. Thus, at 𝑡 = 0, 

                                       𝑣(0) =
1

𝐶
∫ 𝑖 𝑑𝑡
0

−∞

= 𝑉0                                                       3.20 

+ -vC

C

+

-

vLLvR R

+

-

i(t)

                                                 

Figure 3.5 

A single KVL gives: 

                           𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑖(𝑡)𝑅 +

1

𝐶
∫ 𝑖𝑑𝑡 − 𝑣𝑐(𝑡)
𝑡

𝑡𝑜

= 0                                       3.21 



  Circuit Theory with Application  

70 
 

Eq. 3.21 could have been derived directly by taking the dual of the expression for the 

parallel-connected circuit we dealt with previously:  

𝐶
𝑑𝑣

𝑑𝑡
+
1

𝑅
𝑉 +

1

𝐿
∫ 𝑣 𝑑𝑡
𝑡

𝑡𝑜

− 𝑖𝐿(𝑡) = 0 ⟺ 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 +

1

𝐶
∫ 𝑖 𝑑𝑡 − 𝑣𝑐

𝑡

𝑡𝑜

(𝑡𝑜) = 0     3.22 

𝑠1, 𝑠2 = −
1

2𝑅𝐶
± √(

1

2𝑅𝐶
)
2

−
1

𝐿𝐶
⟺ −

𝑅

2𝐿
± √(

𝑅

2𝐿
)
2

−
1

𝐶𝐿
                         3.23 

Thus, for the above series connection: 

𝛼 =
𝑅

2𝐿
;𝜔𝑜 =

1

√𝐶𝐿
=

1

√𝐿𝐶
(same as for parallel connection) 

𝑖(𝑡) = 𝐾1𝑒
𝑠1𝑡 + 𝐾2𝑒

𝑠2𝑡(over-damped)   

         𝑖(𝑡) = 𝐾1𝑡𝑒
𝑠1𝑡 + 𝐾2𝑒

𝑠2𝑡 (Critically-damped) 

                𝑖(𝑡) = 𝑒−𝛼𝑡(𝐴1 cos𝜔𝑑𝑡 + 𝐴2 sin𝜔𝑑𝑡)(under-damped) 

with 𝜔𝑑 = √𝜔02 − α2, as in the case for parallel connection 

 

Example 3.4: For the circuit of Fig.3.5, assigning the values for the network:  

𝑅 = 4 MΩ; L = 2 H; C =
1

200
 μF; 𝑖(0) = 4 mA; 𝑣𝑐(0) = 4 V, determine and sketch 𝑖(𝑡) 

for 𝑡 > 0. 

𝜔0 =
1

√𝐿𝐶
=

1

√(
2

200
) × 10−6

= √108 = 104 rad/s 

                                                𝛼 =
𝑅

2𝐿
=
4 × 106

2 × 2
= 106 

𝜔𝑑 = √𝜔02 − 𝛼2 = √108 − 106 = √99 × 106 = 103√99  rad/s 

𝑖(𝑡) = 𝑒−1000𝑡(𝐴1 cos 10
3√99𝑡 + 𝐴2 sin 10

3√99𝑡) 

𝑖(0) = 0.004 = 𝐴1 
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𝑑𝑖(𝑡)

𝑑𝑡
= 𝑒−1000𝑡(−103√99𝐴1 sin 10

3√99𝑡 + 103√99𝐴2 cos 10
3√99)

− 1000𝑒−1000𝑡(𝐴1 cos 10
3√99𝑡 + 𝐴2 sin 10

3√99𝑡) 

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
|
𝑡=0

= 𝑣𝐿(0) = 2 (10
3√99𝐴2 − 1000𝐴1) = 𝑖𝑅(0)𝑅 − 𝑣𝑐(0) 

2 (103√99𝐴2 − 1000 × 4 × 10
−3) = −4 × 10−3 × 4 × 106 − 4 

2(103√99𝐴2 − 4) = −16000 − 4 = −16004 

⟹  𝐴2 =
[(−

16004

2
)]

(103√99)
≈ 0.804 

𝑖(𝑡) = 𝑒−1000𝑡(0.004 cos 103√99 𝑡 − 0.804 sin 103√99  𝑡) A 

The overdamped, critically damped and underdamped response curves are the same 

as the parallel case with voltage and current duality 

Example 3.5: The current in a circuit is given by a second order equation: 

𝑑2𝑖

𝑑𝑡2
+ 3

𝑑𝑖

𝑑𝑡
+ 2𝑖 = 0 

With initial conditions 𝑖(0+) = 2 A,  
𝑑𝑖

𝑑𝑡
(0+) = 1 A/s, determine the time 𝑡 current 𝑖(𝑡) 

takes to reach the maximum value. 

Solution: 

𝑑2𝑖

𝑑𝑡2
+ 3

𝑑𝑖

𝑑𝑡
+ 2𝑖 = 0 

Characteristic equation is  

𝑝2 + 3𝑝 + 2 = 0 

Where the roots are  

𝑝1 = −1, 𝑝2 = −2  [overdamped] 

Recall the current response for overdamped response   

𝑖(𝑡) = 𝐴1𝑒
𝑠1𝑡 + 𝐴2𝑒

𝑠2𝑡 
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   𝑖(𝑡) = 𝐴1𝑒
−𝑡 + 𝐴2𝑒

−2𝑡     (i) 

At 𝑡 = 0 

𝑖(0) = 𝐴1𝑒
−(0) + 𝐴2𝑒

−2(0) 

2 = 𝐴1 + 𝐴2 

∴  𝐴1 + 𝐴2 = 2        (ii) 

Taking the derivative of 𝑖(𝑡) in equation (i) 

𝑑𝑖(𝑡)

𝑑𝑡
= −𝐴1𝑒

−𝑡 − 2𝐴2𝑒
−2𝑡 

𝑑𝑖

𝑑𝑡
|
𝑡=0

= −𝐴1𝑒
−(0) − 2𝐴2𝑒

−2(0) 

1 = −𝐴1 − 2𝐴2 

∴  𝐴1 + 2𝐴2 = −1       (iii) 

Recall equation (ii) and equation (iii) 

𝐴1 + 𝐴2 = 2 

𝐴1 + 2𝐴2 = −1 

Solving (ii) & (iii) simultaneously for the value of 𝐴1 and 𝐴2 

𝐴1 = 5, 𝐴2 = −3 

∴  𝑖(𝑡) = 5𝑒−𝑡 − 3𝑒−2𝑡𝐴 

For 𝑖𝑚𝑎𝑥 ,      
𝑑𝑖(𝑡)

𝑑𝑡
= 0 

𝑑𝑖(𝑡)

𝑑𝑡
= −5𝑒−𝑡 + 6𝑒−2𝑡 = 0 

6𝑒−2𝑡 = 5𝑒−𝑡 

6𝑒−2𝑡+𝑡 = 5 

6𝑒−𝑡 = 5 

𝑒−𝑡 =
5

6
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∴  −𝑡 = ln [
5

6
] 

−𝑡 = −0.1823 

∴  𝑡 = 0.1823 s = 182.3 ms 

Example 3.6: The circuit of Fig below is under steady state and the switch is open at 

𝑡 = 0. Find the frequency of the current 𝑖𝐿. Also, determine its magnitude.  

5 Ω 

 t = 0

5𝜇F 

𝑖𝐿 

2 H
10 V

+

-

 

Figure 3.6 

Solution: 

(a) To determine the frequency 𝑓 and 𝑖𝐿 

At  𝑡(0+) 

𝑖𝐿(0
+) = 𝑖𝐿(0

−) =
10

5
= 2 A 

                                                   
1

5 × 10−6
∫ 𝑣 𝑑𝑡
𝑡

0

+
2𝑑𝑖𝐿
𝑑𝑡

= 0                                     𝐊𝐕𝐋 

200000 ∫𝑉𝑑𝑡 +
2𝑑𝑖𝐿
𝑑𝑡

= 0 

2𝑑2𝑖𝐿
𝑑𝑡2

+ 200000𝑖𝐿 = 0 

2𝑝2 + 200000 = 0 

𝑝2 − 100000 = 0 

Where 𝑖𝐿(0
+) =

10

5
= 2 A ;          

𝑑𝑖(0+)

𝑑𝑡
≤ 0 A/s 
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𝑝 = √−100000  (underdamped) 

𝑝 = −𝑗316.227 

∴   𝜔𝑑 = 316.227 rad/s 

Recall 𝑖 for underdamped response  

𝑖(𝑡) = 𝑒𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

Where 𝛼 = 0 

𝑖(𝑡) = 𝐵1 cos(316.23𝑡) + 𝐵2 sin(316.23𝑡) 

But 𝜔𝑑 = 2𝜋fd 

fd =
𝜔𝑑
2𝜋

=
316.223

2 × 3.142
= 50.3 Hz 

fd = 50.3 Hz 

𝑖𝐿(0
+) = 2 ∴ 𝐵1 = 2 𝑎𝑛𝑑 𝐵2 = 0 

Hence the circuit instantaneous current is  𝑖(𝑡) = 2 cos 316.23𝑡 

Where amplitude is  𝑖𝐿 = 2 A 

 

3.3 Exercise  

1. (i) Determine the natural response 

𝑣(𝑡) for the circuit of Fig. 1. (ii) at what 

time does the voltage achieve 

maximum value? (iii) determine this 

maximum value. Given that (
𝑑𝑣

𝑑𝑡
=

4 V/s) . 

6Ω 
1

42
𝐹 

𝑣(𝑡) 

7H

𝑖𝑅  𝑖𝐶  
𝑖𝐿 

                                                     

Figure 1 

3. (i) Determine the natural 

response 𝑖(𝑡) for the circuit Fig. 

2. (ii) at what time does the 

current achieve maximum value?  

(iii) determine this maximum 

value. Given that (
𝑑𝑖

𝑑𝑡
= 5 A/s) 

100𝑘Ω 
40𝜇F 

𝑖(𝑡) 

20 mH

                                                                                 
Figure 2 
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3.  For a parallel RLC circuit with 

inductance of 100 mH and capacitance 

of 40 𝜇F, determine, resistor values 

that would lead to  

(i) over-damped 

 (ii) under-damped 

 (iii) critically-damped responses 

respectively.  

4. For a parallel RLC circuit containing 

50 Ω resistor with parametric values of 

𝛼 = 500 s−1 and 𝜔0 = 400 rad/s 

determine: (𝑖) 𝐶 (𝑖𝑖) 𝐿 (𝑖𝑖𝑖) 𝑠1 (𝑖𝑣) 𝑠2 

5. For a parallel RLC circuit with 

inductance of 200 mH and capacitance 

of 800 μF what are the resistor values 

that would lead to 

 (i) over-damped  

(ii) under-damped 

 (iii) critically-damped responses  

6. Given a parallel RLC circuit 

containing 25 Ω resistor with 

parametric values of 𝛼 = 250 s−1 and 

𝜔0 = 400 rad/s, determine 

(𝑖) 𝐶 (𝑖𝑖) 𝐿 (𝑖𝑖𝑖) 𝑠1 (𝑖𝑣) 𝑠2 

7. For a parallel RLC circuit with 

inductance of 50 mH and capacitance 

of 500 μF what are the resistor values 

that would lead to (i) over-damped (ii) 

underdamped (iii) critically-damped 

responses respectively   

8. For a parallel RLC circuit containing 

100 Ω resistor with parametric values 

of 𝑎 = 1000 s−1 and 𝜔0 = 800 rad/s, 

determine (𝑖) 𝐶  (𝑖𝑖)  𝐿 (𝑖𝑖𝑖) 𝑠1 (𝑖𝑣) 𝑠2 

9. In the circuit of Fig.3 the parameter 

of coil and coil 2 are respectively, 1.5 H 

and 8 Ω and 0.5 H and 4 Ω. If 𝐶 =
1

18
 F 

and it is charged to 100 V, determine 

the current 0.2 s after the switch is 

closed.  

t=0

+ -

Coil 1 Coil 2C

                                                         
Figure 3 

Answer: 𝒊 = −𝟓. 𝟒𝟗 𝐀 

10. What is the voltage across coil 2 in 

the circuit of Fig. 3 at  𝑡 = 0.2 s? 

Answer: 𝒗 = −𝟐𝟕. 𝟒𝟒 𝐕 

11. If the switch in Fig.4 closed at 𝑡 = 0, 

find 𝑣(𝑡) for 𝑡 ≥ 0 and 𝑤𝐶(0). 

vC

15Ω 
1

5
𝐹 

+

-

20
𝑢(
−
𝑡)
𝑉

 

5H

t=0

     
                                        Figure 4 
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12. In the circuit of Fig.5, the switch is 

moved from position 1 to 2 at 𝑡 = 0. 

Determine 
𝑑2𝑖(0+)

𝑑𝑡2
 

15Ω 

100𝜇𝐹 

100𝑉 

0.1H

𝑉2 

t=0
𝑉1 

1

2

i

                                  
Figure 5 

 

Answer: 
𝒅𝟐𝒊(𝟎+)

𝒅𝒕𝟐
= 𝟏𝟎𝟖𝐀/𝐬𝟐 
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CHAPTER 4 

TRANSIENT IN R-L-C CIRCUIT DRIVEN BY A FORCE 
RESPONSE 

 

4.0 R-L-C Circuit with Force Response  

As we learned in the preceding chapter, the step response is obtained by the sudden 

application of a dc source.  

 

4.0.1 Step Response of a Series R-L-C Circuit  

Consider the series RLC circuit shown in Fig. 4.1. Applying KVL around the loop for 𝑡 > 0, 

𝑅 
 t = 0

𝑖(𝑡) 

+

-

𝐿 

𝐶 
𝑉𝑠 

+

-

𝑣 

 
Figure 4.1 Step response applied to a series RLC circuit 

 

                                                𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 𝑣 = 𝑣𝑠                                                4.1 

But 

𝑖 = 𝐶
𝑑𝑣

𝑑𝑡
 

Substituting for 𝑖 in Eq (4.1) and rearranging terms  

 

                                                 
𝑑2𝑣

𝑑𝑡2
+
𝑅 𝑑𝑣

𝐿 𝑑𝑡
+
𝑣

𝐿𝐶
=
𝑉𝑠
𝐿𝐶
                                       4.2 

 

which has the same form as Eq. (3.2). More specifically, the coefficients are the same 

(and that is important in determining the frequency parameters) but the variable is 

different. (Likewise, see Eq. (4.9).) Hence, the characteristic equation for the series RLC 

circuit is not affected by the presence of the dc source. 

 The solution to Eq. (4.2) has two components: the transient response 𝑣𝑡(𝑡) and the 

steady-state response 𝑣𝑠𝑠(𝑡); that is, 



  Circuit Theory with Application  

78 
 

 

                                                   𝑣(𝑡) = 𝑣𝑡(𝑡) + 𝑣𝑠𝑠(𝑡)                                           4.3 

 The transient response 𝑣𝑡(𝑡) is the component of the total response that dies out 

with time. The form of the transient response is the same as the form of the solution 

obtained in Section 3 for the source-free circuit. Therefore, the transient response 𝑣𝑡(𝑡) 

for the overdamped, underdamped, and critically damped cases are: 

 

                       𝑣𝑡(𝑡) = 𝐴1𝑒
𝑠1𝑡 + 𝐴2𝑒

𝑠2𝑡 (overdamped)     4.4a 

  𝑣𝑡(𝑡) = (𝐴1 + 𝐴2𝑡)𝑒
−𝛼𝑡 (Critically damped)    4.4b 

  𝑣𝑡(𝑡) = (𝐴1 cos𝜔𝑑𝑡 + 𝐴2 sin𝜔𝑑𝑡)𝑒
−𝛼𝑡 (Under damped)  4.4c 

 

The steady-state response is the final value of 𝑣(𝑡). In the circuit in Fig. 4.1, the final 

value of the capacitor voltage is the same as the source voltage 𝑉𝑠. Hence, 

 

   𝑣𝑠𝑠(𝑡) = 𝑣(∞) = 𝑉𝑠      4.5 

 

Thus, the complete solutions for the overdamped, underdamped, and critically damped 

cases are: 

                       𝑣(𝑡) = 𝑉𝑠 + 𝐴1𝑒
𝑠1𝑡 + 𝐴2𝑒

𝑠2𝑡 (overdamped)     4.6a 

  𝑣(𝑡) = 𝑉𝑠 + (𝐴1 + 𝐴2𝑡)𝑒
−𝛼𝑡 (Critically damped)   4.6b 

  𝑣(𝑡) = 𝑉𝑠 + (𝐴1 cos𝜔𝑑𝑡 + 𝐴2 sin𝜔𝑑𝑡)𝑒
−𝛼𝑡 (Under damped) 4.6c 

The values of the constants 𝐴1 and 𝐴2 are obtained from the initial conditions: 𝑣(0) and 
𝑑𝑣(0)

𝑑𝑡
. Keep in mind that 𝑣 and 𝑖 are, respectively, the voltage across the capacitor and 

the current through the inductor. Therefore, Eq. (4.6) only applies for finding 𝑣. But once 

the capacitor voltage 𝑣𝑐 = 𝑣 is known, we can determine 𝑖𝐶 = 𝐶
𝑑𝑣

𝑑𝑡
, which is the same 

current through the capacitor, inductor, and resistor. Hence, the voltage across the 

resistor is 𝑣𝑅 = 𝑖𝑅, while the inductor voltage is 𝑣𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
. 

 Alternatively, the complete response for any variable 𝑥(𝑡) can be found directly, 

because it has the general form 

 

    𝑥(𝑡) = 𝑥𝑠𝑠(𝑡) + 𝑥𝑡(𝑡)           4.7 

where the 𝑥𝑠𝑠 = 𝑥(∞) is the final value and 𝑥𝑡(𝑡) is the transient response. The final 

value is found as in Section 3. The transient response has the same form as in Eq. (4.4), 
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and the associated constants are determined from Eq. (4.6) based on the values of 𝑥(0) 

and  
𝑑𝑥(0)

𝑑𝑡
. 

For a d.c. excitation, the forced response,  

𝑣𝑓(𝑡) = 𝑣𝑓 , say for a voltage signal  

Natural response:  

𝑣𝑛(𝑡) = 𝐾1𝑒
𝑠2𝑡 

Complete response 𝑣(𝑡) = 𝑣𝑓(𝑡) + 𝑣𝑛(𝑡) 

= 𝑉𝑓 + 𝐾1𝑒
𝑠1𝑡 +𝐾2𝑒

𝑠2𝑡 

With the unknown 𝐾1 and 𝐾2 yet to be determined from initial conditions. 

 The same basic procedure used for R-L and R-C driven circuit, also obtains here the 

only difference being that, whereas only one energy storage element was involved in the 

former case, meaning that only one initial condition was required, this time around, two 

different initial conditions would be required since it now contain two energy-storage 

elements.  

4.0.2 Step Response of a Parallel R-L-C Circuit  

Consider the parallel RLC circuit shown in Fig. 4.2. We want to find i due to a sudden 

application of a dc current. Applying KCL at the top node for 𝑡 > 0, 

𝑅 
 t = 0

𝑖(𝑡) 

𝐿 
𝐶 

+

-

𝑣 𝐼𝑠 

 
Figure 4.2 Parallel RLC circuit with an applied current 

 

                                                     
𝑣

𝑅
+ 𝑖 + 𝐶

𝑑𝑣

𝑑𝑡
= 𝐼𝑠                                                 4.8 

But  

𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
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substituting for 𝑣 in Eq. (4.8) and dividing by LC, we get  

 

                                       
𝑑2𝑖

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑖

𝑑𝑡
+

𝑖

𝐿𝐶
=
𝐼𝑠
𝐿𝐶
                                                    4.9 

 

has the same characteristic equation as Eq. (3.4). 

The complete solution to Eq. (4.9) consists of the transient response 𝑖𝑡(𝑡) and the steady-

state response 𝑖𝑠𝑠, that is, 

                                          𝑖(𝑡) = 𝑖𝑡(𝑡) + 𝑖𝑠𝑠(𝑡)               4.10 

 

The transient response is the same as what we had in Section 3. The steady-state 

response is the final value of 𝑖. In the circuit in Fig. 4.2, the final value of the current 

through the inductor is the same as the source current 𝐼𝑠. Thus  

 

𝑖(𝑡) = 𝐼𝑠 + 𝐴1𝑒
𝑠1𝑡 + 𝐴2𝑒

𝑠2𝑡(overdamped)

𝑖(𝑡) = 𝐼𝑠 + (𝐴1 + 𝐴2𝑡)𝑒
−𝛼𝑡(Critically damped)

𝑖(𝑡) = 𝐼𝑠 + (𝐴1 cos𝜔𝑑𝑡 +𝐴2 sin𝜔𝑑𝑡)𝑒
−𝛼𝑡 (underdamped) 

           4.11 

The constants 𝐴1 and 𝐴2 in each case can be determined from the initial conditions for 𝑖 

and 𝑑𝑖/𝑑𝑡. Again, we should keep in mind that Eq. (4.11) only applies for finding the 

inductor current 𝑖. But once the inductor current 𝑖𝐿 = 𝑖 is known, we can find 𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
 

which is the same voltage across the inductor, capacitor, and resistor. Hence, the current 

through the resistor is 𝑖𝑅 =
𝑣

𝑅
, while the capacitor current is 𝑖𝐶 = 𝐶

𝑑𝑣

𝑑𝑡
. Alternatively, the 

complete response for any variable 𝑥(𝑡) may be found directly, using 

                                          𝑥(𝑡) = 𝑥𝑠𝑠(𝑡) + 𝑥𝑡(𝑡)                                                      4.12 

where 𝑥𝑠𝑠 and 𝑥𝑡 are its final value and transient response, respectively. 

 

4.1 General Second Order Circuit  

Now that we have mastered series and parallel RLC circuits, we are prepared to apply 

the ideas to any second-order circuit having one or more independent sources with 

constant values. Although the series parallel RLC circuits are the second-order circuits of 

greatest interest, other second-order circuits including op amps are also useful. Given a 

second-order circuit, we determine its step response 𝑥(𝑡) (which may be voltage or 

current) by taking the following four steps: 

1. We first determine the initial conditions 𝑥(0) and 
𝑑𝑥(0)

𝑑𝑡
  and the final value 𝑥(∞), 

as discussed in Section 2. 
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2. We turn off the independent sources and find the form of the transient response 

𝑥𝑡(𝑡) by applying KCL and KVL. Once a second-order differential equation is obtained, 

we determine its characteristic roots. Depending on whether the response is 

overdamped, critically damped, or underdamped, we obtain 𝑥𝑡(𝑡) with two unknown 

constants as we did in the previous sections. 

3. We obtain the steady-state response as 

                                            𝑥𝑠𝑠(𝑡) = 𝑥(∞)                                                            4.13 

 

where 𝑥(∞) is the final value of 𝑥, obtained in step 1. 

4. The total response is now found as the sum of the transient response and steady-

state response 

We finally determine the constants associated with the transient response by imposing 

the initial conditions 𝑥(0) and 
𝑑𝑥(0)

𝑑𝑡
, determined in step 1. 

We can apply this general procedure to find the step response of any second-order 

circuit, including those with op amps. The following examples illustrate the four steps. 

 

Example 4.1: For the circuit shown in Fig.4.3, determine:  

1. 𝑖𝐿(0
−) 

2. 𝑣𝑐(0
+) 

3. 𝑣𝑅(0
+) 

4. 𝑖𝐿(∞) 

5. 𝑖 (0.2 ms), given 𝑖𝑠 = 10𝑢(−𝑡) − 20𝑢(𝑡) A 

20Ω 

𝑖𝐿(𝑡) 

+

-

𝑣𝐶  𝑖𝑠 

𝑣𝑅  

10𝜇𝐹 

1𝑚𝐻 

+

-

 

 Figure 4.3 

Solution: 

 For 𝑡 = 0+,   𝑖𝑠 = 10𝑢(−𝑡) − 20𝑢(𝑡) A = 10 − 0 = 10 A 

 The inductor and capacitor are like short and open circuit, respectively, as “seen” 

by the d.c source  
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(1) 𝑖𝐿(0
+) = 𝑖𝐿(0

−) = 𝑖𝑠 = 10 A 

(2) 𝑣𝑐(0
+) = 𝑣𝑐(0

−) = 𝑣𝑅(0
−) = 𝑖𝑠 × 20Ω = 10 A × 20 Ω = 200 V 

(3) 𝑣𝑅(0
+) = 20 Ω × 𝑖𝐿(0

+) = 20 Ω × 𝑖𝐿(0
−) = 20 × 10 = 200 V 

(4) 𝑖𝐿(∞) = 𝑖𝑠(∞) = 0 − 20 = −20 A    (Capacitor is open)  

5. To determine the natural response, we set the source equal to zero, resulting in a 

series R-L-C circuit with  

𝛼 =
𝑅

2𝐿
=

20

2 × 10−3
= 104

𝜔0 =
1

√𝐿𝐶
=

1

√1 × 10−3 × 10 × 10−6
 = 104 rad/s

}
 

 
critically damping 

𝑠1 = −𝛼 = −104 = 𝑠2 

𝑖𝐿(𝑡) = 𝑖𝐿,𝑠𝑠 + 𝑖𝐿,𝑇 = −20 + 𝑒−10𝑡(𝐾1𝑡 + 𝐾2) 

𝑖𝐿(0
+) = 10 = −20 + 𝐾2 ⟹𝐾2 = 30 

𝑣𝐿(0
+) = 𝐿

𝑑𝑖𝐿
𝑑𝑡
|
𝑡=0+

= 1 × 10−3 × [𝑒−10
4𝑡𝐾1 − 10

4𝑒−10
4𝑡(𝐾1𝑡 + 𝐾2)] 

= 1 × 10−3[𝐾1 − 10
4𝐾2] 

𝑣𝐿(0
+) = 𝑣𝑜(0

+) − 𝑣𝑅(0
+) = 200 − 200 = 0 

⟹𝐾1 − 10
4𝐾2 = 0 

𝐾1 = 10
4𝐾2 = 10

4 × 30 = 3 × 105 

𝑖𝐿(𝑡) = −20 + 𝑒
−104𝑡(3 × 105𝑡 + 30) 

𝑖𝐿(0.2 ms) = −20 + 𝑒−10
4×0.2×10−3(3 × 105 × 0.2 × 10−3 + 30) 

= −20 +
(60 + 30)

𝑒2
= −20 +

90

𝑒2
= −20 + 12.18 = −7.82 A  

Table 4.1   Summary: R-L-C Circuits  

Parallel Connection      Series Connection 

𝛼 =
1

2𝑅𝐶
        𝛼 =

𝑅

2𝐿
 

𝜔0 =
1

√𝐿𝐶
        𝜔0 =

1

√𝐿𝐶
 



  Circuit Theory with Application  

83 
 

𝛼 > 𝜔0 ⟹ overdamped:    

𝑓𝑁(𝑡) = 𝐾1𝑒
𝑠1𝑡 + 𝐾2𝑒

𝑠2𝑡, with 𝑠1, 𝑠2 = −𝛼 ± √𝛼2 − 𝜔02 

𝛼 = 𝜔0 ⟹ critically damped: 

  𝑓𝑁(𝑡) = 𝑒−𝛼𝑡(𝐾1𝑡 + 𝐾2) 

𝛼 > 𝜔0 ⟹ underdamped: 

   𝑓𝑁(𝑡) = 𝑒−𝛼𝑡(𝐾1 cos𝜔𝑑𝑡 + 𝐾2 sin𝜔𝑑𝑡), 

With 𝜔𝑑 = √𝜔02 − 𝛼2 

N.B: in all these cases 𝑓𝑁(𝑡) stands for the natural response of either current through an 

inductor or voltage across a capacitor. Voltage cross, and current through these 

respective elements can be found from the relationships 

𝑣𝐿 = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
 

𝑖𝐶 = 𝐶 
𝑑𝑣𝑐(𝑡)

𝑑𝑡
 

And as has been repeatedly noted, these cannot charge instantaneously in these 

respective elements 

Total response:  

𝑓(𝑡) = 𝑓𝑠𝑠(steady − state) + 𝑓𝑇(𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡) 

Example 4.2: For the circuit shown in Fig.4.4, determine:  

100 Ω 

𝑖𝐿(𝑡) 

+

-

𝑣𝐶  

𝑣𝑠 

2 mF 

31.25 H 

20 + 40𝑢(𝑡) V 

                              

 Figure 4.4 

(i) 𝑖𝐿(0) 
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(ii) 𝑣𝑐(0) 

(iii) 𝑖𝐿𝑆𝑆  

(iv) Expression for 𝑖𝐿(𝑡), 𝑡 > 0 

(v) hence 𝑖𝐿(0.2 s) 

Solution: 

for 𝑡 = 0−,  𝑣𝑠 is simple 20 V, (inductor is short and capacitor is open), therefore,  

(i) 𝑖𝐿(0
−) =

20𝑉

100Ω
= 0.2 A = 𝑖𝐿(0

+) = 𝑖𝐿(0) 

(ii) 𝑣𝐶(0
−) = 𝑣𝑅(0

−) = 0.2 A × 100 Ω = 20 V = 𝑣𝐶(0
+) = 𝑣𝑐(0) 

(iii) 𝑖𝐿𝑆𝑆 =
(20+40)𝑉

100Ω
=

60

100
= 0.6 A 

(iv) 𝛼 =
1

2𝑅𝐶
=

1

2×100×2×10−3
=

1

4×10−1
= 2.5 𝑠−1 

𝜔0 =
1

√31.25 × 2 × 10−3
= 4 𝑟𝑎𝑑/𝑠 > 𝛼 = 2.5  

   𝜔𝑑 = √42 − 2.52 = 3.122 rad/s 

𝑖𝐿(𝑡) = 0.6 + 𝑒
−2.5𝑡(𝐾1 cos 3.122𝑡 + 𝐾2 sin 3.122𝑡) 

𝑣𝐿(0
+) = 31.25

𝑑𝑖𝐿(𝑡)

𝑑𝑡
|
𝑡=0+

= 31.35[−2.5𝐾1 + 3.122𝐾2] 

= 31.25[3.122𝐾2 − 2.5𝐾1] 

𝑣𝐿(0
+) + 𝑣𝑠 − 𝑣𝑐(0

+) = (20 + 40) − 20 = 40 

𝑖𝐿(0
+) = 0.2 = 0.6 + 𝐾1 ⟹𝐾1 = −0.4 

3.122𝐾2 − 2.5𝐾1 = 3.122𝐾2 − 2.5(−0.4) =
40

31.25
= 1.28 

𝐾2 =
(1.28 − 1)

3.122
= 0.089 

𝑖𝐿(𝑡) = 0.6 + 𝑒−2.5𝑡(−0.4 cos 3.122𝑡 + 0.089 sin 3.122𝑡) A 

(v)  𝑖𝐿(0.2 s) = 0.6 +
[(−0.4 cos 3.122 × 0.2) + (0.089 sin 3.122 × 0.2)]

𝑒2.5×0.2
 

= 0.6 +
[−0.4 × 0.81 + 0.089 × 0.585]

𝑒0.5
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= 0.6 +
[−0.324 + 0.0521]

𝑒0.5
= 0.6 − 0.1649 = 0.4351 A 

Example 4.3: Write the equation governing 𝑉1 and 𝑉2 in the circuit of Fig. 4.5 and 

determine the initial conditions on these voltages. 

2Ω 

𝑡 = 0 

𝑉1 

0.5F 

1𝐻 

5Ω 

𝑉2 

10A 

 

Figure 4.5 

Using KCL relating node 1&2   

For node 1 

10 =
𝑉1
5
+ ∫𝑉1𝑑𝑡 − ∫𝑉2𝑑𝑡 

𝑉1
5
+ ∫𝑉1𝑑𝑡 − ∫𝑉2𝑑𝑡 = 10 

Fore Node 2 

∫𝑉2𝑑𝑡 +
𝑉2
2
+ 0.5

𝑑𝑉2
𝑑𝑡

− ∫𝑉1𝑑𝑡 = 0 

For the initial condition  

                    𝑉1(0
+) = 10 × 5 = 50 V                         𝑉2(0

+) = 0 V 

The initial conditions above is giving by the first derivatives of the voltage 𝑉1 and 𝑉2 

𝑑𝑣1(0
+)

𝑑𝑡
= −5𝑣1(0

+) = −250 V/s 

When the current source 𝑖 = 𝑒−𝑡𝐴 

𝑒−𝑡 =
𝑉1
5
+ ∫𝑉1 𝑑𝑡 − ∫𝑉2𝑑𝑡 
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∫𝑉2𝑑𝑡 +
𝑉2
2
+ 0.5 

𝑑𝑉2
𝑑𝑡

− ∫𝑉1𝑑𝑡 = 0 

𝑣1(0
+) = 5𝑖(0+) = 5 × 1 = 5 V 

𝑣2(0
+) = 0 

2 Ω 

𝑡 = 0 

1

4 
 F 

1 H 

2 Ω 

100 V 

i(t)

-+
v

 

Figure 4.6 

Example 4.4: In the circuit of Fig. 4.6, write a set of integral differential equations to 

solve for 𝑣. Find the natural response of the circuit and the time the current takes to 

reach maximum value. 

(a) To solve for V 

Applying KVL (for final condition) 

100 = 2𝑖 + 2𝑖 + 4∫ 𝑖𝑑𝑡
𝑡

0

+
𝑑𝑖

𝑑𝑡
 

𝑑𝑖

𝑑𝑡
+ 4∫ 𝑖𝑑𝑡

𝑡

0

+ 4𝑖 = 100 

With initial condition 𝑣(0) = 𝑖0𝑅 

𝑖(0) =
𝑣(0)

𝑅
=
100

2
= 50𝐴 

𝑣(0+) =
1

2
× 100 = 50 

The natural response of a circuit is 
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𝑑2𝑖

𝑑𝑡2
+ 4

𝑑𝑖

𝑑𝑡
+ 4𝑖 = 0 

With the initial conditions 𝑖(0+) = 2 A, 

𝑑𝑖(0+)

𝑑𝑡
= 4 A/s 

Solving for  𝑖 as the natural response,  

Recall     

𝑑2𝑖

𝑑𝑡2
+
4𝑑𝑖

𝑑𝑡
+ 4𝑖 = 0 

The characteristic equation is given by  

𝑠2 + 4𝑠 + 4 = 0 

𝑠1 = −2, 𝑠2 = −2        (Critically damp)  

Recall the response of a critically damped response  

𝑖(𝑡) = 𝐴1𝑒
𝑠𝑡 + 𝐴2𝑡𝑒

𝑠𝑡 = (𝐴1 + 𝐴2𝑡)𝑒
𝑠𝑡 

𝑖(𝑡) = 𝐴1𝑒
−2𝑡 + 𝐴2𝑡𝑒

−2𝑡 

At 𝑡 = 0 

𝑖(0) = 𝐴1𝑒
−2×0 + 𝐴2(0)𝑒

−2×0 ⟹ 2 = 𝐴1 

𝐴1 = 2 

Taking the derivative of 𝑖(𝑡) 

𝑑𝑖(𝑡)

𝑑𝑡
= −2𝐴1𝑒

−2𝑡 − 2𝐴2𝑡𝑒
−2𝑡 + 𝐴2𝑒

−2𝑡 

𝑑𝑖(𝑡)

𝑑𝑡
|
𝑡=0

= −2𝐴1𝑒
−2(0) − 2𝐴2(0)𝑒

−2(0) + 𝐴2𝑒
−2(0) 

4 = −2(2) + 𝐴2 

𝐴2 = 4 + 4 = 8 

∴  𝑖(𝑡) = 2𝑒−2𝑡 + 8𝑡𝑒−2𝑡 
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𝑖(𝑡) = (2 + 8𝑡)𝑒−2𝑡 A 

Example 4.5: A critically damped circuit has the natural response 𝑖 = 4𝑡𝑒−10𝑡 A.  

When does 𝑖 reach its maximum value?  

Solution: 

  From  𝑖 = 4𝑡𝑒−10𝑡 

𝑑𝑖

𝑑𝑡
= 4𝑡 × −10𝑒−10𝑡 + 4𝑒−10𝑡 

𝑑𝑖

𝑑𝑡
= −40𝑡𝑒−10𝑡 + 4𝑒−10𝑡 

𝑖𝑚𝑎𝑥   ⟹ 
𝑑𝑖

𝑑𝑡
= 0 

−40𝑡𝑒−10𝑡 + 4𝑒−10𝑡 = 0 

4𝑒−10𝑡 = 40𝑡𝑒−10𝑡 

1 = 10𝑡 

𝑡 =
1

10
= 0.1 s 

Example 4.6: In the two-mesh network of circuit of Fig.4.7, the loop currents are 

selected as shown. Write the KVL equation and find the current 𝑖1 and 𝑖2 at 𝑡 = 0, 

taking 𝑖(0) = 0 

5Ω 

100V 

 

t=0

2𝐹 2𝐻 

𝑖1 𝑖2 

                     

      + 

𝑄0 

      - 

5Ω 

 

Figure 4.7 

Solution: 
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                                        5𝑖1 +
1

2
[𝑄𝑜 +∫ 𝑖1(𝑡)𝑑(𝑡)

𝑡

0

] + 5 𝑖2 = 100                    (i) 

                                                         100 = 10i2 + 2
𝑑𝑖2
𝑑𝑡

+ 5𝑖1                                 (ii) 

Making 𝑖1 the subject of formula in Eq (ii) we have  

𝑖1 =
100 − 10𝑖2 − 2

𝑑𝑖2

𝑑𝑡

5
 

                                                    𝑖1 = 20 − 2𝑖2 − 0.4
𝑑𝑖2
𝑑𝑡
                                        (ii) 

Differentiating Eq (i) at 𝑄𝑜 = 0 and 𝑖𝑜 = 0,  

     5
𝑑𝑖1

𝑑𝑡
+
𝑖1

2
+ 5

𝑑𝑖2

𝑑𝑡
= 0    (iv) 

then substituting for 𝑖1 in Eq (iii) into Eq (iv) 

5
𝑑

𝑑𝑡
(20 − 2𝑖2 − 0.4

𝑑𝑖2
𝑑𝑡
) +

1

2
(20 − 2𝑖2 − 0.4

𝑑𝑖2
𝑑𝑡
) +

5𝑑𝑖2
𝑑𝑡

= 0 

5 (−2
𝑑𝑖2
𝑑𝑡

− 0.4
𝑑2𝑖2
𝑑𝑡

) +
1

2
(20 − 2𝑖2 − 0.4

𝑑𝑖2
𝑑𝑡
) + 5

𝑑𝑖2
𝑑𝑡

= 0 

−10
𝑑𝑖2
𝑑𝑡

−
2𝑑2𝑖2
𝑑𝑡2

+ 10 − 𝑖2 − 0.2
𝑑𝑖2
𝑑𝑡

+ 5
𝑑𝑖2
𝑑𝑡

= 0 

−
2𝑑2𝑖2
𝑑𝑡2

− 5.2
𝑑𝑖2
𝑑𝑡

− 𝑖2 = −10 

                                               
2𝑑2𝑖2
𝑑𝑡2

+ 5.2
𝑑𝑖2
𝑑𝑡

+ 𝑖2 = 10                                        (v) 

Let 
𝑑

𝑑𝑡
= 𝐷 

     [2𝐷2 + 5.2𝐷 + 1]𝑖2 = 10              (vi) 

    2𝑝2 + 5.2𝑝 + 1 = 0  [Characteristic equation] 

𝑝 =
−5.2 ± √5.22 − 4 × 2 × 1

2 × 2
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𝑝 =
−5.2 ± √27.04 − 8

4
 

𝑝 =
−5.2 ± √19.04

4
=
−5.2 ± 4.36

4
 

𝑝 =
−5.2 + 4.36

4
  or  

−5.2 − 4.36

4
 

  𝑝 = −0.21 or 𝑝 = −2.39 

𝑖2𝑛 = 𝐴𝑒−0.21𝑡 +  𝐵𝑒−2.39𝑡 

From Eq (vi)     

𝑖2𝑓 =
10𝑒𝜎𝑡

2𝐷2 + 5.2𝐷 + 1
 

For (𝐷 ⟹ 𝜎 = 0)  

𝑖2𝑓 =
10𝑒(0)𝑡

2(0)2 + 5.2(0) + 1
 

𝑖2𝑓 = 10 A 

𝑖2 = 𝑖2𝑛 + 𝑖2𝑓  

    𝑖2(𝑡) = 𝐴𝑒
−0.21𝑡 + 𝐵𝑒−2.39𝑡 + 10   (vii) 

From Eq (vii) substituting for initial conditions 

𝑖2(0) = 𝐴 + 𝐵 + 10   ⟹    𝐴 + 𝐵 = −10   ⟹   𝐴 = −10 − 𝐵   (viii) 

𝑑𝑖2
𝑑𝑡
|
𝑡=0

= −0.21𝐴 − 2.39𝐵 = 0 

                                              𝐴 =
−2.39𝐵

0.21
= −11.38𝐵                                               (ix) 

Putting Eq (viii) into (ix) 

−11.38𝐵 = −10 − 𝐵 

𝐵(1 − 11.38) = −10 

𝐵 =
−10

−10.38
= 0.98  & 𝐴 = −10 − 0.963 = −10.963 
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    𝑖2(𝑡) = 0.963𝑒
−2.39𝑡 − 10.965𝑒−0.2𝑡 + 10 A 

From Eq (iii) 

𝑖1 = 20 − 2𝑖2 − 0.4
𝑑𝑖2
𝑑𝑡

 

𝑖1 = 20 − 2(0.963𝑒−2.39𝑡 − 10.963𝑒−0.2𝑡 + 10)

− 0.4
𝑑

𝑑𝑡
[0.963𝑒−2.39𝑡 − 10.963𝑒−0.21𝑡 + 10] 

𝑖1 = 20 − 1.926𝑒
−2.39𝑡 + 21.926𝑒−0.21𝑡 − 20 + 0.9121𝑒−2.39𝑡 − 0.921𝑒−0.21𝑡 

𝑖1 = 21.005𝑒−0.21𝑡 − 1.005𝑒−2.39𝑡 A 

Example 4.7: In the circuit of Fig.4.8, with 𝑖1 𝑎𝑛𝑑 𝑖2 as shown,  

𝑅1 

V 

 

t=0 𝑅2 

𝐿1 𝐿2 

𝑖1 
𝑖2 

 

 Figure 4.8 

a) Obtain a differential equation for 𝑖1by KVL 

b) Obtain the characteristic equation and write the initial conditions 

c) For V = 240 V, L1 = 0.1 H,  L2 = 0.2 H, R1 = 50 Ω, R2 = 100 Ω, obtain the 

instantaneous values of   𝑖1 𝑎𝑛𝑑 𝑖2 

Taking the initial conditions as: 𝑖1(0
+) = 𝑖1(0

−) = 0,   𝑖2(0
+) = 𝑖2(0

−) = 0,   
𝑑𝑖1(0

+)

𝑑𝑡
=

𝑉

𝐿1
  

 

Solution: 

a) 𝑅1𝑖1 + 𝐿1
𝑑𝑖1

𝑑𝑡
+ 𝑅1𝑖2 = 𝑉       (i) 

𝑅1𝑖1 + (𝑅1 + 𝑅2)𝑖2 + 𝐿2
𝑑𝑖2

𝑑𝑡
= 𝑉       (ii) 
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Differentiating equation (i)  

𝑅1
𝑑𝑖1

𝑑𝑡
+ 𝐿1

𝑑2𝑖1

𝑑𝑡2
+ 𝑅1

𝑑𝑖2

𝑑𝑡
= 0       (iii) 

The eliminating 𝑖2 and 
𝑑𝑖2

𝑑𝑡
 between Eqs (i), (ii) & (iii) we have  

𝑑2𝑖1
𝑑𝑡2

+ (
𝑅1𝐿1 + 𝑅2𝐿1 + 𝑅1𝐿2

𝐿1𝐿2
)
𝑑𝑖1
𝑑𝑡

+
𝑅1𝑅2
𝐿1𝐿2

𝑖1 =
𝑅2𝑉

𝐿1𝐿2
 

Let 
𝑑

𝑑𝑡
= 𝐷 

[𝐷2 + (
𝑅1𝐿1 + 𝑅2𝐿1 + 𝑅1𝐿2

𝐿1𝐿2
)𝐷 +

𝑅1𝑅2
𝐿1𝐿2

]
𝑖1

=
𝑅2𝑉

𝐿1𝐿2
       ⟹           𝐎𝐃𝐄             (iv)  

 (iv) 

b) Again, let 𝐷 = 𝑝  i.e. the characteristic equation is given by:  

                      𝑝2 + (
𝑅1𝐿1 + 𝑅2𝐿1 + 𝑅1𝐿2

𝐿1𝐿2
) 𝑝 +

𝑅1𝑅2
𝐿1𝐿2

= 0                                      (v) 

c) For 𝐿1 = 0.1 H, 𝐿2 = 0.2 H,  𝑅1 = 50 Ω, 𝑅2 = 100 Ω 

[𝐷2 + (
50 × 0.1 + 100 × 0.1 + 50 × 0.2

0.1 × 0.2
)𝐷 +

50 × 100

0.1 × 0.2
]
𝑖1

=
100 × 240

0.1 × 0.2
 

[𝐷2 +
25

0.02
𝐷 + 25000]

𝑖1

= 1200000 

   [𝐷2 + 1250𝐷 + 250000]𝑖1 = 1200000   (vi) 

Let 𝐷 = 𝑝:  𝑝2 + 1250𝑝 + 250000 = 0  [Characteristic equation]  

𝑝 =
−1250 ± √12502 − 4 × 1 × 250000

2 × 1
 

𝑝(1,2) =
−1250 ± √562500

2
 

  ⟹ 𝑝1 =
−1250 + 750

2
 or   𝑝2 =

−1250 − 750

2
 

   𝑝1 = −250     𝑜𝑟   𝑝2 = −1000  (Overdamped response)  
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    𝑖1𝑛 = 𝐴𝑒
−250𝑡 + 𝐵𝑒−1000𝑡    (vii) 

From Eq (iv)  

    [𝐷2 + 1250𝐷 + 250000]𝑖1 = 1200000    

𝑖1𝑓 =
1

𝐷2 + 1250𝐷 + 250000
× 1200000𝑒𝜎𝑡 

For (𝐷 ⟹ 𝜎 = 0) 

𝑖1𝑓 =
1200000𝑒0𝑡

02 + 250(0) + 250000
=
12

25
 

𝑖1𝑓 =
120

25
= 4.8 A 

     𝑖1(𝑡) = 𝑖1𝑛 + 𝑖1𝑓    (viii) 

    𝑖1(𝑡) = 𝐴𝑒−250𝑡 + 𝐵𝑒−1000𝑡 + 4.8    

 (ix) 

