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Preface

This book originates from notes used in teaching Electrical Circuit Theory courses at the
third-year level of Electrical and Electronics Engineering Department, Federal Polytechnic,
Oko, Anambra State, Nigeria. Along with other materials gathered by the author during his
degree and post-degree years of academic pursuit, and over fifteen (15) years of teaching
experience in accordance with course curriculum guidelines from the National Board for
Technical Education (NBTE), this text, “CIRCUIT THEORY with Application for
Undergraduate Students”, was written.

The content of each chapter was designed to accommodate Higher National Diploma
(HND) and Bachelor of Science/Engineering (B.Sc./B.Eng.) undergraduate students as the
materials presented were made comprehensive enough to cover both classes of programs
at their mid-course levels.

Chapters 1 and 2 cover the basic knowledge of transients in inductive and capacitive
circuits in first-order systems as a function of circuit parameters and time constant.
Chapters 3 and 4 discuss transients in RLC circuits, in both series and parallel
configuration. Damping factors in damping conditions are also investigated.

Chapter 5 covers two-port networks in impedance-, admittance- and transmission-
parameters (z-, y- and t-parameters) as functions of the proverbial “black box”. Also
discussed are the image impedance and insertion loss of various networks.

Chapters 6, 7 and 8 cover, respectively, pole-zero constellations, Bode plots and Filters.

Chapter 9 discusses in detail, small-signal transmission lines, with primary and secondary
constants.

At the end of the chapters are enough review problems designed to help the students
exercise their level of comprehension of the treated matters, and by so doing internalize
the underlying principles of the lessons taught.
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CHAPTER 1
TRANSIENT ANALYSIS

1.0 Introduction

By “transient” is implied transitory with respect to processes or conditions that do not
last, that is, phenomena that are temporary by their nature or circumstances. So,
Transient Analysis has to do with the response of an (electrical) circuit between two
distinct steady-state conditions. We usually require the behaviour of voltage or current
signal during the transition that takes place between two steady states the first of which
can be, for instance, opening or closing of a switch in a typical circuit that has, prior to
the switching action, been closed or open (respectively as the case might have been) for
alongtime. The “long time” here simply means long enough for the circuit to have settled
down, “settling down” which in turn means that all the energy-storage elements in the
circuit (typically capacitors and inductors) have been energized (that is, if previously de-
energized prior to the switching action) or fully de-energized (if previously energized
before witching action). This might take just a few ticks of seconds-hand of the clock, or
even subdivisions of this!

After the switch is thrown (i.e., opened or closed), the circuit is “disturbed”, some
process takes place, and thereafter the circuit once again settles down to a new steady
state. In the absence of a driving source (voltage or current) the circuit is thereafter
“deadened” and reverts to its state prior to the original energizing action. If, however, a
driving source is present, its effect is then the sole result that remains after all the others
have reverted to their original, de-energized state prior to the energizing action.

The task before us is to investigate what takes place during the aforementioned
transition between the two distinct steady states. When no driving source (this is known
in calculus as forcing function) is present, then the response is entirely dependent on the

initial conditions of the energy storage elements, and this is known as the “natural” (in
mathematics, homogeneous) response. If, however, a driving source is present, the

response would have two components namely:

1. a homogeneous solution (explained above) that depends, as mentioned earlier,
entirely on the initial conditions of the circuit elements (parameters);
2. acomplementary solution that replicates the nature of the forcing function.



By the last statement is meant, for instance, if the forcing function is a constant quantity,
then the forced-response component of the total response would also be a (possibly
scaled up/down) constant quantity. If a dc (direct current) potential difference (voltage
source) is applied at the input, then a dc voltage (or current) would result at the output
terminals. [Applying a dc current source would likewise give rise to a dc