At 𝑡 = 0 

𝑖(0) = 𝐴𝑒
−250(0) + 𝐵𝑒−1000(0) + 4.8 

0 = 𝐴 + 𝐵 + 4.8 

    𝐴 + 𝐵 = −4.8      (x) 

Differentiating Eq (ix) 

𝑑𝑖1(𝑡)

𝑑𝑡
= −250𝐴𝑒−250𝑡 − 1000𝐵𝑒−100𝑡 

𝑑𝑖1(𝑡)

𝑑𝑡
|
𝑡=0

= −250𝐴 − 1000𝐵   ⟹ −2400     (xi) 

𝑑𝑖(𝑡)

𝑑𝑡
|
𝑡=0

= −250𝐴 − 1000𝐵 

Where 𝐿1
𝑑𝑖1(𝑡)

𝑑𝑡
= 𝑉0 ,   

𝑑𝑖1(𝑡)

𝑑𝑡
=
𝑉0
𝐿1
=
240

0.1
               [𝐢𝐧𝐢𝐭𝐢𝐚𝐥 𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧] 

𝑑𝑖(𝑡)

𝑑𝑡
= 2400 A/s 
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∴   2400 = −250𝐴 − 1000𝐵 

    250𝐴 + 1000𝐵 = −2400    (xii) 

From Eq(x) 

𝐴 + 𝐵 = −4.8  

𝐴 = −4.8 − 𝐵         (xiii) 

 250𝐴 + 1000𝐵 = −2400 

Using substitution method of solving simultaneous equations, substitute (xiii) into (xii) 

250(−4.8 − 𝐵) + 1000𝐵 = −2400 

−1200 − 250𝐵 + 1000𝐵 = −2400 

750𝐵 = −2400 + 1200 

𝐵 =
−1200

750
 

𝐵 = −1.6 

Substituting the value of 𝐵 into Eq (xiii)  

𝐴 = −4.8 − (−1.6) = −4.8 + 1.6 = −3.2 

∴   𝑖1(𝑡) = −1.6𝑒−1000𝑡 − 3.2𝑒−250𝑡 + 4.8 

  𝑖1(𝑡) = 4.8 − 1.6𝑒−1000𝑡 − 3.2𝑒−250𝑡 A    (xi) 

But 𝑖2 from Eq (i) is given by 

𝑅1𝐿1 + 𝐿1
𝑑𝑖1
𝑑𝑡

+ 𝑅1𝑖2 = 𝑉 

                                           50𝑖1 + 0.1
𝑑𝑖1
𝑑𝑡

+ 50𝑖2 = 240                                              (xii) 

Substituting the Eq (xi) into Eq (xii) 

50(4.8 − 1.6𝑒−1000𝑡 − 3.2𝑒−250𝑡) + 0.1
𝑑

𝑑𝑡
(4.8 − 1.6𝑒−1000𝑡 − 3.2𝑒−250𝑡) + 50𝑖2

= 240 

240 − 80𝑒−1000𝑡 − 160𝑒−1000𝑡 + 80𝑒−250𝑡 + 50𝑖2 = 240 
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𝑒−1000𝑡(160 − 80) + 𝑒−250𝑡(80 − 160) + 50𝑖2 = 0 

80𝑒−1000𝑡 − 80𝑒−250𝑡 = −50𝑖2 

−50𝑖2 = 80(𝑒−1000𝑡 − 𝑒−250𝑡) 

𝑖2 = 1.6 (−𝑒−1000𝑡 + 𝑒−250𝑡) 

    𝑖2 = 1.6𝑒
−250𝑡 − 1.6𝑒−1000𝑡 A    (xiii) 

 

4.2 Exercise  

1. On the circuit of Fig.1. are 3 

passive elements, with a voltage and a 

current defined for each. Determine 

eat at t=0- and at t = 0+ 

60 Ω 

3 H

𝑖𝑅  

𝑖𝐿 

1

27
 F 

5 A

𝑖𝐶  

4
𝑢
( 𝑡
)  

A
 

 

Figure 1 

2. For Fig.2 find: (i) 𝛼 (ii) 𝜔 (iii) 𝑖(0+) (iv) 
𝑑𝑖

𝑑𝑡
|
𝑡=0+

 (v) 𝑖(0.5 𝑚s) 

200 Ω 

80 𝜇F 1 H 2𝑢(−𝑡) A 

 

Figure 2 

3. For Fig.3. Find: (i) 𝑖(𝑡) (ii) 𝑖(20 ms) 

100 Ω 

40 μF 1𝑢(−𝑡) A 0.5 H

 

Figure 3 

4. For Fig. 4 Given 𝑖𝑠 = 5𝑢(−𝑡) − 10𝑢(𝑡) A, 

determine: 

(𝑖)𝑖𝐿(0
−) (𝑖𝑖)𝑣𝑐(0

+) (𝑖𝑖𝑖)𝑣𝑅(0
+) (𝑖𝑣)𝑖𝐿(∞)  

(𝑣) 𝑖𝐿(0.015 s) 

10 Ω 

5 μF 

0.5 m
H

𝑖𝐿 

𝑣𝑅(𝑡) 

𝑖𝑠 

+

-

𝑣𝐶(𝑡) 

+

-

 

Figure 4 

5. For Fig. 3, determine (i) 𝛼 (ii) 𝜔 (iii) 

𝑖(0+) (iv) 
𝑑𝑖

𝑑𝑡
|
𝑡=0+

(v) 𝑖(𝑡), 𝑡 > 0 (vi) 

hence 𝑖(10 𝑚s) 

6.  Given 𝑖𝑠 = 30𝑢(−𝑡) − 60𝑢(𝑡)A for 

Fig. 4, determine: (i) 𝑖𝐿(0
−) (ii) 𝑣𝑐(0

+) 

(iii) 𝑣𝑅(0
+) (iv) 𝑖𝐿(∞) (v) 𝑖𝐿(𝑡), 𝑡 > 0, 

(vi) hence 𝑖𝐿(0.2 ms) 
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7. Find the complete response 𝑣 and 

then 𝑖 for 𝑡 > 0 in the circuit of Fig.5 

t=0

+

-

1

2
 F 

1 H4 Ω 

i

v

2 Ω 

 
Figure 5 

 

Answer: 𝒊 = 𝟐 − 𝟔𝒆−𝟐𝒕 + 𝟒𝒆−𝟑𝒕 𝐀 

 

8. In the RLC circuit of Fig. 6, 𝑉 is a dc 

source. Write a formal expression for 

the initial charge on the capacitor is 

zero. 

t=0

+

-

L

C

R

V
vC

vLvR + -
+ -

                            
Figure 6 

Answer:  𝑷𝟏 =
−𝑹

𝟐𝑳
+

√(
𝑹

𝟐𝑳
)
𝟐

−
𝟏

𝑳𝑪
 ≡ −𝜶 + 𝜷 

  𝑷𝟐 =
−𝑹

𝟐𝑳
−

√(
𝑹

𝟐𝑳
)
𝟐

−
𝟏

𝑳𝑪
 ≡ −𝜶 − 𝜷 

9. State the initial condition to 

evaluate the constants of integration 

in Exercise 8. Define 𝜔𝑜, the resonance 

frequency and express the 

characteristic root in terms of 𝛼 and 

𝜔𝑜 

Answer: 𝑷𝟏, 𝑷𝟐 = −𝛼 ± √𝛼𝟐 −𝝎𝟎
𝟐 

10. Find an expression for 𝑣𝑐(𝑡)  for 

𝑡 > 0 in the circuit below Fig. 7 
300Ω 

t=0 𝑖𝐶  

150V

𝑖𝐿  𝑖𝑅  

5mH
20nF

200Ω 

                          
 Figure 7 

Answer: 𝒗𝒄(𝒕) = 𝟗𝟎𝒆−𝟓𝟎𝟎𝟎𝒕 −

𝟐𝟎𝒆−𝟐𝟎𝟎𝟎𝟎𝟎𝒕 𝐕 

11. After being opened for a long time, 

the switch in Fig. 8 close at 𝑡 = 0. Find 

(a) 𝑖𝐿(0
−); (b) 𝑣𝐿(0

−); (c) 𝑖𝑅(0
+); (d) 

𝑖𝑐(0
+); (e)  𝑣𝑐(0.2 s) 

24Ω 

t=0

𝑖𝐶  

10H

vC

𝑖𝐿  

48Ω 

3𝑢
( −
𝑡)
𝐴 1

240
𝐹 

+

-

                                                 
Figure 8 

Answer: 

𝟏 𝐀; 𝟒𝟖 𝐕; 𝟐 𝐀; −𝟑 𝐀; −𝟏𝟕. 𝟓𝟒 V 
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CHAPTER 5 

TWO-PORT NETWORK 
 

5.0 Introduction 

A port is a pair of terminals at which a signal may enter or leave a network. The rule is 

that what goes in is what equally comes out. But for a two-port network, we have two 

of such a pair of terminals. One pair may be used as input for, say, an energy signal while 

the other pair is used as the output for the load see Fig. 5.1.  

 Two-Port networks find applications as important building blocks in electronic 

systems, automatic control systems, communication systems, and transmission and 

distribution systems.  

𝑖𝑎 ′ 

𝑖𝑎  

𝑉1 𝑉2 

𝑎 

𝑎′ 

𝑏 

𝑏′ 

𝑖𝑏  

𝑖𝑏 ′ 

Tow-Port

Network

𝑎 
+

-

+

-

One-Port

Network

𝑖𝑎  

𝑖𝑎 ′ 

(a) (b)  

Figure 5.1 

As mentioned earlier, for each part, what goes in is what comes out, and we’re not much 

concerned with the internal circuitry of the network (i.e., viewed differently, it might just 

be regarded as the proverbial block box!) Note the conventional direction of the arrow 

at the top of (output) port b, see Fig. 5.2b for the Two-Port network. Also, it’s assumed 

that for simplicity, the network is a linear one, and no independent source(s) are 

involved, while there may be dependent source(s).  

 When a quotient involves terms at the same port, it is known as a driving point 

term, while if it involves terms at two different parts, it is called a transfer term. The 

quotient is normally that of transform pairs, and for a two-port network can be 

impedance, admittance, or simply voltage or current gains, since we’re obviously talking 

about quotients of voltages and/or currents:  
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 𝐺𝑎𝑖𝑛 =

{
 
 

 
 Voltage transfer function             𝐺12(𝑠) =

𝑉2(𝑠)

𝑉1(𝑠)

current transfer function ∝12 (𝑠) =
𝐼2(𝑠)

𝐼1(𝑠)

 

Transfer impedance function    𝑍12(𝑠) =
𝑉1(𝑠)

𝐼2(𝑠)
 

(Reverse) Transfer impedance function   𝑍21(𝑠) =
𝑉2(𝑠)

𝐼1(𝑠)
 

Transfer admittance function    𝑌12(𝑠) =
𝐼1(𝑠)

𝑉2(𝑠)
 

Reverse transfer admittance function   𝑌21(𝑠) =
𝐼2(𝑠)

𝑉1(𝑠)
 

 All of the above involve signals at two different ports, hence the term “transfer”. 

There may also be driving point function whereby the quotient is of signals at the same 

port for example: 
𝑉1(𝑠)

𝐼1(𝑠)
,
𝑉2(𝑠)

𝐼2(𝑠)
,
𝐼1(𝑠)

𝑉1(𝑠)
,
𝐼2(𝑠)

𝑉2(𝑠)
. (During point functions of like terms are 

identically unity).  

 For two-port networks, there are four different sets of parameters, of which we’ll 

in this textbook deal with z, y and t parameters only while the rest will only come up for 

an honourable mention! 

The parameters are: 

1. 𝑧 (Or impedance) parameters: 

𝑉1 = 𝑓1(𝐼1, 𝐼2) = 𝑧11𝐼1 + 𝑍12𝐼2
𝑉2 = 𝑓2(𝐼1, 𝐼2) = 𝑧21𝐼1 + 𝑍22𝐼2

} ⟹ (
𝑧11   𝑧12
𝑧21   𝑧22

) (
𝐼1
𝐼2
) 

2. 𝑦 (Or admittance) parameters:  

𝐼1 = 𝑓1(𝑉1, 𝑉2) = 𝑦11𝑉1 + 𝑦12𝑉2
𝐼2 = 𝑓2(𝑉1, 𝑉2) = 𝑦21𝑉1 + 𝑦22𝑉2

} ⟹ (
𝑦11   𝑦12
𝑦21   𝑦22

) (
𝑉1
𝑉2
) 

3. ℎ (Or hybrid or “mixed”) parameters:  

𝑉1 = 𝑓1(𝐼1, 𝑉2) = ℎ11𝐼1 + ℎ12𝑉2
𝐼2 = 𝑓2(𝐼1, 𝑉2) = 𝑦21𝐼1 + ℎ22𝑉2

} ⟹ (
ℎ11   ℎ12
ℎ21  ℎ22

) (
𝐼1
𝑉2
) 

There may also be “inverse hybrid” where the letter merely exchanges – 𝑉 for 𝐼;  𝐼 for 𝑉, 

and ℎ for 𝑔: 

3a. 
𝐼1 = 𝑓1(𝑉1, 𝐼2) = 𝑔11 𝑉1 + 𝑔12𝐼2
𝑉2 = 𝑓2(𝑉1, 𝐼2) = 𝑔21 𝑉1 + 𝑔22𝐼2

} ⟹ (
𝑔11  𝑔12
𝑔21  𝑔22

) (
𝑉1
𝐼2
) 
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4. 𝑡 − (or transmission or ABCD) parameters:  

𝑉1 = 𝑓1(𝑉2, 𝐼2) = 𝑡11𝑉2 − 𝑡12𝐼2
𝐼1 = 𝑓2(𝑉2, 𝐼2) = 𝑡21 𝑉2 − 𝑡22𝐼2

} ⟹ (
𝑡11   𝑡12
𝑡21   𝑡22

) (
𝑉2
𝐼2
) 

(The reason for the minus sign will become apparent, later). 

 As pointed out earlier, the sets of parameters to cover are: z, y and t. As we shall in 

this textbook concentrate more on the t parameters, that is, transmission parameters, 

not least because of its relationship to other “sister” courses in electrical as well as 

electronics engineering. 

5.1 Impedance Parameters ‘Z’ 

Impedance and admittance parameters are commonly used in the synthesis of filters. 

They are also useful in the design and analysis of impedance-matching networks and 

power distribution networks.  

𝐼2 

𝑉1 𝑉2 

Linear

Network

+

-

+

-

Linear

Network

𝐼1 

(a) (b)

𝑉1 𝑉2 𝐼1 𝐼2 

 

Figure 5.2 The linear two-port network: (a) driven by voltage sources, (b) driven by 

current sources 

We discuss impedance parameters in this section and admittance parameters in the 

next section. 

A two-port network may be voltage-driven as in Fig. 5.2(a) or current-driven as in Fig. 

5.2(b). From either Figs. 5.2(a) or (b), the terminal voltages can be related to the terminal 

currents as 

     
𝑉1 = 𝑧11𝐼1 + 𝑧12𝐼2
𝑉2 = 𝑧21𝐼1 + 𝑧22𝐼2

    5.1 

or in matrix form as 

   [
𝑉1
𝑉2
] = [

𝑧11 𝑧12
𝑧21 𝑧22

] [
𝐼1
𝐼2
] = [𝑧] [

𝐼1
𝐼2
]    5.2 
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where the z terms are called the impedance parameters, or simply z parameters, and 

have units of ohms. 

The values of the parameters can be evaluated by setting 𝐼1 = 0 (input port open-

circuited) or 𝐼2 = 0 (output port open-circuited). Thus, 

                                  

𝑧11 =
𝑉1
𝐼1
|
𝐼2=0

,        𝑧12 =
𝑉1
𝐼2
|
𝐼1=0

𝑧21 =
𝑉2
𝐼1
|
𝐼2=0

,      𝑧22 =
𝑉2
𝐼2
|
𝐼1=0

                                          5.3 

Since the z parameters are obtained by open-circuiting the input or output port, they are 

also called the open-circuit impedance parameters. Specifically, 

 𝑧11 = Open circuit input impedance  

 𝑧12 = Open circuit transfer impedance from port 1 to port 2  5.4 

 𝑧21 = Open-circuit transfer impedance from port 2 to port 1 

 𝑧22 = Open circuit output impedance 

 According to Eq. (5.3), we obtain 𝑧11 and 𝑣21 by connecting a open-circuited 

voltage 𝑉1 (or a current source 𝐼1) to port I with port as in Fig. 5.3(a) and finding 𝐼1 and 

𝑉2 we then get 

                                                  𝑧11 =
𝑉1
𝐼1
,     𝑧21 =

𝑉2
𝐼1
                                                5.5 

𝐼2 = 0 

𝑉1 𝑉2 
+

-

𝐼1 

(a) (b)

𝑉1 𝑉2 

𝐼1 = 0 

+

-

𝑧11 =
𝑉1

𝐼1
 

𝑧21 =
𝑉2

𝐼1
 𝑧22 =

𝑉2

𝐼2
 

𝑧12 =
𝑉1

𝐼2
 

𝐼2 

 

Figure 5.3 Determination of the z-parameters: (a) finding 𝒛𝟏𝟏& 𝒛𝟐𝟏 (b) finding 𝒛𝟏𝟐 & 𝒛𝟐𝟐 

Similarly, we obtain 𝑧12 and by 𝑧22 connecting a voltage 𝑉2 (or a current source 𝐼2) to 

port 2 with port I open-circuited as in Fig. 5.3(b) and finding 𝐼2 and 𝑉1; we then get 

                                                 𝑧12 =
𝑉1
𝐼2
,   𝑧22 =

𝑉2
𝐼2
                                                   5.6 
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The above procedure provides us with a means of calculating or measuring the z 

parameters. 

 Sometimes 𝑧11 and 𝑧22 are called driving-point impedances, while 𝑧21 and 𝑧12 are 

called transfer impedances. A driving-point impedance is the input impedance of a two-

terminal (one-port) device. Thus, 𝑧11 is the input driving-point impedance with the 

output port open-circuited, while 𝑧22 is the output driving-point impedance with the 

input port open-circuited. 

 When 𝑧11 = 𝑧22, the two-port network is said to be symmetrical. This implies that 

the network has mirror like symmetry about some center line; that is, a line can be found 

that divides the network into two similar halves.  

When the two-port network is linear and has no dependent sources, the transfer 

impedances are equal (𝑧12 = 𝑧21), and the two-port is said to be reciprocal. This means 

that if the points of excitation and response are interchanged, the transfer impedances 

remain the same. As illustrated in Fig. 5.4, a two-port is reciprocal if interchanging an 

ideal voltage source at one port with an ideal ammeter at the other port gives the port 

same ammeter reading. 

𝐼 

𝑉 

(a) (b)

𝑉 

𝐼 

Reciprocal 

Two-port

Reciprocal

Two-portA A

21 1 2

 

Figure 5.4 Interchanging a voltage source at one port with an ideal ammeter at the 

other port produces the same reading in a reciprocal two-port. 

The reciprocal network yields 𝑉 = 𝑧12𝐼 according to Eq. (5.1) when connected as in Fig. 

5.4(a), but yields 𝑉 = 𝑧21𝐼 when connected as in Fig. 5.4(b). This is possible only if 𝑧12 =

𝑧21. Any two-port that is made entirely of resistors, capacitors, and inductors must be 

reciprocal. A reciprocal network can be replaced by the T-equivalent circuit in Fig. 5.5(a). 

If the network is not reciprocal, a more general equivalent network is shown in Fig. 

5.5(b); notice that this figure follows directly from Eq. (5.1). 
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+

-

+

-

+

-

+

-

+
-

+
-

𝐼1 𝐼2 

𝑉2 𝑉1 
𝑉1 

𝐼2 

𝑉2 

𝑧11 − 𝑧12 𝑧22 − 𝑧12 

𝑧12  

𝑧22 𝑧11  

𝑧12𝐼2 𝑧21𝐼1 

𝐼1 

(a) (b)  

Figure 5.5 (a) T-equivalent circuit (for reciprocal case only), (b) general equivalent 

circuit 

It should be mentioned that for some two-port networks. the parameters do not exist 

because they cannot be described by Eq. (5.1). As an example, consider the ideal 

transformer of Fig.5.6. The defining equations for the two-port network are: 

                                            𝑉1 =
1

𝑛
𝑉2, 𝑎𝑛𝑑    𝐼1 = −𝑛𝐼2                                                   5.7 

1:n

+

-

+

-

𝑉1 𝑉2 

𝐼1 𝐼2 

                                                               

Figure 5.6 An ideal transformer has no z-parameters. 

Observe that it is impossible to express the voltages in terms of the currents, and vice 

versa, as Eq. (5.1) requires. Thus, the ideal transformer has no z. parameters. However, 

it does have hybrid parameters as we shall see in Section 5.4. 

Example 5.1: Determine the z parameters for the circuit in Fig. 5.7. 

20Ω 

40Ω 

30Ω 

 

Figure 5.7 
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Solution   

METHOD I To determine 𝑧11 and 𝑧21, we apply a voltage source 𝑉1 to the Input port and 

leave the output port open as in Fig.5.8(a). Then, 

20Ω 

40Ω 

30Ω 
𝐼1 

𝐼2 

+

-

𝑉1 𝑉2 

(a)  

Figure 5.8 (a) finding 𝒛𝟏𝟏& 𝒛𝟐𝟏 

20Ω 

40Ω 

30Ω 𝐼2 𝐼1 

+

-

𝑉1 
𝑉2 

(b)   

Figure 5.8 (b) finding 𝒛𝟏𝟐& 𝒛𝟐𝟐 

𝑧11 =
𝑉1
𝐼1
=
(20 + 40)𝐼1

𝐼1
= 60 Ω 

that is, 𝑧11 is the input impedance at port 1. 

𝑧21 =
𝑉2
𝐼1
=
40𝐼1
𝐼1

= 40 Ω 

To find 𝑧12 and 𝑧22, we apply a voltage source 𝑉2 to the output port and leave the input 

port open as in Fig. 5.8(b). Then, 

𝑧12 =
𝑉1
𝐼2
=
40𝐼2
𝐼2

= 40 Ω,   𝑧22 =
𝑉2
𝐼2
=
(30 + 40)𝐼2

𝐼2
= 70 Ω 

Thus, 

[𝑧] = [
60 Ω 40 Ω
40 Ω 70 Ω

] 



  Circuit Theory with Application  

104 
 

METHOD 2 Alternatively, since there is no dependent source in the given circuit, 𝑧12 =

𝑧21 and we can use Fig. 5.5(a). Comparing Fig. 5.7 with Fig. 5.5(a), we get 

𝑧12 = 40 Ω = 𝑧21 

𝑧11 − 𝑧12 = 20 Ω     ⟹      𝑧11 = 20 + 𝑧12 = 60 Ω 

𝑧22 − 𝑧12 = 30 Ω    ⟹       𝑧22 = 30 + 𝑧12 = 70 Ω 

Example 5.2: Find 𝐼1 and 𝐼2 in the circuit in Fig. 5.9. 

100∠0𝑜𝑉 

𝒛𝟏𝟏 = 𝟒𝟎𝜴 

𝐼1 𝐼2 

+

-

𝑉1 𝑉2 

+

-

𝒛𝟐𝟐 = 𝟓𝟎𝜴 

𝒛𝟐𝟏 = 𝒋𝟑𝟎𝜴 

𝒛𝟏𝟐 = 𝒋𝟐𝟎𝜴 

10Ω 

 

Figure 5.9 

Solution 

This is not a reciprocal network. We may use the equivalent circuit in Fig. 5.5(b) but we 

can also use Eq. (5.1) directly. Substituting the given z parameters into Eq. (5.1), 

    𝑉1 = 40𝐼1 + 𝑗20𝐼2     5.8 

    𝑉2 = 𝑗30𝐼1 + 50𝐼2     5.9 

Since we are looking for 𝐼1 and 𝐼2, we substitute 

𝑉1 = 100∠0
𝑜 ,      𝑉2 = −10𝐼2 

into Eqs. (5.8) and (5.9), which become 

     100 = 40𝐼1 + 𝑗20𝐼2    5.10 

    −10𝐼2 = 𝑗30𝐼1 + 50𝐼2      ⟹      𝐼1 = 𝑗2𝐼2  5.11 

Substituting Eq. (5.11) into Eq. (5.10) gives 

100 = 𝑗80𝐼2 + 𝑗20𝐼2      ⟹      𝐼2 =
100

𝑗100
= −𝑗 

From Eq. (5.11), 𝐼1 = 𝑗2(−𝑗) = 2.  

Thus,  𝐼1 = 2∠0
𝑜  𝐴,   𝐼2 = 1∠ − 90𝑜A 
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5.2 Admittance Parameters 

In the previous section we saw that impedance parameters may not exist for a two-port 

network. So, there is a need for an alternative means of describing such a network. This 

need may be met by the second set of parameters, which we obtain by expressing the 

terminal currents in terms of the terminal voltages. In either Fig. 5.10(a) or (b), the 

terminal currents can be expressed in terms of the terminal voltages as. 

𝑦11 =
𝐼1
𝑉1

 

𝐼1 𝐼2 

+

-

𝑉1 
𝑉2 = 0 

+

-

𝑦21 =
𝐼2
𝑉1

 

𝐼1 𝐼2 

+

-

𝑉1 = 0 𝑉2 

+

-

𝑦12 =
𝐼1
𝑉2

 

𝑦22 =
𝐼2
𝑉2

 

𝐼1 

𝐼2 

 

Figure 5.10 Determination of the y-parameters: (a) finding 𝒚𝟏𝟏& 𝒚𝟐𝟏, (b) finding 

𝒚𝟏𝟐 & 𝒚𝟐𝟐 

                                                
𝐼1 = 𝑦11𝑉1 + 𝑦12𝑉2
𝐼2 = 𝑦21𝑉1 + 𝑦22𝑉2

                                                     5.12 

or in matrix form as 

                                   [
𝐼1
𝐼2
] = [

𝑦11 𝑦12
𝑦21 𝑦22

] [
𝑉1
𝑉2
] = [𝑦] [

𝑉1
𝑉2
]                                          5.13 

The 𝑦 terms are known as the admittance parameters (or, simply, y parameters) and 

have units of Siemens. 

 The values of the parameters can be determined by setting 𝑉1 = 0 (input port 

short-circuited) or 𝑉2 = 0 (output port short-circuited). Thus, 
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𝑦11 =
𝐼1
𝑉1
|
𝑉2=0

,     𝑦12 =
𝐼1
𝑉2
|
𝑉1=0

𝑦21 =
𝐼2
𝑉1
|
𝑉2=0

,     𝑦22 =
𝐼2
𝑉2
|
𝑉1=0

                                        5.14 

Since the 𝑦 parameters are obtained by short-circuiting the input or output port. They 

are also called the short-circuit admittance parameters. Specifically, 

  𝑦11 =Short-circuit input admittance 

  𝑦12 =Short-circuit transfer admittance from port 2 to port 1  5.15 

  𝑦21 =Short-circuit transfer admittance from port I to port 2 

  𝑦22 =Short-circuit output admittance 

Following Eq. (5.14), we obtain 𝑦11 and 𝑦21 by connecting a current 𝐼1 to port I and short-

circuiting port 2 as in Fig. 5.10(a), finding 𝑉1 and 𝐼2 and then calculating 

                                                         𝑦11 =
𝐼1
𝑉1
,      𝑦21 =

𝐼2
𝑉1
                                             5.16 

Similarly, we obtain 𝑦12 and 𝑦22 by connecting a current source 𝐼2 to port 2 and short-

circuiting port 1 as in Fig. 5.10(b). Finding 𝐼1 and 𝑉2 and then getting 

                                                         𝑦12 =
𝐼1
𝑉2
,       𝑦22 =

𝐼2
𝑉2
                                          5.17 

This procedure provides us with a means of calculating or measuring the 𝑣 parameters. 

The impedance and admittance Parameters are collectively referred to as immittance 

parameters. 

For a two-port network that is linear and has no dependent sources, the transfer 

admittances are equal (𝑦12 = 𝑦21). This can be proved in the same way as for the z 

parameters. A reciprocal network (𝑦12 = 𝑦21) can be modeled by the 𝜋-equivalent 

circuit in Fig.5.11(a). If the network is not reciprocal, a more general equivalent network 

is shown in Fig.5.11(b). 
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+

-

+

-

+

-

+

-

𝑉1 𝑉2 
𝑉2 

𝑉1 

(a) (b)

𝑦21𝑉1 𝑦12𝑉2 
𝑦22 𝑦11  𝑦22 + 𝑦12  𝑦11 + 𝑦12  

𝑦12  

𝐼1 𝐼1 𝐼2 𝐼2 

 

Figure 5.11(a)  𝛑 −equivalent circuit (for reciprocal case only), (b) general 

equivalent circuit 

Example 5.3: Obtain the 𝑦 parameters for the π network shown in Fig. 5.12 

2Ω 

4Ω 8Ω 

                                                                                           

Figure 5.12 

Solution: 

METHOD 1 To find 𝑦11 and 𝑦21, short-circuit the output port and connect a current 

source 𝐼1 to the input port as in Fig. 5.13(a). Since the 8 Ω resistor is short-circuited, the 

2 Ω resistor is in parallel with the 4 Ω resistor. Hence, 

𝑉1 = 𝐼1(4 ∥ 2) =
4

3
𝐼1,     𝑦11 =

𝐼1
𝑉1
=
𝐼1
4

3
𝐼1
= 0.75 S 

By current division, 

−𝐼2 =
4

4 + 2
𝐼1 =

2

3
𝐼1,   𝑦21 =

𝐼2
𝑉1
=
−
2

3
𝐼1

4

3
𝐼1

= 0.5 S 

2Ω 

4Ω 8Ω 

2Ω 

4Ω 8Ω 𝐼1 

𝐼1 

𝑉1 
𝑉1 = 0 𝑉2 = 0 

𝐼2 𝐼2 𝐼1 

𝐼2 𝑉2 

+

-

+

-

+

-

+

-

(a) (b)  

Figure 5.13 
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To get 𝑦12 and 𝑦22, short-circuit the input port and connect a current source 𝐼2 to the 

output port as in Fig. 5.13(b). The 4 Ω resistor is short-circuited so that the 2 Ω and 8 Ω 

resistors are in parallel  

𝑉2 = 𝐼2(8 ∥ 2) =
8

5
𝐼2,     𝑦22 =

𝐼2
𝑉2
=
𝐼2
8

5
𝐼2
=
8

5
= 0.625 S 

By current division, 

−𝐼1 =
8

8 + 2
𝐼2 =

4

5
𝐼2,     𝑦12 =

𝐼1
𝑉2
=
−
4

5
𝐼2

8

5
𝐼2

= −0.5 S 

METHOD 2 Alternatively, comparing Fig. 5.12 with Fig 5.11(a). 

𝑦12 = −
1

2
𝑆 = 𝑦21 

𝑦11 + 𝑦12 =
1

4
     ⟹      𝑦11 =

1

4
− 𝑦12 = 0.75 S 

𝑦22 + 𝑦12 =
1

8
     ⟹      𝑦22 =

1

8
− 𝑦12 = 0.625 S 

as obtained previously. 

Example 5.4: Determine the 𝑦 parameter for the two-port shown in Fig.5.14 

4Ω 

2Ω 

8Ω 𝑖 

2𝑖 

 

Figure 5.14 

Solution 

We follow the same procedure in the previous example. To get 𝑦11 and 𝑦21, we use the 

circuit in Fig.5.15(a). in which port 2 is short circuited and a current source is applied to 

port 1. At node 1, 
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𝑉1 − 𝑉𝑜
8

= 2𝐼1 +
𝑉𝑜
2
+
𝑉𝑜 − 0

4
 

But I1 =
V1 − Vo
8

, therefore 

0 =
𝑉1 − 𝑉𝑜
8

+
3𝑉𝑜
4

 

0 = 𝑉1 − 𝑉𝑜 + 6𝑉𝑜       ⟹    𝑉1 = −5𝑉𝑜 

4Ω 

2Ω 

8Ω 

𝑉1 = 0 

2𝑖 

4Ω 

2Ω 

8Ω 

𝐼2 

2𝑖 

𝐼1 

𝐼1 𝐼2 

+

-

+

-

𝑉2 = 0 
𝑉1 

+

-

1 2 1 2𝑉0 𝑉0 

(a) (b)  

Figure 5.15(a) finding 𝒚𝟏𝟏 and𝒚𝟐𝟏, (b) finding 𝒚𝟏𝟐 and 𝒚𝟐𝟐 

Hence,  

𝐼1 =
−5𝑉𝑜 − 𝑉𝑜

8
= −0.75𝑉𝑜 

And 

𝑦11 =
𝐼1
𝑉1
=
−0.75𝑉𝑜
−5𝑉𝑜

= 0.15 S 

At node 2, 

𝑉𝑜 − 0

4
+ 2𝐼1 + 𝐼2 = 0 

Or 

−𝐼2 = 0.25𝑉𝑜 − 1.5𝑉𝑜 = −1.25𝑉𝑜 

Hence, 

𝑦21 =
𝐼2
𝑉1
=
1.25𝑉𝑜
−5𝑉𝑜

= −0.25 S 
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Similarly, we get 𝑦12 and 𝑦22 using Fig.5.15(b). at node 1 

0 − 𝑉𝑜
8

= 2𝐼1 +
𝑉𝑜
2
+
𝑉𝑜 − 𝑉2
4

 

But, I1 =
0 − Vo
8

  therefore, 

0 = −
𝑉𝑜
8
+
𝑉𝑜
2
+
𝑉𝑜 − 𝑉2
4

 

Or    0 = −𝑉𝑜 + 4𝑉𝑜 + 2𝑉𝑜 − 2𝑉2     ⟹    𝑉2 = 2.5𝑉𝑜 

Hence, 

𝑦12 =
𝐼1
𝑉2
=
−𝑉𝑜/8

2.5𝑉𝑜
= −0.05 S 

At node 2 

𝑉𝑜 − 𝑉2
4

+ 2𝐼1 + 𝐼2 = 0 

Or   −𝐼2 = 0.25𝑉𝑜 −
1

4
(2.5𝑉𝑜) −

2𝑉𝑜

8
= −0.625𝑉𝑜 

𝑦22 =
𝐼2
𝑉2
=
0.625𝑉𝑜
2.5𝑉𝑜

= 0.25 S 

Notice that 𝑦12 ≠ 𝑦21 in this case, since the network is not reciprocal. 

5.3 Transmission Line Parameters (ABCD-Parameters) 

Since there are no restrictions on which terminal voltages and currents should be 

considered independent and which should be dependent variables, we expect to be able 

to generate many sets of parameters. 

Linear 

Two-port

+

-

+

-

𝑉2 𝑉1 

𝐼2 𝐼1 

 

Figure 5.16 Terminal variable used to define the ABCD parameters 
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Another set of parameters relates the variables at the Input port to those at the output 

port. Thus, 

     
𝑉1 = 𝐴𝑉2 − 𝐵𝐼2
𝐼1 = 𝐶𝑉2 − 𝐷𝐼2

    5.18 

Or 

    [
𝑉1
𝐼2
] = [

𝐴 𝐵
𝐶 𝐷

] [
𝑉2
−𝐼2

] = [𝑇] [
𝑉2
−𝐼2

]   5.19 

Eqs (5.18) and (5.19) relate the input variables (𝑉1 and 𝐼1) to the output variables (𝑉2 and 

−𝐼2). Notice that in computing the transmission parameters. −𝐼2 is used rather than 𝐼2 

because the current is considered to be leaving the network, as shown in Fig. 5.18, as  

opposed to entering the network as in Fig. 5.1(b). This is done merely for conventional 

reasons; when you cascade two-ports (output to input). It is most logical to think of 𝐼2 as 

leaving the two-port. It is also customary in the power industry to consider 𝐼2 as leaving 

the two-port. 

 The two-port parameters in Eqs. (5.18) and (5.19) provide a measure of how a 

circuit transmits voltage and current from a source to a load. They are useful in the 

analysis of transmission lines (such as cable and fiber) because they express sending-end 

variables (𝑉1 and 𝐼1) in terms of the receiving-end variables (𝑉2 and −𝐼2). For this reason, 

they are called transmission parameters. They are also known as ABCD parameters. They 

are used in the design of telephone systems, microwave networks, and radars. 

The transmission line parameter is best illustrated by taking on a very simple, practical 

example using a T-type network: 

𝑅1 

𝑉1 

𝐼2 𝐼1 

+

-

+

-

𝑉2 

𝑅2 

𝑅 

 

Figure 5.17 A T-type network 
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(For 𝐼2, negative reversal, means 𝐼2 pointing +ive left is equivalent to −𝐼2 pointing –ve 

right) 

 Before taking on the actual example, a quick method for determining 

𝑡11, 𝑡12, 𝑡21, 𝑡22, or equivalently, A, B, C, D respectively, is in order:  

From set 4 above: 

                                                             𝑡11 =
𝑉1
𝑉2
|
𝐼2=0

                                                       5.20 

A numeric (“unitless”) being a quotient of two like quantities.  

                                                              𝑡12 = −
𝑉1
𝐼2
|
𝑉2=0

                                                 5.21𝑎 

With the unit of “Ohms” 

                                                                  𝑡21 =
𝐼1
𝑉2
|
𝐼2=0

                                                5.21𝑏 

With the unit of mhos (Ʊ) or Siemens(S) 

                                                          𝑡22 = −
𝐼1
𝐼2
|
𝑉2=0

                                                  5.22 

Again, with no unit 

So, transmission parameters are another version of “hybrid” since it’s a mixture of 

different units (and no units). In keeping faith with the earlier designations, 𝑡11 (−
𝑉1

𝑉2
) 

can be conceptualized as some port of “reverse (negative) voltage gain’, while 𝑡22 (−
𝐼1

𝐼2
) 

can be thought of as “reverse because itse(negative) current gain” (=  ∝21). 𝑡12 is 

(negative) transfer impedance function −𝑧12(𝑠), while 𝑡21 is (positive) transfer 

admittance function 𝑦12 S.  

In summary 

𝐴 = 𝑡11 =
𝑉1
𝑉2
|
𝐼2=0

, open circuit reverse voltage gains.                                           5.23       
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𝐶 = 𝑡21 =
𝐼1
𝑉2
|
𝐼2=0

, open circuit transfer admittance                                               5.24       

𝐵 = 𝑡12 =
𝑉1

(−𝐼2)
|
𝑉2=0

, short circuit transfer impedance                                        5.25       

𝐷 = 𝑡22 =
𝐼1

(−𝐼2)
|
𝑉2=0

, short circuit reverse current gain                                      5.26 

 To determine the ABCD parameters by “direct” (recommended) method, let’s refer 

to the 𝑇 network on Fig. 5.17 by way of illustration.  

⟹ 𝐴 =
𝑉1
𝑉2
|
𝐼2=0

= 𝐼1
(𝑅1 + 𝑅)

𝐼1(𝑅)
=

(𝑅1 + 𝑅)

𝑅(𝑛𝑢𝑚𝑒𝑟𝑖𝑐)
, 

After recalling mesh analysis and noting the various impedance (resistance) being “seen” 

by 𝑉1, 𝑉2, respectively and applying Ohm’s law.  

𝑅2 is “dead” owing to the zeroing of 𝐼2 

𝐶 =
𝐼1
𝑉2
|
𝐼2=0

=
𝐼1

𝐼1(𝑅)
=
1

𝑅
Ʊ (𝑚ℎ𝑜) or siemens (S)      

Next, we fine 

𝐷 =
𝐼1
−𝐼2

|
𝑉2=0

− 𝐼2 = 𝐼1
𝑅

(𝑅 + 𝑅2)
=

𝐼1
(−𝐼2)

=
(𝑅 + 𝑅2)

𝑅
   𝑖𝑡 𝑖𝑠 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠} 

Lastly, with 𝑉2 shorted, 𝑅 and 𝑅2 are in parallel, and together they’re in series with 𝑅1 

Ohm’s law at input port  

⟹   
𝑉1
𝐼1
= 𝑅1 + (𝑅 ∥ 𝑅2) 

𝐵 =
𝑉1
−𝐼2

|
𝑉2=0

=
𝐼1 [𝑅1 +

𝑅𝑅2

(𝑅+𝑅2)
]

(−𝐼2)
 

From above 
I1

(−I2)
= (R + R2)/R 

⟹    B = (
R + R2
R

) (
R1R + R1R2 + RR2

R + R2
) 

Because it’s easier and  
merely involves current  
division rule 
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=
(𝑅1𝑅 + 𝑅1𝑅2 + 𝑅𝑅2)

𝑅
Ω 

Because it possesses the dimension of resistance as unit  

(
𝐴 𝐵
𝐶 𝐷

) = (

[𝑅1 + 𝑅]

𝑅

[𝑅1𝑅 + 𝑅1𝑅2 + 𝑅𝑅2]

𝑅
Ω

1

𝑅
Ω

[𝑅 + 𝑅2]

𝑅

) 

Example 5.5: Set the values of 𝑅1 = 2 Ω, 𝑅 = 10 Ω, 𝑅2 = 4 Ω in the T-type network of 

Fig. 5.17. Determine the transmission line parameters. 

Solution: 

𝐴 =
(2 + 10)

10
= 1.2  

𝐵 =
[(2)(10) + (2)(4) + (10)(4)]

10
=
68

10
= 6.8 Ω 

𝐶 =
1

𝑅
=
1

10
= 0.1 Ʊ(mho)or siemer (S)  

𝐷 =
(10 + 4)

10
= 1.4  

(
𝐴 𝐵
𝐶 𝐷

) = (
1.2 6.8 Ω
0.1 Ʊ 1.4

) 

The determinant of this square matrix is:  

𝐴𝐷 − 𝐵𝐶 = (1.2)(1.4) − (6.8)(0.1) = 1.68 − 0.68 = 1 

And leads us, by chance to the statement:  

When the determinant 𝐴𝐷 − 𝐵𝐶 = 𝑡11𝑡22 − 𝑡12𝑡21 is equal to unity, then the network 

is known as a reciprocal network.  

Meaning that in terms of the transmission or inverse transmission parameters, a network 

is reciprocal if 

𝑨𝑫 − 𝑩𝑪 = 𝟏,   𝒂𝒅 − 𝒃𝒄 = 𝟏  

 A transmission parameter (ABCD) network is said to be symmetric (possess 

symmetry) if: 𝐀 = 𝐃. Is the network in the foregoing example symmetric or not? 
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Example 5.6: Lets double the respective values of the given data in Example 5.5 for the 

T-type network of Fig. 5.17 to be 𝑅1 = 4 Ω, 𝑅 = 20 Ω, 𝑅2 = 8 Ω. Determine the ABCD 

parameters. 

Solution: 

⟹    𝐴 =
(4 + 20)

20
= 1.2  

𝐵 =
[(4)(20) + (4)(8) + (20)(8)]

20
=
272

20
= 13.6 Ω 

𝐶 =
1

20
= 0.05  Ʊ 

𝐷 =
(20 + 8)

20
= 1.4 

(
𝐴 𝐵
𝐶 𝐷

) = (
1.2 13.6 Ω

0.05 Ʊ 1.4
) 

One can see that, upon doubling each of the 𝑅 𝑖𝑠; 𝐴 and 𝐷 are unaffected (the numeric 

remain unchanged); 𝐵 is doubled from its previous value; and 𝐶 is halved from its former 

value!  

The determinant of this square matrix,  

Δ = (1.2)(1.4) − (13.6)(0.05) = 1.68 − 0.68 = 1 

As before so, saying the network elements up or down all by the same factor, does not 

alter the reciprocity of a given 𝑇 network.  

Example 5.7: Determine the ABCD parameters of the 𝜋-type network shown in Fig. 5.18. 

5Ω 𝑉1 

𝐼2 𝐼1 

+

-

+

-

𝑉2 20Ω 

10Ω 

 

Figure 5.18 A typical 𝝅-network 

 



  Circuit Theory with Application  

116 
 

 Now, for a look at a pie −(𝜋 −)[𝑜𝑟 Δ − (𝑑𝑒𝑙𝑡𝑎 −] connected two-port network:  

𝐴 =
𝑉1
𝑉2
|
𝐼2=0

= 
𝐼1[5 ∥ (10 + 20)]

𝐼1 [
5

5+10+20
] × 20

=
(5)(30)/(5 + 30 )

(5 × 20)/35
 

=
(5)(30)(35)

(5 × 20)(35)
= 1.5 

𝐶 =
𝐼1
𝑉2
|
𝐼2=0

=
𝐼1

𝐼1(5 × 20)/35
=
35

100
= 0.35 Ʊ 

𝐷 =
𝐼1
−𝐼2

|
𝑉2=0

=
𝐼1

𝐼1 [
5

5+10
]
=
15

5
= 3 

20 Ω having been shorted out and then using current division  

𝐵 =
𝑉1
−𝐼2

|
𝑉2=0

=
𝐼1(5 ∥ 10)

(
𝐼1

3
)

=
[
5×10

(5+10)
]

(
1

3
)

 

Using the result for B above =
50 × 3

15
= 10 Ω 

𝑡 = (
𝐴 𝐵
𝐶 𝐷

) = (
1.5 10 Ω

0.35 Ʊ 3
) 

It should be pointed out that, in each of the two cases above, i.e., the 𝑇 −  and 𝜋 − 

connected networks, putting 𝐼2 “properly” without a negative sign, would merely result 

in negating the values for B and D. this is trivial as long as we are clear about the sign 

convention! 

 Let’s examine what results when two 𝑇 − connected two-port networks are 

connected in cascade. 

4Ω 

𝑉1 

𝐼2 𝐼1 

+

-

𝑉2 = 0 

2Ω 

10Ω 

-𝐼2 
𝐼1 

1V

 
Figure 5.19 T-type network connected in cascade 
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Example 5.8: Let’s recall the 𝑇 − connected network in Fig. 5.17 and use an alternative 

(less recommended) method for finding the transmission (ABCD) parameters by 

imposing a 1 V source voltage as an input voltage 𝑉1 as seen in Fig. 5.19. 

Solution: 

We “impose” 1 V source (Fig.5.19) representing 𝑉1, which is an independent variable 

along with 𝐼1 

First, we determine t12 = B = B =
V1
−I2

|
V2=0

 

Req = 2 + (10 ∥ 4) = 2 +
40

14
=
68

14
 

Current division: − I2 = [
(1V)

(
68

14
)Ω
] × [

10

(10 + 4)
] = (

14

68
) × (

10

14
) =

10

68
 

⟹   B =
1

(−I2)
=
68

10
= 6.8 Ω 

And so on with A, C, and D 

Mesh 1: 𝑉1 = 12𝐼1 + 10𝐼2       (i) 

Mesh 2: 𝑉2 = 10𝐼1 + 14𝐼2       (ii) 

From (ii)  10𝐼1 = 𝑉2 − 14𝐼2 

Dividing (ii) by 10 

   z⟹   𝐼1 = 0.1𝑉2 − 1.4𝐼2     (iii) 

Comparison Eq (iii) with the second equation in Eq.5.18 shows that:  

𝐶 = 0.1 Ʊ   𝑎𝑛𝑑 𝐷 = 1.4 

From mesh 1:  𝑉1 = 12(0.1𝑉2 − 1.4𝐼2) + 10𝐼2 

𝑉1 = 1.2𝑉2 − 16.8𝐼2 + 10𝐼2 

     𝑉1 = 1.2𝑉2 − 6.8𝐼2,    (iv) 

Comparison Eq (iv) with the first equation in Eq. 5.18 shows that 

𝐴 = 1.2, 𝐵 = 6.8 

(
𝐴 𝐵
𝐶 𝐷

) = (
1.2 6.8 Ω
0.1 Ʊ 1.4

) , 𝑎𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 

Even though I do not recommend this later method because of its cumbersomeness, I’d 

admit that some might find it actually more palatable than the previous method owing 

to the fact (as it appears) that it might be impervious to error. However, this is for those 

who feel at home with mesh analysis or node-voltage analysis (at this stage everybody 
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should!). note, however, that in this case, the current 𝐼2 is in anticlockwise, not clockwise, 

direction as in classical mesh analysis.  

 

Example 5.9: Find the transmission parameters for the two-port network in Fig. 5.20 

𝐼2 𝐼1 

20Ω 

10Ω 

+ -

3𝐼1 

 

Figure 5.20 

Solution: 

To determine A and C, we leave the output port open as in Fig. 5.21(a) so that 𝐼2 = 0 and 

place a voltage source 𝑉1 at the input pon. We have 

𝑉1 = (10 + 20)𝐼1 = 30𝐼1       𝑎𝑛𝑑    𝑉2 = 20𝐼1 − 3𝐼1 = 17𝐼1 

Thus, 

𝐴 =
𝑉1
𝑉2
=
30𝐼1
17𝐼1

= 1.765,     𝐶 =
𝐼1
𝑉2
=

𝐼1
17𝐼1

= 0.0588 S 

To obtain B and D, we short-circuit the output port so that 𝑉2 = 0 as shown in Fig. 5.21(b) 

and place a voltage source 𝑉1 at the input port. At node a in the circuit of Fig. 5.21(b), 

KCL gives 

    
𝑉1−𝑉𝑜

10
−

𝑉𝑜

20
+ 𝐼2 = 0     5.27 

𝐼2 
𝐼1 

20Ω 

10Ω 
+ -

3𝐼1 𝐼2 𝐼1 

20Ω 

10Ω 
+ -

3𝐼1 

𝑉1 

𝑉2 

𝑉1 
𝑉2 = 0 

+

-

(a) (b)

𝑉0 𝑉0 

 

Figure 5.21 (a) finding A and C (b) finding B and D 
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But 𝑉𝑜 = 3𝐼1 and 𝐼1 = (𝑉1 − 𝑉𝑜)/10. Combining these gives  

    𝑉𝑜 = 3𝐼1𝑉1 = 13𝐼1     5.28 

Substituting 𝑉𝑜 = 3𝐼1 into Eq (5.27) and replacing the first term with 𝐼1 

𝐼1 −
3𝐼1
20

+ 𝐼2 = 0    ⟹    
17

20
𝐼1 = −𝐼2 

Therefore 

𝐷 = −
𝐼1
𝐼2
=
20

17
= 1.176,     𝐵 = −

𝑉1
𝐼2
=

−13𝐼1

(−
17

20
) 𝐼1

= 15.29 Ω 

Example 5.10:  The ABCD parameters of the two-port network in Fig.5.22 are 

[
4 20 Ω

0.1 S 2
] 

𝑅𝐿 

10Ω 

50𝑉 
[ T ]

 

Figure 5.22 

The output port is connected to a variable load for maximum power transfer. Find 𝑅𝐿and 

the maximum power transferred. 

Solution 

What we need is to find the Thevenin equivalent (𝑍𝑇ℎ and 𝑉𝑇ℎ,) at the load or output 

port. We find 𝑍𝑇ℎ, using the circuit In Fig. 5.23(a). Our goal is to get 𝑍𝑇ℎ =
𝑉2

𝐼2
. Substituting 

the given ABCD parameters into Eq. (5.28), we obtain 

    𝑉1 = 4𝑉2 − 20𝐼2     5.29.1 

    𝐼1 = 0.1𝑉2 − 2𝐼2     5.29.2 

At the input port, 𝑉1 = −10𝐼1. Substituting this into Eq. (5.29.1) gives 

    −10𝐼1 = 4𝑉2 − 20𝐼2     5.29.3 
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𝐼1 = −0.4𝑉2 + 2𝐼2 

𝑅𝐿 

10Ω 

1𝑉 [ T ]50𝑉 

10Ω 

𝑉𝑇ℎ  𝑉𝑇ℎ  
+

-

+

-

+

-

+

-

𝑉2 𝑉2 𝑉1 𝑉1 [ T ]

𝐼1 𝐼1 𝐼2 𝐼2 𝑅𝑇ℎ  

(a) (b)
(c)

 

Figure 5.23 (a) finding 𝒁𝑻𝒉 (d) finding 𝑽𝑻𝒉 (c) finding RL for maximum power transfer 

Setting the right-hand sides of Eqs. (5.29.2) and (5.29.3) equal. 

0.1𝑉2 − 2𝐼2 = −0.4𝑉2 + 2𝐼2     ⟹    0.5𝑉2 = 4𝐼2 

Hence,   𝑍𝑇ℎ =
𝑉2

𝐼2
=

4

0.5
= 8 Ω 

To find 𝑉𝑇ℎ, we use the circuit in Fig. 5.23(b). At the output port 𝐼2 = 0and at the input 

port 𝑉1 = 50 − 10𝐼1. Substituting these into Eqs. (5.29.1) and (5.29.2). 

      50 − 10𝐼1 = 4𝑉2   5.29.4 

      𝐼1 = 0.1𝑉2    5.29.5 

Substituting Eq. (5.29.5) into Eq. (5.29.4), 

50 − 𝑉2 = 4𝑉2    ⟹    𝑉2 = 10 

Thus.     𝑉𝑇ℎ = 𝑉2 = 10 V 

The equivalent circuit is shown in Fig. 5.23(c). For maximum power transfer, 

𝑅𝐿 = 𝑍𝑇ℎ = 8Ω 

The maximum power is 

𝑃 = 𝐼2𝑅𝐿 = (
𝑉𝑇ℎ
2𝑅𝐿

)
2

𝑅𝐿 =
𝑉𝑇ℎ
2

4𝑅𝐿
=
100

4 × 8
= 3.125 W 
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5.4 Relationships Between Parameters 

Since the six sets of parameters relate the same input and output terminal variables of 

the same two-port network, they should be interrelated. If two sets of- parameters 

exist, we can relate one set to the other set. Let us demonstrate the process with two 

examples. 

 Given the 𝑧 parameters, let us obtain the 𝑦 parameters. From Eq. (5.2), 

     [
𝑉1
𝑉2
] = [

𝑧11 𝑧12
𝑧21 𝑧22

] [
𝐼1
𝐼2
] = [𝑧] [

𝐼1
𝐼2
]  5.30 

Or 

      [
𝐼1
𝐼2
] = [𝑧]−1 [

𝑉1
𝑉2
]   5.31 

Also, from Eq. (5.9), 

     [
𝐼1
𝐼2
] = [

𝑦11 𝑦12
𝑦21 𝑦22

] [
𝑉1
𝑉2
] = [𝑦] [

𝑉1
𝑉2
]  5.32 

Comparing Eqs. (5.31) and (5.32), we have that 

      [𝑦] = [𝑧]−1    5.33 

The Adjoint or the [𝑧] matrix is 

[
𝑧22 −𝑧12
−𝑧21 𝑧11

] 

and its determinant is 

∆𝑧= 𝑧11𝑧22 − 𝑧12𝑧21 

Substituting these into Eq. (5.33), we get 

                                                [
𝑦11 𝑦12
𝑦21 𝑦22

] =
[
𝑧22 −𝑧12
−𝑧21 𝑧11

]

∆𝑧
                                       5.34 

Equating terms yields 

          𝑦11 =
𝑧22
∆𝑧
,    𝑦12 = −

𝑧12
∆𝑧
,     𝑦21 =

𝑧21
∆𝑧
,     𝑦22 =

𝑧11
∆𝑧
                                  5.35 
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Table 5.1 provides the conversion formulas for the six sets of two port parameters. Given 

one set of parameters, Table 5.1 can be used to find other parameters. For example, 

given the 𝑇 parameters, we find the corresponding ℎ parameters in the fifth column of 

the third row. 

Table 5.1 Conversion of two-port parameters  

          z          y         T 

𝑧 𝑧11 𝑧12 𝑦22
∆𝑦

 
𝑦12
∆𝑦

 
𝐴

𝐶
 

∆𝑇
𝐶

 

𝑧21 𝑧22 𝑦21
∆𝑦

 
𝑦11
∆𝑦

 
1

𝐶
 

𝐷

𝐶
 

𝑦 𝑧22
∆𝑧

 −
𝑧12
∆𝑧

 𝑦11 𝑦12 𝐷

𝐵
 −

∆𝑇
𝐵

 

−
𝑧21
∆𝑧

 
𝑧11
∆𝑧

 𝑦21 𝑦22 
−
1

𝐵
 

𝐴

𝐵
 

𝑇 𝑧11
𝑧21

 
∆𝑧
𝑧21

 −
𝑦22
𝑦21

 −
1

𝑦21
 

𝐴 𝐵 

1

𝑧21
 

𝑧22
𝑧21

 −
∆𝑦

𝑦21
 −

𝑦11
𝑦21

 𝐶 𝐷 

 

Also, given that 𝑧21 = 𝑧12 for a reciprocal network, we can use the table to express this 

condition in terms of other parameters. It can also be shown that 

But 

    [𝑡] ≠ [𝑇]−1      5.36 

Example 5.11: Find [𝑧] of a two-port network if 

[𝑇] = [
10 1.5 Ω
2 S 4

] 

Solution  

If 𝐴 = 10, 𝐵 = 1.5, 𝐶 = 2, 𝐷 = 4, the determinant of the matrix is 

Δ𝑇 = 𝐴𝐷 − 𝐵𝐶 = 40 − 3 = 37 
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From Table 5.1 

𝑧11 =
𝐴

𝐶
=
10

2
= 5,    𝑧12 =

Δ𝑇
𝐶
=
37

2
= 18.5 

𝑧21 =
1

𝐶
=
1

2
= 0.5,    𝑧22 =

𝐷

𝐶
=
4

2
= 2 

Thus, 

[𝑧] = [
5 18.5
0.5 2

]Ω,    

Example 5.12: Obtain the 𝑦 parameters of the op amp circuit in Fig. 5.24. Show that the 

circuit has no parameters. 

+

-

+

-

+

-

𝑉1 
𝑉2 

𝐼1 

𝐼0 

𝐼0 

𝐼2 

𝑅1 

𝑅2 

𝑅3 

 

Figure 5.24 

Solution: 

Since no current can enter the input terminals of the op amp. 𝐼1 = 0, which can be 

expressed in terms of 𝑉1 and 𝑉2 as 

    𝐼1 = 0𝑉1 + 0𝑉2     5.37 

Comparing this with Eq. (5.12) gives 

𝑦11 = 0 = 𝑦12 

Also, 

𝑉2 = 𝑅3𝐼2 + 𝐼𝑜(𝑅1 + 𝑅2) 

where 𝐼𝑜, is the current through 𝑅1 and 𝑅2. But 𝐼𝑜 = 𝑉1/𝑅1. Hence, 
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𝑉2 = 𝑅3𝐼2 +
𝑉1(𝑅1 + 𝑅2)

𝑅1
 

which can be written as 

𝐼2 = −
(𝑅1 + 𝑅2)

𝑅1𝑅3
𝑉1 +

𝑉2
𝑅3

 

Comparing this with Eq. (5.12) shows that 

𝑦21 = −
(𝑅1 + 𝑅2)

𝑅1𝑅3
,   𝑦22 =

1

𝑅3
 

The determinant of the [𝑦] matrix is 

Δ𝑦 = 𝑦11𝑦22 − 𝑦12𝑦21 = 0 

Since Δ𝑦 = 0. the [𝑦] matrix has no inverse; therefore, the [𝑧] matrix does not exist 

according to Eq. (5.33). Note that the circuit is not reciprocal because of the active 

element. 

5.5 For Two-Cascaded Two-Port Network 

Network B 𝑉4 
+

-

+

-

+

-

+

-
𝑉2 𝑉1 𝑉3 Network A

𝐼1 𝐼3 −𝐼2 −𝐼4 

 
Figure 5.25 Cascaded Two port network 

   𝐴: 𝑉1 = 𝑡𝐴11𝑉2 − 𝑡𝐴12𝐼2 = 𝑡𝐴11𝑉3 + 𝑡𝐴12𝐼3   5.38 

𝐼1 = 𝑡𝐴21𝑉2 − 𝑡𝐴22𝐼2 = 𝑡𝐴21𝑉3 + 𝑡𝐴22𝐼3 

     𝐵:  𝑉3 = 𝑡𝐵11𝑉4 − 𝑡𝐵12𝐼4   5.39 

𝐼3 = 𝑡𝐵21𝑉4 − 𝑡𝐵22𝐼4 

So, 𝑉1 = 𝑡𝐴11(𝑡𝐵11𝑉4 − 𝑡𝐵12𝐼4) + 𝑡𝐴12(𝑡𝐵21𝑉4 − 𝑡𝐵22𝐼4) 

= (𝑡𝐴11𝑡𝐵11 + 𝑡𝐴12𝑡𝐵12)𝑉4 − (𝑡𝐴11𝑡𝐵12 + 𝑡𝐴12𝑡𝐵22)𝐼4 

𝐼1 = 𝑡𝐴21(𝑡𝐵11𝑉4 − 𝑡𝐵12𝐼4) + 𝑡𝐴22(𝑡𝐵21𝑉4 − 𝑡𝐵22𝐼4) 

= −(𝑡𝐴21𝑡𝐵21 + 𝑡𝐴22𝑡𝐵22)𝐼4 

    C:(𝑡𝐴12𝑡𝐵11 + 𝑡𝐴22𝑡𝐵21)𝑉4    5.40 

     D:(𝑡𝐴11𝑡𝐵12 + 𝑡𝐴12𝑡𝐵22)𝐼4   5.41 

So, to transit from port 1 to port 4: 
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Combining Eqs.(5.38 to 5.41) we have Eq.5.42 

  (
𝐴 𝐵
𝐶 𝐷

) = (
𝑡𝐴11𝑡𝐵11 + 𝑡𝐴12𝑡𝐵21 𝑡𝐴11𝑡𝐵12 + 𝑡𝐴12𝑡𝐵22
𝑡𝐴21𝑡𝐵11 + 𝑡𝐴22𝑡𝐵21 𝑡𝐴21𝑡𝐵12 + 𝑡𝐴22𝑡𝐵22

)  5.42 

 

But: (
𝑡𝐴11 𝑡𝐴12
𝑡𝐴21 𝑡𝐴22

) (
𝑡𝐵11 𝑡𝐵12
𝑡𝐵21 𝑡𝐵22

) = (
𝑡𝐴11𝑡𝐵11 + 𝑡𝐴12𝑡𝐵21 𝑡𝐴11𝑡𝐵12 + 𝑡𝐴12𝑡𝐵22
𝑡𝐴22𝑡𝐵11 + 𝑡𝐴22𝑡𝐵21 𝑡𝐴21𝑡𝐵21 + 𝑡𝐴22𝑡𝐵22

) 5.43 

Eq.5.43 shows that for two-port networks in a cascade, the net ABCD parameters are 

just the (successive) products of the individual ABCD parameters. Applications wise, this 

unique property comes in quite handy! 

 

5.6 Further Examples on Two-Port 

Network 

1. Determine the z parameters for 

the circuit shown in Fig 5.26. the 

output port includes a controlled 

voltage source. 

Input 

port
Output

port

3Ω 

𝐼1 

2𝐼1 

+-

𝐼2 

𝐼2 𝐼1 

6 + 𝑗4 Ω 

1

1' 2'

2

𝑉1 𝑉2 

 
Figure 5.26 

Solution: since the actual parameters 

of the circuit are known, and the 

circuit is relatively simple, the z 

parameters may be determined by 

writing the two loop equations. 

𝑉1 = [3 + (6 + 𝑗4)]𝐼1 + [6 + 𝑗4]𝐼2𝑉2
− 2𝐼1 

= [6 + 𝑗4]𝐼1 + [6 + 𝑗4]𝐼2 

Simplifying 𝑉1 = [9 + 𝑗4]𝐼1 + [6 +

𝑗4]𝐼2𝑉2 = [8 + 𝑗4]𝐼1 + [6 + 𝑗4]𝐼2 

 Thus, the z parameters are  

𝑧11 = (9 + 𝑗4)Ω   𝑧12
= (6 + 𝑗4)Ω  𝑧21
= (8 + 𝑗4)Ω  𝑧22
= (6 + 𝑗4)Ω 

2. Draw the z parameters model for 

the circuit of Fig.5.26 

Solution: see Fig.5.27 

(6 + 𝑗4)𝐼2 +

-
(8 + 𝑗4)𝐼1 

𝐼2 𝐼1 

9 + 𝑗4 Ω 

1

1' 2'

2

𝑉1 𝑉2 

+

-

6 + 𝑗4 Ω 

 
Figure 5.27 

3. The following open-circuit 

currents and voltage were determined 

experimentally for an unknown two-

port:  

𝑉1 = 100∠0
𝑜 𝑉

𝑉2 = 75 ∠0
𝑜  𝑉

𝐼2 = 12.5 ∠0𝑜 𝐴
|

𝐼2=0

𝑉1 = 30∠0𝑜 𝑉
𝑉2 = 50 ∠0

𝑜  𝑉

𝐼2 = 5 ∠0
𝑜  𝐴

|

𝐼1=0

 

Determine the z parameters.  

𝑧11 =
𝑉1
𝐼1

𝑧21 =
𝑉2
𝐼1

||

𝐼2=0

=
100

12.5
= 8Ω

=
75

12.5
= 6Ω

𝑧12 =
𝑉1
𝐼2

𝑧22 =
𝑉2
𝐼2

||

𝐼1=0

=
30

5
= 6Ω

=
50

5
= 10Ω
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4. Draw a z parameter model for 

the circuit of Prob 3 

Solution: see Fig.5.28 

6𝐼2 +

-
6𝐼1 

𝐼2 𝐼1 

8 Ω 

1

1' 2'

2

𝑉1 𝑉2 

+

-

10Ω 

 
Figure 5.28 

5. Determine the z parameters for 

the network of Fig 5.29 

+

-

+

-

10𝑘Ω 1𝑘Ω 

3𝑘Ω 𝑉1 
𝑉2 

𝐼1 𝐼2 

 
Figure 5.29 

Solution: the loop equations become  

𝑉1 = 4000𝐼2       

 𝑉2 = 3000𝐼1 + 13,000𝐼2 

Thus,  𝑧11 = 4 𝑘Ω,   

𝑧12 = 𝑧21 = 3 𝑘Ω𝑧22 = 13 𝑘Ω 

6. In a T network 𝑍1 = 3 ∠0𝑜Ω,

𝑍2 = 4∠90𝑜Ω, 𝑍3 = 3∠ − 90
𝑜Ω. Find 

the z parameters 

Solution:  

𝑧11 = 𝑍1 + 𝑍3 = 3 ∠0
𝑜 + 3∠−90𝑜

= 4.242 ∠−45𝑜Ω 

𝑧12 = 𝑧21 = 𝑍3 = 3 ∠−90𝑜Ω 

𝑧22 = 𝑍2 + 𝑍3 

= 4 ∠90𝑜 + 3 ∠−90𝑜 = 1∠90𝑜Ω 

7. Determine the z parameters of a 

T network having 𝑍1 = (3 + 𝑗4) Ω,

𝑍2 = 1∠−90𝑜, and 𝑍3 = (3 + 𝑗2) Ω 

Solution:  

𝑧11 = 𝑍1 + 𝑍3 = (3 + 𝑗4) + (3 + 𝑗2)

= 6+= 8.484 ∠45𝑜Ω 

𝑧12 = 𝑧21 = 𝑍3 = 3 + 𝑗4 = 3 + 𝑗4 Ω 

𝑧22 = 𝑍2 + 𝑍3 = −𝑗1 + (3 + 𝑗4)

= 3 + 𝑗3

= 4.242  ∠45𝑜Ω 

8. Find the z parameters of the 

network of Fig.5.30 

+

-

+

-

𝑅 

𝑉1 𝑉2 

𝐼1 𝐼2 

 
Figure 5.30 

Solution: 

𝐼1 and 𝐼2 are not independent, the z 

parameters cannot be found  

9. Find the y parameters of the 

network of Fig.5.30 

Solution: 

 𝐼1 = −𝐼2, with 𝑉2 = 0, we obtain  

𝑦11 =
1

𝑅
and   y21 = −

1

𝑅
 

With 𝑉1 = 0, we have   

𝑦21 = −
1

𝑅
and   y22 =

1

𝑅
 

10. Determine the z parameters of 

the network of Fig.5.31 

+

-

+

-

𝑅 𝑉1 𝑉2 

𝐼1 𝐼2 

 
Figure 5.31 

  



  Circuit Theory with Application  

127 
 

Solution: 

 since 𝑉1 = 𝑉2 

With 𝐼2 = 0   𝑧11 = 𝑅

 and 𝑧21 = 𝑅 

With  𝐼1 = 0   𝑧12 = 𝑅

 and 𝑧22 = 𝑅 

11. Obtain the y parameters of the 

network of Fig.5.31 

Solution: since 𝑉1 and 𝑉2 are not 

independent, the y parameters cannot 

be found  

12. Find the z parameters of the 

network of Fig.5.31 
2Ω 1Ω 𝐼2 𝐼1 

2Ω 
𝑉1 𝑉2 

4Ω 
𝐼1 𝐼0 

+

-

+

-

V

 
Figure 5.32 

Solution:  𝐼2 = 0  𝑉2 = 4𝐼   

and 2𝐼1 = (2 + 2 + 4)𝐼 = 8𝐼 = 2𝑉2 

Thus,  𝑧21 =
𝑉2

𝐼1
=

2

2
= 1Ω = 𝑧21 

𝑉1 = (1)𝐼1 + 2(𝐼1 − 𝐼) 

= (1)𝐼1 + 2(𝐼1 −
1

4
𝐼1) =

5

2
𝐼1 

 Thus,   

 𝑧11 =
𝑉1

𝐼1
=

5

2
 Ω 

 𝐼1 = 0   𝑉2 = 2𝐼2

 or 𝑧22 =
𝑉2

𝐼2
= 2 Ω 

13. Find the y parameters of the 

network of Fig. 5.32 

2Ω 𝐼2 𝐼1 

1Ω 𝑉1 𝑉2 2Ω 
3𝐼1 

+

-

+

-
 

Figure 5.33 

Solution: 

Redrawing the diagram of Fig.5.32 we 

have Fig. 5.33 

𝑉2 = 0𝐼1 =
𝑉1

1 + 1
=
𝑉1
2
 𝑎𝑛𝑑  

𝐼1
𝑉1
= 𝑦11

=
1

2
 𝑆 

𝐼2 = −
𝐼1
2
= −

1

2
(
𝑉1
2
) 

= −
1

4
𝑉1   𝑎𝑛𝑑 

𝐼2
𝑉1
= 𝑦12 = −

1

4
= 𝑦21 

𝑉2 = 0; 𝐼2 =

𝑉2

8

5
 

Hence,
𝐼2
𝑉2
= 𝑦22 =

1
8

5

=
5

8 
 S 

14. Find the z parameters of the 

network of Fig.5.35b 

Solution:  

𝑧11 = 𝑅𝑦 + 𝑅𝑦 + 2𝑅𝑦,      𝑧12 = 𝑅𝑦

= 𝑧21,    𝑧22 = 𝑅𝑦 + 𝑅𝑦

= 2𝑅𝑦 

15. As a 2-port network, determine 

the transmission parameters of the 

transformer as shown in Fig 5.36                                                                           
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V1 V2

I2I1 5:2

20 Ω

40 Ω

 

Figure 5.36 

Solution: 

V1 V2

I2I1 5:2

20 Ω

40 Ω I2x

V1x

𝑉2

20
 

 

Figure 5.37 

From Fig. 5.37, the transformer’s turns 

ratio is: 

𝑉1𝑥
𝑉2

=
5

2
=
𝐼2𝑥
𝐼1

 

𝐼2 =
𝑉2
20
+ 𝐼2𝑥 =

𝑉2
20
+ 2.5𝐼1 

  ⟹ 𝐼1 = −
𝑉2

20 × 2.5
−
𝐼2
2.5

 

= −0.02𝑉2 + 0.4𝐼2         ∗ 

𝑉1 = 40𝐼1 + 𝑉1𝑥 = 40𝐼1 + 2.5𝑉2 

= 40(−0.02𝑉2 + 0.4𝐼2) + 2.5𝑉2 

             𝑉1 = −0.8𝑉2 + 16𝐼2 + 2.5𝑉2     

 𝑉1 = 1.7𝑉2 + 16𝐼2                     ∗∗    

From * and **, the transmission 

parameters (ABCD) are then: 

[
1.7 16 Ω

−0.02 Ʊ 0.4
] 

5.7 Images Impedance 

This is a concept used in electronic network design and analysis and mostly in filter design: 

By image impedance is implied the impedance “seen” looking into a port of a network 

particularly two-port networks (although it’s also applicable to networks with more than 

two parts).  

For a two-port network, 𝑍𝑖  stands for the impedance seen looking into port 1 when port 2 

is terminated with image impedance 𝑍𝑖2. 𝑍𝑖1 and 𝑍𝑖2 will generally not be equal to except 

for symmetrical or anti-symmetrical networks.  

𝑍𝑖2 

𝑍 

𝑍𝑖1 

𝑌 

 
Figure 5.38 ‘L’ network  
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Fig. 5.38 is a simple “L” network with series impedance 𝑍 and shunt admittance 𝑌, with 

the respective port image impedances. 

𝑍𝑖2 𝑍 

𝑍𝑖1 

𝑍 

𝑍𝑖1 

𝑍𝑖2 

𝑌 𝑌 

 
Figure 5.39 T-section of L-network 

 

To determine the image impedance, a “T” section is formed from back-to-back L-

sections, as in Fig. 5.39.  

              𝑍𝑖1 = 𝑍 +
1

2𝑌 +
1

𝑍+𝑍𝑖1

                                               5.44 

To determine 𝑍𝑖1, we “eliminate” 𝑍𝑖2 by forming back-to-back L-section in T-section (The 

two 𝑍𝑖2’s oppose each other) 𝑍 and 𝑍𝑖1 are in series and their series admittance is now 

in parallel with the two Y’s. As per the rule, their net admittance is determined by simple 

addition. The reciprocal of this sum, gives rise to an impedance that is in series with the 

Z on the left and the impedance “seen” by the 𝑍𝑖1 on the left is this series combination. 

 From the foregoing without going through the whole rigmarole,  

                                    𝑍𝑖1
2 = 𝑍2 +

𝑍

𝑌
                                          5.45 

To determine 𝑍𝑖2, form a 𝜋 −section from back-to-back L-section as in Fig. 5.40:  

𝑍𝑖1 𝑍 

𝑍𝑖2 

𝑍 

𝑍𝑖2 

𝑍𝑖1 

𝑌 
𝑌 

 
Figure 5.40 𝝅-section of L-network 
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Working with admittances (which can be easily derived from the “dual” of that for 𝑍𝑖1 

just treated in Eq 5.44: 

𝑌𝑖2 = 𝑌 +
1

2𝑍  
1

𝑌+𝑌𝑖2

 

     ⟹     𝑌𝑖2 = 𝑌
2 +

𝑌

𝑍
    5.46 

Combining Eqs 5.44 and 5.46 we have Eq 5.47 

𝑍

𝑌
= 𝑍𝑖1

3 − 𝑍2 = 𝑌𝑖2
2 − 𝑌2 

𝑍𝑖1
𝑌𝑖2

= √
𝑍2 +

𝑍

𝑌

𝑌2 +
𝑌

𝑍

= √
𝑍 (𝑍 +

1

𝑌
)

𝑌 (𝑌 +
1

𝑍
)

 

                                                ≈ √
𝑍

𝑌

𝑍

𝑌
= 𝑍/𝑌                                                            5.47 

For practical determination of image impedance, we measure short-circuit impedance 

𝑍𝑠𝑐, which is the impedance of port 1 where port 2 is short-circuited, and 𝑍𝑜𝑐, that is, 

impedance of port 1 when port 2 is short-circuited.  

    ⟹    𝑍𝑖1 = √(𝑍𝑠𝑐)(𝑍𝑜𝑐)    5.48 

The “black box” configuration of the network is in Fig. 5.1. For filter design, L network is 

referred to as a half section. Two half-sections in cascade are equivalent to a T section    

or 𝜋 section, depending on their respective orientations.  

      (𝑍𝑖
2 →

𝑍

𝑌
)    5.49 

Definition of image impedance: The input impedance of an infinitely long chain of 

cascaded identical networks (with the parts arranged so that like impedance faces like).  

For reciprocal network (𝐴𝐷 − 𝐵𝐶 = 1) 

                                                        𝑍𝑖1 = √
𝐴𝐵

𝐶𝐷
                                                               5.50 

                                                         𝑍𝑖2  = √
𝐶𝐵

𝐶𝐴
                                                              5.51 

   Image propagation term 𝜓 = cos−1 √𝐴𝐷   5.52 

𝜓 for a transmission line segment is equivalent to the (propagation constant of 

transmission line) x (the length)  
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When used for filter design, 𝑍𝑖1 the image impedance for port 1, is termed 𝑍𝑖𝑇, and 𝑍𝑖2 

is termed 𝑍𝑖𝜋 

𝐿 

𝐿 = 𝐶𝑘2 𝐿2 

𝐶1 

𝐶 

𝐿1 

𝐶2 

𝐿1 = 𝐶2𝑘
2 

𝐿2 = 𝐶1𝑘
2 

(a) (b)  
Figure 5.41 (a) constant ‘k’ low-pass filter half section (b) Constant ‘k’ band-pass filter 

half section 

  

      𝑘2 = 𝑍/𝑌        5.53 

𝑘(Ω) is the limiting value of 𝑍𝑖  as the size of the section (in terms of values of its 

components, inductances, capacitances etc.) approached zero, while keeping at its initial 

value. It also represents the image impedance of the section at resonance, in the case of 

band-pass filters, or at 𝜔 = 0 in the case of a low-pass filter. 

For low pass half-section, 

𝑘 = √
𝑗𝜔𝐿

𝑗𝜔𝐶
= √

𝐿

𝐶
 

For image impedances, 

      lim
𝑍,𝑌→0

𝑍𝑖 = 𝑘                    5.54 

Image impedance: 

𝑍𝑖𝑇
2 = 𝑍2 + 𝑘2 

                                                     
1

𝑍𝑖𝜋
2 = 𝑌𝑖𝜋

2 = 𝑌2 +
1

𝑘2
                                                       5.55 

Given that the filters do not contain any resistive elements, image impedance in the pass 

band of the filter is real, and in the stop band it is purely imaginary.  

For low-pass half section:  

     𝑍𝑖𝑇
2 = −(𝜔𝐿)2 +

𝐿

𝐶
         5.56 

Transition occurs at cut-off frequency given by 𝜔𝑐 = 1/√𝐿𝐶 

 At less than 𝜔𝑐, 𝑍𝑖𝑇 = 𝐿√𝜔𝑐2 − 𝜔2  is real. At > 𝜔𝑐, 𝑍𝑖𝑇 = 𝑗𝐿√𝜔2 − 𝜔𝑐2 is 

imaginary. When the electrical properties of a 4-terminal network (2port) are 
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unaffected even after interchanging input and output terminals, the network is called a 

symmetrical network. Otherwise, it is called asymmetrical or unsymmetrical.  

 Asymmetrical networks have the following electrical properties.  

1. Iterative impedance  

2. Image impedance  

3. Image transfer constant  

 

5.7.1 Iterative Impedance  

 It is the impedance measured at one pair of terminals of a network in the chain of 

infinite networks. 

𝑍01  

𝑍′02 

To infinity

To infinity

 
Figure 5.42 One pair of a network 

 

 It can also be viewed, as the impedance measured at any pair of terminals of the 

network when the other pair of terminals is terminated in the impedance of the same 

values as shown in Fig. 5.43. 

𝑍′01  𝑍′01  𝑍′02 
𝑍′02 

Assymetrical

network

Assymetrical

network

 
Figure 5.43 

 

Iterative impedance for any asymmetrical networks are of different values when 

measured at different parts of the network, and these are represented by 𝑍01 and 𝑍02 

respectively at port 1 and port 2. 
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5.8 Insertion Loss 

 When a network is inserted between a generator and a load, load current 

decreases and hence power delivered to the load also decreases. The loss in power 

delivered to the load by insertion of the network is known as insertion loss. This is 

generally expressed in decibels and nepers.  

𝑍𝐺  𝑍𝐺  

𝑉 
𝑉 

𝑍𝐿  𝑍𝐿  

𝐼1 
𝐼2 

(a)
(b)  

Figure 5.44 

 

In Fig.5.44(a), there’s no network between the generator and the load. But in Fig.5.44(b), 

a 4-terminal network is inserted between generator and load.  

 Current through 𝑍𝐿 with the network inserted is 𝐼2. 

insertion loss = 𝛼 = ln |
𝐼1

𝐼2
| nepers, or  

𝛼 = 20 log |
𝐼1

𝐼2
| decibels     

In terms of power ration,  

𝛼 =
1

2
ln |

𝑃1

𝑃2
| nepers, or  

𝛼 = 10 log |
𝑃1

𝑃2
| decibels  

So, insertion loss is equivalent to the number of nepers or decibels by which current in 

load, or power delivered to the load, is charged due to insertion of a network. 

 When the current delivered to the load is greater than that from the source 

(𝐼2 > 𝐼1), then there’s negative loss, i.e. insertion gain. 

Example 5.13: For the circuit Fig. 5.45, determine insertion loss when network N is 

inserted between load and source. 
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𝑅𝑠 = 100Ω 

𝑉𝑠 = 10𝑉 

120Ω 

120Ω 
𝑅𝐿 = 100Ω 

Network  N 

 
Figure 5.45 

Solution: 

To solve for 𝐼1without N network, consider the circuit of Fig. 5.46. 
𝑅𝑠 = 100Ω 

𝑅𝐿 = 100Ω 𝑉𝑠 = 10𝑉 

𝐼1 

 
Figure 5.46 Solving for 𝑰𝟏 without network N 

𝐼1 =
𝑉𝑠

(𝑅𝑠 + 𝑅𝐿)
=

10

(100 + 100)
= 0.5 A 

To solve for the total current in the circuit of Fig. 5.45 with N inserted, 

𝑅𝑠 = 100Ω 

𝑅𝐿 = 100Ω 𝑉𝑠 = 10𝑉 

𝐼𝑇 120Ω 

120Ω 

𝐼𝐿 

 
Figure 5.47 Solving for 𝑰𝑻 with network N included 

𝐼𝑇(′I′ total) =
10

(100 + 120 + 120 ∥ 100)
 

=
10

(220 +
12000

220
)
=

(10)(11)

(2420 + 6000)
 

=
11

302
= 0.0364 A 

 

𝐼𝐿 (by current divider rule) = 0.364 [
120

(100+120)
] = 0.0199 
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Insertion loss 𝛼 = 20 log (
𝐼1

𝐼2
) = 20 log (

0.05

0.0199
) = 8.00 dB, or 𝛼 = ln (

0.05

0.0199
) = 0.921 

neper. 

Example 5.14: For the network Fig. 5.48, determine the insertion loss. 

5Ω 

𝑅𝐿 = 5Ω 5∠0𝑜  

5Ω 

−𝑗5Ω 

 
Figure 5.48 

Solution: 

Before insertions we consider Fig. 5.49 to solve for 𝐼1 as in the proceeding example. 

𝑅𝑠 = 5Ω 

𝑅𝐿 = 5Ω 5∠0𝑜  

𝐼1 

𝑉𝑠 

 
Figure 5.49 

𝐼1 =
𝑉𝑠

(𝑅𝑠 + 𝑅𝐿)
= 5

∠0𝑜

(5 + 5)
= 0.5∠0𝑜A 

After insertion we consider Fig.5.50 to calculate the total current  𝐼𝑇 using voltage divider 

rule. 

𝑅𝑠 = 5Ω 

𝑅𝐿 = 5Ω 5∠0𝑜  

5Ω 

−𝑗5Ω 

𝐼𝐿 

𝐼𝑇 

𝑉𝑠 

 
Figure 5.50 

𝐼𝑇 =
5∠0𝑜

[5 + 10 ∥ (−𝑗5)]
=

5∠0𝑜

[5 +
(10)(−𝑗5)

(10−𝑗5)
]
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=
5∠0𝑜

(7 − 𝑗4)
=

5∠0𝑜

8.06 ∠−29.74𝑜
= 0.62 ∠29.74𝑜 

𝐼𝐿 =
0.62 ∠29.74𝑜(−𝑗5)

10 − 𝑗5
=
(0.62∠29.74𝑜)(5∠−90𝑜)

11.18 ∠26.57𝑜
 

0.277∠−86.83𝑜 

𝛼 = 20 log |
0.5∠0𝑜

0.277∠−8.83𝑜
| = 20 log |

0.5

0.277
| = 5.13𝑑𝐵 

 

5.9 Symmetrical Network  

Shown in Fig. 5.51 is a typical (T-type) symmetrical network: 
𝑍1

2
 

𝑍2 

2′ 

𝑍1

2
 

2 

1′ 

1 

 
Figure 5.51 

Characteristics impedance 𝑍0 = √(𝑍0𝑐)(𝑍𝑠𝑐), where 𝑍0𝑐, 𝑍𝑠𝑐  are open and short circuit 

impedance, respectively see Figs. 5.53 and 5.54.  

 Total series arm impedance and shunt arm impedance must be 𝑍1 and 𝑍2 

respectively.  
𝑍1

2
 

𝑍2 

𝑍1

2
 

𝑍𝑖𝑛  𝑍0 

 
Figure 5.52 Input impedance looking when looking into the input of Fig 5.51 circuit  

For the circuit of Fig. 5.52, 

𝑍𝑖𝑛 = 𝑍0 =
𝑍1
2
+ [𝑍2 ∥ (

𝑍1
2
+ 𝑍0)] 

 

⟹ 𝑍0 =
𝑍1
2
+
𝑍2 (

𝑍1

2
+ 𝑍0)

𝑍2 +
𝑍1

2
+ 𝑍0
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⟹    𝑍0 (𝑍1 +
𝑍1
2
+ 𝑍0) = (

𝑍1
2
) (𝑍2 +

𝑍1
2
+ 𝑍0) +

𝑍1𝑍0
2

+ 𝑍2𝑍0 

⟹ 𝑍2𝑍0 +
𝑍1𝑍0
2

+ 𝑍0
2 =

𝑍1𝑍2
2

+
𝑍1

2

4
+
𝑍1𝑍0
2

+
𝑍1𝑍2
2

+ 𝑍2𝑍0 

⟹  𝑍0
2 =

𝑍1
2

4
+ 𝑍1𝑍2 

⟹   𝑍0 = √
𝑍1

2

4
+ 𝑍1𝑍2 

𝑍1

2
 

𝑍2 

𝑍1

2
 

𝑍𝑂𝐶  

2 

1′ 

1 

2′ 

 
Figure 5.53 A short circuit Equivalent circuit of Fig 5.51 

For the circuit of Fig. 5.53, 

𝑍1𝑂𝐶 = 𝑍2𝑂𝐶 = 𝑍𝑂𝐶 =
𝑍1
2
+ 𝑍2 

 
𝑍1

2
 

𝑍2 

𝑍1

2
 

𝑍𝑆𝐶  

2 

1′ 

1 

2′ 

 
Figure 5.54 A short circuit Equivalent circuit of Fig 5.51 

 

For the circuit Fig. 5.53, 

𝑍1𝑠𝑐 = 𝑍2𝑠𝑐 = 𝑍𝑠𝑐 =
𝑍1
2
+ (

𝑍1
2
)‖ 𝑍2 

= (
𝑍1
2
) +

(
𝑍1𝑍2

2
)

(
𝑍1

2
+ 𝑍2)
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=
𝑍1

2

4
+
𝑍1𝑍2 +

𝑍1𝑍2

2
𝑍1

2
+ 𝑍2

 

(𝑍0𝑐)(𝑍𝑠𝑐) = (
𝑍1
2
+ 𝑍2) (

𝑍2

4
+ 𝑍1𝑍2) 

=
𝑍1

2

4
+ 𝑍1𝑍2 = 𝑍0

2 ⟹ 𝑍0 = √(𝑍0𝑐)(𝑍𝑠𝑐) 

= (Geometric mean of open and short circuit impedances measured at any pair of 

terminals) 

Example 5.15: For the network shown in the Fig. 5.55, determine the characteristics 

impedance, open and short circuit impedances 

 
50Ω 

2 

1′ 

1 

2′ 

50Ω 

200Ω 

 
Figure 5.55 

Solution: 

𝑍0 = √
𝑍1

2

4
+ 𝑍1𝑍2 = √

1002

4
+ (100)(200) = √2,500 + 20,00 = 150 Ω 

𝑍0𝑐 =
𝑍1
2
+ 𝑍2 = 50 + 200 = 250 Ω 

𝑍𝑠𝑐 = 50 + 50 ∥ 200 = 50 +
10,000

250
= 90 Ω 

Or, 𝑍𝑠𝑐 =
𝑍0
𝑍0𝑐

=
150

250
= 90 Ω 

Example 5.16: A symmetrical T-network comprising pure resistances has open-and short 

circuit impedances of 400 ∠0𝑜 Ω, 300∠0𝑜 Ω, respectively. Design a symmetrical T-

network 

Refer to Fig. 5.53. 

Solution: 

𝑍𝑜𝑐 =
𝑍1
2
+ 𝑍2 = 400 



  Circuit Theory with Application  

139 
 

𝑍𝑠𝑐 =
𝑍1
2
+ (𝑍2 ∥

𝑍1
2
) = 300 

⟹    𝑍𝑜𝑐
2 =

𝑍1
2

4
+ 𝑍2

2 + 𝑍1𝑍2 = 160,000 

⟹     𝑍2
2 = 160,000 − (

𝑍1
2

4
+ 𝑍1𝑍2) 

𝑍2
2 = 160,000 − 𝑍𝑜

2 = 160,000 − (𝑍𝑜𝑐)(𝑍𝑠𝑐) 

= 160,000 − (400)(300) = 160,000 − 120,000 = 40,000 

⟹    𝑍2 = 200 Ω 
𝑍1
2
+ 𝑍2 = 400 =

𝑍1
2
+ 200 ⟹

𝑍1
2
= 200 Ω 

𝑍1

2
= 200Ω 

2 

1′ 

1 

2′ 

𝑍2 = 200Ω 

𝑍1

2
= 200Ω 

 
Figure 5.56 

 

5.10 Exercise  

1. A two-port network has 

transmission parameters with matrix 

(
4𝐴 2𝐵
2𝐶 4𝐷

) 

(a) Determine its input impedance at 

port 1 with 𝐼2 = 0 

(b) Determine its input impedance at 

port 2, given that 𝐼1 = 0 

2. For Fig. 1, given that the 

transmission parameters of the 2port 

network are𝐴 = 𝐶 = 1, 𝐵 = 2, 𝐷 = 3,  

(a) Determine the value of 𝑍𝑖𝑛 

(b) Determine same if 𝐼2 is reversed  

2-port

Network 

I1 I2

10Ω 
+

-

+

-
V1 V2

Zin  
 Figure 1 

3.  A two-port network has 

transmission parameters with matrix 

(
2𝐴 𝐵
𝐶 2𝐷

) 

(a) Determine its input impedance at 

port 1 with 𝐼2 = 0 
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(b) Determine its input impedance at 

port 2, given that 𝐼1 = 0 

4. For Fig. 2, given that the 

transmission parameters of the 2port 

network are 

  𝐴 = 𝐶 = 2, 𝐵 = 4, 𝐷 = 6,  

(a) Determine the value of 𝑍𝑖𝑛 

(b) Determine same if 𝐼2 is reversed  

2-port

Network 

I1 I2

20Ω 
+

-

+

-
V1 V2

Zin      
                          Figure 2 

5. The 2-port network in Fig. 3 has 

transmission parameters with matrix 

(
𝐴 𝐵
𝐶 𝐷

) 

 (i) Determine its input impedance at 

port 1, given that 𝐼2 = 0 

 (ii) Determine its input impedance at 

port 2, given that 𝐼1 = 0 

2-port

Network 

1

1'

2

2'
     

                          Figure 3 

6. An ideal transformer, depicted in 

Fig. 4 has a turns-ratio of 2:1. 

Considering high voltage side as port 1, 

and low voltage side as port 2, what 

are the transmission line parameters 

of the transformer? 

Transformer

I1 I2

+

-

+

-

V1 V2

     
                                           Figure 4 

7. Shown is a two-port network with 

transmission matrix T, with 

parameters 𝑇𝑖𝑗. A 1 Ω resistor is 

connected in series at terminals a (port 

1) as in Fig. 5. What are the ABCD 

parameters of the modified 2-port 

network (the dashed box)? 

Transformer

1Ω 
a'

b'

a

b

c

d

 

Figure 5 

8. As a 2-port network, determine the 

transmission parameters of the 

transformer as shown in Fig. 6 

I1 I2

V1 V2

2:1

5Ω 

10Ω 

 

Figure 6 

9. A two-port network has the 

parameters 𝐴 = 1 + 𝑗1, 𝐵 = 2 Ω, 𝐶 =

1 + 𝑗1.55 and 𝐷 = 3. What are the 
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input current and voltage, when the 

output is a current of 100 mA through 

a resistive load of 10 Ω? 

10. (a) Define Insertion loss for a given 

network 

(b) For the network in Fig. 7 determine 

the insertion in decibels and nepers, 

after inserting network N (dashed box) 

between the source and the load        

𝑅𝑠 = 100Ω 120Ω 

120Ω 
𝑅𝐿 = 10Ω 

𝑉𝑠 = 10𝑉 

 

Network  N 

 
Figure 7 

11. Find the z parameters of the two-

port network in Fig. 8. 

16Ω 

12Ω 

                                                                         
Figure 8 

Answer:𝑧11 = 28Ω, 𝑧12 = 𝑧21 = 𝑧22 =

12Ω 

12. Calculate 𝐼1 and 𝐼2 in the two-port 

of Fig. 9. 

𝑧11 = 6Ω 

𝑧12 = −𝑗Ω 

𝑧21 = −𝑗4Ω 

𝑧22 = 8Ω 

I1 I2

+

-

+

-

V1
V2

 

Figure 9 

Answer: 200∠30𝑜 𝑚𝐴, 100∠120𝑜  𝑚𝐴 

13. Obtain the 𝑦 parameters for the 

circuit in Fig. 10. 

6Ω 2Ω 

3Ω 

i0

2i0

 

 Figure 10 

Answer: 𝑦11 = 0.625 S, 𝑦12 =

−0.125 S, 𝑦21 = 0.375 S, 𝑦22 =

0.125 S 

14. Find the transmission parameters 

for the circuit in Fig. 11 

2Ω 

4Ω 

6Ω 

 

Figure 11 

Answer:𝐴 = 1.5, 𝐵 = 22 Ω, 𝐶 =

125 mS,   D = 2.5 

14. Obtain the 𝑦 parameter for the 𝑇 

network shown in Fig. 12 

6Ω 

12Ω 

18Ω 

 

Figure 12  
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CHAPTER 6 

THE COMPLEX FREQUENCY PLANE 
 

6.0 Introduction 

In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a 

circuit with a constant frequency source. If we let the amplitude of the sinusoidal source 

remain constant and vary the frequency, we obtain the circuit's frequency response. The 

frequency response may be regarded as a complete description of the sinusoidal steady-

state behavior of a circuit as a function of frequency. 

The frequency response of a circuit is the variation in its behavior with 

change in signal frequency 

 The sinusoidal steady-state frequency responses of circuits are of significance in 

many applications, especially in communications and control systems. A specific 

application is in electric filters that block out or eliminate signals with unwanted 

frequencies and pass signals of the desired frequencies. Filters are used in radio, TV, and 

telephone systems to separate one broadcast frequency from another. 

 We begin this chapter by considering the frequency response of simple circuits 

using their transfer functions. We then consider Bode plots, which are the industry-

standard way of presenting frequency response. We also consider series and parallel 

resonant circuits and encounter important concepts such as resonance, quality factor, 

cutoff frequency, and bandwidth. We discuss different kinds of filters and network 

scaling. In the last section, we consider one practical application of resonant circuits and 

two applications of filters. 

 

6.1 Transfer Function 

 The transfer function 𝐻(𝜔) (also called the network function) is a useful analytical 

tool for finding the frequency response of a circuit. In fact, the frequency response of a 

circuit is the plot of the circuit's transfer function 𝐻(𝜔) versus 𝜔, with 𝜔 varying from 

𝜔 = 0 to 𝜔 = ∞ 

 A transfer function is the frequency-dependent ratio of a forced function to a 

forcing function (or of an output to an input). The idea of a transfer function was implicit 

when we used the concepts of impedance and admittance to relate voltage and current. 

In general, a linear network can be represented by the block diagram shown in Fig. 6.1. 
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𝐻(𝜔) 

𝑌(𝜔) 

Output Input 

Linear network 𝑋(𝜔) 

 
Figure 6.1 

 

The transfer function 𝐻(𝜔) of a circuit is the frequency-dependent ratio of a phasor 

output 𝑌(𝜔) (an element voltage or current) to a phasor input 𝑋(𝜔) (source voltage or 

current).  

Thus,  

                                                  𝐻(𝜔) =
𝑌(𝜔)

𝑋(𝜔)
                                                            6.1 

assuming zero initial conditions. Since the input and output can be either voltage or 

current at any place in the circuit, there are four possible transfer functions: 

       𝐻(𝜔) = Voltage gain =
𝑉𝑜(𝜔)

𝑉𝑖(𝜔)
                                                 6.2a 

                               𝐻(𝜔) = Current gain =
𝐼𝑜(𝜔)

𝐼𝑖(𝜔)
                                                 6.2b 

                               𝐻(𝜔) = Transfer Impedance =
𝑉𝑜(𝜔)

𝐼𝑖(𝜔)
                                 6.2c 

                               𝐻(𝜔) = Transfer Admittance =
𝐼𝑜(𝜔)

𝑉𝑖(𝜔)
                                6.2d 

where subscripts i and 𝑜 denote input and output values. Being a complex quantity, 

𝐻(𝜔) has a magnitude 𝐻(𝜔) and a phase 𝜙; that is, 𝐻(𝜔) = 𝐻(𝜔)∠𝜙 

 To obtain the transfer function using Eq. (6.2), we first obtain the frequency-

domain equivalent of the circuit by replacing resistors, inductors, and capacitors with 

their impedances 𝑅, 𝑗𝜔𝐿  and 1/𝑗𝜔𝐶. We then use any circuit technique(s) to obtain the 

appropriate quantity in Eq. (6.2). We can obtain the frequency response of the circuit by 

plotting the magnitude and phase of the transfer function as the frequency varies. A 

computer is a real time-saver for plotting the transfer function.  

The transfer function 𝐻(𝜔) can be expressed in terms of its numerator polynomial 𝑁(𝜔) 

and denominator polynomial 𝐷(𝜔) as 

                                                    𝐻(𝜔) =
𝑁(𝜔)

𝐷(𝜔)
                                                       6.3 
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where 𝑁(𝜔) and 𝐷(𝜔) are not necessarily the same expressions for the input and output 

functions, respectively. The representation of 𝐻(𝜔) in Eq. (6.3) assumes that common 

numerator and denominator factors in 𝐻(𝜔) have canceled, reducing the ratio to lowest 

terms. The roots of 𝑁(𝜔) = 0 are called the zeros of 𝐻(𝜔) and are usually represented 

as 𝑗𝜔 = 𝑧1, 𝑧2…. Similarly, the roots of 𝐷(𝜔) = 0 are the poles of 𝐻(𝜔) and are 

represented as 𝑗𝜔 = 𝑝1, 𝑝2….,. 

A zero, as a root of the numerator polynomial, is a value that results in a zero 

value of the function. A pole, as a root of the denominator polynomial, is a 

value for which the function is infinite. 

 To avoid complex algebra, it is expedient to replace jo temporarily with s when 

working with 𝐻(𝜔) and replace 𝑠 with 𝑗𝜔 at the end. 

 

Example 6.1: For the RC circuit in Fig. 6.2(a), obtain the transfer function 𝑉𝑜/𝑉𝑠 and its 

frequency response. Let 𝑣𝑠 = 𝑉𝑚 cos𝜔𝑡 

𝑣𝑠(𝑡) 𝑣0(𝑡) 

R R

+

-

+

-

C 𝑉𝑠 𝑉0 
1

𝑗𝜔𝐶
 

(a) (b)  
Figure 6.2(a) time-domain RC circuit (b) frequency-domain RC circuit  

 

Solution  

The frequency-domain equivalent of the circuit is in Fig. 6.2(b). By voltage division, the 

transfer function is given by 

𝐻(𝜔) =
𝑉𝑜
𝑉𝑠
=

1/𝑗𝜔𝐶

𝑅 + 1/𝑗𝜔𝐶
=

1

1 + 𝑗𝜔𝑅𝐶
 

We obtain the magnitude and phase of 𝐻(𝜔) as  

𝐻 =
1

√1 + (
𝜔

𝜔0
)
2
,    𝜙 = − tan−1

𝜔

𝜔0
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𝜔0 =
1

𝑅𝐶
 

H

0.707

0

𝜔0 =
1

𝑅𝐶
 

𝜔 

𝜔 

−45° 

−90° 

0° 

(a)

(b)  
Figure 6.3  

Where 𝜔0 = 1/𝑅𝐶. To plot 𝐻 and 𝜙 for 0 < 𝜔 < ∞, we obtain their values at some 

critical points and then sketch. 

 At 𝜔 = 0, 𝐻 = 1 and 𝜙 = 0. At 𝜔 = ∞, 𝐻 = 0 and 𝜙 = −90𝑜. Also, at 𝜔 =

𝜔0, 𝐻 = 1/√2  and 𝜙 = −45𝑜. With these and a few more points as shown in Table 6.1, 

we find that the frequency response is as shown in Fig. 6.3. Additional features of the 

frequency response in Fig. 6.3 will be explained in Section 7 on lowpass filters. 

 

Table 6.1 (for example, 6.1) 
𝜔

𝜔0
 𝐻 𝜙 𝜔

𝜔0
 𝐻 𝜙 

0 1 0 10 0.1 −80𝑜 

1 0.71 −45𝑜 20 0.05 −87𝑜 

2 0.45 −63𝑜 100 0.01 −89𝑜 

3 0.32 −72𝑜 ∞ 0 −90𝑜 

 

 

Example 6.2: For the circuit in Fig.6.4, calculate the gain 𝐼𝑜(𝜔)/𝐼𝑖(𝜔) and its poles and 

zeros  
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0.5 F 

2H

4Ω 

𝑖𝑖(𝑡) 

𝑖0(𝑡) 

                                                                         
Figure 6.4 

Solution: 

By current division  

𝐼𝑜(𝜔) =
4 + 𝑗2𝜔

4 + 𝑗2𝜔 +
1

𝑗0.5𝜔

𝐼1(𝜔) 

Or 

𝐼𝑜(𝜔)

𝐼𝑖(𝜔)
=
𝑗0.5𝜔(4 + 𝑗2𝜔)

1 + 𝑗2𝜔 + (𝑗𝜔)2
=

𝑠(𝑠 + 2)

𝑠2 + 2𝑠 + 1
, 𝑠 = 𝑗𝜔 

The zeros are at  

𝑠(𝑠 + 2) = 0   ⟹    𝑧1 = 0, 𝑧2 = −2 

The poles are at 

𝑠2 + 2𝑠 + 1 = (𝑠 + 1)2 = 0 

Thus, there is a repeated pole (or double pole) at 𝑝 = −1 

 

6.2 Poles and Zeros Consulate  

The complex frequency ′𝑠′ has both real and imaginary parts in general  

𝑠 = 𝜎 + 𝑗𝜔, where 𝜎 (lower case letter sigma of Greek alphabets) in the neper frequency 

and 𝜔 (lower-case letter omega) is the radian frequency. Any forced response can be 

portrayed graphically as a function of the complex frequency. 

 For the driving point (taken at the same terminal) input impedance: 

𝑍⃗(𝑠) = 4 + 5𝑠 Ω, to study how the impedance varies graphically with 𝜎, we set  

𝑠 = 𝜎 + 𝑗0 ⟹ 𝑍⃗(𝜎) = 4 + 5𝑠 = 4 + 5𝜎 Ω 

The root (zero) of this: 

4 + 5𝜎 = 0 ⟹ 𝜎 = −
4

5
 

This pole (the value of 𝜎 that makes 𝑍⃗(𝑠) infinite) is 𝜎 = ∞. 

 To plot |𝑍⃗(𝜎)| [absolute value of 𝑍⃗(𝜎) versus 𝜎, we determine the article point 

since the graph would be a straight line [not crossing into the negative portion of 𝑍⃗(𝑠)] 

see Fig. 6.5 
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5

10

15

0 2 4 6 8-2-4-6

20

25

30

4

−4

5
 

𝜎 

26

|𝑍(−6)| = |14− 5 × 6| 

= |−26| = 26 

|𝑍(𝜎)| 

0

 
Figure 6.5 

 

For the response as a function of 𝜔, we “suppress” 𝜎, letting 𝑠 = 𝑗𝜔 

⟹  𝑍⃗(𝑗𝜔) = 4 + 𝑗5𝜔 

⟹     |𝑍⃗(𝑗𝜔)| = √16 + 25𝜔2 

𝑎𝑛𝑔 𝑍⃗(𝑗𝜔) = tan−1
5𝜔

4
 

For the magnitude, a single pole is at infinity, a minimum at 𝜔 = 0 ⟹ |𝑍⃗(𝑗𝜔)| = 4, 

zero at  

16 + 25𝜔2 = 0  ⟹ 𝜔 = ± √−
16

25
= ±

𝑗4

5
 

𝜔 = 0 ⟹ 𝑎𝑛𝑔 𝑍(𝑗𝜔 = 0) 

𝜔 = ±∞ ⟹ 𝑎𝑛𝑔 𝑍⃗(𝑗𝜔) = ±
𝜋

2
 

5

10

15

0 2 4 6 8-2-4-6

20

25

30

4

1 

𝜔 

|𝑍(𝜎)| 

0

20.4

|4 + 𝑗20| = √16 + 400

= 20.40 

𝜔 = −4 ⟹ |𝑍(𝑗𝜔)| = 

𝜔 = 1 ⟹ |𝑍(𝑗𝜔)| = |4 + 𝑗5| 

= √16 + 25 = 6.4 

6.4

 
Figure 6.6 
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−90𝑜  

90𝑜  

45𝑜  

0𝑜  

−45𝑜  

𝜔 
-6 -4 -2 0 2 4 6 8

𝑎𝑛𝑔 𝑍(𝑗𝜔) 

 
Figure 6.7 

For the frequency domain function given by  

𝐹⃗(𝑠) =
(𝑠 + 3)

(𝑠 + 4)
 , 𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑖𝑠 𝑎𝑡 𝑠 + 3 = 0 ⟹ 5 = −3.  

The pole is at 𝑠 + 4 = 0 ⟹ 𝑠 = −4 see Fig. 6.8 

0-1-2-3-4 𝜔 

𝑠 = 𝑗𝜔 

 
Figure 6.8 

 

For plots of |𝑉⃗⃗(𝑗𝜔)| and 𝑎𝑛𝑔 𝑉⃗⃗(𝑗𝜔) 𝑣𝑠 𝜔 

|𝑉⃗⃗(𝑗𝜔)| = |
(𝑗𝜔 + 3)

(𝑗𝜔 + 4)
| =

|𝑗𝜔 + 3|

|𝑗𝜔 + 4|
= √

(𝜔2 + 9)

(𝜔2 + 16)
 

As 𝜔 increases (or decreases) without bound, |𝑉⃗⃗(𝑗𝜔)| approaches 
√𝜔2

√𝜔2
= 1 as 

maximum. 

At 𝜔 = 0, |𝑉⃗⃗(𝑗𝜔)| = √
9

16
=

3

4
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0 𝜔 

3

4
 

1

0.5

 
Figure 6.9 

 

𝑉⃗⃗(𝑗𝜔) =
(3 + 𝑗𝜔)(4 − 𝑗𝜔)

16 + 𝜔2
=
12 + 𝑗𝜔 + 𝜔2

16 + 𝜔2
 

|𝑉⃗⃗(𝑗𝜔)| =
(12 + 𝜔2)2 + 𝜔2

16 + 𝜔2
 

𝑎𝑛𝑔 𝑉⃗⃗(𝑗𝜔) = tan−1 (
𝜔

12 + 𝜔2
) 

𝜔 = 0 ⟹ 𝑎𝑛𝑔 𝑉⃗⃗(𝑗𝜔) = tan−1 0 = 0 

𝜔 →  ∞ (𝑜𝑟 − ∞) ⟹ 𝑎𝑛𝑔 𝑉⃗⃗(𝑗𝜔) → 0 
𝑎𝑛𝑔 𝑉⃗⃗(𝑗𝜔) 

𝜔 

 
 Figure 6.10 

 

 

 

Example 6.1: For the pole-zero constellation shown in Fig. 6.11, obtain an expression 

for the gain that is a ratio of polynomials in 𝑠. 
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𝜔 

 𝑗4 

−𝑗2 

−𝑗4 

 𝑗2 

-2-4-6-8 𝜎 

𝐻(0) =30 

Zeros at -6 - 8 + j4 and –  - j4 

the last two forming a 

conjugate pair;

Poles at -4-j4 and 

its conjugate -4 - 4j

 
Figure 6.11 

 

Solution: 

𝐻(𝑠) =
𝑘(𝑠 + 6)(𝑠 + 8 − 𝑗  4)(𝑠 + 8 + 𝑗4)

(𝑠 + 4 − 𝑗4)(𝑠 + 4 + 𝑗4
 

𝐻(0) = 30 =
𝑘(6)(8 − 𝑗4)(8 + 𝑗4)

(4 − 𝑗4)(4 + 𝑗4)
= 𝑘 

6(64 + 16)

16 + 16
= 𝑘

6 × 80

32
 

⟹ 𝑘 =
(30)(32)

480
= 2 

⟹𝐻(𝑠) =
2 (𝑠 + 6)(𝑠 + 8 − 𝑗4)(𝑠 + 8 + 𝑗4)

(𝑠 + 4 − 𝑗4)(𝑠 + 4 + 𝑗4)
 

=
2(𝑠 + 6)[(𝑠 + 8)2 + 42]

(𝑠 + 4)2 + 42
 

= 
2(𝑠 + 6)(𝑠2 + 16𝑠 + 64 + 16)

𝑠2 + 8𝑠 + 16 + 16
 

=
2 (𝑠3 + 22𝑠2 + 176𝑠 + 480)

𝑠2 + 8𝑠 + 32
 

Note: whenever zeros and/or poles contain imaginary part(s), then they must occur in 

conjugate part(s). This is in conformity with the physical reality that, although there 

might occur imaginary quantities theoretically the addition of two complex conjugates 

always produces a real number! 

 

Example 6.3:  For each of the pole constellations in the Fig. 6.12 which applies to a 

voltage gain G, obtain an expression for the gain that is a ratio of polynomials in 𝑠. 
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 𝑗𝜔 

-1-2-3-4
𝜎 

𝐺(1) = 8 

𝜎 

 𝑗6 

- 𝑗6 

𝐺(3) = 6 

-2-4

(a)
(b)

 
Figure 6.12 

Solution: 

(a)     
𝑘 × 𝑠(𝑠 + 2)

(𝑠 + 1)(𝑠 + 3)(𝑠 + 4)
 

⟹ 𝐺(1) = 8 =
𝑘(3)

(2)(4)(5)
 

⟹ 𝑘 =
320

3
 

𝐺(𝑠) = (
320

3
)

(𝑠2 + 25)

(𝑠 + 1)(𝑠2 + 7𝑠 + 12)
 

=
(
320

3
) (𝑠2 + 25)

(𝑠3 + 8𝑠2 + 19𝑠 + 12)
 

=
(320𝑠2 + 64𝑠)

(3𝑠3 + 24𝑠2 + 57𝑠 + 36)
 

(b)    
𝑘 × (𝑠 + 𝑗6)(𝑠 − 𝑗6)

(𝑠 + 2)(𝑠 − 2)(𝑠 + 4)
=

𝑘 × (𝑠2 + 36)

(𝑠2 − 4)(𝑠 + 4)
 

𝐺(3) = 6 =
𝑘(45)

(5)(7)
 

⟹ 𝑘 =
(6)(35)

45
=
14

3
 

𝐺(𝑠) =
(14𝑠2 + 504)

(3𝑠3 + 12𝑠2 − 12𝑠 − 48)
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Example 6.4:  For each of the pole constellations in the Fig. 6.13, which applies to a 

voltage gain G, obtain an expression for the gain that is a ratio of polynomials in 𝑠. 

 𝑗𝜔 

-6-8
𝜎 

𝐺(1) = 8 

𝜎 

 𝑗6 

- 𝑗6 

𝐺(∞) = 6 

-4-6-8𝜎 

 𝑗4 

−𝑗4 

𝐺(0) = 30 

-4 -4

(a)

(b)

(c)
 𝑗𝜔  𝑗𝜔 

 
Figure 6.13 

 

Solution: 

(a)    𝐺(𝑠) =
𝑘 × 𝑠(𝑠 + 6)

(𝑠 + 8)(𝑠 + 4)
 

⟹ 𝐺(1) = 8 =
𝑘 × (7)(1)

(9)(5)
 

𝑘 = 51.43  

∴ 𝐺(𝑠) =
51.43(𝑠2 + 6𝑠)

(𝑠2 + 12𝑠 + 48)
 

(b)   𝐺(𝑠) =
𝑘 × (𝑠 + 𝑗6)(𝑠 − 𝑗6)

𝑠(𝑠 + 4)
 

⟹𝐺(∞) = 6 = lim
𝑠→∞

𝑘𝑠2 = 𝑘 = 6 

⟹𝐺(𝑠) =
6(𝑠2 + 36)

(𝑠2 + 4𝑠)
 

(𝑐)    𝐺(𝑠) =
𝑘 × (𝑠 + 6)(𝑠 + 8 + 𝑗4)(𝑠 + 8 − 𝑗4)

(𝑠 + 4 + 𝑗4)(𝑠 + 4 − 𝑗4)
 

𝐺(0) = 30 =
𝑘 × (6)(8 + 𝑗4)(8 − 𝑗4)

(4 + 𝑗4)(4 − 𝑗4)
 

30 = 6𝑘 ×
(64 + 16)

(16 + 16)
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⟹ 𝑘 =
30(32)

(6)(80)
= 2 

= 𝐺(𝑠) =
2(𝑠 + 6)(𝑠2 + 16𝑠 + 64 + 16)

(𝑠2 + 8𝑠 + 16 + 16)
 

=
2(𝑠3 + 2252 + 176𝑠 + 480)

(𝑠2 + 8𝑠 + 32)
 

Example 6.5:  For each of the pole constellations in the Fig. 6.14, which applies to a 

voltage gain G, obtain an expression for the gain that is a ratio of polynomials in 𝑠. 

 𝑗𝜔 

-6-8
𝜎 

𝐺(1) = 8 
 𝑗6 

- 𝑗6 

𝐺(∞) = 6 

𝜎 -4 -4

(a)

(b)

 𝑗𝜔 

 

Figure 6.14 

Solution: 

(𝑎) 
𝐾 × 𝑠(𝑠 + 6)

(𝑠 + 4)(𝑠 + 8)
⟹ 𝐺(1) =

𝐾 × (7)

(𝑠)(9)
= 8 ⟹ 𝑘 = 8 ×

45

7
=
360

7
 

⟹𝐺(𝑠) =
360

7

𝑠(𝑠 + 6)

(𝑠 + 4)(𝑠 + 8)
=
360

7

𝑠2 + 6𝑠

𝑠2 + 125 + 32
 

(𝑏)    𝐺(𝑠) =
𝐾 × (𝑠 − 𝑗6)(𝑠 + 𝑗6)

𝑠(𝑠 + 4)
=
𝑘(𝑠2 + 36)

𝑠2 + 45
     ⟹   𝐺(0) ≠ 6   

⟹ 𝑘 = indeterminate 

⟹    𝐺(𝑠) =
𝑘(𝑠2 + 36)

𝑠2 + 45
         0 < 𝑘 < ∞ 

 

6.3 The Decibel Scale  

It is not always easy to get a quick plot of the magnitude and phase of the transfer 

function as we did above. A more systematic way of obtaining the frequency response is 
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to use Bode plots. Before we begin to construct Bode plots, we should take care of two 

important issues: the use of logarithms and decibels in expressing gain. 

 Since Bode plots are based on logarithms, it is important that we keep the following 

properties of logarithms in mind: 

1. log 𝑃1𝑃2 = log𝑃1 + log𝑃2 

2. log
𝑃1

𝑃2
= log 𝑃1 − log𝑃2 

3. log 𝑃𝑛 = 𝑛 log 𝑃 

4. log 1 = 0 

In communications systems, gain is measured in bels. Historically, the bel is used to 

measure the ratio of two levels of power or power gain G; that is, 

 

   𝐺 = Number of bels =  log10
𝑃2

𝑃2
     6.4 

 

The decibel (dB) provides us with a unit of less magnitude. It is 1/10th of a bel and is 

given by 

   𝐺𝑑𝐵 = 10 log10
P2

P1
                  6.5 

 

When 𝑃1 = 𝑃2, there is no change in power and the gain is 0 dB. If 𝑃2 = 2𝑃1, the gain is 

 

   𝐺𝑑𝐵 = 10 log10 2 ≃ 3dB     6.6 

 

And when 𝑃2 = 0.5𝑃1 the gain is  

 

                                      𝐺𝑑𝐵 = 10 log10 0.5 ≃ −3dB     6.7 

 

Eqs (6.6) and (6.7) show another reason why logarithms are greatly used: The logarithm 

of the reciprocal of a quantity is simply negative the logarithm of that quantity. 

𝑅2 Network 
+

-

𝑉2 
+

-

𝑃2 𝑃1 

𝑅1 

𝐼1 𝐼2 

 
Figure 6.15 
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 Alternatively, the gain G can be expressed in terms of voltage or current ratio. To 

do so, consider the network shown in Fig. 6.15. If 𝑃1 is the input power, 𝑃2 is the output 

(load) power, 𝑅1 is the input resistance, and 𝑅2 is the load resistance, then 𝑃1 = 0.5
𝑉1
2

𝑅1
 

and 𝑃2 = 0.5𝑉2
2/𝑅2, and Eq. (6.5) becomes 

 

                      𝐺𝑑𝐵 = 10 𝑙𝑜𝑔10
𝑃2
𝑃1
= 10 𝑙𝑜𝑔10 [

𝑉2
2

𝑅2

𝑉1
2

𝑅1

]                                            6.8 

= 10 log10 (
𝑉2
𝑉1
) + 10 log10

𝑅1
𝑅2

 

                         𝐺𝑑𝐵 = 20 log10
𝑉2
𝑉1
− 10 log10

𝑅2
𝑅1
                                                 6.9 

 

 For the case when 𝑅2 = 𝑅1, a condition that is often assumed when comparing 

voltage levels, Eq. (6.9) becomes 

                                    𝐺𝑑𝐵 = 20 log10
𝑉2
𝑉1
                                                                6.10 

 

Instead, if 𝑃1 = 𝐼1
2𝑅1 and 𝑃2 = 𝐼2

2𝑅2 for 𝑅1 = 𝑅2 we obtain  

                                          𝐺𝑑𝐵 = 20 log10
𝐼2
𝐼1
                                                             6.11 

 

Three things are important to note from Eqs. (6.5), (6.10), and (6. 11): 

1. That 10 log10 is used for power, while 20 log10 is used for voltage or current, because 

of the square relationship between them (𝑃 =
𝑉2

𝑅
= 𝐼2𝑅) 

2. That the dB value is a logarithmic measurement of the ratio of one variable to 

another of the same type. Therefore, it applies in expressing the transfer function H in 

Eqs. (6.2a) and (6.2b), which are dimensionless quantities, but not in expressing H in Eqs. 

(6.2c) and (6.2d). 

3. It is important to note that we only use voltage and current magnitudes in Eqs. 

(6.10) and (6. I l). Negative signs and angles will be handled independently as we will see 

in Section 7 
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With this in mind, we now apply the concepts of logarithms and decibels to construct 

Bode plots. 

 

6.4 Exercise  

1. For each of the pole constellations 

in Fig.1 which applies to a voltage gain 

G, obtain an expression for the gain 

that is a ratio of polynomials in 𝑠 

(a)

(b)

-1-2-3-4

𝑗8 

-𝑗8 

𝑗𝜔 

G(2) = 10

-2-4

−𝑗5 

𝑗5 

G(3) = 6

𝑗𝜔 

 

Figure 1 

2. Calculate 𝐻𝑑𝐵 for 𝐻(𝑠) equal to: 

 (i)
100

(𝑠 + 200)
 (ii) 100 (𝑠 + 200) 

3. Calculate |𝐻(𝑗𝜔)| for 𝐻𝑑𝐵 equal to (i) 

30dB (ii) -30dB   

4. For each of the pole zero 

constellations in Fig. 2, which applies 

to a voltage gain G, obtain an 

expression for the gain that is a ratio 

of polynomials in 𝑠. 

(a)
(b)

-2-4-6-8

𝑗4 

-𝑗2 

𝑗𝜔 

G(3) = 9

-2-4

−𝑗5 

𝑗5 

G(0) = 6

𝑗𝜔 

𝑗2 

-𝑗4 

 

 Figure 2 

5. Calculate 𝐻𝑑𝐵 for 𝐻(𝑠) equal to: 

 (i)
10

(𝑠 + 100)
(ii) 10 (𝑠 + 100) 

6. Calculate |𝐻(𝑗𝜔)| for 𝐻𝑑𝐵 equal to (i) 

40dB (ii) -40dB   

7. For each of the pole-zero 

constellations in Fig. 3 which applies to 

a voltage gain G, obtain an expression 

for the gain that it is a ratio of 

polynomials in 𝑠 

 𝑗𝜔 

-6-8
𝜎 

𝐺(2) = 10 
 𝑗6 

- 𝑗6 

𝐺(∞) = 8 

𝜎 -4 -4

(a)

(b)

 𝑗𝜔 

-2

 

Figure 3 

8. Calculate 𝐻𝑑𝐵 for 𝐻(𝑠) equal to ∶ 

(i)
10

(𝑠 + 100)
 (ii) 10 (𝑠 + 100) 
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9. Calculate |𝐻(𝑗𝜔)| for 𝐻𝑑𝐵 equal to (i) 

40dB (ii) -40dB   

10. Calculate |𝐻(𝑗𝜔)| for 𝐻𝑑𝐵 equal to 

(i) 80dB (ii) -80dB (III) 0  

11. For each of the pole-zero 

constellations in Fig. 4 which applies to 

a voltage gain G, obtain an expression 

for the gain that is ratio of polynomials 

in s (𝑗𝜔) 
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CHAPTER 7 

BODE PLOT 
 

7.0 Introduction to Bode plot  

Basic of any frequency response is to plot magnitude M and angle ∅ against input 

frequency ‘𝜔’. When ‘𝜔’ is varied from 0 to ∞ there is wide range of variations in M and 

∅ and hence it becomes difficult to accommodate all such variations with linear scale. 

Hence H.W. Bode suggested the method in which logarithm values of magnitude is to be 

plotted against logarithm values of frequencies such plots are called logarithm plots 

which allows us to show a wide range of variations in magnitude on a single paper.  

 So, in general Bode plot consists of two plots 

1. Magnitude expressed in Logarithm values against logarithm values of frequency 

called magnitude plot. 

2. Phase angle in degrees against Logarithm values of frequency called as phase angle 

plot.  

7.0.1 Magnitude plot 

 The magnitude can be expressed in its Logarithmic values by finding out the value 

20 log10|𝐺(𝑗𝜔)| , which has a unit as decibel denoted by dB. 

For Bode plot   |𝐺(𝑗𝜔)| = 20 log10|𝐺(𝑗𝜔)| 𝑑𝐵 

Such decibels values are to be plotted against log10𝜔 magnitude plot can be shown as 

in Fig. 7.1 

7.0.2 The phase angle plot 

|𝐺(𝑗𝜔)| 

    In dB 

Magnitude plot

𝐿𝑜𝑔 𝜔 

 

Figure 7.1 
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 The Phase Angle Plot: In this angle of 𝐺(𝑗𝜔) is to be expressed in degrees which is 

to be plotted against log𝜔 

The phase angle plot can be shown as in Fig. 7.2. 

∠ 𝐺(𝑗𝜔) 

    In degrees 

Phase angle plot

𝐿𝑜𝑔 𝜔 

 

Figure 7.2 

 As for both plots X-axis is Log log𝜔 both may be drawn on the same paper with 

common X-axis.  

 Note: To predict the closed loop stability from the frequency response of open loop 

system, the magnitude and phase angle of open loop transfer function 𝐺(𝑗𝜔) 𝐻(𝑗𝜔)is 

to be plotted against Log 𝜔 and not only 𝐺(𝑗𝜔). 

 So, for Bode plot, magnitude in dB and phase angle in degrees are the magnitudes 

and phase angles of 𝐺(𝑗𝜔) 𝐻(𝑗𝜔), plotted against log𝜔 

7.1 Logarithmic Scales (Semi-log Papers): 

 To sketch the magnitude in dB and phase angle in degrees against log𝜔 the 

logarithmic scale is used. This is available on semilog graph paper. In such paper the X-

axis is divided into a logarithmic scale which is nonlinear one. While Y-axis is divided into 

linear scale and hence it is called as semilog paper. 

 The interesting part about X-axis is the distance between 1 and 2 is greater than 

distance between 2 and 3 and so on. Similarly, on such a scale, the distance between 1 

and 10 is equal to the distance between 10 and 100 or between 100 and 1000 and so on. 

This distance is called 1 decade. 

 This is because log 1 = 0 and log 10 = 1. The distance is 1 decade which is divided 

into 10 parts according to logarithmic scale i.e. 𝐿𝑜𝑔 2, 𝐿𝑜𝑔 3,  

 Now Log 10 =  1 and 𝐿𝑜𝑔 100 = 2. The distance is again (2 —  1) i.e. 1 decade 

same as between 𝐿𝑜𝑔 1 and 𝐿𝑜𝑔 10, further divided into parts as Log 20, 𝐿𝑜𝑔 30,  
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 So, X-axis is available, which is divided into two, three, or four such cycles i.e. 

decades. 

 So, it is not necessary to find logarithmic value of 𝜔 but the logarithmic scale 

available takes care of logarithmic value of 𝜔. The advantage of the scale is the wide 

range of frequencies can be accommodated on a single paper. 

 As log 0 = −∞ itis obvious that x-axis cannot be calibrated from 0 but as per 

requirement the smallest frequency may be selected as starting frequency like 0.01, 0.1 

etc. This hardly affects the result of the frequency response.  

 The Y axis is divided into linear scales similar to standard graph paper. 

To clear the idea of semilog paper and decade the graph paper is shown in Fig. 7.3. 

DECADE 1 DECADE 4DECADE 3DECADE 2

𝐿𝑜𝑔 𝜔 

LI
N

E
A

R

Y
-a

xi
s

Non Linear X-

axix

0.1 0.2 0.3 2 3 20 30 200100 101 102 103 

Figure 7.3 Semi-log paper 

 

 The main advantage using the logarithmic representation is that the multiplication 

and division of magnitudes get replaced by the addition and subtraction respectively. 

The experimental determination of the transfer function is easier if frequency response 

data is presented in the form of the logarithmic plot. Such a plot shows both low 

frequency and high frequency characteristics in the same diagram. 

7.2  Standard Form of Open Loop T.F. 𝑮(𝒋𝝎) 𝑯(𝒋𝝎): 

Consider  𝐺(𝑠)𝐻(𝑠) =
𝐾′𝑠𝑍(𝑠 + 𝑍1)(𝑠 + 𝑍2)…

𝑠𝑃(𝑠 + 𝑃1)(𝑠 + 𝑃2)…
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 Note that either 𝑠𝑍 or 𝑠𝑃 will be present at a time and not both. But this form is 

not useful to sketch the Bode Plot. 

 Hence it is necessary to rewrite the 𝐺(𝑠) 𝐻(𝑠) in the time constant form. 

𝐺(𝑠) 𝐻(𝑠) =
𝑠𝑍𝐾(1 + 𝑇1𝑠)(1 + 𝑇2𝑠)… . .

𝑠𝑃(1 + 𝑇𝑎𝑠)(1 + 𝑇𝑏𝑠)… . .
 

𝑊ℎ𝑒𝑟𝑒 𝐾 =
𝑍1 × 𝑍2 × … .

𝑃1 × 𝑃2 × … . .
× 𝐾                                                 

Again either 𝑠𝑍 or 𝑠𝑃 is present and not both. 

The standard time constant form can be denoted as  

𝐺(𝑠)𝐻(𝑠) =
 𝐾(1 + 𝑇1𝑠)(1 + 𝑇2𝑠)… . .

𝑠𝑃(1 + 𝑇𝑎𝑠)(1 + 𝑇𝑏𝑠)… . .
 

 K= Resultant system gain 𝑃 =Type of the system  

𝑇1, 𝑇2, 𝑇𝑎, 𝑇𝑏 , …… .=Time constants of different poles and zeros. 

 Each of the factor involved in 𝐺(𝑠)𝐻(𝑠) above will contribute to magnitude and 

phase angle variations of 𝐺(𝑗𝜔) 𝐻(𝑗𝜔) in frequency domain. Frequency domain transfer 

function can be obtained by substituting. 𝑠 = 𝑗𝜔 in above expression 

𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
 𝐾(1 + 𝑇1 𝑗𝜔)(1 + 𝑇2 𝑗𝜔)… . .

(𝑗𝜔)𝑃(1 + 𝑇𝑎 𝑗𝜔)(1 + 𝑇𝑏 𝑗𝜔)… . .
 

 Now basic factors which very frequently occur in the above form can be identified 

and studied separately. 

List of such basic factors is,  

1. Resultant system gain K, constant factor. (When 𝐺(𝑗𝜔) 𝐻(𝑗𝜔) is expressed in time 

constant form). 

2. Poles or zeros at the origin. (Integral and Derivative factors) i.e., (𝑗𝜔)±𝑃 Either 

poles or zeros at origin will be present. 

3. Simple poles and zeros also called as first order factors of the form(1 + 𝑗𝜔𝑇)±1 

4. Quadratic factors which cannot be factorized 2 into real factors, of the form 

(1 +
2𝜉

𝜔𝑛
𝑠 +

𝑠2

𝜔𝑛2
) ≈ 1 + 2𝜉𝑗 (

𝜔

𝜔𝑛
) + (

𝑗𝜔

𝜔𝑛
)
2
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 Once the behaviour of such factors is clear in frequency domain then by adding 

logarithmic plots of such factors, the resultant logarithmic plot for any 𝐺(𝑗𝜔) 𝐻(𝑗𝜔) can 

be obtained. The process of obtaining logarithmic plots for such factors can be simplified 

by using asymptotic approximations for each factor. But by adding corrections to such a 

plot, if necessary, an accurate plot may be obtained. 

7.3  Bode Plots of Standard Factors of 𝑮(𝒋𝝎) 𝑯(𝒋𝝎) 

For each factor procedure to obtain its Bode Plot can be divided into following steps. 

 Step 1: Replace ‘s’ by ‘𝑗𝜔’ to convert it to frequency domain. 

 Step 2: Find its magnitude as a function of 𝜔 

 Step 3: Express the magnitude in 'dB' by 20 log10|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| 

 Step 4: Find phase angle by using tan−1 [
imaginary part

𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡
] = ∅ in degrees 

 Step 5: With required approximations, plot magnitude in dB and phase angle in 

degrees against log𝜔 by varying 𝜔 from 0 to ∞ 

Let us start with the basic factors one by one. 

 

7.3.1  Factor 1: System gain ‘K’ 

𝐺(𝑠)𝐻(𝑠) = 𝐾 

i.e.     𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 𝐾 + 𝑗0 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = √𝐾2 + 0 = 𝐾 

Its ‘dB’ value   = 20 log10𝐾 dB 

As gain 'K' is constant, 20 log10𝐾 is always constant though ‘𝜔’ is varied from 0 to ∞ 

So, its magnitude plot will be straight line parallel to X-axis. 

So, magnitude plot for 𝐾 > 1 is a line parallel to X-axis at a distance of 20 log𝐾 above 

0𝑑𝐵 reference line. While for 𝐾 < 1 it is at a distance of 20 log𝐾 below 0 𝑑𝐵 reference 

line. 
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+20

+40

-20

0.1 1 10 𝐿𝑜𝑔 𝜔 

0𝑑𝐵 
20𝐿𝑜𝑔(𝐾) 

𝑀𝑎𝑔 𝑝𝑙𝑜𝑡 

𝑓𝑜𝑟 𝐾 = 0.1 

𝑀𝑎𝑔 𝑝𝑙𝑜𝑡 

𝑓𝑜𝑟 𝐾 = 10 

𝑀
𝑎
𝑔

 𝑖
𝑛

 𝑑
𝐵

 |
𝐺
𝑗𝜔
) 𝐻

(𝑗
𝜔

)|
 

20𝐿𝑜𝑔(𝐾) 

 

Fig 7.4 Contribution by K 

This means that in the variation of |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| effect of ‘K’ is constant equal to 

20 𝑙𝑜𝑔 𝐾 𝑑𝐵 for all frequencies. This means 'K' shifts the magnitude plot of 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| by a distance of 20 log𝐾 𝑑𝐵 upwards if 𝐾 > 1 and downwards if 

 This fact is useful to design 'K' for the required specification. In such case 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| plot can be plotted with ‘K’ as unknown and then it just can be shifted 

upwards or downwards so as to meet the required specification. This shift is nothing 

but 20 log𝐾 𝑑𝐵, from which required ‘K' can be determined.  

Phase angle plot: 

As 𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 𝐾 + 𝑗0 

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 ∅ = 𝑡𝑎𝑛−1 (
𝑖𝑚𝑎𝑗 𝑝𝑎𝑟𝑡 

𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡
) = 𝑡𝑎𝑛−1

0

𝐾
= 0𝑜 
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So, it does not affect the phase angle plot as its contribution to phase angle plot is 0𝑜 

This means that phase plot specifications remain as it 1b for any positive value of ‘𝐾’ 

But if ′𝐾′ is negative, it always contributes independent of frequency. −180′ to the 

phage angle plot 

0.1 1 10 𝐿𝑜𝑔 𝜔 

0𝑑𝐵 
𝑓𝑜𝑟 𝐾 > 0 

𝑃ℎ
𝑎𝑠
𝑒 𝑎
𝑛𝑔
𝑙𝑒

 𝑖𝑛
 𝑑
𝑒𝑔
𝑟𝑒
𝑒𝑠

 

90° 

-90° 

-180° 
𝑓𝑜𝑟 𝐾 < 0 

Figure 7.5 Factor 2: Poles or zeros at the origin (𝒋𝝎)±𝝆 

Let us consider for simplicity single pole at the origin 

𝐺(𝑠)𝐻(𝑠) =
1

𝑠
 

∴                                              𝐺(𝑗𝜔) =
1

𝑗𝜔
=

1

0 + 𝑗𝜔
 

∴                    For magnitude Plot →  |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| =
1

√𝑎2 + 𝜔2
=
1

𝜔
 

Magnitude in dB = 20 log
1

𝜔
dB 

= 20 log(𝜔)−1 dB 

= −20 log𝜔 

 Therefore, this equation is similar to 𝑦 = 𝑚𝑥 i.e., 1 pole at the origin contributes 

to the magnitude plot according to the equation −20 log𝜔 i.e., according to the straight 

line of slope ′ − 20′ 
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 Let us see the unit of the slope. 

 Equation is  |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = −20 log𝜔 

If   𝜔 = 1 → |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 0 dB 

𝜔 = 10 → |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = −20 Db, 𝜔 = 100 →  |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = −40 dB 

𝜔 = 0.1 →  |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = +20 dB 

 Now 10 times changes in frequency range is called as 1 decade described earlier 

i.e. 1 pole at origin reduces the |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| at the rate of —  20 dB per decade. 

Hence the slope of magnitude plot for 1 pole at the origin is called— 20 dB/decade. 

So, magnitude plot for 1 pole at origin is a straight line of slope — 20 dB/decade. 

 Now at 𝜔 = 1 |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 0dB i.e., this line intersects the reference 0 dB line 

at 𝜔 = 1. 

 At 𝜔 = 0.1 it has magnitude +20 dB while at 𝜔 = 10 it has magnitude of −20 dB. 

As 𝜔 = 0 cannot be indicated, starting frequency may be selected as per the 

requirement. This contribution is valid for range of 𝜔 from 0 to ∞.  

𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

𝑠𝑙𝑜𝑝𝑒 = 20𝑑𝐵/decade 

1 POLE AT ORIGIN 

𝑀
𝑎
𝑔

 𝑖
𝑛

 𝑑
𝐵

 

+20 

-20 

-40 
𝑓𝑜𝑟 𝐾 < 0 

 𝜔 = 0.1  𝜔 = 1  𝜔 = 10 

 

Figure 7.6 Contribution by 1 pole at origin 
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To sketch such a line of slope —20 dB/decade, first mark the intersection point of 𝜔 =

1 with 0 𝑑𝐵 line and then go up by 20 dB for each 1/10𝑡ℎ  reduction in frequency from 

𝜔 = 1 i.e. +20 dB for 𝜔 = 0.1, +40 dB for 0.01 or go down by 20 dB for each 10 times 

increase in frequency from 𝜔 = 1 i.e. — 20 dB for 𝜔 = 10, — 40 dB for 𝜔 = 100 and 

so on. Then draw a straight line, as shown in the Fig. 7.6 

Consider two poles at origin 𝐺(𝑠)𝐻(𝑠) =
1

𝑠2
 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
1

𝑗𝜔
∙
1

𝑗𝜔
 

∴    |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| =
1

𝜔
∙
1

𝜔
=
1

𝜔2
 

∴     |𝐺(𝑗𝜔)𝐻(𝑗𝜔)|in dB = 20 log
1

𝜔2
= 20 log(𝜔)−2 = −40 log𝜔 

So, it is straight line of slope —  40 dB/decade. 

 In logarithmic plot, multiplication gets replaced by addition. One point is important 

to note that at 𝜔 = 1, |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 0dB i.e., this line though has slope 

— 40 dB/decadeit intersects 0 dB line at 𝜔 = 1 

𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

𝐶𝑜𝑚𝑚𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝜔 = 1 𝑤𝑖𝑡ℎ 0𝑑𝐵 𝑙𝑖𝑛𝑒 
+20 

-20 

-40 

 𝜔 = 0.1 
 𝜔 = 1  𝜔 = 10 

+40 

+60 

𝑓𝑜𝑟 
1

𝑠
 , slop−20𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 𝑓𝑜𝑟

1

𝑠2 , Slope -40dB/decade 

𝑓𝑜𝑟
1

𝑠3 , Slope -60dB/decade 

 

Figure 7.7 Contribution by poles at origin 

Similarly, for 'P' number of poles at the origin 
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𝐺(𝑠)𝐻(𝑠) =
1

𝑠𝑃
 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
1

𝜔
∙
1

𝜔
⋯𝑃 times 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| =
1

𝜔
∙
1

𝜔
⋯𝑃 times =

1

(𝜔)𝑃
 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)|in dB = 20 log
1

(𝜔)𝑃
= 20 log(𝜔)𝑃 = −20 × 𝑃 log𝜔 

 So, this is a straight line of slope — 20 × P dB/decade but again intersecting 

with 0 𝑑𝐵 line at 𝜔 = 1 

 Therefore, magnitude plot for 'P' poles at the origin gives a family of lines passing 

through intersection of 𝜔 = 1 and 0 𝑑𝐵 line having slope —20 × P dB/decade as 

shown in the Fig. 7.7. 

 Now if there is zero at the origin i.e. 

𝐺(𝑠)𝐻(𝑠) = 𝑠 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 0 + 𝑗𝜔 

∴ magnitude in dB = 20 log𝜔 𝑑𝐵 

This is equation of a straight line whose slope is +20 dB/ decade. The only change is the 

sign of the slope, for pole it is —20 dB/decade while for zero it is +20 dB/decade but 

for both, intersection of line with 0 dB occurs at 𝜔 = 1 only. 

In general, for P number of zeros at the origin 

𝐺(𝑠)𝐻(𝑠) = 𝑠𝑃 

∴      𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 𝑗𝜔 ∙ 𝑗𝜔 ∙ 𝑗𝜔⋯𝑃 times 

∴      |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 𝜔𝑃 

∴       Magnitude in dB = 20 × P Log ω 

i.e.     slope = +20 × P dB/decade 

 So, it gives family of lines with slopes as +20,+ 40 … . . . +20 ×  𝑃 dB/decade 

passing through intersection point of 𝜔 = 1 with 0 dB line as shown in the Fig. 7.8. 
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𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

+20 

-20 

-40 

 𝜔 = 0.1  𝜔 = 1  𝜔 = 10 

+40 

+60 

𝑓𝑜𝑟 𝑠 , slop +20𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 

𝑓𝑜𝑟𝑠2 , Slope +40dB/decade 

𝑓𝑜𝑟𝑠3 , Slope +60dB/decade 

−60 

Figure 7.8 Contribution by zeros at origin 

A zero at the origin increases the magnitude at a rate of +20 dB/decade. 

Phase Angle Plot: Consider 1 pole at the origin 

𝐺(𝑠)𝐻(𝑠) =
1

𝑠
𝐺(𝑗𝜔)𝐻(𝑗𝜔) =

1

𝑗𝜔
 

∴     ∠𝐺(𝑗𝜔) 𝐻(𝑗𝜔) = ∠
1

𝑗𝜔
 ∠
1

𝑗𝜔
=

0𝑜

90𝑜 ∙ 90𝑜
= −180𝑜 

This is independent of ‘𝜔’. So, phase angle plot of ‘pole at origin is line parallel to x-axis 

contributing −90𝑜 to phase angle. 

For 2 poles at origin, 𝐺(𝑠)𝐻(𝑠) =
1

𝑠2
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∴         𝐺(𝑗𝜔)  𝐻(𝑗𝜔) =
1

𝑗𝜔
∙
1

𝑗𝜔
 

∴           ∠ 𝐺(𝑗𝜔) 𝐻(𝑗𝜔) = ∠
1

𝑗𝜔
∠
1

𝑗𝜔
=

0𝑜

90𝑜 ∙ 90𝑜
= −180𝑜 

Angle gets added to each other. 

 In general P number of poles at the origin contribute −90𝑜 × 𝑃 angle to overall 

phase angle plot. This contribution is irrespective of 𝜔 

 Similarly, for a zero at the origin,  

𝐺(𝑠)𝐻(𝑠) = 𝑠 

∴    𝐺(𝑗𝜔) 𝐻(𝑗𝜔) = 𝑗𝜔 

∴     ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = ∠0 + 𝑗𝜔 = + tan−1
𝜔

0
= +90𝑜 

 1 zero at the origin contributes +90𝑜. The contribution is the same as that of the 

pole; the only change is its sign. In general, 'P' number of zeros at the origin, the total 

angle contribution is +90𝑜xP, irrespective of value of 𝜔. This can be shown as in Fig. 7.9. 

𝐿𝑜𝑔 𝜔 

0° 

+90° 

-90° 

-180° 

 𝜔 = 0.1  𝜔 = 1  𝜔 = 10 

+180° 

1 𝑝𝑜𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 

2 𝑝𝑜𝑙𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 

1 𝑧𝑒𝑟𝑜 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 

2 𝑧𝑒𝑟𝑜𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 

 

Figure 7.9 Angle contribution  



  Circuit Theory with Application  

170 
 

 

 Before going to the next factor, let us see the addition of the first two factors on 

semi-log paper. 

The magnitude plots for poles or zeros at the origin are straight lines having slope 

—20 × 𝑃 dB/decade 𝑜𝑟 + 20 × 𝑃 𝑑B/decade respectively passing through 

intersection point of 𝜔 = 1 and 0𝑑𝐵 line. Now adding magnitude plot of 'K' to the 

above means to shift the straight line drawn upwards or downwards by 20 𝐿𝑜𝑔 𝐾𝑑𝐵 

depending  on whether K is greater or less than 1. This shift is experienced, will be 

same by all points on the straight-line representing poles or zeros at the origin. Hence 

net addition of 'K' and pole or zeros at origin will be a line parallel to line representing 

poles or zeros at the origin at a distance of 20 𝐿𝑜𝑔 𝐾 𝑑𝐵 above or below the 0 dB line. 

Consider 𝐺(𝑠)  𝐻(𝑠) =
10

𝑠
 so 𝐺(𝑗𝜔)  𝐻(𝑗𝜔) =

10

𝑗𝜔
 

 

 

7.3.2  Factors are: 

i. Constant 𝐾 =  10, its contribution to magnitude plot is 20 log𝐾 = 20 log 10 =

+20𝑑𝐵. 

ii. 1 pole at the origin whose magnitude plot is straight line of slope 

—20 dB/decadepassing through intersection point of 𝜔 = 1 and 0 𝑑𝐵 line. 

Now at 𝜔 = 1, total magnitude will be addition of magnitudes of K and 1/𝑠. 

i.e.  = 20 dB due to ‘K’ +0 𝑑𝐵 due to 1 pole at origin  

at 𝜔 = 1 = 20 dB 

i.e. after addition of two lines, intersection point of 𝜔 = 1 and 0 dB will shift upwards 

by 20 dB. So, to draw resultant of the two, we can generalise the procedure as, 

i. Draw magnitude plot for K. 

ii. Draw straight line representing pole at origin i.e. of slope —20
Db

decade
. 

iii. Shift intersection point of 𝜔 = 1 and 0 𝑑𝐵 on the line representing 20𝐿𝑜𝑔 𝐾                                                      

line. 
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iv. +Draw a parallel line to the line representing the pole at the origin from the point 

obtained in step (iii). 

The slope of this line will be the same as the slope of the line representing poles or zeros 

at the origin. In this example slope of resultant line will be —20 dB/decade. This is 

because slope of 20 𝐿𝑜𝑔 𝐾 line is 0 dB/decade. 

 Note: When two lines are added together, the resultant line always has a slope 

which is algebraic addition of the individual slopes of the two lines which are to be added. 

So, magnitude plot for above 𝐺(𝑠) 𝐻(𝑠) is shown on the next page. 

Phase Angle Plot: 

Prepare the table of individual angle contributions and add them to get resultant phase 

angles. 

𝜔 
Contribution by 

K  

By 1 pole at 

origin 

Resultant ∅𝑅 

0 0𝑜 −90𝑜 −90𝑜 

10 0𝑜 −90𝑜 −90𝑜 

40 0𝑜 −90𝑜 −90𝑜 

1000 0𝑜 −90𝑜 −90𝑜 

∞ 0𝑜 −90𝑜 −90𝑜 

So, phase angle plot is straight line parallel to x-axis as shown with phase angle −90𝑜  
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𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

+20 

-20 

0° 

 𝜔 = 0.1 
 𝜔 = 1  𝜔 = 10 

+40 

   

-90° 

Mag in dB

Resultant mag plot

20 log K = 20 dB

1 pole at origin -20 db/decade

Resultant phase angle plot

Phase angle 

in degree

 

Figure 7.10 

So, whatever may be the open loop T.F. 𝐺(𝑠)𝐻(𝑠) factors, the first step in sketching 

Bode plot should be the line adding poles at the origin or zeros at the origin and 

20 𝐿𝑜𝑔 𝐾 line by the procedure discussed above. 

 From above discussion we can conclude one important fact that “The starting slope 

of the Bode Plot for the function 𝐺(𝑠) 𝐻(𝑠) gets decided by number of poles or zeros at 

origin present in 𝐺(𝑠) 𝐻(𝑠)."  

E.g., Starting slope of Bode Plot for 𝐺(𝑠)𝐻(𝑠) =
10

𝑠
  is −20 dB/decade as there is one 

pole at the origin. 

 Starting slope of Bode Plot for 𝐺(𝑠)𝐻(𝑠) =
20(𝑠+1)

𝑠2(𝑠+2)(𝑠+4)
 will be — 40 dB/decade 

as there are 2 poles s at the origin in 𝐺(𝑠)𝐻(𝑠). Let us go to the next factor. 

7.3.3  Factor 3: Simple poles or zeros (First order factors) 

(1 + 𝑇𝑠)±1 i. e  (1 + 𝑗𝜔𝑇)±1 
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Let us start with a simple pole 

𝐺(𝑠)𝐻(𝑠) = (1 + 𝑇𝑠)−1 =
1

(1 + 𝑇𝑠)
⟹ 𝐺(𝑗𝜔)  𝐻(𝑗𝜔) =

1

1 + 𝑇𝑗𝜔
 

∴          |𝐺(𝑗𝜔) 𝐻(𝑗𝜔)| =
1

√1 + (𝜔𝑇)2
= [√1 + (𝜔𝑇)2]

−1

 

∴         in dB magnitude = 20 log[1 + (𝜔𝑇)2]−1 = −20 log√1 + 𝜔2𝑇2 dB 

 Now instead of sketching a magnitude plot exactly according to this equation we 

can approximate this into two regions and can draw a straight-line approximated 

magnitude plot and then by applying corrections we can modify it to an accurate one if 

required. 

 The approximation is, 

i. For low frequency range 𝜔 ≪
1

𝑇
 i.e 𝜔2𝑇2 ≪ 1 hence can be neglected. 

∴      Magnitude in dB = −20 log 1 = 0dB 

So, for low frequencies it is straight line of 0 𝑑𝐵 only. Thus, the contribution by such a 

factor can be completely neglected for low frequency range, as it is very small. 

ii. For high frequency range 𝜔 ≫
1

𝑇
   ∴ 1 ≪ 𝜔2𝑇2 

Magnitude in dB  = −20 log𝜔 𝑇 dB 

 i.e. it is straight line of slope −20 dB/decade. As again for every decade (10 times) 

change in ′𝜔′magnitude still decreases by 20 i.e. slope is −20 dB/decade. But the 

intersection of this line with 0 dB line will give us a range of high frequency and low 

frequency. i.e. two lines, O dB line for low ‘𝜔' and line with slope −20 dB/decadefor 

high are going to intersect when, −20 log𝜔𝑇 = 0 dB 

i.e   𝜔𝑇 = 1 

i.e   𝜔 =
1

𝑇
 

This frequency at which change of slope from 0 𝑑𝐵 to −20 dB/decade occurs is called 

as Corner Frequency, denoted by 𝜔𝑐. 
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𝜔𝐶 =
1

𝑇
 

Hence asymptotic i.e. approximate magnitude plot for such factor is 0 dB line up to 𝜔𝐶 =
1

𝑇
 and line of slope −20 dB/decade, when 𝜔 > 𝜔𝐶  i.e. above 𝜔𝐶 =

1

𝑇
. The magnitude 

plot shown above is called the Asymptotic Magnitude Plot. 

 

Error Application: 

Now let us see how to apply error correction for such asymptotic plots, if required. 

The actual equation of magnitude plot is  

Magnitude in dB = −20 log√1 + 𝜔2𝑇2 



  Circuit Theory with Application  

175 
 

𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

20 

-20 

 𝜔 = 0.1  𝜔 = 1  𝜔 = 10 

40 

   

Mag in dB

20 dB down

DECADE CHANGE

 𝜔 = 100 

-40 
IN 𝜔 

 𝜔 =
1

10𝑇
 

Slope -20 dB/dec

 𝜔𝑐 =
1

𝑇
  𝜔 =

10

𝑇
 

Figure 7.11 

Now by approximation at 𝜔 = 𝜔𝐶 =
1

𝑇
, magnitude in 𝑑𝐵 =  0 dB. But actually, it can 

be calculated as, 

 Actual magnitude in 𝑑𝐵 = −20 log√1 + 𝜔𝑐2𝑇2 

= −20 log√1 +
1

𝑇2
∙ 𝑇2 ,    substituting 𝜔𝐶 =

1

𝑇
= −20 log√2 = −3 dB 

Similarly, at      𝜔 =
2

𝑇
 



  Circuit Theory with Application  

176 
 

Actual magnitude in dB = −20 log√1 +
4

𝑇2
∙ 𝑇2 = −20 log√5 = −7 dB 

But approximate magnitude in dB at 𝜔 =
2

𝑇
 is 

= −20 log𝜔𝑇 = −20 log
2

𝑇
× 𝑇 

= −6 dB 

∴ Correction at 𝜔 =
2

𝑇
 is −1dB i.e. 1 dB down 

 While at 𝜔 =
1

2𝑇
 

Actual magnitude in dB = −20 𝐿𝑜𝑔√1 +
1

4𝑇2
𝑇2 = −20 log

√5

4
= −1 dB 

Approximately = 0 dB as 𝜔 =
1

2𝑇
 is less than 𝜔𝑐 i.e. in low frequency range. 

 Correction at 𝜔 =
1

2𝑇
= 1 dB i.e 1 dB down 

General error values are 

Table 7.1 

Frequency  𝜔 → 𝜔𝑐 2𝜔𝑐 𝜔𝑐
2

 

Error 3 dB down 1dB down 1dB down 

By applying these errors, the actual magnitude plot may be obtained, if required, as 

shown in Fig.7.12 
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𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

20 

-20 

 𝜔 = 0.1  𝜔 = 1  𝜔 = 10 

40 

  

Mag in dB

Actual mag plot

 𝜔 = 100 

-40 

 𝜔 =
1

10𝑇
 

10 dB down

 𝜔𝑐 =
1

𝑇
  𝜔 =

10

𝑇
 

5 dB down

 

Figure 7.12 

For simple zero, i.e. first order zero, 

𝐺(𝑠) 𝐻(𝑠) = (1 + 𝑇𝑠) 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) = (1 + 𝑗𝜔𝑇) 

|𝐺(𝑗𝜔) 𝐻(𝑗𝜔)| = √1 + (𝜔𝑇)2 

∴ Magnitude in dB  = 20 log√1 + 𝜔2𝑇2 ∙ dB 

Hence all the analysis is applicable for a simple zero with change in sign of slope. 

The magnitude plot for simple zero is a straight line of 0 dB up to 𝜔𝑐 = 1/𝑇 and then 

straight line of slope +20dB/decade for all frequencies more than corner frequency. 

The errors are +3𝑑𝐵 for 𝜔𝑐 and +1𝑑𝐵 for 𝜔𝑐 = 2𝜔𝑐 or  
𝜔𝑐

2
. Hence analysis of a simple 

zero is very much simple when analysis of a simple pole is clear. 
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It is as shown in Fig. 7.13 

Note that varying the value of 'T' i.e. time constant, it shifts the corner frequency '𝜔𝑐' 

to the right or 'left, but the shape remains the same as above. 

𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

20 

-20 

 𝜔 = 0.1 
 𝜔 = 1  𝜔 = 10 

40 

  

Mag in dB

Approximated (dotted)

 𝜔 = 100 

-40 

 𝜔 =
1

10𝑇
  𝜔𝑐 =

1

𝑇
  𝜔 =

10

𝑇
 

Accurate plot with 

correction 

 

Figure 7.13 

Phase Angle Plot: Consider a simple pole 

𝐺(𝑠)𝐻(𝑠) =
1

1 + 𝑇𝑠
 

𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
1

1 + 𝑗𝜔𝑇
  ∴  ∠𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =

0𝑜

tan−1
𝜔𝑇

1

= tan−1𝜔𝑇 

While for a simple zero, 

𝐺(𝑠) 𝐻(𝑠) = 1 + 𝑇𝑠 

𝐺(𝑗𝜔) 𝐻(𝑗𝜔) = 1 + 𝑗𝜔𝑇  ∴   ∠𝐺(𝑗𝜔) 𝐻(𝑗𝜔) = tan−1
𝜔𝑇

1
= + tan−1𝜔𝑇 
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 So, the shape remains the same. Only the sign of the angle’s changes from negative 

to positive when the factor changes from pole to zero. Such a plot is to be constructed 

by actually calculating angles for different frequencies. So, make a table as shown in table 

7.2. 

Table 7.2 

𝜔 ± tan−1𝜔𝑇 (+for zero,−for pole) 

𝜔𝑐
10

=
1

10𝑇
 

±5.71𝑜 

𝜔𝑐
2
=
1

2𝑇
 

±26.6𝑜 

𝜔𝑐 =
1

𝑇
 

±45𝑜 

2𝜔𝑐 =
2

𝑇
 

±63.4𝑜 

10𝜔𝑐 =
10

𝑇
 

±84.3𝑜 

 This can be shown as in Fig. 7.14 

𝐿𝑜𝑔 𝜔 

0° 

 

+90° 

-45° 

 𝜔 = 0.1  𝜔 = 1  𝜔 = 10 

+45° 

  

For simple pole

 𝜔 = 100 

-90° 

 𝜔 =
1

10𝑇
  𝜔𝑐 =

1

𝑇
  𝜔 =

10

𝑇
 

For simple zero

 𝜔 =
1

2𝑇
  𝜔 =

2

𝑇
 

 

Figure 7.14 
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The shapes will remain the same, for various values of 'T' time constants. 

It is important to note that phase angle is ±45𝑜 for a zero or pole at 𝜔 = 𝜔𝑐 =
1

𝑇
 

Example 7.1: Sketch the Bode Plot for the system having 

𝐺(𝑠) 𝐻(𝑠) =
20

𝑠(1 + 0.1𝑠)
 

Sol.: First see that given 𝐺(𝑠) 𝐻(𝑠) is in the proper time constant form or not. If not 

arrange it in the time constant form. Now identify the factors. 

i. 𝐾 =  20  

Its magnitude =  20 𝐿𝑜𝑔 20 =  +26 dB 

ii. 1 pole at origin. Its magnitude plot is straight line passing through intersection 

point of 𝜔 = 1 and 0 dB with slope — 20 dB/decade. 

iii. Simple pole →
1

1+0.1𝑠
 comparing with 

1

1+𝑇𝑠
 

𝑇 = 0.1 

𝜔𝑐 =
1

𝑇
=

1

0.1
= 10 

i.e. Asymptotic magnitude plot is 0 dB up to 𝜔 = 𝜔𝑐 = 10 and then straight line of 

slope — 20 dB/decade. Procedure to Plot resultant 

i. Draw 20 𝐿𝑜𝑔 𝐾 line. 

ii. Draw line for 1 pole at origin 

iii. Shift intersection point of 𝜔 = 1 and 0 dB on 20 𝑙𝑜𝑔 𝐾 line and from this point draw 

parallel to a line representing 1 pole at origin. This line will have slope —20dB/

decade. 

iv. This addition of K and pole at origin will continue, as it is till next factor becomes 

dominant i.e. at 𝜔 = 𝜔𝑐 = 10. 

Hence resultant slope from 𝜔 = 10 onwards will be (—20 dB/decadeas starting 

slope) + (—20 dB/decade) due to simple pole i.e. resultant — 40 dB/decade. This 

will continue up to 𝜔 → ∞ as there is no other factor present in 𝐺(𝑠)𝐻(𝑠). 

Procedure to draw — 40 dB/decade line: Mark the point of intersection of 𝜔 = 10 and 

line representing addition of K and 1/𝑠. From this we want to draw slope of 
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— 40 dB/decade. So, whatever is the magnitude of 𝐺(𝑗𝜔) 𝐻(𝑗𝜔) corresponding to this 

intersection point, will get reduced by 40 dB for a decade change in 𝜔 i.e. at 𝜔 = 100. 

So, mark that point and draw the line. OR on semi-log paper itself, draw the lines of 

different slopes as —20,−40, − 60,—80,+20dB/decade etc. very light as shown 

and then draw parallel to these lines of the required slope in magnitude plot. Such lines 

are shown in Fig.7.15. Draw such lines very light and then draw parallel to these lines 

from the required point of required slope. 

For the phase angle plot prepare the table of angles as below  

𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

 

+40 

-20 

 𝜔 = 0.1  𝜔 = 1  𝜔 = 10 

+20 

  +20 dB/decade

 𝜔 = 100 

-40 

-40 dB/decade

+60 

-20 dB/decade

-60 dB/decade

 

Figure 7.15 

Table 7.3 

𝜔 in rad sec ∅ due to 1 pole at 

origin 

∅ due to simple 

pole tan−1 0.1𝜔 

∅𝑅 Resultant 

0.1 −90𝑜 −0.57𝑜 −90.57𝑜 

0.5 −90𝑜 −2.86𝑜 −92.86𝑜 

1 −90𝑜 −5.7𝑜 −95.7𝑜 

2 −90𝑜 −11.3𝑜 −101.3𝑜 

10 −90𝑜 −45𝑜 −135𝑜 

50 −90𝑜 −78.79𝑜 −168𝑜 
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∅ due to simple pole = − tan−1𝜔𝑇 = − tan−1 0.1𝜔 

∅ due to 1 pole at the origin is always −90𝑜. If required, more’ 𝜔’ values may be 

selected to draw the smooth curve. Let us combine all the things on semilog paper to 

complete the Bode plot 

Observe: 

+40

+20

0dB

-20

-40

−90° 

−130° 

−120° 

−105° 

𝜔 = 0.1 𝜔 = 1 𝜔 = 10 𝜔 = 100 

P 
Effect of K

Resultant -20dB/decade
𝜔 = 𝜔𝑐  𝑓𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑜𝑙𝑒 

20 Log K dB

Resultant slope -

-40 dB/decade

−150° 

Resultant 

phase angle

𝐿𝑜𝑔 𝜔 

 

Figure 7.16 
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1. 20 𝑙𝑜𝑔 𝐾 line  

2. Line of slope —20 dB/decade as only 1 pole at origin. 

3. Intersection point of 𝜔 = 1 and 0 dB shifted on 20 𝐿𝑜𝑔 𝐾 line and line parallel to 

−20 dB/ decade is drawn which is resultant of K and 1/ 𝑠. 

4. This continued till next factor becomes dominant i.e. 𝜔 = 𝜔𝑐 = 10. Till 𝜔 = 𝜔𝑐 =

10, simple pole contributes 0dB only and there is no change in the slope.  

So, from intersection point −20 dB/decade line and 𝜔 = 10 line i.e. point P shown slope 

is changed by −20 dB/decade and hence directly resultant of slope −20 + (−20) =

 —  40 dB/ decade is drawn from point P. This is drawn parallel to −40 dB/decade line 

drawn light on semilog paper shown in Fig. 7.16. 

7.3.4  Factor 4: Quadratic factors 

Consider quadratic pole of the form, 

𝐺(𝑠) 𝐻(𝑠) =
1

1 +
2𝜉

𝜔𝑛
𝑠 +

𝑠2

𝜔𝑛
2

 expressed in time constant form 

∴      𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
1

1 + 2𝜉𝑗 (
𝜔

𝜔𝑛
) + (

𝑗𝜔

𝜔𝑛
)
2 

where 𝜔 is variable and 𝜔𝑛 is constant for that factor. 

=
1

1 + 2𝜉 𝑗 (
𝜔

𝜔𝑛
) − (

𝜔

𝜔𝑛
)
2   𝑎𝑠 𝑗

2 = 1 =
1

{1 − [
𝜔

𝜔𝑛
]
2

} + j 2ξ (
𝜔

𝜔𝑛
)

 

∴       |𝐺(𝑗𝜔) 𝐻(𝑗𝜔)| =
1

√[1 − (
𝜔

𝜔𝑛
)
2

]
2

+ 4𝜉2 (
𝜔

𝜔𝑛
)
2

 

∴   Magnitude in dB = 20 log
1

√[1 − (
𝜔

𝜔𝑛
)
2

]
2

+ 4𝜉2 (
𝜔

𝜔𝑛
)
2

= 20 log(√[1 − (
𝜔

𝜔𝑛
)
2

]

2

+ 4𝜉2 (
𝜔

𝜔𝑛
)
2

)

−1
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∴   Magnitude in dB = −20 log√(1 − [
𝜔

𝜔𝑛
]
2

)

2

+ 4𝜉2 (
𝜔

𝜔𝑛
)
2

dB 

Approximation: 

For low frequency, 𝜔 ≪ 𝜔𝑛   ∴ (
𝜔

𝜔𝑛
)
2

≪ 1 

∴    Mag in 𝑑𝐵 = −20 log 1 = 0dB 

Thus, similar to a simple pole, quadratic pole also is negligible till its corner frequency 

occurs. 

For high frequency, 𝜔 > 𝜔𝑛 and 4𝜉2 (
𝜔

𝜔𝑛
)
2

≪ (
𝜔

𝜔𝑛
)
4

 as 𝜉is very low. 

∴   Magnitude in dB = −20 log√[(
𝜔

𝜔𝑛
)
2

]

2

 

= −20 log (
𝜔

𝜔𝑛
)
2

= −40 log
𝜔

𝜔𝑛
= −40 log𝜔 + 40 log𝜔𝑛 

This is equation of straight line of slope — 40 dB/decade. 

 Hence general magnitude plot for quadratic factor is 0 dB line till corner frequency 

and then a straight line of slope — 40 dB/decade. 

To find corner frequency 𝜔𝑐, 

−40 log
𝜔

𝜔𝑛
= 0𝑑𝐵 

 i. e.
𝜔

𝜔𝑛
= 1 

∴     𝜔𝑐 = 𝜔𝑛 

So 𝜔𝑛 is the corner frequency for such factor 
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𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

20 

-20 

 𝜔 = 0.1 
 𝜔 = 1  𝜔 = 10 

40 

  

Mag in dB

 𝜔 = 100 

-40 

 
𝜔

𝜔𝑜
= 1 

 𝜔 = 𝜔𝑜  

-40 dB/decade

Decade

4
0
 d

B

Asymptotic Mag. plot for quadratic factor

𝜔

𝜔𝑜
= 10 

 

Figure 7.17 

But the above asymptotic plot is not so accurate as the error for the quadratic factor not 

only depend on 𝜔 but also on the value of 𝜉 damping ratio. 

Let us see the effect of variation of 𝜉 on the magnitude plot. 

Actual magnitude in dB = −20 log√(1 − [
𝜔

𝜔𝑛
]
2

)

2

+ 4𝜉2 (
𝜔

𝜔𝑛
)
2

 

Now at 𝜔 = 𝜔𝑛 ⟹
𝜔

𝜔𝑛
= 1 

Actual magnitude in dB = −20 log√4𝜉2. Let us prepare a table for various values of and 

corresponding error values. See  Table 7.4 

 

 



  Circuit Theory with Application  

186 
 

Table 7.4 

𝜉 Accurate 

magnitude in dB 

Approximate 

magnitude in dB 

error for 

quadratic pole 

0.1 + 13.97 0 + 13.97 dB up 

0.2 + 7.95 0 + 7.95 dB up 

0.3 + 4.43 0 + 4.43 dB up 

0.4 + 1.93 0 + 1.93 dB up 

0.7 − 2.92 0 2.92 dB down 

0.9 − 5.10 0 5.1 dB down 

1 − 6.02 0 6 dB down 

And due to the errors calculated above the magnitude plot for quadratic pole gets 

modified as shown in Fig. 7.18: 

𝐿𝑜𝑔 𝜔 

0𝑑𝐵 

10 

-10 

0.1 1 10 

20 

  

Mag in dB

100 

-20 

𝜉 = 0.1 

𝜉 = 0.3 

𝜉 = 0.7 

𝜉 = 1 

Asymptote of 

Slope-40 dB/decade

𝜔

𝜔𝑜
= 1  𝑠𝑎𝑦 

Figure 7.18 Quadratic pole 
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 Hence it is necessary to modify magnitude plot for 2nd order quadratic pole as 

shown above at its cornet' frequency for various values of ′𝜉′ 

Students can use Table 7.4 to decide correction for given 𝜉 or find the correction using 

the formula, 

Correction = −20 log 2𝜉  𝑑𝐵 at 𝜔 = 𝜔𝑛 of pole 

Positive correction upwards and negative correction downwards. 

 The magnitude plot to a quadratic zero can be obtained by reversing the sign of the 

slop" of' basic asymptote and then by reversing the signs of the corrections at corner 

frequency for various values of 𝜉. Hence it looks like as shown in Fig. 7.19 

𝐿𝑜𝑔 𝜔 

10 

-10 

0.1 

20 

  

Mag in dB

100 

-20 

𝜉 = 0.7 

Asymptote of 

Slope-  +40 dB/decade

𝜔

𝜔𝑜
= 1  𝑠𝑎𝑦 

𝜉 = 1 

𝜉 = 0.3 

𝜉 = 0.1 

0 𝑑𝐵 

1 10 

30 

40 

Quadratic zero

Mag pole

 

Figure 7.19 Quadratic zero 

 

Let us see phase angle table: 
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𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
1

1 − (
𝜔

𝜔𝑛
)
2

+ 2𝜉 (
𝜔

𝜔𝑛
)
 for a quadratic pole 

∴       ∠𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
0𝑜

tan−1 {
2𝜉 (𝜔/𝜔𝑛)

1−(
𝜔

𝜔𝑛
)
2 }

 

∠ 𝐺(𝑗𝜔) 𝐻(𝑗𝜔) = tan−1 {
2𝜉 (𝜔/𝜔𝑛)

1 − (𝜔/𝜔𝑛)2
} 

The table for 𝜉 = 0.3 is shown below 

𝜙 = tan−1 {
2 × 0.3 ×

𝜔

𝜔𝑛

1 − (
𝜔

𝜔𝑛
)
2 } 

Table 7.5 

𝜔

𝜔𝑛
 ∅ 

0.1 −3.46𝑜 

0.5 −21.8𝑜 

1 −90𝑜 

 

So at  
𝜔

𝜔𝑛
= 1 i.e, 𝜔 = 𝜔𝑐 = 𝜔𝑛 it contributes −90𝑜 and hence must approach to −180𝑜 

as 
𝜔

𝜔𝑛
→ ∞ But according to above formula when 

𝜔

𝜔𝑛
> 1, ∅ becomes positive, in such 

case the angle contribution obtained must be considered, by subtracting 180𝑜   from the 

positive  ∅. 

e.g.  
𝜔

𝜔𝑛
= 2  ∴ ∅ = − tan−1[−0.4] = −(−21.8) = +21.8𝑜 

 But the actual angle contribution must be considered by applying correction of 

−180𝑜 i.e., 21.8𝑜 − 180𝑜 = −158.19𝑜. This happens because behaviour of tan−1 

functions for the complex quantities with real part negative or imaginary part negative 

cannot be identified on the calculator by using the above formula. Hence phase angle 

table becomes, 
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Table 7.6 

𝜔

𝜔𝑛
 ∅ 

0.1 −3.46𝑜 

0.5 −21.8𝑜 

1 −90𝑜 

2 +21.8 − 180 = −158.19𝑜 

4 +10.09 − 180 = −170.9𝑜 

10 +3.46 − 180 = −176.53𝑜 

⋮ ⋮ 

∞ −180 

For quadratic zero, the sign of the angle should be made positive. 

Note: For quadratic factors make sure that its roots are complex. If roots are real, 

factorising it and considering its two components independently as Simple factors rather 

than quadratic. The above discussion is applicable only when the roots of a quadratic 

factor are complex conjugates of each other. 

 

7.4  Steps to Sketch the Bode Plot 

i. Express given 𝐺(𝑠) 𝐻(𝑠) into time constant form 

ii. Draw a line of 20 𝐿𝑜𝑔 𝐾 𝑑𝐵. 

iii.  Draw a line of appropriate slope representing poles or zeros at the origin, passing 

through intersection point of 𝜔 = 1 and0 dB. 

iv.  Shift this intersection point on 20 𝐿𝑜𝑔 𝐾 line and draw parallel line to the line drawn 

in step 3. This is in addition of the constant K and number of poles or zeros at the origin. 

v. Change the slope of this line at various corner frequencies by appropriate value  i.e. 

depending upon which factor is occurring at corner frequency. For a simple pole, slope 

must be changed by — 20 dB/decade, for a simple zero by +20 dB/decade etc. Do not 

draw these individual lines. Change the slope of the line ' obtained in step 5 by respective 

value and draw line with resultant slope. Continue this line till it intersects the next 

corner frequency line. Change the slope and continue. Apply necessary correction for 

quadratic factors. 
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vi. Prepare the phase angle table and obtain the table of 𝜔 and resultant phase angle 

by ∅𝑅 actual calculation. Plot these points and draw the smooth curve obtaining 

the necessary phase angle plot.  

Remember that at every corner the frequency slope of the resultant line must change. 

Example 7.2: A feedback system has 𝐺(𝑠) 𝐻(𝑠) =
100(𝑠+4)

𝑠(𝑠+0.5)(𝑠+10)
 

Draw the bode plot and comment on stability. 

Solution:  

 Step 1: Arrange 𝐺(𝑠) 𝐻(𝑠) in time constant form 

𝐺(𝑠) 𝐻(𝑠) =
100 × 4 × (1 +

𝑠

4
)

𝑠 × 0.5 × (1 +
𝑠

0.5
) × 10 × (1 +

𝑠

10
)
=

80 (1 +
𝑠

4
)

𝑠(1 + 2𝑠) (1 +
𝑠

10
)

 

In this problem, a simple zero is added to the previous example. 

Step 2: Factors are 

i.  Constant 𝐾 =  80 

ii.  1 pole at origin,  
1

𝑠
 

iii.  Simple pole, 
1

1+2𝑠
, 𝑇1 = 2, 𝜔𝐶1 =

1

𝑇1
= 0.5 rad/s. 

iv.  Simple zero, (1 +
𝑠

4
) , 𝑇2 =

1

4
, 𝜔𝐶2 =

1

𝑇2
= 4 rad/s. 

v.  Simple pole, 
1

1+
𝑠

10

, 𝑇3 =
1

10
, 𝜔𝐶3 =

1

𝑇3
= 10 rad/s. 

Step 3: Magnitude plot Analysis 

i. For 𝐾 = 80, 20 log𝐾 ≈ 38 dB. 

ii. For 1 pole at origin, straight line of slope — 20 dB/decade. Passing through 

intersection of 𝜔 = 1 and 

iii. Shift intersection of 𝜔 = 1 and 0 𝑑𝐵 on 20𝑙𝑜𝑔𝐾 line and draw parallel to 

−20 dB/decade line representing addition of K and 1/𝑠. This will continue till first 

factor becomes dominant i.e, at 𝜔𝐶1 = 0.5. So, resultant must continue only up to 0.5. 

iv. At 𝜔𝐶1 = 0.5, simple pole occurs, individually contributing −20 dB/decade 

hence resultant pole will have slope −20 − 20 = −40 dB/decade from 0.5 onwards 

till next corner frequency occurs i.e. 𝜔𝐶2 = 4 
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v. At 𝜔𝐶4 = 4, simple zero occurs, individually contributing + 20 dB/decade hence 

resultant plot will have slope −40 + 20 = −20 dB/decadeagain from '4' onwards till 

next corner frequency occurs i.e., 𝜔𝐶3 = 10. 

vi. At 𝜔𝐶3 = 10, simple pole occurs, individually contributing — 20 dB/decade 

hence resultant plot will have slope −20 − 20 = −40 dB/decade, again from'10' 

onwards. This will continue up to 𝜔 → ∞ as there is no other factor present in 

𝐺(𝑠)𝐻(𝑠) 

Step 4: Phase Angle Plot 

𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
80 (1 + 𝑗

𝜔

4
)

𝑗𝜔(1 + 𝑗2𝜔) (1 + 𝑗
𝜔

10
)

 

∴      ∠𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
∠80 + 𝑗0  ∠1 + 𝑗

𝜔

4

∠𝑗𝜔 ∠1 + 𝑗2𝜔 (∠ + 𝑗
𝜔

10
)

 

∠80 + 𝑗0 = 0𝑜 , ∠1 + 𝑗
𝜔

4
= + tan−1

𝜔

4
, ∠

1

𝑗𝜔
= −90𝑜 

  ∠
1

1 + 𝑗2𝜔
= − tan−1 2𝜔 ,   ∠

1

1 + 𝑗
𝜔

10

= − tan−1
𝜔

10
 

∴Phase Angle  

Table 7.7 

𝜔 1

𝑗𝜔
 

− tan−1 2𝜔 + tan−1
𝜔

4
 − tan−1

𝜔

10
 ∅𝑅 

0.1 −90𝑜 −11.3𝑜 +1.43𝑜 −0.57𝑜 −100.4𝑜 

0.5 −90𝑜 −45𝑜 +7.12𝑜 −2.86𝑜 −130.7𝑜 

1 −90𝑜 −63.43𝑜 +14.03𝑜 −5.71𝑜 −145.1𝑜 

2 −90𝑜 −75.96𝑜 +26.56𝑜 −11.3𝑜 −150.7𝑜 

4 −90𝑜 −82.87𝑜 +45𝑜 −21.8𝑜 −149.6𝑜 

10 −90𝑜 −87.13𝑜 +68.19𝑜 −45𝑜 −153.9𝑜 

50 −90𝑜 −89.42𝑜 +85.42𝑜 −78.69𝑜 −172.6𝑜 

∞ −90𝑜 −90𝑜 +90𝑜 −90𝑜 −180𝑜 
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 Note that as simple zero (1 + 𝑗
𝜔

4
) is more dominating than simple pole 

1

(1+𝑗
𝜔

10
)
 

forany frequency +𝑣𝑒 angle contribution by zero will be more than negative angle 

contribution by pole. Hence resultant cannot intersect −180𝑜 line but will run parallel 

to −180𝑜line at the end. 

 Hence it is clear that 𝜔𝑝𝑐 = ∞ , hence 𝜔𝑔𝑐 is always less than 𝜔𝑝𝑐 and hence the 

system is always absolutely stable. In such a case G.M. can be said to be +∞ dB. P.M 

can be decided from Bode Plot. 

Step 5: Bode plot and solution. 

 Also note that when there is addition of simple zero in the unstable system, the 

GM. has to increase tremendously and the system becomes stable in nature. Addition 

of zero in a system makes the system relatively more stable. (See Fig. 7.20) 

+60

+40

+20

0 dB

-20

-40

−90° 

0° 

−120° 

−180° 

0.1 1 10 100

𝜔𝑐1 = 0.5 𝜔𝑐2 = 4 𝜔𝑐3 𝜔𝑔𝑐 = 10.7 

Resultant -20 dB/decade

-40 dB/cade

-20 dB/decade

-40 dB/cade

log𝜔 

20log𝐾 = 38𝑑𝐵 

 

Figure 7.20 
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Example 7.3: For a unity feedback system 𝐺(𝑠) =
800(𝑠+2)

𝑠2(𝑠+10)(𝑠+40)
 

Sketch the Bode plot, asymptotic in nature. Comment on stability, 

Solution: 

 Step 1: Arrange 𝐺(𝑠) 𝐻(𝑠) in time constant form. 

𝐺(𝑠)𝐻(𝑠) =
800 × 2 × (

𝑠

2
+ 1)

𝑠2 × 10 (1 +
𝑠

10
) × 40 × (1 +

𝑠

40
)
=

4 (1 +
𝑠

2
)

𝑠2 (1 +
𝑠

10
) (1 +

𝑠

40
)

 

Step 2: Factors are 

i. Constant 𝐾 = 4, 

ii. 2 poles at the origin, 
1

𝑠2
 

iii. Simple zero, 1 +
𝑠

2
, 𝑇1 =

1

2
,    𝜔𝐶1 =

1

𝑇1
= 2 rad/s. 

iv. Simple pole, 
1

1+
𝑠

10

, 𝑇2 =
1

10
, 𝜔𝐶2 =

1

𝑇2
= 10 rad/s. 

v. Simple pole, 
1

1+
𝑠

40

, 𝑇3 =
1

40
, 𝜔𝑐3 =

1

𝑇3
= 40 rad/s 

Step 3: Magnitude plot analysis 

i. For 𝐾 =  4, 20 𝑙𝑜𝑔 𝐾 =  20 𝑙𝑜𝑔 4 =  12𝑑𝐵. 

ii. 2 poles at the origin i.e. 
1

𝑠2
 It contributes a straight line of slope -40 dB/decade 

passing through intersection point of 𝜔 = 1 and 0 dB. So, the starting slope becomes — 

40 dB/decade. 

iii. Shift intersection point of 𝜔 = 1 and 0 dB on 20 𝑙𝑜𝑔 𝐾 line and draw parallel line 

to — 40 dB/decade. This represents addition of K and 
1

𝑠2
. This resultant will continue till 

first corner frequency 𝜔𝑐1 = 2. 

iv. At 𝜔𝐶1 = 2 , simple zero occurs which contributes +20 dB/decade individually and 

hence resultant slope from '2' onwards becomes −40 + 20 = −20 dB/decade. This 

continues till 𝜔𝐶1 = 10. 

v. At 𝜔𝐶2 = 10, simple pole occurs which contributes — 20 dB/decade individually 

and hence resultant slope from 10 onwards becomes  −20 − 20 = −40 dB/decade 

again. This continues till 𝜔𝐶3 = 40. 



  Circuit Theory with Application  

194 
 

vi. At 𝜔𝐶3 = 40, Simple pole occurs which contributes — 20 dB/decade individually 

and hence resultant slope from 40 onwards becomes −40 − 20 = −60 dB/decade. This 

continues upto 𝜔 → ∞ as there is no other factor present in 𝐺(𝑠) 𝐻(𝑠)  

Step 4: Phase Angle Plot 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
4 (1 +

𝑗𝜔

2
)

(𝑗𝜔)2 (1 +
𝑗𝜔

10
) (1 +

𝑗𝜔

40
)

 

∠𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
∠4 + 𝑗0  ∠1 +

𝑗𝜔

2

∠(𝑗𝜔)2  ∠1 +
𝑗𝜔

10
  ∠1 +

𝑗𝜔

40

 

∠4 + 𝑗0 = 0𝑜 , ∠1 +
𝑗𝜔

2
= + tan−1

𝜔

2
 

∠
1

(𝑗𝜔)2
, 2 Poles at origin = −180𝑜  always  

∠
1

1 +
𝑗𝜔

10

= − tan−1
𝜔

10
and  ∠

1

1 +
𝑗𝜔

40

= − tan−1
𝜔

40
 

Phase angle 

Table 7.8 

𝜔 1

(𝑗𝜔)2
 + tan−1

𝜔

2
 − tan−1

𝜔

10
 − tan−1

𝜔

40
 ∅𝑅 

0.2 −180𝑜 +5.7𝑜 −1.14𝑜 −0.28𝑜 −175.72𝑜 

2 −180𝑜 +45𝑜 −11.3𝑜 −2.86𝑜 −149.16𝑜 

10 −180𝑜 +78.6𝑜 −45𝑜 −14.03𝑜 −160.43𝑜 

20 −180𝑜 +84.28𝑜 −63.43𝑜 −26.56𝑜 −185.71𝑜 

50 −180𝑜 +87.7𝑜 −78.6𝑜 −51.3𝑜 −222𝑜 

100 −180𝑜 +88.85𝑜 −84.28𝑜 −68.19𝑜 −243.54𝑜 

∞ −180𝑜 +90𝑜 −90𝑜 −90𝑜 −270𝑜 

Step 5: Bode plot and Solution. (see Fig 7.21 on next page) 
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           =𝜔𝑔𝑐  
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M
ag

 in
 d

B
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Figure 7.21 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟕. 𝟒: For a certain feedback system𝐺(𝑠)𝐻(𝑠) =
3(𝑠 + 1)(𝑠 + 6)

𝑠2(𝑠2 + 18𝑠 + 400)
 

Sketch the Bode plot and comment on G.M. P.M and stability  

Solution: 

Step 1: arrange 𝐺(𝑠)𝐻(𝑠) in time constant form  

𝐺(𝑠) 𝐻(𝑠) =
3(𝑠 + 1)(6)(1 + 𝑠/6)

𝑠2(400) (1 +
18

400
𝑠 +

𝑠2

400
)
=
0.045(1 + 𝑠) (1 +

𝑠

6
)

𝑠2 (1 + 0.045𝑠 +
𝑠2

400
)

 

Step 2: Factors:  

i. Constant 𝐾 = 0.045 



  Circuit Theory with Application  

196 
 

ii. 
1

𝑠2
, 2 poles at the origin  

iii. Simple zero (1 + 𝑠), 𝑇1 = 1, 𝜔𝐶1 = 1 

iv. Simple zero (1 +
𝑠

6
) , 𝑇2 =

1

6
, 𝜔𝐶2 = 6 

v. Quadratic pole, 
1

(1+0.045𝑠+
𝑠2

400
)
, 𝜔𝐶3 = 𝜔𝑛 = 20 

Now compare 𝑠2 + 18𝑠 + 400 with 𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2 

∴     𝜔𝑛
2 = 400,      𝜔𝑛 = 20,     and 2ξ ω𝑛 = 18,     ∴ 𝜉 = 0.45 

 Its corner frequency is 20 while as 𝜉 = 0.45, magnitude plot will exhibit +2 dB 

overshoot at 𝜔𝐶3 = 20 (referring to the correction table given in discussion of 

quadratic pole). 

Step 3 

i. 𝐾 = 0.045  ∴ its contribution is 20 log𝐾 = 20 log 0.045 = −27 dB 

ii. 
1

𝑠2
, 2 poles at the origin so magnitude pot is straight line of slope −40 dB/decade 

passing through intersection point of 𝜔 = 1 and 0 dB. this is the starting slope of the 

magnitude plot. 

iii.  Shift intersection point of 𝜔 = 1 and 0𝑑𝐵 line on 20 log 𝐾 line i.e 

−27 dB downward (as 𝐾 < 1) and from that point draw parallel to −40 dB/decade line. 

This will represent addition of 
𝐾

𝑠2
. This will continue till first factor becomes dominant 

having least corner frequency i.e. 𝜔𝐶1 = 1 

iv. At 𝜔𝐶1 = 1, simple zero occurs contributing +20 dB/decade individually hence 

resultant will have slope −40 + 20 = −20 dB/decade. Hence ‘1’ onward slope of 

resultant will be −20 dB/decade contributing up to next corner frequency 𝜔𝐶2 = 6. 

v. At 𝜔𝐶2 = 6, another simple zero occur contributing +20 dB/decade individually 

making the slope of the resultant will become −20 + 20 = 0 dB/decade from 6 onward 

i.e line parallel to x-axis till next corner frequency 𝜔𝐶3 = 20 

vi. At 𝜔𝐶3 = 20, quadratic pole occurs contributing 40dB/decade individually hence 

the slope of resultant will become 0 − 40 = −40 dB/decade from 20 onwards and will 

continue up to ‘∞’ as there is no Other factor. But at 𝜔𝐶3 = 20 it will show overshoot of 

+2 dB. 

Step 4: Phase angle plot  
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𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
0.045(1 + 𝑗𝜔) (1 + 𝑗

𝜔

6
)

(𝑗𝜔)2 (1 + 0.045𝑗𝜔 +
(𝑗𝜔)2

400
)
=

0.045 (1 + 𝑗𝜔) (1 + 𝑗
𝜔

6
)

(𝑗𝜔)2 (1 + 0.045𝑗𝜔 =
𝜔2

400
)

 

∠𝐺(𝑗𝜔) 𝐻(𝑗𝜔) =
∠0.045  ∠1 + 𝑗𝜔∠1 + 𝑗

𝜔

6

∠(𝑗𝜔)2  ∠1 + 0.045𝑗𝜔 −
𝜔2

400

 

∠0.045 + 𝑗0 = 0𝑜 , ∠1 + 𝑗𝜔 = + tan−1𝜔 ,   ∠1 + 𝑗
𝜔

6
= + tan−1

𝜔

6
 

∠
1

(𝑗𝜔)2
= −20 × 90𝑜 = −180𝑜 

As pole 2 at origin  

∠
1

1 + 0.045𝑗𝜔 −
𝜔2

400

= − tan−1 {
0.045𝜔

1 −
𝜔2

400

} 

Table 7.9 

𝜔 1

(𝑗𝜔)2
 

+ tan−1𝜔 + tan−1
𝜔

6
 

− tan−1 {
0.045𝜔

1 −
𝜔2

400

} 

∅𝑅 

0.1 −180𝑜 +5.7𝑜 +0.95𝑜 −0.25𝑜 −173.6𝑜 

1 −180𝑜 +45𝑜 +9.46𝑜 −2.58𝑜 −128.1𝑜 

6 −180𝑜 +80.53𝑜 +45𝑜 −16.52𝑜 −70.9𝑜 

10 −180𝑜 +84.28𝑜 +59𝑜 −30.96𝑜 −67.6𝑜 

20 −180𝑜 +87.13𝑜 +73.3𝑜 −90𝑜 −109.57𝑜 

50 −180𝑜 +88.85𝑜 +83.15𝑜 +23.19 − 180𝑜

= −156.8𝑜 

−164.8𝑜 

100 −180𝑜 +89.42𝑜 +86.56𝑜 +10.61 − 180𝑜

= −169.38𝑜 

−173.4𝑜 

∞ −180𝑜 +90𝑜 +90𝑜 −180𝑜 −180𝑜 

 As two zeros are always contributing more than a quadratic pole phase angle plot 

cannot cross −180𝑜 but at the end will run parallel to it.  

Step 5: Sketch the Bode plot and obtain the solution 
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Figure 7.22 

7.5 Further Examples  

1. Draw a Bode plot for 𝐻(𝑠) equal to (a) 
50

(𝑠+100)
(b) 30

(𝑠+10)

(𝑠+100)
 (show detailed 

 derivations) (c) indicate the corner frequency(ies) in each of the above cases.  

 (𝑎)                                                        
50

(𝑠 + 100)
=

50

100

1 +
𝑗𝜔

100

                                                       

 20 log 50 − 20log100 − 20 log√𝜔2 + 1002 = 34 − 40 − 20 log√1 + (
𝜔

100
)
2

 

𝐾 ≈ −6 𝑑𝐵  

For 𝜔 ≪ 100 ⟹ −6 𝑑𝐵; 
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For  𝜔 = 100 ⟹ 34 − 40 − 3 ≈ −9; 

For  𝜔 ≫ 100 ⟹ 34 − 40 − 20𝑑𝐵/𝑑𝑒𝑐 

𝜔 ≪ 100 ⟹ 𝑎𝑛𝑔 ≈ 0 − 0 = 0;  

  𝜔 = 100 ⟹ 0− 45 = 45𝑜;   𝜔 ≫ 100 ⟹ 0 − 90 = −90𝑜;  

10 10
2

10
3 ω

-6

-20 dB/dec

10 ω

-45
o

-90
o

0
o

 

Figure 7.23 

(b)    30
(𝑠 + 10)

(𝑠 + 100)
 ⟹ 20 log |

30 × (𝑠 + 10)

(𝑠 + 100)
| = 20 log

30 × √𝜔2 + 100

√𝜔2 + 104

= 20 log
30 × 10 √1 + (

𝜔

10
)
2

100 √1 + (
𝜔

102
)
2

= 20 log 3 + 20 log√1 + (
𝜔

10
)
2

− 20 log√1 + (
𝜔

102
)
2

 

 𝜔 ≪ 10 ⟹ 𝐾 ≈

10 𝑑𝐵;   

 𝜔 = 10 ⟹ 10 + 3 −

0 = 13 𝑑𝐵 

 𝜔 = 100 ⟹ 10 + 40 −

3 = 47 𝑑𝐵 
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 𝜔 ≫ 10 ⟹ +20 𝑑𝐵/

𝑑𝑒𝑐 

 𝜔 ≫ 100 ⟹ −20 𝑑𝐵/

𝑑𝑒𝑐 

 𝜔 ≪ 100 ⟹ 𝑎𝑛𝑔 ≈

0𝑜;  

   𝜔 = 10 ⟹ 𝑎𝑛𝑔 =

45𝑜 , 𝜔 = 100 ⟹

𝑎𝑛𝑔 = −45𝑜 

10 10
2

10
3

20 

-45
o

-90
o

0
o

dB

10

Log (ω/ωc)

Log (ω/ωc)

45
o

90
o

40 

-20

0

 

Figure 7.24 

2. Draw the Bode plots [Show detailed derivations; indicate the corner frequency(ies) 

in each of the cases] for H(s) equal to: 100(1 +  𝑠)/ (10 +  𝑠)(100 + 𝑠) 

Solution: Given      100(1 +  𝑠)/ (10 +  𝑠)(100 + 𝑠) 

⟹ 20 log |
100 × (𝑠 + 1)

(10 +  𝑠) × (𝑠 + 100)
| = 20 log

100 × √𝜔2 + 1

√𝜔2 + 102 × √𝜔2 + 104
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= 20 log
100 √1 + (

𝜔

1
)
2

1000 √1 + (
𝜔

10
)
2

 × √1 + (
𝜔

102
)
2
 

= 20 log 10−1 + 20 log√1 + (
𝜔

1
)
2

− 20 [√1 + (
𝜔

10
)
2

+ log√1 + (
𝜔

102
)
2

] 

 𝜔 ≪ 1⟹ 𝐾 ≈ −20 𝑑𝐵;  

 𝜔 = 1 ⟹ −20 + 3 −

0 = −17 𝑑𝐵 

 𝜔 = 10 ⟹ −20 +

40 − 3 = −17 𝑑𝐵 

 𝜔 = 100 ⟹ −20 +

80 − 40 − 3 = −17 𝑑𝐵 

 𝜔 ≫ 100 ⟹ −20 𝑑𝐵/

𝑑𝑒𝑐 

 𝜔 ≪ 100 ⟹ 𝑎𝑛𝑔 ≈

0𝑜;  

   𝜔 = 1 ⟹ 𝑎𝑛𝑔 =

45𝑜 , 𝜔 = 10 ⟹

𝑎𝑛𝑔 = −45𝑜 , 𝜔 =

100 ⟹ 𝑎𝑛𝑔 = −45𝑜 

10
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Figure 7.25 
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7.6 Advantages of Bode Plots 

1. It shows both low and high 

frequency characteristics of the 

transfer function in a single diagram. 

2. The plots can be easily 

constructed using some valid 

approximations. 

3. Relative stability of the system 

can be studied by calculating GM. and 

P.M. from the Bode Plot. 

4. The various other frequency 

domain specifications like cutoff 

frequency, bandwidth etc. 

5. Data for constructing complicated 

polar and Nyquist plots can be easily 

obtained from Bode Plot. 

6. Transfer function of the system 

can be obtained from Bode plot. 

7. It indicates how the system 

should be compensated to get the 

desired response. 

8. The value of system gain K can be 

designed for required specifications of 

GM. and P.M. from Bode Plot. 

9. Without the knowledge of the 

transfer function the Bode Plot of a 

stable open loop system can be 

obtained experimentally. 

 

7.7  Exercise  

1. What are Bode Plots? 

2. State the advantages of Bode Plots. 

3. Explain the nature of Bode Plots for 

a. Poles at origin  

b. Simple pole  

c. Simple zero 

4. Explain the concept of gain margin and phase margin. Explain how these values 

 help in studying relative stability. 

5. Draw the Bode diagram for 

𝐺(𝑠) =
100(0.2𝑠 + 1)

(𝑠 + 1)(0.1𝑠 + 1)(0.01𝑠 + 1)2
 

Mark the following on the Bode diagram, recording the numerical values. 

1. gain crossover frequency 

2. phase margin 

3. phase crossover frequency 
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4. gain margin  

a. Is the system stable? 

6. Sketch the asymptotic Bode plot for the transfer function given below  

𝐺(𝑠)𝐻(𝑠) =
2(𝑠 + 0.25)

𝑠2(𝑠 + 1)(𝑠 + 0.5)
 

From the bode plot determine  

a. The phase crossover frequency  

b. The gain crossover frequency  

c. The gain margins 

d. The phase margins 

e. The system stable? 

7. Determine the values of gain K for the open loop transfer function given below so 

that  

a. The gain margin is 15𝑑𝐵 and  

b. Phase margin is 60𝑜 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
𝐾

𝑗𝜔 (0.1𝜔 + 1)(𝑗𝜔 + 1)
 

8. Determine the value of K in the transfer function given below such that  

a. The gain margin is 20 𝑑𝐵 

b. The phase margin is 30𝑜 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
𝐾

𝑗𝜔(0.1𝜔 + 1)(𝑗0.05𝜔 + 1)
 

9. Draw a bode plot for the following and determine gain and phase crossover 

frequency. Also determine gain and phase margin. Using the Figure Q 

a. 
10

𝑠(0.1𝑠+1)
 

b. 
10

𝑠(0.1𝑠+1)2
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CHAPTER 8 

FILTERS 
 

8.0 Passive Filters   

A filter is a passive filter if it consists of only passive elements R, L, and C. It is said to be 

an active filter if it consists of active elements (such as transistors and op amps) in 

addition to passive elements R, L, and C. We consider passive filters only in the textbook. 

LC filters have been used in practical applications for more than eight decades. LC filter 

technology feeds related areas such as equalizers, impedance-matching networks, 

transformers, shaping networks, power dividers, attenuators, and directional couplers, 

and is continuously providing practicing engineers with opportunities to innovate and 

experiment. Besides the LC filters we study in this textbook, there are other kinds of 

filters—such as digital filters, electromechanical filters, and microwave filters—which 

are beyond the level of this textbook. 

 Filters separate different components which are mixed together, and in the case of 

an electrical filter, components of different frequencies are separated from one another.  

 As a frequency-selective device, a filter can be used to limit the frequency spectrum 

of a signal to some specified band of frequencies. Filters are the circuits used in radio 

and TV receivers to allow us to select one desired signal out of a multitude of broadcast 

signals in the environment. 

 To accomplish the above, inductors and capacitors are employed due to their 

different characteristics with regard to frequency. For instant, inductive reactance 

(2𝜋𝑓𝐿) increases with increasing frequency, while capacitance reactance (
1

2𝜋𝑓𝑐
) 

decreases with increasing frequency, and their filtering action depends on whether they 

are placed in series or in parallel with their load.  

  

Before going into a detailed discussion of filters, these terms need to be understood: 

1. Attenuation: a reduction in signal amplitude  
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2. High-pass filter: a filter that allows the higher frequency components of the 

applied voltage to develop appreciable output voltage while attenuating or 

altogether dominating the lower frequency components.  

3. Low-pass filter: does the opposite of the above 

4. Band-pass filter: passes only a specific band of frequencies from its input to its 

output  

5. Band-stop filter: blocks or severely attenuates only a specific band of 

frequencies, while passing others of lower or higher frequencies. 

6. Cut-off frequency is a frequency at which the attenuation of a filter reduces the 

output amplitude to 70.7% of its value in the passband. In other words, the 

frequency cut which the output voltage is reduced to 70.76% of its maximum 

value. 

 

8.1 AC and DC Components 

 In dc insertion, a direct current voltage is coupled or put in series with alternating 

current voltage, to provide a pulsating (non-steady) direct current voltage. The effect is 

to provide an output that does not change in polarity, either positive or negative 

depending on the actual value of the d.c input. For a positive d.c component, the output 

fluctuates in amplitude but remains on the positive side. For a negative d.c component, 

the output fluctuates in amplitude but remains on the negative side. To filter out the a.c 

component while blocking the d.c a transformer with a separate secondary winding, or 

a capacitor, is used to block the (steady) d.c voltage. These procedures are known as 

transformer or capacitor coupling. In the latter, which is common in amplifier circuits, 

the coupling connects the output of one circuit to the input of the next, with the 

requirement to include all frequencies in the desired signal while rejecting undesired 

components. The result is that a specific d.c level is maintained for the operation of the 

amplifier.  
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8.2 Low-Pass Filters  

𝑅𝐿  

𝑅𝐿  𝑅𝐿  

𝑅𝐿  

𝐶 

𝐶 

𝐶 

𝐿 

𝐿2 𝐿1 

𝑅 

𝑅 

(a) (b)

(c) (d)

Choke

 
Figure 8.1 Lowpass Filters (a) input = low and high frequencies, (b) input same as in 

(a), (c) Bypass capacitor parallel with the load resistor, with input same as in (a), (d) 

inductor in series with the load resistor, with input same as in (a). 

 

Capacitor depends on the internal resistance of the generator supplying input voltage to 

the filter. A low-resistance generator needs the T-filter so that the choke can provide 

high series impedance for the bypass capacitor, otherwise the latter must have 

extremely large value to short-circuit the low resistance generator at high frequencies. 

 When the input capacitors are effective as a bypass, the 𝜋 −types are more 

suitable with a high resistance generator. The L-type can also have the shunt by-pass 

either in the input for a high resistance generator or across the output for a low 

resistance generator.  

 For a balanced filter circuit, the series component can be connected on both sides 

of the live without having any effect on the filtering action. In all situations, however, 

the series choke can be connected either in the high side of the line, or in series in the 

opposite side of the line  
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8.3 High-Pass Filters 

 

𝑅𝐿  

𝑅𝐿  𝑅𝐿  

𝑅𝐿  

𝐶 

𝐶 

𝐶1 

𝐿2 𝐿1 𝐿 

(a) (b)

(c) (d)

C
h

oke

𝐶2 

𝐶 

𝐿 

 
Figure 8.2 High-pass Filters (a) input = high & low frequencies, (b) input same as in (a), 

the choke is parallel with the load resistor (c) Passband capacitor parallel with the load 

impedance, with input same as in (a), (d) inductor in parallel with the load resistor, 

with input same as in (a). 

 

 High pass filter passes to the load all frequencies higher than the cut-off frequency, 

designated 𝑓𝑐, while voltages at lower frequencies are severely attenuated. Depicted 

above are the different configurations that high-pass filters can take. Notice that the 

roles of c and L are interchanged with respect to the low-pass filter considered earlier. 

This is because of the dissimilar behaviours of the inductor and the capacitor in the 

presence of an alternating current. Whereas capacitive reactance (
1

2𝜋𝑓𝐶
) decreases with 

increasing frequencies, inductive reactance (2𝜋𝑓𝐿) does just the opposite and these 

peculiar behaviours are employed in reproducing signals at certain frequencies while 

attenuating or completely rejecting them at other frequencies. Note also, that 

exchanging the placements of R and C, or R and L, would turn a filter from a low/high 

pass to high/low pass. The high-pass filters pass to the load all frequencies above the 

cut-off frequency, 𝑓𝑐  in the graph below, whereas at lower frequencies, below 𝑓𝑐  

appreciable voltage cannot be developed across the load. Frequencies below the cutoff  
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Cut-off 

frequency

fc

AV

f
 

Figure 8.3 Cut-off frequency 

 

Frequencies are referred to as stop-band. Note the different RC, RL, RLC arrangements 

in Fig. 8.2, and it’s always desirable to arrange them to cause a sharper response curve 

which means narrower bandwidth. At the cut-off frequency, the amplitude is 

70.7% (
1

√2
) of its value (maximum) at resonance. Here, impedance is minimum because 

capacitive and inductive reactance cancel out each other, as learnt in an earlier circuit 

theory course.  

8.4 Band-Pass Filter  

 

fc1

0.707 Vin

f

𝐶1 

𝐶2 𝑅1 

𝑅2 

fc2  
Figure 8.4 

 

In its simplest form, a series placement of back-to-back C/R and R/C configuration gives 

rise to a band-pass filter, going by the two already previously discussed. The response 

curve is predictably as appearing in Fig. 8.4 with the result that the two different corner 

(cut-off) frequencies are affected. However, at these cut-off frequencies the response is 

70.7% of the (maximum) input. 𝑅2 is usually made much higher (at least 10 times) than 
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the value of 𝑅1 this to ensure that the low-pass section does not become a load to the 

high-pass section! 

8.5 Band-Stop Filter 

Vin

𝐶1 𝐶1 

2𝑅1 2𝑅1 

2𝐶1 

𝑅1 

𝑅𝐿 

+

-

Vout

 
Figure 8.5 Band-stop circuit  

 

Fig. 8.5 is a band-stop filter, affected by the parallel combination of a low-pass and high-

pass filter. The 2𝑅1 − 2𝐶1 components make up the low-pass and the 𝑅1 − 𝐶, 

components make up the high-pass filters. The response curve is as shown in Fig. 8.6, 

with the low-pass section on is in Fig. 8.6(b), while   

f f
fN

Vout

(a)

(b)

Vout

 
Figure 8.6 Response curve of a Band-stop  

 

Fig 8.6(a) constitutes the high-pass section. The response curve of Fig 8.6 (a) is a special 

type of band-pass filter, called the notch filter where a single frequency, called the notch 

frequency 𝑓𝑁, constitutes the pass band. A greater circuit loss by the series resistances 
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(2𝑅1) than the series capacitances (𝐶1) is the reason for the greater maximum signal 

response in Fig. 8.6(a), than on Fig. 8.6(b). 

There are other types of filters each one specialized for one purpose or another, namely: 

Resonant filter and L-type resonant filter. 

 

8.6 Resonant Filters 

 Where a turned circuit is used in filtering band of radio frequencies with small 

values of L and C at resonance. Fig. 8.7 are two different configurations of resonant 

filters. Fig. 8.7(a) is a parallel resonant. 
𝑅𝑠 

𝑅𝐿  

𝑅𝐿  𝐿 

𝐿 

𝐶 
𝐶 

Vin

(a) (b)  
Figure 8.7 Resonant filter circuits 

 

Filter in series with the load 𝑅𝐿 and shown in Fig 8.7(b)is a parallel resonant filter that is 

in shunt with the load. The series arrangement constitutes a band-stop filter, whereas 

the shunt configuration gives rise to a band-pass filter.    

 

8.7  L-Type Resonant Filter 

For L-type resonant filter a special inverted version can be employed to affect  

𝐿3 

𝑅𝐿  

𝑅𝐿  𝐶4 

𝐿1 
𝐶3 

𝐶1 

Vin

(a) (b)

𝐿4 𝐿2 

𝐶2 

Vin

 
Figure 8.8 L-type Resonant circuit 
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Either a band-pass or band-stop filter. In the Fig. 8.8(a), the parallel resonant 𝐿1𝐶1 circuit 

is in series with the 𝑅𝐿 load, whereas in the same setup, series resonant 𝐿2𝐶2 circuit is in 

parallel with the same. This is an inverted L, band-stop filter.  

 Fig 8.9(b) is of an opposite (dual) configuration from the one on Fig. 8.8(b). This 

time the series 𝐿3𝐶3 circuit is in series with the load, while the parallel resonant 𝐿4𝐶4 

circuit is in shunt with the same load, constituting a band-pass filter.  

 There are others such as crystal filters, where a thin slice of quartz brings about 

effects of resonance by mechanical vibration at a specified frequency; interference 

filters, used to rid power lines of interference; power-time filters; television antenna 

filters etc.  

 Analysis of filters means analysis of transfer functions, usually written as a function 

of complex frequencies, encountered earlier on, and in earlier courses. Just as time-

dependent responses of a circuit can be determined, responses that are frequency-

dependent can be analysed. In circuits where the response is not determined at the same 

pair of terminals as the input, an expression that relates two quantities is called a transfer 

function. So, transfer function relates two quantities taken at different pairs of terminals, 

e.g., ratios of voltages to currents, of voltage to voltage, or ratio of current to voltage, or 

current to current. 

 

8.8 Application of Bode Plot to Filters  

8.8.1 Frequency Response 

 Frequency response can be defined in 4 different ways:  

1. 𝐻𝑉(𝑠) =
𝑉𝐿(𝑠)

𝑉𝑠(𝑠)
 (Voltage amplitude-phase response) (voltage gain)  8.1a 

  where 𝑉𝐿(𝑠), 𝑉𝑠(𝑠) are the load voltage, source voltage, respectively. 

2. 𝐻𝐼(𝑠) =
𝐼𝐿(𝑠)

𝐼𝑠(𝑠)
 (Current amplitude-phase response) (current gain)  8.1b 

 where 𝐼𝐿(𝑠), 𝐼𝑠(𝑠)are the load current source current, respectively. 

3. 𝐻𝑍(𝑠) =
𝑉𝐿(𝑠)

𝐼𝑠(𝑠)
  (Impedance response).     8.1c 

4. 𝐻𝑌(𝑠) =
𝐼𝐿(𝑠)

𝑉𝑠(𝑠)
 (Admittance response).     8.1d 

     

Note that in each of these cases, the expression relates the signal at the load to that at 

the source. Analysis of the working of filters, therefore, means analysis of transfer 
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functions. For instances for a low-pass filter earlier described the transfer function is (as 

shown in Eq 8.2) 

 

+

-

+

-

1

𝑗𝜔𝐶
 

R

Vin

Vout

 
Figure 8.9 RC low-pass filter 

 

                                                     
𝑉0
𝑉𝑖𝑛

=

1

𝑠𝐶

𝑅 +
1

𝑆𝑐

                                                                    8.2 

by voltage divider rule, where the complex frequency is purely imaginary as the neper 

frequency in this case is zero, meaning undamped sinusoid. The above expression can be 

rationalized by multiplying throughout by 

                                  𝑠𝐶 ⟹
𝑉0
𝑉𝑖𝑛

=
1

(𝑠𝐶𝑅 + 1)
=

1

(1 + 𝑗𝜔𝐶𝑅)
                                      8.3 

The zero of the Eq 8.3 transfer function, 𝑠 = ∞, is the value of s that “vanishes” the 

function, and the process of same, is (are) that (those) value(s) that makes(make) it 

increases without bounds (infinite). That would be when the denominator is equal to 

zero, or 𝑠𝐶𝑅 + 1 = 0 ⟹ −
1

𝑅𝐶
, a single pole, i.e, the single factor of the denominator. To 

investigate how both the amplitude and phase response to changes in frequency, a 

technique known as Bode diagram or Asymptotic plot, has been developed, and named 

after its investor, Henry Bode. Before going further to analyse the above low-pass filter 

(output taken across the capacitor), let’s analyse the simplest transfer function:  

                                                          𝐻(𝑠) = 1 +
𝑠

𝑎
                                                          8.4 

|𝐻(𝑗𝜔)| in decibels (Db) is defined as:  

𝐻dB = 20 log|𝐻(𝑗𝜔)| 

Note that this is strictly a definition therefore, no proof is required.  

For the reverse, if 𝐻dB is known then:  

                                     |𝐻(𝑗𝜔)| = 10(
𝐻𝑑𝐵
20

)                                                                     8.5 

For example, |𝐻(𝑗𝜔)| = 1 ⟹ 𝐻𝑑𝐵 = 20 log 1 = 0 

|𝐻(𝑗𝜔)| = 10 ⟹ 𝐻𝑑𝐵 = 20 log 10 = 20 



  Circuit Theory with Application  

213 
 

In general, |𝐻(𝑗𝜔)| = 10𝑛 ⟹𝐻𝑑𝐵 = 20 log 10𝑛 = 𝑛 × 20 = 20𝑛 

⟹From Eq 8.5 therefore,  

|𝐻(𝑠)| = |𝐻(𝑗𝜔)| = 20 log |(1 +
𝑗𝜔

𝑎
)| = 20 log√(1 +

𝜔2

𝑎2
   

With 𝜔 ≪ 𝑎 [no (omega) for less than a, i.e 𝜔 ≤ 0.1𝑎],  

𝐻𝑑𝐵 ≈ 20 log 1 = 0 

𝜔 ≫ 𝑎 (𝜔 ≥ 10𝑎) ⟹ 𝐻𝑑𝐵 ≈ 20 log (
𝜔

𝑎
), 

Since ‘1’ can be ignored by comparison. This represents increase of 20dB per decade (ten 

times the previous value) since, for instance, for an increase in no form a to 10a, 𝐻𝑑𝐵 

increases from 20 log 1 = 0 to 20 log 10 = 20 with a normalized to 1 or gradually,   

20 log 10𝑎 − 20 log 𝑎 

= (20 log 10 + 20 log 𝑎) − 20 log 𝑎 = 20 log 10 = 20 × 1 = 20 

For 10𝑎 to 100𝑎, 𝐻𝑑𝐵 increases by  

(20 log 100 + 20 log 𝑎) − (20 log 10 +20 log 𝑎) = 40 − 20 = 20, 𝑒𝑡𝑐 

The asymptotic plot is as shown in Fig. 8.10: 

 

0

20

40

0.01a 0.1a a 10a 100a

Actual 

Asymtotic

20dB/decade

log𝜔 

 
Figure 8.10 
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8.8.2 Comments on the Bode diagram (Asymptotic plot) 

 The scales of both axes (abscissa and ordinate) are logarithmically ruled, rather 

than linear, as this presents better information on the amplitude response vis-a-vis 

variations in the frequency. The abscissa is this normalized (“linearized”) by taking the 

log of the quotient 𝜔/𝑎 (omega over a) as the scale rather than merely 𝜔. 𝑎 is known as 

the corner frequency, also called the cut-off frequency, break frequency, half power 

frequency [because at 𝜔𝑐(𝑎) the power delivered to the load is half of what it was 

(maximum) at resonance (𝜔0)] or 3dB frequency, so called because 3dB (Actual 

20 log √1 + 1 = 20 log 21/2) is what has been approximated out by the asymptotic plot, 

that is the difference between the actual value (3dB) and the asymptotic value (0). This 

is also true for any amplitude response for asymptotic plots with multiple breakpoints.  

 The entire plot can be smoothened by determining the actual value of the response 

around the break point. For instance, at 𝜔 = 0.5𝑎, 

𝐻𝑑𝐵 = 20 log(1 + 0.5
2)
1

2
=
1

2
× 20 log(1 + 0.25) = 10 log 1.25 ≈ 1𝑑𝐵 

And at 1.5𝑎, 

𝐻𝑑𝐵 = 20 log√1 + 1.52 = 10 log 3.25 ≈ 5,  𝑒𝑡𝑐 

At a decade lower or higher than the corner frequency (0.1a and 10a respectively), the 

actual and asymptotic corresponds.  

 

8.8.3 Phase Response 

The phase angle of the function 𝐻(𝑗𝜔) = 1 +
𝑗𝜔

𝑎
 is ∠𝐻(𝑗𝜔) = tan−1

𝜔

𝑎
  8.6 

For 𝜔 ≪ 𝑎, 

∠𝐻(𝑗𝜔) = 𝜙 ≈ tan−1 0 = 0 

𝜔 = 𝑎 ⟹  𝜙 = tan−1 1 = 45𝑜 

𝜔 ≫ 𝑎 ⟹  𝜙 = tan−1∞ = 90𝑜 

So, between about 𝜔 = 0.1𝑎 and 𝜔 = 10𝑎 (𝑎 rise of 2 decades from 0.1𝑎 to 

10𝑎 [= log (
10𝑎

0.1𝑎
)] = log 100 = 2 , 𝜙 goes from zero to 90𝑜, a rise of 45𝑜 per decade.  
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Figure 8.11 

It’s possible to plot both the amplitude and phase responses, on the same graph.  

For the transfer function  𝐻(𝑠) =
1

(1+
𝑠

𝑎
)
, a reciprocal of the one we just dealt with in 

 Eq 8.4, both the amplitude and phase responses are just a reflection of that for 

 𝐻(𝑠) = 1 +
𝑠

𝑎
. This is because, for instance, if  

20 log 𝑥 = 𝑎, then 20 log (
1

𝑥
) = −𝑎           8.7 

A detailed analysis as the one close previously would show this to be so:  

𝐻𝑑𝐵 = 20 log |1/ (1 +
𝑗𝜔

𝑎
)| = 20 log 1 −20 log |1 +

𝑗𝜔

𝑎
| = 0 − 20 log |1 +

𝑗𝜔

𝑎
|       8.8 

So, every value is the negative of the one obtained previously.  
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Figure 8.12 
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8.9 Analysis of Filters-Transfer Functions with Bode Plot 

8.9.1  Low-Pass Filter  

In the filter of Fig. 8.9, the output is taken across the capacitor.  

By voltage-divider rule,    

                    
𝑉𝑜
𝑉𝑖𝑛

=

1

𝑗𝜔𝐶

𝑅 +
1

𝑗𝜔𝐶

= 𝐻𝑣 ∠𝜙 =
1

𝑗𝜔𝐶𝑅 + 1
                                              8.9 

 Where voltage gain 𝐻𝑉 = |
𝑉𝑜
𝑉𝑖𝑛
| 

                                               𝐻𝑉 = |
1

𝑗𝜔𝑅𝐶 + 1
|                                                              8.10.1 

=
1

√(𝜔𝐶𝑅)2 + 1
 

                                                              =
1

√(
𝜔

𝜔𝑐
)
2

+ 1

                                                   8.10.2 

Where 𝜔𝑐 =
1

𝑅𝐶
  is called the corner (or cut off) frequency  

By definition 

𝐻𝑑𝐵 = 20 log𝐻𝑉, where log is understood to be 𝑙𝑜𝑔10 

So, for the low-pass filter under consideration,  

                                       𝐻𝑑𝐵 = 20 log
1

√(
𝜔

𝜔0
)
2

+ 1

                                                      8.11 

 These cases are to be considered with respect to the gain in amplitude (amplitude 

response): 𝜔 ≪ 𝜔𝑐 (frequencies far less than the corner frequency): 

𝐻𝑑𝐵 ≈ 20 log
1

1
= 20 log 1 = 0 

𝜔 = 𝜔𝑐: 

𝐻𝑑𝐵 = 20 log 1/√2 = 20 log 2−
1

2 = −
1

2
× 20 log 2 = −3𝑑𝐵 

And this represents the largest error (at the corner frequency) in the straight-line 

approximation (see Fig.8.13) which assumes zero response up to 𝜔 ≫ 𝜔𝑐. 

𝜔 ≫ 𝜔𝑐 (Far greater): 
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𝐻𝑑𝐵 ≈ 20 log
1

√(
𝜔

𝜔𝑐
)
2
= 20 log

𝜔𝑐

𝜔
= 20 log𝜔𝑐 − 20 log𝜔    8.12 

The first term is a constant that depends on the value of the corner frequency, while the 

second term, − 20 log𝜔, in Eq 8.12, is the rate of fall of 20Db (decibel) per frequency 

decade (i.e., per energy factor of 10) 

 

0𝑑𝐵 

−20 

−40 

−60 

−80 
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-20 dB/decade

Exact amplitude 

response H dB

Approximate

 
Figure 8.13 

 

8.9.1.1 Phase Response (phase shift) 

Recall from Eq 8.10.1,  𝐻𝑉 ∠∅ =
𝑉𝑜

𝑉𝑖𝑛
=

1

𝑗𝜔𝐶𝑅+1
 

⟹    ∅ = 0 − tan−1𝜔𝑅𝐶 = 0 − tan−1 (
𝜔

𝜔𝑐
) 

For 𝜔 ≪ 𝜔𝑐, 

∅ ≈ − tan−1 0 = 0 ; 

𝜔 = 𝜔𝑐 

∅ = 0 − tan−1 1 = −45𝑜 

So that the phase shift is midway between the maximum and minimum values at the 

corner frequency 𝜔 ≫ 𝜔𝑐, 

∅ ≈ 0 − tan−1∞ = −90𝑜 
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Figure 8.14 

 

8.9.2  High-Pass Filter 

 Here the resistor and capacitor are interchanged, as should be expected intuitively:  

+

-

+

-

1

𝑗𝜔𝐶
 

R
Vin

Vout

 
Figure 8.15 

 

The output is now taken across the resistor: 

                            
𝑉0
𝑉𝑖𝑛

=
𝑅

1

𝑗𝜔𝐶
+ 𝑅

=
1

1

𝑗𝜔𝐶𝑅
+ 1

=
1

1 −
𝑗𝜔𝐶

𝜔

                                      8.13 

𝐻𝑉  ∠∅ =
𝑉0
𝑉𝑖𝑛

⟹𝐻𝑉 = |
𝑉0
𝑉𝑖𝑛
| = |

1

1 −
𝑗𝜔𝑐

𝜔

| 

Whereas before, 𝜔𝑐 =
1

𝑅𝐶
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⟹  𝐻𝑑𝐵 = 20 log𝐻𝑉 = 20 log |
1

1 −
𝑗𝜔𝑐

𝜔

| 

= 20 log
1

√1 + (
𝜔𝑐

𝜔
)
2
 

For 𝜔 ≪ 𝜔𝑐, 

𝐻𝑑𝐵 ≈ 20 log
𝜔

𝜔𝑐
= 20 log𝜔 − 2 = log𝜔𝑐 

Where −20 log𝜔𝑐 is as in the case of low-pass filter a constant while 20 log𝜔 now 

represents a rise of 20 decibels per decade. 

𝜔 = 𝜔𝑐,  

𝐻𝑑𝐵 = 20 log
1

√2
= 20 log 2−

1

2 = −10 log 2 = −3𝑑𝐵 

And represents the largest error between the approximate and exact graphs  

𝜔 ≫ 𝜔𝑐, see Fig. 8.16 

𝐻𝑑𝐵 ≈ 20 log 1 = 0 
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∅ = 0 − [− tan−1 (
𝜔𝑐
𝜔
)] = tan−1 (

𝜔𝑐
𝜔
) 

For 𝜔 ≪ 𝜔𝑐, 

∅ ≈ tan−1∞ = 90𝑜 

𝜔 = 𝜔𝑐,  

∅ = tan−1 1 = 45𝑜  

𝜔 ≫ 𝜔𝑐, 

∅ ≈ tan−1 0 = 0 
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Figure 8.17 

 

8.9.3  Circuit with Two Corner Frequencies 

 It’s possible to obtain more than one breakpoint with R-L or R-C circuits.  

Example 8.1: Consider the circuit of Fig. 8.18, with the resistor in series with an inductor 

at the output.  

+ +

- -

Vin
Vout

999Ω 

1Ω 

10𝑚𝐻 
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Figure 8.18 

 

The 1 Ω represent the internal resistance of the inductor coil. 

Voltage divider rule gives: 

𝑉𝑜
𝑉𝑖𝑛

=
1 + 𝑗10 × 10−3𝜔

999 + 1 + 𝑗10 × 10−3𝜔
 

=
1 + 𝑗0.01𝜔

1000 + 𝑗0.01𝜔
=

100 + 𝑗𝜔

100000 + 𝑗𝜔
 

=
100 [1 + 𝑗 (

𝜔

102
)]

100000 [1 + 𝑗 (
𝜔

105
)]

 

𝐻𝑉 = |
102 [1 + 𝑗 (

𝜔

102
)]

105 [1 + 𝑗 (
𝜔

105
)]
| 

Two corner frequencies occur at 𝜔 = 102 rad/s and at 𝜔 = 105 rad/s 

𝐻𝑑𝐵 = 20 log𝐻𝑉 = 20 log
102√[1 + (

𝜔

102
)
2

]

105√[1 + (
𝜔

105
) 2]

 

= 20 log

{
 

 
10−3√

1 + (
𝜔

102
)
2

1 + (
𝜔

105
)
2

}
 

 
 

= 20 log 10−3 + 20 log [1 + (
𝜔

102
)
2

]

1

2

− 20 log[1 + (𝜔 + 105)2] 

= −3 × 20 log 10 +
1

2
×  20 log [1 + (

𝜔

102
)
2

] − 20 log [1 + (
𝜔

105
)
2

] 

= −60 + 10 log [1 + (
𝜔

102
)
2

] − 10 log [1 + (
𝜔

105
)
2

]    (i) 

When 𝜔 ≪ 102 

𝐻𝑑𝐵 ≈ −60 + 0 − 0 = −60 

𝜔 = 102;          (ii) 

𝐻𝑑𝐵 ≈ −60 + 10 log 2 = −60 + 3 = −57𝑑𝐵; 

102 < 𝜔 < 105; 

From Eq (ii), 𝜔 = 102 rad/s, the second term of Eq (i) will starts to increase at 

20dB/decade Eq (ii) 10 log [1 + (
𝜔

102
)
2

] ≈ 10 log (
𝜔

102
)
2

= 20 log (
𝜔

102
) 
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𝜔 > 105, the last term of Eq (i) starts to decrease at −20 𝑑𝐵/decade [from 

−10 log (
𝜔

105
)
2

= −20 log (
𝜔

105
).  

These decreases would now cancel out the increase of the second term, leaving the 

overall response of: 

−60 + 60 (increase of 20dB /decade for 3 decades between 102 and 105) + 0 = 0𝑑𝐵 

∅ = ∅𝑁 − ∅𝐷, where ∅𝑁 , ∅𝐷 denote the phase angles of the numerator, denominator, 

respectively  

∅ = tan−1 (
𝜔

100
) − tan−1 (

𝜔

105
) 

For 𝜔 ≪ 100 

∅ ≈ 0 − 0 = 0 

𝜔 =
100

10
= 10rad/s 

∅ ≈ ∅𝑁 starts to increase at 45𝑜/decade while ∅𝐷 remains approximately zero.  

At the first corner frequency (𝜔 = 100 rad/s),  

∅ = tan−1 (
100

100
) − 0 = tan−1 1 = 45𝑜 ; 

At 𝜔 = 1 𝑘rad/s (10×first corner frequency),  

∅ ≈ tan−1∞− 0 = 90𝑜 

∅ remains 90𝑜 up to 10𝑘 rad/s (second corner frequency ÷ 10) and ∅𝐷 starts to 

increase at 45𝑜/decade, this causing ∅ = ∅𝑁 − ∅𝐷 to fall at 45𝑜/decade. 

At 𝜔 = 106(10 × second comer frequency),  

∅𝐷 = 90𝑜 ⟹∅ ≈ 90𝑜 − 90𝑜 = 0 

Note: the unit of the abscissa is log𝜔, unlike in the previous cases, where it was 

normalized to the one comer frequency.    
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Figure 8.19 

Example 8.2: Obtain the transfer function of the Operational amplifiers (OP Amps) 

design for a lowpass filter. 

+

-
A

𝐼3 

𝐼2 

𝐼1 

1

𝑗𝜔𝐶
 

𝑅2 

𝑅1 

𝑉𝑖𝑛  

𝑉𝑜𝑢𝑡  

 

Figure 8.20 Low pass filter with Op Amp 
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  KCL at A: 𝐼1 + 𝐼2 + 𝐼3 = 0             8.14a 

                       ⟹   −
𝑉𝑖𝑛
𝑅1
+
(𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛)

𝑅2
+ (𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛)𝑗𝜔𝐶 = 0                           8.14b 

𝑉𝑜𝑢𝑡 (
1

𝑅2
+ 𝑗𝜔𝐶) = 𝑉𝑖𝑛 (

1

𝑅1
+
1

𝑅2
+ 𝑗𝜔𝐶) 

𝑉𝑜𝑢𝑡(1 + 𝑗𝜔𝐶𝑅2)

𝑅2
=
𝑉𝑖𝑛(𝑅2 + 𝑅1 + 𝑗𝜔𝐶𝑅1𝑅2)

𝑅1𝑅2
 

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

=
𝑅2 + 𝑅1 + 𝑗𝜔𝐶𝑅1𝑅2
(1 + 𝑗𝜔𝐶 𝑅2)𝑅1

 

                                   =

1

𝑅1
+

1

𝑅2
+ 𝑗𝜔𝐶

1

𝑅2
+ 𝑗𝜔𝐶

=

1

𝑅1𝐶
+

1

𝑅2𝐶
+ 𝑗𝜔

1

𝑅2𝐶
+ 𝑗𝜔

                                        8.15 

                                                               =
𝜔1 + 𝑗𝜔

𝜔2 + 𝑗𝜔
                                                       8.16 

                    Where 𝜔1 ≡
1

𝑅1𝐶
+

1

𝑅2𝐶
 𝑎𝑛𝑑 𝜔2 ≡ 1/𝑅2𝐶                                       8.17 

For 𝑅1 = 1.01 𝑘Ω, 𝑅2 = 100 𝑘Ω, 𝐶 = 1 μF 

𝜔1 =
1

(1010 × 10−6)
+

1

(105 × 10−6)
= 990 + 10 = 1000, 

𝜔2 =
1

(105 × 10−6)
= 10 rad/s 

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

=
1000 + 𝑗𝜔

10 + 𝑗𝜔
=
1000 [1 + 𝑗 (

𝜔

1000
)]

10 [1 + 𝑗 (
𝜔

10
)]

 

=
100 [1 + 𝑗 (

𝜔

1000
)]

1 + 𝑗 (
𝜔

10
)

 

𝐻𝑑𝐵 = 20 log |
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

| = 20 log 100 + 20 log [1 + (
𝜔

1000
)
2

]

1

2

− 20 log [1 + (
𝜔

10
)
2

]

1

2

 

= 40 + 10 log [1 + (
𝜔

1000
)
2

] − 10 log [1 + (
𝜔

10
)
2

] 

 

8.9.4  Bandpass Filter  

The RLC series resonant circuit provides a bandpass filter when the output is taken off 

the resistor as shown in Fig. 8.21. The transfer function is  
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𝑣0(𝑡) 

L C

R

+

-

𝑣𝑖(𝑡) 

 
Figure 8.21 

 

                                 𝐻(𝜔) =
𝑉𝑜
𝑉𝑖
=

𝑅

𝑅 + 𝑗 (𝜔𝐿 −
1

𝜔𝐶
)
                                             8.18 

 

We observe that 𝐻(0) = 0,𝐻(∞) = 0. Fig. 8.22 shows the plot of |𝐻(𝜔)|The bandpass 

filter passes a band of frequencies (𝜔1 < 𝜔 < 𝜔2) centered on 𝜔0, the center 

frequency, which is given by 

                                                               𝜔0 =
1

√𝐿𝐶
                                                         8.19 

𝜔1 

|𝐻(𝜔)| 

𝜔 𝜔0 𝜔2 

0.707

1

0

Ideal

Actual

 
Figure 8.22 

 

A bandpass filter is designed to pass all frequencies within a band of frequencies, 𝜔1 <

𝜔 < 𝜔2 

Since the bandpass filter in Fig. 8.21 is a series resonant circuit, the half-power 

frequencies, the bandwidth, and the quality factor are determined. A bandpass filter can 

also be formed by cascading the Iowpass filter (where 𝜔2 = 𝜔𝑐) in Fig. 8.15 with the 

highpass filter (where 𝜔1 = 𝜔𝑐.) in Fig. 8.15. However, the result would not be the same 

as just adding the output of the lowpass filter to the input of the highpass filter, because 

one circuit loads the other and alters the desired transfer function. 
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8.9.5  Band-Stop Filter  

A filter that prevents a band of frequencies between two designated values (𝜔1 and 𝜔2) 

from passing is variably known as a bandstop, bandreject, or notch filter. A bandstop 

filter is formed when the output RLC series resonant circuit is taken off the LC series 

combination as shown in Fig. 8.23. The transfer function is 

𝑣0(𝑡) 
L

C

R +

-

𝑣𝑖(𝑡) 

 
Figure 8.23 

 

                                     𝐻(𝜔) =
𝑉0
𝑉𝑖
=

𝑗 (𝜔𝐿 −
1

𝜔𝐶
)

𝑅 + 𝑗 (𝜔𝐿 −
1

𝜔𝐶
)
                                             8.20 

 

Notice that 𝐻(0) = 1,𝐻(∞) = 1. Fig. 8.24 shows the plot of Again, the center frequency 

is given by. 

                                                                      𝜔0 =
1

√𝐿𝐶
                                                       8.21 

 

while the half-power frequencies, the bandwidth, and the quality factor are calculated 

for a series resonant circuit. Here, 𝜔0 is called the frequency of rejection, while the 

corresponding bandwidth (𝐵 = 𝜔2 − 𝜔1) is known as the bandwidth of rejection. Thus, 

 A bandstop filter is designed to stop or eliminate all frequencies within a band of 

frequencies, 𝜔1 < 𝜔 < 𝜔2 

 Notice that adding the transfer functions of the bandpass and the bandstop gives 

unity at any frequency for the same values of R, L, and C. Of course, this is not true in 

general but true for the circuits treated here. This is due to the fact that the characteristic 

of one is the inverse of the other. 

 In concluding this section, we should note that: 

1. From Eqs. (8.9), (8.13), (8.18), and (8.20), the maximum gain of a passive filter is 

unity. To generate a gain greater than unity, one should use an active filter as the next 

section shows. 

2. There are other ways to get the types of filters treated in this section. 
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3. The filters treated here are the simple types. Many other filters have sharper and 

complex frequency responses. 

Table 8.1 

Summary of the characteristic of ideal filters:  

Type of filter  𝐻(0) 𝐻(∞) 𝐻(𝜔𝑐) or 𝐻(𝜔0) 

Lowpass 1 0 1

√2
 

High pass 0 1 1

√2
 

Bandpass 0 0                1 

Bandstop 1 1                0 

𝜔𝑐 is the cutoff frequency for lowpass and highpass filters: 𝜔0 is the center frequency 

for bandpass and bandstop filters. 

 

𝜔1 

|𝐻(𝜔)| 

𝜔 𝜔0 𝜔2 

0.707

1

0

Ideal

Actual

 
Figure 8.24 

Example 8.3: Determine what type of filter is shown in Fig. 8.25. Calculate the corner or 

cutoff frequency. Take 𝑅 = 2 𝑘Ω, 𝐿 = 2 H and 𝐶 = 2 𝜇F. 

𝑣0(𝑡) 

L

C
R

+

-

𝑣𝑖(𝑡) 

                                                  
Figure 8.25 
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 Solution: 

The transfer function is 

                                       𝐻(𝑠) =
𝑉𝑜
𝑉𝑖
=

𝑅 ∥
1

𝑠𝐶

𝑠𝐿 + 𝑅 ∥
1

𝑠𝐶

     𝑠 = 𝑗𝜔                                    8.22.1 

𝑅 ‖
1

𝑠𝐶
=

𝑅

𝑠𝐶

𝑅 + 1/𝑠𝐶 
=

𝑅

1 + 𝑠𝐶
 

Substituting this into Eq 8.22.1 gives  

𝐻(𝑠) =

𝑅

(1+𝑠𝑅𝐶)

𝑠𝐿 +
𝑅

(1+𝑠𝑅𝐶)

=
𝑅

𝑠2𝑅𝐿𝐶 + 𝑠𝐿 + 𝑅
  𝑠 = 𝑗𝜔 

Or 

                                       𝐻(𝜔) =
𝑅

−𝜔2𝑅𝐿𝐶 + 𝑗𝜔𝐿 + 𝑅
                                                  8.22.2 

Since 𝐻(0) = 1 and 𝐻(∞) = 0, we conclude from Table 8.1 that the circuit in Fig. 8.25 

is a second-order lowpass filter. The magnitude of 𝐻 is 

                                        𝐻 =
𝑅

√(𝑅 − 𝜔2𝑅𝐿𝐶)2 +𝜔2𝐿2
                                              8.22.3 

The corner frequency is the same as the half-power frequency, i.e., where H is reduced 

by a factor of 
1

√2
. Since the dc value of 𝐻(𝜔) is l, at the corner frequency, Eq. 8.22.3 

becomes after squaring 

𝐻2 =
1

2
=

𝑅2

√(𝑅 − 𝜔𝑐2𝑅𝐿𝐶)2 + 𝜔𝑐2𝐿2
 

Or 

2 = (1 − 𝜔𝑐
2𝐿𝐶)2 + (

𝜔𝑐𝐿

𝑅
)
2

 

Substituting the values of 𝑅, 𝐿, and 𝐶 we obtain  

2 = (1 − 𝜔𝑐
24 × 10−6)2 + (𝜔𝑐10

−3)2 

Assuming that 𝜔𝑐 is in krad/s, 

2 = (1 − 4𝜔𝑐
2)2 +𝜔𝑐

2     𝑜𝑟   16𝜔𝑐
4 − 7𝜔𝑐

2 − 1 = 0 

Solving the quadratic equations in 𝜔𝑐
2 we get 𝜔𝑐

2 = 0.5509 and −0.1134. since 𝜔𝑐 is real 

𝜔𝑐 = 0.742 krad/s = 742 rad/s 
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Example 8.4: If the bandstop filter in Fig.8.23 is to reject a 200 Hz sinusoid while passing 

other frequencies, calculate the values of L and C. Take 𝑅 = 150 Ω and the bandwidth 

as 100 Hz. 

Solution: 

We use the formulas for a series resonant circuit which states that: 

𝐵 = 2𝜋(100) = 200𝜋 rad/s 

But 

𝐵 =
𝑅

𝐿
  ⟹    𝐿 =

𝑅

𝐵
=
150

200𝜋
= 0.2387 H 

Rejection of the 200 Hz sinusoid means that 𝑓0 is 200 Hz so that 𝜔0 in Fig. 8.24 is 

𝜔0 = 2𝜋𝑓0 = 2𝜋(200) = 400𝜋 

Since 𝜔0 = 1/√𝐿𝐶 

𝐶 =
1

𝜔0
2𝐿
=

1

(400𝜋)2(0.2387)
= 2.653 μF 

 

8.10  Limitations of Passive Filter 

There are three major limitations to the passive filters considered in the previous section. 

First, they cannot generate gain greater than l; passive elements cannot add energy to 

the network. Second, they may require bulky and expensive inductors. Third, they 

perform poorly at frequencies below the audio frequency range (300 Hz < 𝑓 <

3,000 Hz). Nevertheless, passive filters are useful at high frequencies. 

 Active filters consist of combinations of resistors, capacitors, and op amps. They 

offer some advantages over passive RLC filters. First, they are often smaller and less 

expensive, because they do not require inductors. This makes feasible the integrated 

circuit realizations of filters. Second, they can provide amplifier gain in addition to 

providing the same frequency response as RLC filters. Third, active filters can be 

combined with buffer amplifiers (voltage followers) to isolate each stage of the filter 

from source and load impedance effects. This isolation allows designing the stages 

independently and then cascading them to realize the desired transfer function. (Bode 

plots, being logarithmic, may be added when transfer functions are cascaded.) However, 

active filters are less reliable and less stable. The practical limit of most active filters is 

about 100 kHz—most active filters operate well below that frequency.  

Filters are often classified according to their order (or number of poles) or their specific 

design type. 
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Example 8.5: Design a bandpass filter in the using an Operational amplifier to pass 

frequencies between 250 Hz and 3,000 Hz and with K = 10. Select 𝑅 = 20 𝑘Ω. 

Solution  

1. Define. The problem is clearly stated and the circuit to be used in the design is 

specified. 

2. Present. We are asked to use the op amp circuit specified to design a bandpass 

filter. We are given the value of R to use (20 𝑘Ω). In addition, the frequency ranges of 

the signals to be passed is 250 Hz to 3 kHz. 

3. Alternative. We will use the equations developed so far in this section to obtain a 

solution. We will then use the resulting transfer function to validate the answer. 

4. Attempt. Since 𝜔1 =
1

𝑅𝐶2
, we obtain 

𝐶2 =
1

𝑅𝜔1
=

1

2𝜋𝑓1𝑅
=

1

2𝜋 × 250 × 20 × 103
= 31.83 nF 

Similarly, since 𝜔2 =
1

𝑅𝐶1
 

𝐶1 =
1

𝑅𝜔2
=

1

2𝜋𝑓2𝑅
=

1

2𝜋 × 3,000 × 20 × 103
= 2.65 nF 

From Equations in Example 8.3, 

𝑅𝑓

𝑅𝑖
= 𝐾 

𝜔1 + 𝜔2
𝜔2

= 𝐾
𝑓1 + 𝑓2
𝑓2

=
10(3,250)

3,000
= 10.83 

If we select 𝑅𝑖 = 10 𝑘Ω, then 𝑅𝑓 = 10.83 𝑅𝑖 ≃ 108.3 𝑘Ω 

5. Evaluate. The output of the first op amp is given by  

𝑉𝑖 − 0

20
+
𝑉1 − 0

20
+
𝑠2.65 × 10−9(𝑉1 − 0)

1
 

= 0 → 𝑉1 = −
𝑉𝑖

1 + 5.3 × 10−5𝑠
 

The output of the second op amp is given by 

𝑉1 − 0

20 +
1

31.83𝑠

+
𝑉2 − 0

20
= 0 → 

𝑉2 = −
6.366 × 10−4

1 + 6.366 × 10−4
 

=
6.366 × 10−4𝑠𝑉𝑖

(1 + 6.366 × 10−4𝑠)(1 + 5.3 × 10−5𝑠)
 

The output of the third op amp is given by 

𝑉2 − 0

10 
+
𝑉𝑜 − 0

108.3 
= 0 → 𝑉𝑜 = 10.83𝑉2 → 𝑗2𝜋 × 25𝑜 
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𝑉0 = −
6.894 × 10−3 𝑠𝑉𝑖

(1 + 6.366 × 10−4𝑠)(1 + 5.3 × 10−5𝑠)
 

Let 𝑗2𝜋 × 25𝑜 and solve for the magnitude of 𝑉𝑜/𝑉𝑖 

𝑉𝑜
𝑉𝑖
=

−𝑗10.829

(1 + 𝑗1)(1)
 

|
𝑉𝑜

𝑉𝑖
| = (0.7071)10.829, which is the lower corner frequency point. 

 Let 𝑠 = 𝑗2𝜋 × 3000 = 𝑗18.849 𝑘Ω. we then get  

𝑉𝑜
𝑉𝑖
=

−𝑗129.94

(1 + 𝑗12)(1 + 𝑗1)
 

=
129.94 ∠90𝑜

(12.042∠85.24𝑜)(1.4142∠45𝑜)
= (0.7071)10.791∠ − 18.61𝑜 

Clearly this is the upper corner frequency and the answer checks. 

6. Satisfactory? We have satisfactorily designed the circuit and can present the 

results as a solution to the problem. 

 

8.11  Exercise  

1. (a) Explain the basic function of a high-pass filter, with the appropriate graphical 

sketch and relevant circuit diagram. (b) for a low-pass filter, what are meant by the 

terms (i) passband (ii) stopband 

2. In Fig. 1 is a circuit diagram for a non-inverting operational amplifier (op amp). 

Determine the output voltage 𝑉𝑜𝑢𝑡 in terms of the input voltage 𝑉𝑖𝑛, i.e a gain which is 

a quotient of the two voltages. (bi) Shunt 𝑅𝑓 and let 𝑅1 increase without bound.  

Analyse and determine the type of an amplifier that results thereby, by again finding 

𝑉𝑜𝑢𝑡 in terms of 𝑉𝑖𝑛. (ii) By what other name is this type of amplifier known? 

𝑅𝑓  

𝑅1 

𝑉𝑖𝑛  

𝑉𝑜𝑢𝑡  

a

b

-

+

 

Fig. 1  
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CHAPTER 9 

TRANSMISSION LINES 
 

9.0 Introduction 

There are means of relaying signals (also power) from one point to another, usually a pair 

of electrical conductors, with coaxial cables and twisted pair cable being some of the 

examples. Having said this, I must point out that the lines are not merely “wire” or cables 

in their simplest form, but rather are intricate cascades of electrical circuits! Bearing in 

mind costs, convenience and ease of calculations that involve the properties of the 

transmission line, they are then arranged in definite geometric patterns. 

 The goal of the transmission is to transport a typical signal with minimal loss. Loss 

there must be when we’re dealing with physical realities, but the idea behind any design 

is to minimize such. 

 Up to this point in your circuit theory series, we’ve dealt with the more familiar 

low-frequency circuit where the wires that connect devices are justifiably assumed to have 

zero resistance, and phase delays are absent across wires. Furthermore, short circuited 

lines always yield zero resistance. Not so in high frequency transmission lines where the 

above does not obtain and we have to expect the unexpected! For example, short circuits 

can actually possess infinite impedance, and open circuits (the idealized model of an 

infinite impedance) can actually behave like short circuited wires!   

 For low frequency signals and d.c signals, transportation normally involves very low 

losses, but high frequency ones in the range of radio waves, losses are quite pronounced 

and the objective of the design engineer is to eliminate or minimize such. So, here, 

attention is focused on high frequency applications whereby the length of the line is of at 

least the same order of magnitude as the least the same order of magnitude as the 

wavelength of the signal under consideration. This is strictly with regard to systems of 

conductors having a forward and return path.  

 Areas of application include communication engineering where study is made to 

determine the most efficient use of power and equipment available to transfer for 

example, as much power as possible from the feeder line into the antenna. To avoid power 

wastage, a receiving antenna must be correctly matched to the line that connects it to the 

receiver.  



  Circuit Theory with Application  

233 
 

 To eliminate losses, we resort to “matching” the line to the load, by making the 

factor known as the characteristic impedance of the line, designated 𝑍0, equal or very close 

to the load impedance (𝑍𝐿). In d.c and low frequency a.c circuits earlier referred to, the 

characteristic impedance of parallel wires is usually insignificant and can therefore be 

ignored in analyzing circuit behavior. Here the phase difference between the sending and 

the receiving and is negligible, the period of propagation is very small compared to the 

period of the waveform under consideration. It can be practically assumed that the voltage 

along all the respective points (of a low frequency, two conductor line) are equal and in-

phase with each other at any given point in time.  

 An idealized transmission line has an “infinite” length, this way all the energy is 

absorbed and more is reflected back to the source, because the characteristic (natural) 

impedance of the line is now matched to the frictions load impedance (𝑍𝐿) 

 To investigate low voltage or current changes along transmission lines, the 

following assumptions are made and the following parameters must be borne in mind, so 

that circuit analysis can be employed.  

 The line is made up of continuous conductors with constant cross-sectional 

configuration, and therefore indicating even distribution of the parameters, the problem 

is tracked by considering a very short length of the line that would imply a very discreet 

distribution of the parameters. The problem is tackled by considering a very short length 

of the line that would imply discrete distribution of the parameters which are: 

1. Resistance (R): The resistance of the conductors to the flow of current.  

2. Inductance (L): Associated with the time varying signal, and depends on 

 the geometry of the cross-section of the conductors. 

3. Conductance (G): Leakage current passes through the dielectric material 

 that holds the line in position.  

4. Capacitance (C): A capacitive reactance to a time-varying signal due to 

 capacitor form from conductors and the dielectric in-between.  

So, for a two-wire line, we deal with series inductance and resistance, and parallel (shunt) 

capacitance and conductance, because any conductor (coil) possess “natural” resistance 

and there is always capacitance formed wherever two conductors come close to each 

other! 

The totality of these parameters is obtained by multiplying by the length of the line, since 

they are given on a per-length basis. Continuous distribution is approximated by its 
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representation as a cascade of network of elements, with each element of length 𝛿𝑧, (delta 

𝑧). 

V(z)

I(z)

IC,G

R L

G
C

𝑉(𝑧 + 𝛿𝑧) 

𝐼(𝑧 + 𝛿𝑧) 

 

Figure 9.1 A 2-cascade representation of transmission line 

Using telegrapher's equation 

V(z)

I(z)

IC,G

R L

G
C

𝑉(𝑧 + 𝛿𝑧) 

𝐼(𝑧 + 𝛿𝑧) 
a

 

Figure 9.1a One section of the transmission line 

 

Consider one section of the transmission line for the derivation of the characteristic 

impedance. The voltage on the left would be V and on the right side would be 𝑉(𝑧 + 𝛿𝑧). 

Fig. 9.1a is to be used for both the derivation methods. 

The differential equations describing the dependence of the voltage and current on time 

and space are linear, so that a linear combination of solutions is again a solution. This 

means that we can consider solutions with a time dependence and the time dependence 

will factor out, leaving an ordinary differential equation for the coefficients, which will be 

phasors depending on space only. Moreover, the parameters can be generalized to be 

frequency-dependent. 

https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Phasor
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 Taking KCL at point (a) of Fig. 9.1a, the current through the parallel combination of 

the capacitance and admittance elements is:  

𝐼𝐶𝐺 = 𝐼(𝑧) − 𝐼(𝑧 + 𝛿𝑧) = 𝐶𝛿𝑧
𝜕𝑉(𝑧)

𝜕𝑡
+ 𝐺𝛿𝑧 𝑉(𝑧), 

with 𝛿𝑧 indicating per unit length basis, and with the partial derivatives noted. Voltage 

drops across the series combination of the resistor and inductor by KVL:  

𝑉𝑅𝐿 = 𝑉𝑅 + 𝑉𝐿 = [𝑉(𝑧) − 𝑉(𝑧 + 𝛿𝑧)] 

= 𝑅𝛿𝑧𝐼 (𝑧 + 𝛿𝑧) + 𝐿𝛿𝑧
𝜕𝐼(𝑧 + 𝜕𝑧)

𝜕𝑡
 

Recall from first principles 

lim
𝛿𝑥→0

[
𝑓(𝑥 + 𝛿𝑥) − 𝑓(𝑥)

𝛿𝑥
] =

𝑑𝑓(𝑥)

𝑑𝑥
 

So,                                lim
𝛿𝑧→0

[
𝐼(𝑧 + 𝛿𝑧) − 𝐼(𝑧)

𝛿𝑧
] =

𝜕𝐼(𝑧)

𝜕𝑧
                                     

So that,                         𝐼(𝑧) − 𝐼(𝑧 + 𝛿𝑧) ≈ −
𝜕𝐼(𝑧)

𝜕𝑧
𝛿𝑧                                                           

Similarly,            𝑉(𝑧) − 𝑉(𝑧 + 𝛿𝑧) ≈ −
𝜕𝑉(𝑧)

𝜕𝑧
𝛿𝑧                                                                 

⟹                 
−𝜕𝐼(𝑧)

𝜕𝑧
𝛿𝑧 = 𝐶𝛿𝑧

𝜕𝑉(𝑧)

𝜕𝑡
+ 𝐺𝛿𝑧𝑉(𝑧)                                                        

𝜕𝐼(𝑧)

𝜕𝑧
= −(𝐺 + 𝐶

𝜕

𝜕𝑡
)𝑉(𝑧)                              

Similarly,           
𝜕𝑉(𝑧)

𝜕𝑧
= −(𝑅 + 𝐿

𝜕

𝜕𝑡
) 𝐼(𝑧 + 𝛿𝑧)                                                                 

                    ≈ − (𝑅 + 𝐿
𝜕

𝜕𝑡
) 𝐼(𝑧)                     for 𝛿𝑧 small 

For sinusoidal signals, dependence on line is expressed by 𝑒𝑗𝜔𝑡 and derivative 𝜕𝑡 expressed 

by 𝑗𝜔, (
𝑑

𝑑𝑡
𝑒𝑗𝜔𝑡 = 𝑗𝜔𝑒𝑗𝜔𝑡, recall), and partial derivatives then become total derivatives.  

𝑑𝐼

𝑑𝑧
= −(𝐺 + 𝑗𝜔𝐶)𝑉                                                     9.1 
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𝑑𝑉

𝑑𝑧
= −(𝑅 + 𝑗𝜔𝐿) 𝐼                                                     9.2 

Taking the second derivatives of 𝑉, from Eq (9.2),  

𝑑2𝑉

𝑑𝑧2
= −(𝑅 + 𝑗𝜔𝐿)

𝑑𝐼

𝑑𝑧
= (𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶)𝑉  = 𝛾2𝑉                   9.3 

9.1 Propagation Constant ′𝜸′  

Where 𝛾2 (gamma squared) = (𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

Eq. (9.3) above has as its solution, 

𝑉 = 𝑉1𝑒
−𝛾𝑧 + 𝑉2𝑒

𝛾𝑧                                                          9.4              

Where   𝛾 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)             9.5 

In general, 𝛾 is a complex quality, and can therefore be represented by  

𝛾 = 𝛼 + 𝑗𝛽 

Substituting this is the expression for 𝑉,  

                              𝑉 = 𝑉1𝑒
−(𝛼+𝑗𝛽)𝑧 + 𝑉2𝑒

(𝛼+𝑗𝛽)𝑧                                   9.6                

By a similar analysis, current is expressed with 𝐼′𝑠 replacing the 𝑉′𝑠 so, voltage at some 

point 𝑧 down the transmission line is made up of two components, namely: 

a. 𝑉1𝑒
−(𝛼+𝑗𝛽)𝑧 = 𝑉1𝑒

−𝛼𝑧𝑒−𝑗𝛽𝑧  whose amplitude decreases (is attenuated) as 

it travels down the line with 𝑧 as  𝑒−𝛼𝑧, while  𝑒−𝑗𝛽𝑧  is just a phase term with no 

effect on the amplitude. Therefore, this component is known as the forward, or 

incident wave.  

b. 𝑉2𝑒
(𝛼+𝑗𝛽)𝑧 = 𝑉2𝑒

𝛼𝑧𝑒𝑗𝛽𝑧 increases with increasing 𝑧, but since voltage must 

be attenuated as it travels along the line, 𝑧 must then decrease to accommodate 

this fact, therefore making this component to be known as the backward, or 

reflected, wave, caused by a mismatch between the transmission line and the load.  

So, the voltage at any point on the line a distance 𝑧 from the sending end is the shin of the 

voltages of the incident and reflected waves at the said point. 

Line parameters, 𝛼 and 𝛽 are determined by the line characteristics: 
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1. 𝛼 is known as attenuation coefficient, and the negative/positive 

exponential of this is the rate at which the forward/backward wave is attenuated, 

and is a function of R, L, G and C, with the unit being dB/m (decibels per metre) or 

repers/m.  

2. 𝛽 is the phase constant and shows the phase dependence of both the 

incident and the reflected waves with distance 𝑧 

𝛽𝜆 = 2𝜋 ⟹ 𝛽 =
2𝜋

𝜆
, where 𝜆 (Greek alphabet lambda) is the signal wavelength. 

3. 𝛾 (Gamma, Greek third alphabet) is the propagation constant, and is the 

complex sum of the attenuation coefficient and phase constant, where the former 

is the real part, and the letter the imaginary part. 𝛾 determines how the voltage (or 

by implication the current) along the line changes with 𝑧 

9.2 Characteristic Impedance  

From the Eq. (9.2),     
𝑑𝑉

𝑑𝑧
= −(𝑅 + 𝑗𝜔𝐿)𝐼,  

𝐼 = −
𝐼

𝑅 + 𝑗𝜔𝐿
×
𝑑𝑉

𝑑𝑧
 

Differentiating Eq. (9.4)  

𝑑𝑉

𝑑𝑧
= −𝛾𝑉1𝑒

−𝛾𝑧 + 𝛾𝑉2𝑒
𝛾𝑧 = 𝛾[𝑉2𝑒

𝛾𝑧 − 𝑉1𝑒
−𝛾𝑧] 

And substituting in the above for  

𝐼 = −
1

𝑅 + 𝑗𝜔𝐿
×  𝛾[𝑉2𝑒

𝛾𝑧 − 𝑉1𝑒
−𝛾𝑧] =

𝛾

𝑅 + 𝑗𝜔𝐿
× [𝑉1𝑒

−𝛾𝑧 − 𝑉2𝑒
𝛾𝑧] 

Substituting from Eq. (9.5) for 𝛾,  

I =
√(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶

(𝑅 + 𝑗𝜔𝐿)
× [𝑉1𝑒

−𝛾𝑧 − 𝑉2𝑒
𝛾𝑧] 

      ⟹         𝐼 = √(
𝐺 + 𝑗𝜔𝐶

𝑅 + 𝑗𝜔𝐿
) × [𝑉1𝑒

−𝛾𝑧 − 𝑉2𝑒
𝛾𝑧]                           9.7 

By analogy with Ohm’s law, 
𝐺+𝑗𝜔𝐶

𝑅+𝑗𝜔𝐿
, is an admittance. Therefore, 

𝑅+𝑗𝜔𝐿

𝐺+𝑗𝜔𝐶
  its reciprocal, is an 

impedance called the characteristic impedance of the transmission line, determined by the 

line parameters R, L, G & C. 



  Circuit Theory with Application  

238 
 

   𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
                                                   9.8 

Characteristic impedance 𝑍𝑜 can be variously described as: 

1. The value the load impedance must have to match the load to the line 

 (to either eliminate power loss, or at least minimize same), or  

2. The impedance seen from the sending end of an infinitely long line, or  

3. The impedance seen looking towards the load at any point on a matched 

 line, i.e moving along the line produces no change in the impedance 

 towards the load.  

The transmission line is idealized as follows:  

1. The line is uniform, straight and homogenous, 

2. Line parameters R, L, G and C do not vary with atmospheric conditions 

 like temperature and humidity.  

3. Line parameters do not depend on frequency, 

4. The analysis is applicable only between the junctions on the line because 

 the circuit model on Fig. 9.2 (one of the cascades) is invalid across a 

 junction  

The above assumptions may be occasionally taken into consideration as we analyze 

transmission line. 

9.3 Reflection from the Load  

Shown in Fig. 9.2 where, 𝑉1𝑒
−𝛾𝑙 is the incident wave, while 𝑉2𝑒

𝛾𝑙 is the reflected or 

backward, wave on a line with total length of 𝑙. If the load has an impedance equal to the 

characteristic impedance 𝑍0, therefore say that the line is matched, and there is no 

reflected wave (theoretically speaking) as the incident wave is totally absorbed by the load. 

It, however, the load is of a value different from 𝑍0, then some of the incident wave would 

be reflected, and the amount of reflection by the load. Is expressed in terms of voltage 

reflection coefficient, designated by the Greek letter 𝜌 (𝑟ℎ𝑜), and defined as the ratio of 

the reflected voltage to the incident voltage at the load terminals.  
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𝑉1𝑒
−𝛾𝑙  

𝑉2𝑒
𝛾𝑙  

𝑙 

𝑍𝐿  

Z 

                                                                              

Figure 9.2 Incident wave (𝑽𝟏𝒆
−𝜸𝒍)  and Reflected wave (𝑽𝟐𝒆

𝜸𝒍) 

 Given that the load is at the position 𝑧 = 𝑙,  

                    𝑉𝐿 = 𝑉1𝑒
−𝛾𝑙 + 𝑉2𝑒

𝛾𝑙                                              9.9 

     𝜌 =
𝑉2𝑒

𝛾𝑙

𝑉1𝑒−𝛾𝑙
= (

𝑉2
𝑉1
) 𝑒2𝛾𝑙 = |𝜌|𝑒𝑗𝜓                                       9.10 

Where the last indicates that 𝜌 in general would be a complex quantity that can be 

expressed in polar form with |𝜌| as the magnitude and 𝜓 as the phase angle of the 

reflection coefficient.  

From Eqs. (9.7) and (9.8)  

                          𝐼𝐿 = (
𝑉1
𝑍0
) 𝑒−𝛾𝑙 − (

𝑉2
𝑍0
) 𝑒𝛾𝑙                                        9.11       

𝑍𝐿 (Load impedance)=
𝑉𝐿

𝐼𝐿
 

And from Eqs. (9.9) and (9.11)  

𝑍𝐿 =
𝑉𝐿
𝐼𝐿
=

𝑉1𝑒
−𝛾𝑙 + 𝑉2𝑒

𝛾𝑙

[(
𝑉1

𝑍0
) 𝑒−𝛾𝑙 − (

𝑉2

𝑍0
) 𝑒𝛾𝑙]

 

Dividing through by 𝑉1𝑒
−𝛾𝑙 and multiplying by 𝑍0 

𝑍𝐿 = 𝑍0 (
[1 + (

𝑉2

𝑉1
) 𝑒2𝛾𝑙]

[1 − (
𝑉2

𝑉1
) 𝑒2𝛾𝑙]

) 

The term in the (inner) parenthesis namely (
𝑉2

𝑉1
) 𝑒2𝛾𝑙, is simply the voltage reflection 

coefficient 𝑒, leading to  
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𝑍𝐿 = 𝑍0 (
1 + 𝜌

1 − 𝜌
) , or rearrange                                                                                                   

                                𝜌𝑣 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

                                               9.12 

For 𝑍𝐿 = 0 (indicating short circuit load),  

𝜌 = −
𝑍0
𝑍0
= −1 ⟹ |𝜌| = 1, 𝜇 = 𝜋 

Note that 𝜇 ⟹ 𝜓 as in Eq 9.10. so, in place of 𝜓, we can use 𝜇 

For 𝑍𝐿 = ∞ (open circuit load):  

𝜌 =
𝑍𝐿
𝑍𝐿
= 1 ⟹ |𝜌| = 1, 𝜇 = 0 

By a similar analysis, current reflection coefficient is given by 

 𝜌𝐼 =
(𝑍0 − 𝑍𝐿)

𝑍0 + 𝑍𝐿
= −𝜌𝑉 

Where 𝜌𝑣  stands for voltage reflection coefficient.  

𝑍𝐿 = 0 ⟹ 𝜌𝐼 =
𝑍0
𝑍0
= 1,⟹ |𝜌| = 1, 𝜓 = 0 

Showing quality between the incident and reflected waves with no change in phase (with 

KCL taken at the no-load terminal).  

𝑍𝐿 = ∞ (open circuit) ⟹ 𝜌𝐼 = −
𝑍𝐿
𝑍𝐿
= −1 ⟹ |𝜌𝐼| = 1, 𝜓 = 𝜋 

Example 9.1: If  𝑍𝐿 = 75 + 𝑗50 Ω,   𝑍0 = 25 Ω, find the reflected coefficient  

𝜌 =
(75 + 𝑗50 − 25)

(75 + 𝑗50 + 25)
=
50 + 𝑗50

100 + 𝑗50
=
1 + 𝑗

2 + 𝑗
 

=
(1 + 𝑗)(2 − 𝑗)

22 + 1
=
3 + 𝑗

5
=
√10

5
∠ tan−1

1

3
= 0.63∠18. 43° 

Example 9.2: The lossless transmission line has characteristic impedance of 75 Ω and 

phase constant of 3rad/m at 100 MHz. Find inductance and capacitance of line/meter.  
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Solution: 𝑍0 = √
𝐿

𝐶
                                                                                                                          

γ = β = ω√𝐿𝐶 

𝑍0
𝛽
=

√
𝐿

𝐶

𝜔√𝐿𝐶
=

1

𝜔𝐶
 

75

3
× 2𝜋𝑓 =

1

𝐶
 

⟹                               25 × 2πf =
1

C
                                                                                                

⟹                        𝐶 =
1

25 × 6.28 × 108
                                                                                         

⟹                             𝐶 = 63.69 pF/m                                                                                                      

𝑍0
2𝐶 = 𝐿 

⟹   𝐿 = (75)2 × 63.69 × 10−12 = 358 nH/m  

Example 9.3: A lossless transmission is 80 cm long and operates at a frequency of 600 

MHz the line parameters are 𝐿 = 0.25 μH/m and 𝐶 = 100 pF/m. Find the characteristic 

impedance, the phase constant, and the phase velocity.  

 Solution: 

 Since the line is lossless, both R and G are zero. The characteristic impedance is  

𝑍0 = √
𝐿

𝐶
= √

0.25 × 10−6

100 × 10−12
= 50 Ω 

Since     𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

= 𝑗𝜔√𝐿𝐶       we see that   

𝛽 = 𝜔√𝐿𝐶 = 2𝜋 (600 × 106) √(0.25 × 106−6) (100 × 10−12) = 18.85 rad/m  

Also,   
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Vp =
𝜔

𝛽
=
2𝜋 (600 × 106)

18.85
= 2 × 108 m/s 

 

Figure 9.3 combination of ‘Short circuit Impedance A ‘, ‘Open circuit impedance B’ and 

when the line impedance equals the load impedance C 

9.4 Distortionless Line (
𝑹

𝑳
=

𝑮

𝑪
) 

 Distortionless line is the one in which attenuation constant ‘𝛼’ is frequency 

independent while phase constant is linearly dependent on frequency. 

(a) 𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿) (
𝑅𝐶

𝐿
+ 𝑗𝜔𝐶)    9.13 

= √
𝐶

𝐿
 (𝑅 + 𝑗𝜔𝐿) 

⟹                                     𝛼 = 𝑅√
𝐶

𝐿
 𝑎𝑛𝑑  𝛽 = 𝜔√𝐿𝐶                                       9.14   

 (b)                                               𝑉𝑝 =
𝜔

𝛽
=

1

√𝐿𝐶
                                                       9.15  
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(c)         𝑍0 = 𝑅0 + 𝑗𝑋0 = √
𝑅 (1 +

𝑗𝜔𝐿

𝑅
)

𝐺 (1 +
𝑗𝜔𝐶

𝐺
)
= √

𝑅

𝐺
= √

𝐿

𝐶
                                  9.16 

                ⟹                 𝑅0 = √
𝑅

𝐺
= √

𝐿

𝐶
;                  𝑋0 = 0                                 9.17 

A lossless line is also distortionless line, but a distortionless line is not necessarily lossless  

Example 9.4: A 60 Ω  distortionless transmission line has a capacitance of 0.15 nF/m  . The 

attenuation on the line is 0.01 dB/m. Calculate 

a. the line parameters: resistance, inductance and conductance per 

 meter of line 

b. velocity of propagation 

c. voltage at a distance of 1 km and 4 km with respect to sending 

 end voltage. 

 

Solution:  

For a distortionless line,  

𝑅

𝐿
=
𝐺

𝐶
 

𝑍0 = 𝑅0 = √
𝐿

𝐶
= 60 Ω 

and 

  𝛼 = 𝑅 √
𝐶

𝐿
= 0.01

dB

m
=
0.01

8.69
Np m⁄ = 1.15 × 10−3 Np/m 

Line parameters: 

𝑅 = 𝛼𝑅0 = (1.15 × 10
−3) × 60 = 0.069 Ω/m 

𝐿 = 𝐶𝑅0
2 = 0.15 × 10−9 × 602 = 0.54 μH/m 

𝐺 =
𝑅𝐶

𝐿
=

𝑅

𝑅0
2 =

0.059

602
= 19.2 μS/m 
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(b). 𝑉 =
1

√𝐿𝐶
=

1

√0.54×10−6×0.15×10−9
= 1.11 × 108 m/s 

(c). The ratio of two voltages at a distance x apart along the line 

𝑉2
𝑉1
= 𝑒−𝛼𝑥  

At 1 km 

𝑉2
𝑉1
= 𝑒−1000𝛼 = 𝑒−1.15 = 0.317 𝑜𝑟 31.7% 

At 4 km   

𝑉2
𝑉1
= 𝑒−4000𝛼 = 𝑒−4.6 = 0.01 𝑜𝑟 1% 

9.5 Low-Loss Dielectric  

 A low-loss dielectric is a good but imperfect insulator with a non-zero equivalent 

conductivity such that 𝑡" ≪ ∈ ′ or 
𝜎

𝜔∈
≪ 1. Under this condition 𝛾 can be approximated by 

using binomial expansion.  

𝛾 = 𝛼 + 𝑗𝛽 ≡ 𝑗𝜔√𝜇 ∈′  [1 −
𝑗 ∈′

2 ∈′
+
1

8
 (
∈ " 

𝑒′
)
2

] 

From which we can say  

𝛼 ≅
𝜔 ∈ " 

2
√
𝜇

∈
 (
𝑁𝑝

𝑚
)attenuation constant 

𝐴𝑛𝑑     𝛽 ≅ 𝜔√𝜇 ∈ [1 +
1

8
 (
𝜖"

𝜖′
)
2

] (
rad

m
)phase constant                                      

′𝛼′for low − loss dielectric is a positive quantity and 
is approximately directly proportional 

to frequency. β deviates only very slightly from value 2√𝜇 ∈  (lossless dielectric)
 

𝜂 = √
𝜇

𝜖
 (1 − 𝑗 

∈ ” 

∈′
)
−
1

2

≃ √
𝜇

∈′
 (1 + 𝑗

∈ " 

2 ∈′
) (Ω)  → intrinsic impedance 
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We can say that 
𝐸𝑥

𝐻𝑦
= 𝜂 and here the electric and magnetic field intensities in lossy 

dielectric are not in time phase as in lossless medium.  

𝑉𝑝 =
𝜔

𝛽
=

1

√𝜇 ∈′
 [1 −

1

8
 (
∈ " 

∈′
)
2

]m s⁄                    phase velocity  

 

9.6 Equivalent Circuit in Terms of Primary and Secondary Constants  

Equivalent T-section of a line of length 𝜹 

V(z)

I(z)  

𝐶𝛿𝑧 𝐺𝛿𝑧 

𝑅

2
𝛿𝑧 

 

 

𝐿

2
𝛿𝑧 

𝐿

2
𝛿𝑧 

𝑅

2
𝛿𝑧 

 

 

1

1'

2

2'  

Figure 9.3 Equivalent ′𝑻′ Transmission Line Circuit 

 

Equivalent 𝝅 −section of a line of length 𝜹 

1

1'

2

2'

𝐿𝛿𝑧 
𝑅𝛿𝑧 

𝐶

2
𝛿𝑧 

𝐺

2
𝛿𝑧 𝐺

2
𝛿𝑧 

𝐶

2
𝛿𝑧 

 

Figure 9.4 Equivalent ′𝝅′ Circuit  

Here,    𝑧 = (𝑅 + 𝑗𝜔𝐿) Ω;   𝑦 = (𝐺 + 𝑗𝜔𝐶) ℧ 

Secondary constants of line  
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a. The input impedance of line is called its characteristics impedance  

𝑍0 = √
𝑧

𝑦
= √

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
 

b. 𝛾 = 𝛼 + 𝑗𝛽                                                     (Propagation constant)  

• Real part 𝛼 of 𝛾 is measured of charge in magnitude of current or 

voltage in each 𝜏-section and called attenuation constant.  

• Imaginary part 𝛽 of 𝛾 equal difference in phase angle between the 

input current and the output current or the corresponding voltages and 

called phase shift constant.  

𝛾 = √𝑧𝑦 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

c. The phase shift constant or wavelength constant 𝛽 indicates the amount 

by which the phase of an input current changes in a unit distance. In a distance 

equal to one wavelength 𝜆, the phase shift is 2𝜋 radians, 𝜆 =
2𝜋

𝛽
, wavelength.  

d. The phase velocity of propagation is  

𝑣𝑝 = 𝑓𝜆 =
𝜔

𝛽
 

Example 9.5: An open wire transmission line has 𝑅 = 5 Ω/m, 𝐿 = 5.2 × 10−8 H/m, 

𝐺 = 6.2 × 10−3 Ω/m, 𝐶 = 2.13 × 10−13 F/m, frequency = 4 GHz. Find 𝑍0, 𝛾 𝑎𝑛𝑑 vf.  

Solution:  

v𝑝 =
1

√𝐿𝐶
=

1

√5.2 × 10−8 × 2.13 × 10−10
 

= 0.3 × 109 = 0.3 × 108 m/s 

𝜔 = 2𝜋𝑓 = 2𝜋 × 4 × 109 = 8𝜋 × 109 = 2.512 × 1016 rad 

𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
 

𝑅 + 𝑗𝜔𝐿 = 5 + 𝑗2.512 × 1010 × 5.2 × 10−8 

= 5 + 𝑗1306.24 = 1306.25 < 89. 78° 

𝐺 + 𝑗𝜔𝐿 = 6.2 × 10−3 + 𝑗2.512 × 1010 × 2.13 × 1010 
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= 6.2 × 10−3 + 𝑗5.35 = 8.18 < 40. 79° 

𝑍0 = 12.64 < 24.49
°  

𝛾 = √(𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶) 

𝛾 = 103.37 < 65.23°  

Example 9.6: A typical transmission line has a resistance of 8 Ω/km, impedance of               

2 mH/km, a capacitance of 0.002 μF/km and a conductance of 0.07 μs/km. Calculate 

the characteristic impedance, attenuation constant, phase constant of the transmission 

line at a frequency of 2 kHz. If a signal of 2 V is applied and the line terminated by its 

characteristic impedance, calculate the power delivered to load 

Solution: 

𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
 

= √
8 + 𝑗4𝜋 × 2 × 10−3 × 103

0.007 × 10−6 + 𝑗4𝜋 × 0.002 × 10−6 × 103
 

= 1.024 < −8.75𝑜 × 103 Ω 

= (1012.1 − 𝑗155.72) Ω 

 

𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶) 

√(8 + 𝑗4𝜋 × 2 × 10−3 × 103)(0.007 × 10−6 + 𝑗4𝜋 × 0.002 × 10−6 × 103) 

= 0.02574 < 81.09 = 0.003987 + 𝑗0.02543 

⟹  𝛼 = 0.003987 Np/km 

𝛽 = 0.02543 rad/km 

Input voltage 𝑉𝑠 = 2 V;  𝑙 = 500 km; 𝑍0 = 1012.1 Ω (real part) 

Since line is terminated in its characteristic impedance, 𝑍𝑖𝑛 = 𝑍0 = 𝑍𝐿  

I𝑠 =
𝑉𝑠
𝑍𝑖𝑛

=
2

1024 < −8.75𝑜 × 103
=

2

1024 < −8.75𝑜
= 1.953 < 8.75𝑜 mA 

𝐼𝑙 = 𝐼𝑠 𝑒
−𝛾𝑙 = (1.953 < 8.75𝑜)𝑒(−0.003987+𝑗0.02543)×500 

|𝐼𝑙| = 1.953 × 𝑒−1.9935 = 0.2669 mA 

𝑃 = |𝐼𝑙|
2 Real (𝑍0) = 1012.1 × (0.2669)2 = 72.1 μW 

𝑉𝑝 =
𝜔

𝛽
=
4𝜋 × 103

0.02543
= 494.22 km/s 
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Example 9.7: A 600 Ω lossless transmission line is fed by a 50 Ω generator. If the line is 

200 m long and terminated by load of 500 Ω, determine in 𝑑𝐵′𝑠. 

(i) Reflection loss 

(ii) Transmission loss 

(iii)  Return loss.  

Solution: 

𝜌 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

=
500 − 600

500 + 600
=
−100

1100
=
−1

100
=
−1

11
 

i. Reflection loss = 10 log10
1

1−|𝜌|2
= 10 log 10

1

1−(
1

121
)
= 0.036 dB 

ii. Transmission loss = Attenuation loss + Reflection loss  

= lossless + 0.036 

= 0 + 0.036 = 0.036 dB 

iii. Return loss = 10 log10|𝜌| = 10 log10 (
1

11
) = −10.414 dB 

 

9.7 Sending-End Impedance  

To determine the degree of mismatch between the source and line, we have to know the 

impedance that the combination of transmission line and load presents to the source. 

Sending end impedance is that looking into the line from the source: 

A

Zin
ZL

𝑙 

Z

                                            

   Figure 9.5 Sending end Impedance and Load Impedance 

from Eqs. (9.4), (9.7) and (9.8)  

𝑍𝐴 =
𝑉𝐴
𝐼𝐴
= 𝑍0  

𝑉1𝑒
−𝛾𝑧 + 𝑉2𝑒

𝛾𝑧

𝑉1𝑒−𝛾𝑧 − 𝑉2𝑒𝛾𝑧
 

From Eq. (9.10), 
𝑉2

𝑉1
= 𝑒−2𝛾𝑙 
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⟹                                             𝑍𝐴 = 𝑍0  (
𝑒−𝛾𝑧 + 𝜌 𝑒−2𝛾𝑙𝑒𝛾𝑧

𝑒−𝛾𝑧 − 𝜌 𝑒−2𝛾𝑙 𝑒𝛾𝑧
)                                                

After dividing through by 𝑉1 

Multiplying through by 𝑒𝛾𝑙  

𝑍𝐴 = 𝑍0  (
𝑒𝛾𝑙𝑒−𝛾𝑧 + 𝜌 𝑒𝛾𝑙−2𝛾𝑙𝑒𝛾𝑧

𝑒𝛾𝑙𝑒−𝛾𝑧 − 𝜌 𝑒𝛾𝑙−2𝛾𝑙 𝑒𝛾𝑧
) = 𝑍0 (

𝑒𝛾(𝑙−𝑧) + 𝜌𝑒−𝛾(𝑙−𝑧)

𝑒𝛾(𝑙−𝑧) − 𝜌𝑒𝛾(𝑙−𝑧)
) 

𝑙 − 𝑧 = 𝑥 from Fig.9.5 

⇒                                𝑍𝐴 = 𝑍0 (
𝑒𝛾𝑥 + 𝜌𝑒−𝛾𝑥

𝑒𝛾𝑥 − 𝜌𝑒−𝛾𝑥
)                                  

For           𝜌𝑉 =
(𝑍𝐿 − 𝑍0)

(𝑍𝐿 + 𝑍0)
                                                                                                         

𝑍𝐴 = 𝑍0 [
𝑒𝛾𝑥 + [

(𝑍𝐿−𝑍0)

(𝑍𝐿+𝑍0)
] 𝑒−𝛾𝑥

𝑒𝛾𝑥 − [
(𝑍𝐿−𝑍0)

(𝑍𝐿+𝑍0)
] 𝑒−𝛾𝑥

] 

Multiplying through by (𝑍𝐿 + 𝑍0) 

𝑍𝐴 = 𝑍0 [
(𝑍𝐿 + 𝑍0)𝑒

𝛾𝑥 + (𝑍𝐿 − 𝑍0)𝑒
−𝛾𝑥

(𝑍𝐿 + 𝑍0)𝑒
𝛾𝑥 − (𝑍𝐿 − 𝑍0)𝑒

−𝛾𝑥
] 

Factorizing, 

𝑍𝐴 = 𝑍0 [
𝑍𝐿(𝑒

𝛾𝑥 + 𝑒−𝛾𝑥) + 𝑍0(𝑒
𝛾𝑥 − 𝑒−𝛾𝑥)

𝑍𝐿(𝑒𝛾𝑥 − 𝑒−𝛾𝑥) + 𝑍0(𝑒𝛾𝑥 + 𝑒−𝛾𝑥)
] 

Dividing through by 2 to give hyperbolic functions  

𝑍𝐴 = 𝑍0 [
𝑍𝐿 cosh 𝛾𝑥 + 𝑍0 sinh 𝛾𝑥

𝑍𝐿 sinh 𝛾𝑥 + 𝑍0 cosh 𝛾𝑥
] 

Dividing through by cosh 𝛾𝑥, 

𝑍𝐴 = 𝑍0 [
𝑍𝐿 + 𝑍0 tanh 𝛾𝑥

𝑍𝐿 tanh 𝛾𝑥 + 𝑍0
] 

Putting 𝑥 = 𝑙, 𝑍𝐴 becomes 𝑍𝑖𝑛 (sending-end impedance) 
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⟹                                     𝑍𝑖𝑛 = [
𝑍0 𝑍𝐿 + 𝑍0

2 tanh 𝛾𝑙

𝑍𝐿 tanh 𝛾𝑙 + 𝑍0
]                                                9.18𝑎 

When normalized to the characteristic impedance 𝑍0,  

𝑧𝑖𝑛 =
𝑍𝑖𝑛
𝑍0

= [
𝑍𝐿 + 𝑍0 tanh 𝛾𝑙

𝑍𝐿 tanh 𝛾𝑙 + 𝑍0
]               

Normalized, load impedance 𝑧𝐿 =
𝑍𝐿

𝑍0
 

⟹                                         𝑧𝑖𝑛 = [
(
𝑍𝐿

𝑍0
) + tanh 𝛾𝑙

(
𝑍𝐿

𝑍0
) tanh 𝛾𝑙 + 1

]                                           9.18𝑏    

                                             𝑧𝑖𝑛 =
𝑧𝐿 + tanh𝛾𝑙

𝑧𝐿 tanh 𝛾𝑙 + 1
                                                    9.18𝑐  

9.8 Low Loss Lines  

Eq. (9.5):              𝛾 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

Factoring out 𝑗𝜔𝐿 and 𝑗𝜔𝐶,  

𝛾 = √(𝑗𝜔𝐿) (𝑗𝜔𝐶) (
𝑅

𝑗𝜔𝐿
+
𝑗𝜔𝐿

𝑗𝜔𝐿
) (

𝐺

𝑗𝜔𝐶
+
𝑗𝜔𝐶

𝑗𝜔𝐶
) 

= 𝑗𝜔√𝐿𝐶 (1 +
𝑅

𝑗𝜔𝐿
)

1

2

(1 +
𝐺

𝑗𝜔𝐶
)

1

2

 

Binomial series expansion of 𝛾 gives:    

𝛾 = 𝑗𝜔√𝐿𝐶 (1 +
𝑅

2𝑗𝜔𝐿
−
1

4
 
𝑅2

(𝑗𝜔𝐿)2
) × (1 +

𝐺

2𝑗𝜔𝐶
−

𝐺2

4(𝑗𝜔𝐶)2
) 

For low-loss lines, R and G are very small, and can therefore be ignored: 

⟹                    𝛾 ≈ 𝑗𝜔√𝐿𝐶  (1 +
𝑅

2𝑗𝜔𝐿
) × (1 +

𝐺

2𝑗𝜔𝐶
)                                             

= 𝑗𝜔√𝐿𝐶  (1 +
𝑅

2𝑗𝜔𝐿
+

𝐺

2𝑗𝜔𝐶
−

𝑅𝐺

(2𝑗𝜔)2𝐿𝐶
) 
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= 𝑗𝜔√𝐿𝐶  (1 +
𝐺

2𝑗𝜔𝐶
+

𝑅

2𝑗𝜔𝐿
−

𝑅𝐺

4𝜔2𝐿𝐶
) 

= 𝑗𝜔√𝐿𝐶  (1 −
𝑅𝐺

4𝜔2𝐿𝐶
−

𝑗𝑅

2𝜔𝐿
−

𝑗𝐺

2𝜔𝐶
) 

𝛾 = 𝛼 + 𝑗𝛽 = 𝜔√𝐿𝐶  (𝑗 −
𝑗𝑅𝐺

4𝜔2𝐿𝐶
−
𝑗2𝑅

2𝜔𝐿
−
𝑗2𝐺

2𝜔𝐶
) 

𝛼 + 𝑗𝛽 = 𝜔√𝐿𝐶 [(
𝑅

2𝜔𝐿
+

𝐺

2𝜔𝐶
) + 𝑗 (1 −

𝑅𝐺

4𝜔2𝐿𝐶
)] 

⟹                     𝛼 ≈ 𝜔√𝐿𝐶 (
𝑅

2𝜔𝐿
+

𝐺

2𝜔𝐶
) ,      𝛽 ≈ 𝜔√𝐿𝐶  (1 −

𝑅𝐺

4𝜔2𝐿𝐶
)               

              𝛼 ≈
𝑅

2
√
𝐶

𝐿
+
𝐺

2
 √
𝐿

𝐶
                                                            9.19 

𝛽 ≈ 𝜔√𝐿𝐶 (1 −
𝑅𝐺

4𝜔2𝐿𝐶
) 

R and G very small, so at high frequencies:  

            𝛽 ≈ 𝜔√𝐿𝐶                                                                          9.20 

Similarly,  

𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
= √

𝑗𝜔𝐿

𝑗𝜔𝐶
×
𝑗𝜔𝐶

𝑗𝜔𝐿
× (

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
) 

= √
𝑗𝜔𝐿

𝑗𝜔𝐶
(
𝑅

𝑗𝜔𝐿
+ 1) (

𝐺

𝑗𝜔𝐶
+ 1) = √

𝐿

𝐶
× (1 +

𝑅

𝑗𝜔𝐿
)

1

2

× (1 +
𝐺

𝑗𝜔𝐶
)

1

2

 

≈ √
𝐿

𝐶
× (1 +

𝑅

2𝑗𝜔𝐿
) × (1 −

𝐺

2𝑗𝜔𝐶
) 

By binomial expansion, with terms in 𝑅2, 𝐺2 neglected 

𝑍0 = √
𝐿

𝐶
 × (1 −

𝐺

2𝑗𝜔𝐶
+

𝑅

2𝑗𝜔𝐿
−

𝑅𝐺

4𝑗2𝜔2𝐿𝐶
) 
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≈ √
𝐿

𝐶
× (1 −

𝑗𝑅

2𝜔𝐿
+

𝑗𝐺

2𝜔𝐶
) 

          
𝑅

𝜔𝐿
,
𝐺

𝜔𝐶
 very small ⟹ 𝑍0 = √

𝐿

𝐶
                                    9.21   

Plugging Eq. 9.21 in 9.19 

                             𝛼 =
𝑅

2𝑍0
+
𝐺𝑍0
2

                                                             9.22 

9.9 Lines of Zero Loss  

For a relatively short line and operating at very high frequencies, it is reasonable to assume 

zero attenuation, i.e., lossless line  

⟹                               𝛼 = 0 =
𝑅

2𝑍0
+
𝐺𝑍0
2

⟹ 𝑍0
2 = −

𝑅

𝐺
                                            

⟹                                      𝑍0 = 𝑗√
𝑅

𝐺
                                                                                   

In this case 𝛾 = 𝛼 + 𝑗𝛽 = 0 + 𝑗𝛽 = 𝑗𝛽 

Replacing 𝛾 by 𝑗𝛽 in Eq. 9.18b 

     𝑧𝑖𝑛 =
𝑧𝐿 + tanh 𝑗𝛽𝑙

1 + 𝑧𝐿 tanh 𝑗𝛽𝑙
⟹

𝑧𝐿 + 𝑗 tan𝛽𝑙

1 + 𝑗𝑧𝐿 tan𝛽𝑙
                                 9.23 

9.10 Quarter Wave Transformer  

For a lossless line (𝛼 = 0) and replacing 𝛾 by 𝑗𝛽 in Eq. (9.18a)  

⟹                               𝑍𝑖𝑛 = 𝑍0  (
𝑍𝐿 + 𝑗 𝑍0 tan 𝛽𝑙

𝑍0 + 𝑗 𝑍𝐿 tan 𝛽𝑙
)                                                                   

⟹                               𝑍𝑖𝑛 = 𝑍0  (
𝑍𝐿/ tan𝛽𝑙 + 𝑗𝑍0
𝑍0/ tan𝛽𝑙 + 𝑗𝑍𝐿

)                                                                  

𝑑 = quarter wavelength long ⟹ tan 𝛽𝑙 = tan
𝜋

2
= ∞ 
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𝑍𝑖𝑛 = lim𝑍0 (

𝑍𝐿

𝑥
+ 𝑗 𝑍0

𝑍0

𝑥
+ 𝑗𝑍𝐿

) = 𝑍0 (
𝑗𝑍0
𝑗 𝑍𝐿

) =
𝑍0
𝑍𝐿

 

⟹                                            𝑍0
2 = 𝑍𝑖𝑛 𝑍𝐿                                                                    9.24           

For matching a given load to a given input impedance, a quarter wave section of lossless 

line is used with characteristics impedance of  

𝑍0 = √𝑍𝑖𝑛 𝑍𝐿  

Example 9.8: A 50 W lossless line has a length of 0.4𝜆. The operating frequency is 300 

MHz. A load 𝑍𝐿 = 40 + 𝑗30 Ω is connected at 𝑍 = 0, and the Thevenin equivalent source 

at 𝑍 = −1 is 12 < 0𝑜 V in series with 𝑍𝑇ℎ = 50 + 𝑗0 Ω. Find (a) ρ; (b) S; (c) 𝑍𝑖𝑛. 

Solution: 

Using 9.23,  

𝑍𝑖𝑛 =
(𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑙)

(𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑙)
 

Putting 𝑍𝐿 = ∞(we know that
1

∞
= 0) and dividing entire by 𝑍𝐿 we get  

So,      𝑍𝑖𝑛 = 𝑍0
(1 + 0)

(0 + 𝑗 tan𝛽𝑙)
=

𝑍0
𝑗 tan𝛽𝑙

=
𝑍0

𝑗 tan𝛽𝑙
= −𝑗 

𝑍0
tan 𝛽𝑙

         

Ans:  

(a) 0.333 < 90𝑜  

(b) 2.00 

(c) 25.5 + 𝑗5.90 Ω 

Example 9.9: Calculate the characteristic impedance of a quarter-wave transformer if a 

120 Ω load is to be matched to a 75 Ω line. 

Solution: 

 𝑍0 = √𝑍𝐿 𝑍𝑖𝑛 

⟹                     
𝑍0

2

𝑍𝑖𝑛
= 𝑍0 = √120 × 75 = 95Ω 
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9.11 Stubs  

Eq. (9.23) ⟹ 𝑧𝑖𝑛 =
𝑧𝐿+𝑗 tan𝛽𝑙

1+𝑗 𝑧𝐿 tan𝛽𝑙
 shows the variation of input impedance with the length of 

the line and this property can be used in stubs (short lengths of line) for matching 

applications. These are terminated in either short circuit or open circuit load.  

Open − circuit load ⟹ 𝑧𝐿 = ∞ = 𝑍𝑖𝑛 =
𝑧𝐿

𝑗𝑧𝐿 tan𝛽𝑙
                                                        

                        𝑧𝑖𝑛 =
1

𝑗 tan𝛽𝑙
= −𝑗 cot 𝛽𝑙                                                   9.25 

Short circuit load ⟹ 𝑧𝑖𝑛 =
0 + 𝑗 tan𝛽𝑙

1 + 0
= 𝑗 tan𝛽𝑙                                     9.26 

For lossless line:  

Positive 

reactance

Negative 

reactance

𝜆

4
 

𝜆

2
 

3𝜆

4
 

𝜆 5𝜆

4
 

3𝜆

2
 

Open-circuit stub Short-circuit stub

0

 

Figure 9.6 Stubs 

Example 9.10: An ideal lossless 
𝜆

4
 extension of line 𝑍0 = 60 Ω is terminated with 𝑍𝐿. Find 

𝑍𝑖𝑛 of extension when  

(i) 𝑍𝐿 = 0 

(ii) 𝑍𝐿 = ∞ 

(iii) 𝑍𝐿 = 60 Ω 

Solution 

i. 𝑍𝑖𝑛 = 𝑍0                               where 𝛽𝑙 =
2𝜋

∞
×
𝜆

4
 

𝑍𝑖𝑛 = 𝑗 𝑍0 tan 𝛽𝑙 = ∞                for 𝑍𝐿 = 0 
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ii. 𝑍𝑖𝑛 =
𝑍0

𝑗 tan𝛽𝑙
= 0      for        𝑍𝑖𝑛 = ∞ 

iii. 𝑍𝐿 = 60 Ω 

= 60 (
60 + 𝑗60 tan (

𝜋

2
)

60 + 𝑗60 tan (
𝜋

2
)
) = 60 Ω 

9.12 Standing Waves  

For a lossless line (𝛼 = 0), the total voltage at a point z from the sending end:  

⟹    𝑉 = (𝑉1𝑒
−𝑗𝛽𝑧 + 𝑉2𝑒

𝑗𝛽𝑧)𝑒𝑗𝜔𝑡 

Where 𝑒𝑗𝜔𝑡 indicates the time dependence.  

From 𝜌 = (
𝑉2

𝑉1
) 𝑒2𝛾𝑙     [Eq. (9.10)]       

𝑉 = 𝑉1𝑒
𝑗𝜔𝑡 [𝑒−𝑗𝛽(𝑙−𝑥) + (

𝑉2
𝑉1
) 𝑒𝑗𝛽𝑙 𝑒−𝑗𝛽𝑥] 

For lossless line, 𝜌 = (
𝑉2

𝑉1
) 𝑒2𝛾𝑙 = (

𝑉2

𝑉1
) 𝑒𝑗2𝛽𝑙 

Since,  𝛼 = 0 ⟹ 𝑉 = 𝑉1𝑒
𝑗𝜔𝑡 𝑒−𝑗𝛽𝑙 [𝑒𝑗𝛽𝑥 + 𝑒−𝑗𝛽𝑥]             9.27  

This is the equation representing voltage standing wave (VSWR), made up of two 

component waves, one of forward direction, and the other of backward direction reflected 

from the load.  

 For a short circuit load (𝜌 = −1) and without the time dependence,  

𝑉 = 𝑗2𝑉1 𝑒
−𝑗𝛽𝑙 [𝑒𝑗𝛽𝑥 − 𝑒−𝑗𝛽𝑥]  = 𝑅𝑒𝑉1𝑒

−𝑗𝛽𝑙 sin 𝛽𝑥 = 𝑉               9.28 

The real part of the absolute value (modulus) of Eq. (9.28) is  

|𝑉| = 𝑅𝑒|[𝑗2𝑉2𝑒
−𝑗𝛽𝑙 sin 𝛽𝑥]| 

= 𝑅𝑒|[𝑗2𝑉1(cos𝛽𝑙 − 𝑗 sin 𝛽𝑙)] sin 𝛽𝑥| 

= 𝑅𝑒 |[2𝑉1(𝑗 cos 𝛽𝑙 + sin 𝛽𝑙)] sin 𝛽𝑥| 

|𝑉| = 2𝑉1 |sin 𝛽𝑥| sin 𝛽𝑙        9.29  
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Figure 9.7 Standing Waves 

For an open-circuit load (𝜌 = 1) under the same conditions,  

𝑉 = 𝑉1𝑒
−𝑗𝛽𝑙(𝑒𝑗𝛽𝑥 + 𝑒−𝑗𝛽𝑥) = 2𝑉1𝑒

−𝑗𝛽𝑙 cos 𝛽𝑥 ⟹ |𝑉| = 2𝑉𝐿|cos𝛽𝑥| 

For a load in between short and open circuit, say 𝑒 = 0.6 + 𝑗0.3, 

𝑉 = 𝑉1𝑒
−𝑗𝛽𝑙[𝑒𝑗𝛽𝑥 + (0.6 + 𝑗0.3)𝑒−𝑗𝛽𝑥] 

|𝑉| = 𝑅𝑒[𝑉1𝑒
−𝑗𝛽𝑙 |𝑒𝑗𝛽𝑥 + (0.6 + 𝑗0.3)𝑒−𝑗𝛽𝑥|] 

From Eq. (9.29), for (𝑛 − 1)𝜋 = 𝛽𝑥, sin 𝛽𝑥 = 0, and the next minimum occurs at 

𝜋

𝛽
= (

𝜋
2𝜋

𝜆

) =
𝜆

2
 

It could be discerned that minima for short circuits occur at maxima for open circuit, and 

vice versa. Both the adjacent minima and maxima are separated by half a wavelength with 

the first minimum occurring at the load terminals for short circuit (maximum for open 

circuit). For a load in between, the minima and maxima the between zero and 2𝑉1, but 

with adjacent minima and maxima still half a wavelength apart.  

Voltage standing wave ratio (VSWR)  

 By definition,     VSWR ⟹ 𝑆 =
|𝑉𝑚𝑎𝑥|

|𝑉𝑚𝑖𝑛|
                                                                          

 1 ≤ 𝑆 ≤ ∞ and depends on the degree of mismatch at the load (reflection coefficient).  
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From Eq. (9.27), plugging in 𝜌 = |𝜌|𝑒𝑗𝜓 

                            𝑉 = 𝑉1𝑒
−𝑗𝛽𝑙[𝑒𝑗𝛽𝑥 + 𝜌𝑒−𝑗𝛽𝑥]                                                9.30 

                           𝑉 = 𝑉1𝑒
−𝑗𝛽 (𝑙 − 𝑥)[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥)]                               9.31 

                                |𝑉𝑚𝑎𝑥| = 𝑉1 (1 + |𝜌|)                                                        9.32 

When (𝜓 − 2𝛽𝑥) = 2(𝑚 − 1)𝜋,𝑚 = 1,2,3, …, i.e when 2 (𝑚 − 1) is a positive even 

number, making cos(𝜓 − 2𝛽𝑥) positive unity,  

                                 |𝑉𝑚𝑖𝑛| = 𝑉1(1 − |𝜌|)                                                    9.33 

When 𝜓 − 2𝛽𝑥) = (2𝑚 − 1),𝑚 = 1, 2, 3, … .. i.e when 2𝑚 − 1 is a positive odd number, 

making cos(𝜓 − 2𝛽𝑥) negative unity,  

                 𝑆 =
𝑉1(1 + |𝜌|)

𝑉1(1 − |𝜌|)
=
1 + |𝜌|

1 − |𝜌|
= 𝑆                                                      9.34 

⟹                                     |𝜌| =
𝑆 − 1

𝑆 + 1
                                                                9.36 

From Eq. (9.31) at the first voltage minimum, at 𝑥 = 𝑥𝑚𝑖𝑛 from the load,  

𝜓 − 2𝛽𝑥 = 𝜋 

𝜓 = 2𝛽𝑥𝑚𝑖𝑛 + 𝜋 ⟹ 𝑍 = 𝑍𝑚𝑖𝑛 = (
𝑉

𝐼
) 𝑥𝑚𝑖𝑛 

𝑍𝑚𝑖𝑛 =
𝑉𝑚𝑖𝑛
𝐼𝑚𝑖𝑛

=
𝑉1𝑒

−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥𝑚𝑖𝑛)]

(
𝑉1

𝑍0
) 𝑒−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛) − (

𝑉2

𝑍0
) 𝑒𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)

 

=
𝑉1𝑒

−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥𝑚𝑖𝑛) ]

𝑉1𝑒−𝑗𝛽
(𝑙−𝑥𝑚𝑖𝑛)[1 − |𝜌|𝑒𝑗𝜓−𝑗2𝛽𝑥𝑚𝑖𝑛 ]

𝑍0 

=
𝑉1𝑒

−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥𝑚𝑖𝑛) ]

𝑉1𝑒
−𝑗𝛽(𝑙−𝑥𝑚𝑖𝑛)[1 − |𝜌|𝑒𝑗(𝜓−𝑗2𝛽𝑥𝑚𝑖𝑛) ]

𝑍0 

    = 𝑍0 ×
1 + |𝜌|𝑒𝑗𝜋

1 − |𝜌|𝑒𝑗𝜋
 

But from trigonometry (Euler’s identity),  𝑒𝑗𝜋 = cos 𝜋 + 𝑗 sin 𝜋 = −1 
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                         = 𝑍0 ×
1 − |𝜌|

1 + |𝜌|
=
𝑍0
𝑆
= 𝑍𝑚𝑖𝑛                                          9.37 

Normalized to the characteristic impedance,  

                                               
𝑍𝑚𝑖𝑛
𝑍0

= 𝑧𝑚𝑖𝑛                                                          9.37a  

                                        𝑧𝑚𝑖𝑛 =
1

𝑆
                                                                     9.37b 

Similarly, 

𝑍𝑚𝑎𝑥 = 𝑍0 ×
1 + |𝜌|

1 − |𝜌|
 

   𝑍𝑚𝑎𝑥 = 𝑍0 𝑆                9.38 

  𝑆 = 𝑧𝑚𝑎𝑥         9.38a 

Example 9.11: A 50 Ω lossless transmission line is terminated by a load impedance, 

 𝑍𝐿 = 50 − 𝑗75 Ω. If the incident power is 100 mW. Find the power dissipated by the load.  

Solution: 

The reflection coefficient  ⟹ 𝜌 =
𝑍𝐿−𝑍0

𝑍𝐿+𝑍0
 

𝜌 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

=
50 − 𝑗75 − 50

50 − 𝑗75 + 50
= 0.36 − 𝑗 0.48 = 0.60 𝑒−𝑗93 

Then,  〈𝑃𝑡〉 = (1 − |𝜌|2)〈𝑃𝑖〉 = [1 − (0.60)
2](100) = 64 mW   

Impedance at a voltage minimum/maximum  

Example 9.12: A lossless transmission line of 𝑍0 = 100 Ω is terminated by an unknown 

impedance. The termination is found to be at a maximum of the voltage standing wave 

and the VSWR is 5. What is the value of terminating impedance? 

Solution:  

We know that 𝑍𝑚𝑎𝑥 = 𝑍0.(VSWR) as the termination is at maximum of the voltage 

standing wave.  

𝑍𝑚𝑎𝑥 = 100 × 5 = 500 Ω  
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9.13 Load Impedance an a Lossless Line  

This can be determined if the VSWR, wavelength (𝜆) and distance from the load to the 

nearest voltage minimum are known.  

Equation: 𝑉 = (𝑉1𝑒
−𝑗𝛽(𝑙−𝑥))[1 + |𝜌|𝑒𝑗(𝜓−2𝛽𝑥)] 

𝜓 − 2𝛽𝑥 = (2𝑚 − 1)𝜋, 𝑚 = 1, 2, 3, … 

𝑚 = 1 ⟹ 𝑥 = 𝑥𝑚𝑖𝑛 ⟹ 𝜓− 2𝛽𝑥 = 𝜋 

⟹    𝜓 = 2𝛽𝑥𝑚𝑖𝑛 + 𝜋       

                                    𝑍𝐿 = 𝑍0
1 + 𝜌

1 − 𝜌
= 𝑍0

1 + |𝑒| 𝑒𝑗𝜓

1 − |𝑒|𝑒𝑗𝜓
                                9.39 

From Eq (9.37) 

 𝑍𝐿 = 𝑍0 × [
1 + [

(𝑆−1)

(𝑆+1)
] 𝑒𝑗𝜓

1 − [
(𝑆−1)

(𝑆+1)
] 𝑒𝑗𝜓

] 

From Eq. (9.36)  

𝑍𝐿 = 𝑍0 × [
1 + [

(𝑆−1)

(𝑆+1)
] 𝑒𝑗(2𝛽𝑥𝑚𝑖𝑛 + 𝜋)

1 − [
(𝑆−1)

(𝑆+1)
] 𝑒𝑗(2𝛽𝑥𝑚𝑖𝑛  + 𝜋)

] 

𝑒𝑗𝜋 = cos𝜋 + 𝑗 sin 𝜋 = −1 ⟹ 𝑍𝐿 = 𝑍0 × [
1 + [

(𝑆−1)

(𝑆+1)
] 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛

1 − [
(𝑆−1)

(𝑆+1)
] 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛

] 

From Eq. (9.39)  

𝑍𝐿 =
(𝑆 + 1) + (𝑆 − 1)(−𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)

(𝑆 + 1) − (𝑆 − 1)(−𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)
× 𝑍0 

= 𝑍0 [
𝑆(1 − 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛) + (1 + 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)

𝑆(1 + 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛) + (1 − 𝑒𝑗2𝛽𝑥𝑚𝑖𝑛)
] 

Dividing both the numerator and denominator by 𝑒𝑗𝛽𝑥𝑚𝑖𝑛  
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𝑍𝐿 = 𝑍0 [
𝑆(𝑒𝑗𝛽𝑥𝑚𝑖𝑛 − 𝑒𝑗𝛽𝑥𝑚𝑖𝑛) + (𝑒−𝑗𝛽𝑥𝑚𝑖𝑛 + 𝑒𝑗𝛽𝑥𝑚𝑖𝑛)

𝑆(𝑒−𝑗𝛽𝑥𝑚𝑖𝑛 + 𝑒𝑗𝛽𝑥𝑚𝑖𝑛) + (𝑒−𝑗𝛽𝑥𝑚𝑖𝑛 − 𝑒𝑗𝛽𝑥𝑚𝑖𝑛)
] 

= 𝑍0
𝑆(−2𝑗 sin 𝛽𝑥𝑚𝑖𝑛) + 2 cos 𝛽𝑥𝑚𝑖𝑛
𝑆(2 cos𝛽𝑥𝑚𝑖𝑛) − 𝑗2 sin 𝛽𝑥𝑚𝑖𝑛

 

Dividing through by 2 cos 𝛽𝑥𝑚𝑖𝑛, 

𝑍𝐿 = 𝑍0  [
−𝑆𝑗 tan𝛽𝑥𝑚𝑖𝑛 + 1

𝑆 − 𝑗 tan𝛽𝑥𝑚𝑖𝑛
]                                   

                      𝑍𝐿 = 𝑍0 [
1 − 𝑗𝑆 tan𝛽𝑥𝑚𝑖𝑛
𝑆 − 𝑗 tan𝛽𝑥𝑚𝑖𝑛

]                                                  9.40 

Normalized load impedance, 
𝑍𝐿

𝑍0
, 

            𝑧𝐿 =
𝑍𝐿
𝑍0
=
1 − 𝑆 tanh 𝑗𝛽𝑥𝑚𝑖𝑛
𝑆 − tanh 𝑗𝛽𝑥𝑚𝑖𝑛

                                                        9.41 

Example 9.13:  A 100 Ω line feeding the antenna has  VSWR = 2 and the distance from 

load to the first minima is 10 cm. Design a single stub matching to make 𝑉𝑆𝑊𝑅 =  1. Given 

𝑓 =  150 MHz 

Solution:     VSWR = 2 

|𝜌| =
VSWR − 1

VSWR + 1
=
1

3
= 0.33 

F = 150 MHz 

𝜆 =
𝐶

𝑓
= 2 m 

We know that  

𝜓 − 2𝛽 𝑑𝑚𝑖𝑛 = 𝜋 

2𝛽 𝑑𝑚𝑖𝑛 = 𝜓 − 𝜋 = 2 ×
2𝜋

2
× 0.1 = 0.2𝜋 

The position of stub  

𝑙𝜓 =
𝜆

4𝜋
 (cos−1(𝜌) − 2𝛽 𝑑𝑚𝑖𝑛) 
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|𝑙𝜓| =
𝜆

4𝜋
(0.39𝜋 − 0.2𝜋) =

0.1

4𝜋
× (0.19𝜋) = 4.75 mm 

Length of stub = 𝑙𝑡 =
𝜆

2𝜋
tan−1 (

√1 − |𝜌|2

2|𝜌|
) =

𝜆

2𝜋
tan−1 (

√1 − |0.33|2

2(0.33)
) = 15 mm 

Example 9.14: A UHF transmission line operating at 1 GHz is connected to 𝑍𝐿 producing 

reflection coefficient 0.5∠30°. Design single stub matching. Find VSWR. 

Solution:     f = 1 GHz 

𝜆 =
3 × 108

1 × 109
= 0.3 m 

|𝜌| = 0.5 

VSWR =
1 + |𝜌|

1 − |𝜌|
=
1.5

0.5
= 3 

𝜓 = 30° =
𝜋

6
 rad  

𝑙𝑠 =
𝜆

4𝜋
(𝜓 + 𝜋 − cos−1(|𝜌|)) =

𝜆

4𝜋
(
𝜋

6
+ 𝜋 − cos−1(0.5)) 

=
𝜆

4𝜋
(
7𝜋

6
−
𝜋

3
) =

𝜆

4𝜋
×
5𝜋

6
=
5𝜆

24
=
1.5

24
= 6.25 cm 

Length of stub = lt =
𝜆

2𝜋
tan−1 (

√1 − |𝜌|2

2|𝜌|
)  

=
𝜆

2𝜋
tan−1 (

√1 − (0.5)2

2 × 0.5
) 

=
𝜆

2𝜋
× 0.227𝜋 = 3.4 cm 
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9.14 Further Examples 

1. A transmission line with the characteristic impedance of 250 Ω is terminated in a 

load of 100 Ω. If the load is dissipating a continuous sinusoidal power of 50 watts, 

calculate:  

(i) the reflection coefficient  

(ii)  Voltage standing wave ratio  

(iii)  reflected voltage |𝑉𝑟| 

 Solution: 

(i)  |𝜌| = |
100−250

100+250
| = 0.43 

(ii) 𝑉𝑆𝑊𝑅 (𝑆) =
(|𝜌|+1)

(1−|𝜌|)
=

1.43

0.57
= 2.50 

(iii)  50 =
(𝑉𝑚𝑎𝑥)(𝑉𝑚𝑖𝑛)

𝑍0
 

50 =
(𝑉𝑖 + 𝑉𝑟)(𝑉𝑖 − 𝑉𝑟)

250
 

𝑉𝑖
2 − 𝑉𝑟

2 = 12500 

𝑉𝑟 = √𝑉𝑖
2 − 12,500 = 0.43𝑉𝑖 

𝑉𝑖
2 = (0.43𝑉𝑖)

2 + 12500 

𝑉𝑖 = ±√
12500

(1 − 0.432)
 

= 123.84 V 

2. A lossless transmission line with 𝑍0 = 60 Ω  is 40 m long and operates at 3 MHz, 

the line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω. Given that 𝑢 = 0.8𝑐 on the 

line, determine analytically. 𝑐 = 3 × 108 m/s:  

(i)  Load admittance 

(ii)  Voltage reflection coefficient (magnitude & phase) 

(iii)  VSWR  

(iv)  𝑍𝑖𝑛 

(v)  𝑍𝑚𝑎𝑥  
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(vi)  𝑍𝑚𝑖𝑛 

Solution: 

(i)     𝑌𝐿 =
1

𝑍𝐿
=

1

(120 + 𝑗60)
=

(120 − 𝑗60)

(14400 + 3600)
= 0.0067 − 𝑗0.00333 Ω 

(ii)            𝜌 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

=
(120 + 𝑗60 − 80)

(120 + 𝑗60 + 80)
=
(40 + 𝑗60)

(200 + 𝑗60)
=
(2 + 𝑗3)

(10 + 𝑗3)
 

=
(2 + 𝑗3)(10 − 𝑗3)

(100 + 9)
=
(20 + 9 + 𝑗30 − 𝑗6)

109
= √292 + 242∠ tan−1 (

24

29
) 

𝜌 = 0.34∠39.64𝑜 

(iii)                                 𝑉𝑆𝑊𝑅 (𝑆) =
(1 + 0.34)

(1 − 0.34)
=
1.34

0.66
= 2.03                     

     (iv)     𝜆 =
𝑢

𝑓
=
(0.8)(3 × 108)

3
× 10−6 = 80 m ⟹ 𝛽𝑙 =

2𝜋

𝜆
(
40𝜆

80
) = 𝜋 

𝑍𝑖𝑛 = 𝑍0 [
𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑙

𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑙
] = 80 [

120 + 𝑗60 + 𝑗80 tan 𝜋

80 + 𝑗(120 + 𝑗60) tan𝜋
] = 80 [

120 + 𝑗60

80
] 

𝑍𝑖𝑛 = 120 + 𝑗60 Ω 

 (v)        𝑍𝑚𝑎𝑥 = 𝑍0 𝑆 = 80(2.03) = 162.4 Ω 

(vi)                           𝑍𝑚𝑖𝑛 =
𝑍0
𝑆
=

80

2.03
= 39.41 Ω                      

3. A distortionless line (𝑅𝐶 = 𝐺𝐿) has  𝑍0 = 80 Ω, 𝛼 = 25 mNP/m, 𝑢 = 0.5, where 

c is the speed of the light in a vacuum. Determine  

(i)  R 

(ii)   L 

(iii)   G 

(iv)   C  

(v)   𝜆   at 100 MHz,  (𝑐 = 3 × 108 m/s) 

 

Solution: 

𝑅𝐶 = 𝐺𝐿 ⟹ 𝐺 =
𝑅𝐶

𝐿
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⟹ 𝛾 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) = √𝑅𝐺√(1 +
𝑗𝜔𝐿

𝑅
) (+

𝑗𝜔𝐶

𝐺
) 

𝛾 = √𝑅𝐺 (1 +
𝑗𝜔𝐿

𝑅
) (1 +

𝑗𝜔𝐿

𝑅
) = √𝑅𝐺 (1 +

𝑗𝜔𝐿

𝑅
) = 𝛼 + 𝑗𝛽 

𝛼 = √𝑅𝐺 

𝛽 = √𝑅𝐺  (
𝜔𝐿

𝑅
) = √𝑅𝐺 (

𝜔𝐶

𝐺
) = 𝜔𝐶√

𝑅

𝐺
= 𝜔(√

𝐿

𝐶
) = 𝜔√𝐿𝐶 

𝑍0 = √
𝑅

𝐺
 

𝛼𝑍0 = (√𝑅𝐺) (√
𝑅

𝐺
) = 𝑅 

𝑅 = (25 × 10−3) (80) = 2 Ω 

𝑢 =
𝜔

𝛽
=

𝜔

𝜔√𝐿𝐶
=

1

√𝐿𝐶
⟹

𝑍0
𝑢
=

(√
𝑅

𝐺
)

𝑢
= (√

𝐿

𝐶
)√𝐿𝐶 = 𝐿 

𝐿 =
80

(0.5)(3 × 108)
 

𝐺 =
𝐿2

𝑅
=
(25 × 10−3)2

2
= 625 ×

10−6

2
= 312.54 V/m 

𝐶 =
𝐺𝐿

𝑅
=
(312.5 × 10−6)(533.33 × 10−9)

2
= 83.33 pF 

𝜆 =
𝑐

𝑓
=
0.5 × 3 × 108

100
× 10−6 = 1.5 m 
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9.15 Exercise  

1.  (i) In not more than 15 words, define (explain) what is meant by transmission line. 

(ii) Sketch and completely label 2 types of Transmission line 

(iii) Name and explain the parameters involved in a typical transmission line. 

2. (i) Define reflection coefficient.  

(ii) Under what load conditions will there be total reflection from the load.  

(iii) For lines of zero loss for a quarter wave transformer, determine the expression 

 for the characteristic impedance in forms of the input and load impedance. 

(iv) In what way does the quarter wavelength section of a transmission line act as 

 impedance transformer? 

3. (i)  What is a stub, and how is it applied to the transmission line?  

 (ii) Derive the expression for reflection coefficient in terms of load and 

characteristic impedances.  

4. What does (i) VSWR = 1 (ii) VSWR = ∞, signify with reference to matching of 

the  transmission line to the load?  

5. A transmission line with the characteristic impedance of 250 Ω is terminated in a 

 load of 100 Ω. If the load is dissipating a continuous sinusoidal power of 50 watts, 

 calculate:  

(i) The reflection coefficient  

(ii) Voltage standing wave ratio  

(iii) Reflected voltage |𝑉𝑟| 

6. Two voltage waves having equal frequencies and amplitudes propagate in 

opposite directions in a lossless transmission line.  

(i) Determine the total voltage as a function of distance and time.  

(ii) What kind of wave results (relating its behaviour with respect to position and 

time)?  

(iii) Where do the zeros in the amplitude (i.e., null position) occur? 

7. A lossless transmission line of 100 cm and operates at a frequency of 300 MHz, 

the line parameters are 𝐿 = 0.5 μH/m and 𝐶 = 200 pF/m. determine:  

(a)  The characteristic impedance 

(b)  The phase constant  

 (c)  The phase velocity.  

8. (i) Define the characteristic impedance of a typical transmission line  

(ii) In what other way can it be viewed  
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9. An airline has a characteristic impedance of 60 Ω and a phase constant of 2 rad/m 

 at 80 MHz, calculate the inductance/meter and the capacitance/meter of the line. 

 (𝑅 = 0 = 𝐺, 𝛼 = 0) 

10. What is meant by a distortionless line? 

11. A distortionless line (𝑅𝐶 = 𝐺𝐿) has 𝑍0 = 160 Ω, 𝛼 = 50 𝑚Np/m, 𝑢 = 0.8, 

where c is the speed of the light in a vacuum. Determine R, L, G, C and 𝜆 at 

  100 MHz,  (𝑐 = 3 × 108 m/s) 

12. (i) Show that at high frequencies: 

  (𝑅 ≪ 𝜔𝐿, 𝐺 ≪ 𝜔𝐿), 𝛾 = (
𝑅

2
√
𝐶

𝐿
+
𝐺

2
√
𝐿

𝐶
) + 𝑗𝜔√𝐿𝐶 

  (ii)  Obtain a similar formula for 𝑍0 

13. (i) Define reflection coefficient 

 (ii)  Under what load conditions will there be total reflection from the load  

14. Derive the expression for reflection coefficient in terms of load and characteristic 

 impedances.  

15. (i) Define the characteristic impedance of a typical transmission line  

        (ii)  In what other way can it be viewed  

16. An airline has a characteristic impedance of 80 Ω and a phase constant of 3.5 

rad/m at 100 MHz, calculate the inductance/meter and the capacitance/meter of the 

line. (𝑅 = 0 = 𝐺, 𝛼 = 0) 

17. What is meant by a distortionless line? 

18. A distortionless line (𝑅𝐶 = 𝐺𝐿) has 𝑍0 = 80 Ω, 𝛼 = 25 mNp/m, 𝑢 = 0.5𝑐, where 

 c is the speed of the light in a vacuum. Determine R, L, G, C and 𝜆 at 100 MHz, 

 (𝑐 = 3 × 108 m/s). 

19. An airline has a characteristic impedance of 200 Ω and a phase constant of 4 

rad/m at 180 MHz Calculate the inductance/meter and the capacitance/meter of the 

line. (𝑅 = 0 = 𝐺, 𝛼 = 0) 

20. A distortionless line (𝑅𝐶 = 𝐺𝐿) has 𝑍0 = 120Ω, 𝛼 = 50 mNp/m, 𝑢 = 0.75𝑐, 

where c is the speed of the light in a vacuum. Determine at 160 MHz, 

 (𝑐 = 3 × 108 m/s). 

(i) R 

(ii)  L 

(iii)  G 

(iv)  C and 𝜆 
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21.  A lossless transmission line is 100 cm and operates at a frequency of 400 MHz the 

 line parameters are 𝐿 = 0.75 μH/m and 𝐶 = 300 pF/m. determine. 

 (a)  The characteristic impedance. 

 (b)  The phase constant. 

 (c)  The phase velocity. 

22. A load of 25 + 𝑗50 Ω terminates a 50 Ω line, given that the line is 60cm long and 

 the signal wavelength 2m, 𝑐 = 3 × 108 m/s. Determine analytically:  

(i) The load admittance. 

(ii) The reflection coefficient (amplitude and phase).  

(iii) Voltage Standing Wave Ratio. 

(iv) Input impedance.   

23. A lossless transmission line of characteristic impedance 150 Ω is terminated in a 

 load of 350 + 𝑗200 Ω, given that the length of the line is 80 cm and the signal 

 wavelength is 50 cm, 𝑐 = 3 × 108 m/s determine analytically the: 

(i) Load admittance.  

(ii) Reflection coefficient VSWR.  

(iii) Distance between the load and the nearest voltage minimum to it normalized 

input impedance. 

24. A lossless transmission line with 𝑍0 = 60 Ω is 80 m long and operates at 6 MHz, the 

 line is terminated with a load of 𝑍𝐿 = 120 + 𝑗60 Ω. Given that 𝑢 = 0.5𝑐 on the 

 line, determine analytically. 𝑐 = 3 × 108 m/s:  

(vii) Load admittance. 

(viii) Voltage reflection coefficient (magnitude & phase). 

(ix) VSWR.  

(x) 𝑍𝑖𝑛 

25. In a lossless transmission line, the velocity of propagation is 3.5 × 108 m/s. 

 capacitance of the line is 40 pF/m. determine:   

(i) Inductance per meter of the line.  

(ii) Phase constant at 100 MHz 

(iii) The characteristic impedance.  

26. A lossless transmission line is 100 cm and operates at a frequency of 300 MHz the 

 line parameters are 𝐿 = 0.5 μH/m and 𝐶 = 200 pF/m. determine:  

(a)  The characteristic impedance.  

(b)  The phase constant. 

(c)  The phase velocity.  
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Name…………………………………………………………………………... 

REG NUMBER……...………………………………………………………. 

 

Figure Q 
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INDEX 
A 

ABCD-parameters 109 

Active elements 8,44,201 

A.C Component 202 

Active filter              201,222,225 

Admittance parameters 98,105 

Alpha                            61,145,233 

Alternating current  2,202,204 

Amplifier              202,225 

Anti-symmetrical 127 

Attenuation 205,237,247 

Attenuators 202 

Attenuation coefficient 233 

Attenuation constant             238,243 

Attenuation loss             244 

Asymmetrical  131 

Asymptotic Magnitude Plot 172,177 

Asymptotic plots 172,210 

Audio frequency  225 

Automatic control systems 96 

B 

Band-pass filter   130,207 

 

 

Band-stop filter    202,206,222 

Binomial expansion 240,247 

Black box 129 

Bode plots 153,160,199,225 

Breakpoint 210,216 

Break frequency 210 

Broadcast frequency 141 

C 

Capacitance 11,74,229,237,263 

Capacitors 1,11,43,100,142,203,225 

Capacitor coupling 202 

Characteristic impedance 233,254,263 

Cascade 110,115,129,225,234 

Choke  203 

Clockwise 117 

Circuit  1,98,163,220,240 

Coaxial cables 228 

Coefficients 27,76,230 

Communication engineering 228 

Complementary solution 1 

Complete response 4,26,31,45,77,94 

Complex conjugates 62,67,149,186 

Complex frequency 60,145,208,223 
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Complex quantity 66,142,235 

Conductance              229,239,243 

Constants 27,67,77,95,159,241 

Corner Frequency 174,190,210,227 

Critically damped 62,70,77,81,86 

Crystal filters               207 

Current    1,10,52,101,202,230 

Current response 2,5,41,71 

Cutoff frequency 141,199,223 

D 

Damped sinusoidal 62,68,208 

D.C Component            202 

D.C Input               202 

D.C Source                      80 

D.C Voltage               202 

Decaying signal    6 

Decibel (dB) 153 

Decibel scale 152 

Delta  230 

Differential equations  59,85,230 

Distortionless 239,259,262 

Driving-point impedances 100 

Driving source  1,8,28,42 

Duality Principle 14,16 

Dummy variables 28 

Duality  3,14,16,70 

E 

Electrical 2,23,44,98,131,201,228 

Energy absorbed 6,15 

Energy conservation 2,29 

Energy-storage   1,59,78 

Engineering 6,98,228,266 

Exponential damping coefficient 61 

Exponential function 28 

Exponentially decaying 5,12,42 

Euler’s identity 253 

F 

Feedback system 187,190,192 

Filter 59,129,205 

First derivative   11 

First-order 2,27,41,59 

First-order differential equation 27,28 

Forced  1,31,45,77,141 

Forcing function 1,42,141 

Forced response 1,27,47,77 

Frequency 2,64,76,80,190, 247,264 

Frequency domain 159,199 

Frequency-domain RC circuit 1 
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Frequency response 141,156,207 

G 

Gain 96,111,132,212,230 

Gain K 159,200 

Gamma 232,233 

Generator 58,132,203 

General solution 65 

H 

High-pass filter 205,218,231 

Homogeneous  1,28,41 

Homogeneous response 29 

Homogenous solution  1 

I 

Images impedance 127 

Imaginary part  66,145,160,185,233,242 

Immittance parameters   105 

Impedance parameters 99,104 

Impedance-matching 98,201 

Incident voltage 235 

Inductors 2,22,43,100,205 

Inductance 74,229,239,262 

Interference filters 207 

Insertion loss 132,134,139 

Initial inductor current 39,59,69 

Initial current 5,22,37,58,62 

Initial conditions 1,25,65,85,90,142 

Initially charged capacitor 11,26 

Infinite” length 229 

Integration constant 12 

Intricate cascades 228 

Iterative impedance 131 

K 

KCL 11,25,44,60,78,84,117, 

220,231 

Kirchhoff's laws 36 

KVL 4,22,69,76,85 

L 

Lambda 233 

LC filters 201,225 

Length 129,250,257 

Load impedance 203,225,246,260 

Logarithmic Scales 157 

Long time 9,18,20,48,58,95 

Lossless line 239,249,255 

Low-loss dielectric 240 

Low-pass filter  130,208,215,227 

L-section 128 

‘L’ network 127 
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L-type Resonant filter 206 

M 

Magnitude plot 156,165,172,180,184, 

193 

Magnitude plot Analysis 187,190 

Matrix 98,104,114,120,138 

Maximum value 63,71,74,85,202 

Maximum voltage response 64 

Maximum power transfer 118,119 

Mesh analysis 112,116,117 

Microwave filters 201 

Mismatch 232,244,252 

N 

Natural 1,9,30,35,42,45,59,69,74,85,229 

Number 2,12,28,67,132,165,171,189,229 

Natural number-based 28 

Natural response 4,5,12,27,69,74,80 

Neper 61,64,132,134,145,208 

Neper frequency 61,64,145,208 

Network parameter 27,35,41,61 

Normalized 209,218,246256,263 

Notch frequency 206 

O 

Ohm’s law 8,41,44,112,234 

Open-circuit load 252 

Open circuit 18,34,80,99,111,238,252 

Open circuit impedance 238 

Ordinary differential equation 230 

Output port 100,102,104,107,117,118, 

Over-damped 62,66,69 

P 

Parallel 2,17,41,61,70,81,180,207,229 

Parallel resonant 141,206 

Parallel R-L-C circuit 59,64,78 

Particular solution 27 

Passive elements 59,94,201,225 

Passive filter 201,222,225 

Passive network 2 

Phase angle 2,42,156,160,167 

Phase Angle Plot 156, 170,190,193 

Phase constant   233,240,261 

Phase response   207,211,213 

Power delivered 132,210,243 

Power gain            153 

Poles 149,159,169,170,190,199,225 

Poles or zeros 159,169,170,186 

Pole-zero constellations 155 

Polynomial 142,148,151,155 
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Port 31,45,76,96,105,112,138,164,228 

Propagation constant 129,233,242 

Power dissipated 6,15,254 

Power-time filters 207 

Practical capacitor 15,59 

Practical inductor 16,59 

Q 

Quadratic factors 159,180,186 

Quadratic pole 181,185,193 

Quarter wavelength 248,261 

R 

Radian frequency 23,64,145 

Radio                           141,201,228 

Real and equal roots 62 

Reciprocal 14,100,128,153,211 

Reciprocal network 100,103,105,129 

Reflected voltage 258,261,263 

Reflected wave 232,234,236 

Reflection loss  244 

Resistance               11,41,137,217,239,243 

Resonant filters  206 

Resonant frequency 62,66 

RLC circuit 42,59,69,79,95 

RLC filters               225 

S 

Second order               2,71,79 

Secondary constants  241,242 

Second-order system  29 

Sending end impedance 244 

Semi-log Papers  157 

Series resonant  207,220,225 

Short-circuit 105,107,117,129, 203 

Short-circuit impedance 129 

Short circuit load  236,250 

Signal 1,14,23,36,41,62,97,141,233,262                        

Source-free circuit 8,30,59,77 

Standing waves 251,252 

Steady-state 1,34,45,80,141 

Step response              24,38,78,80 

Stored energy               4,31 

STUBS                             250 

Symmetrical network  127,131,135 

Symmetry                100,113 

Symmetric                113 

T 

Tau     13,30 

Terminal voltages    98,104,109 

T-equivalent circuit    100,101 



  Circuit Theory with Application  

275 
 

The Source-Free RC Circuit 10 

T-filter                             207 

Time constant     5,13,23,35,41,180,190 

Time-domain RC circuit   143 

Total response       1,29,46,80 

Transfer admittance      97,105,111,142 

Transfer impedance      97,100,111,142 

Transitory                   1 

Transmission                      109,113,140 

Transmission lines       110,228,229 

Transmission line parameters    109,113, 

Transmission loss                  244 

Transient 1,7,31, 47,59,76 

Transient response                   31,45,80 

T-section                 128,241 

T-type network 110,113, 114,115 

Two-Port network     105,115,139 

Trigonometric functions     28 

Thevenin equivalent           16,46,118, 249 

Transient Analysis     1 

V 

Velocity           241,243,267 

Voltage   1,11,20,30,45,84,154,208 

Voltage minimum/maximum 254 

U 

Unsymmetrical 131 

Under-damped 62,68,70 

Unequal roots  62 

W 

Wavelength 228,248,255,263 

Wavelength constant 242 

Y 

Y-parameters 104 

Z 

Zero 2,15,44,162,176,194,237 

Z-parameters 99,101
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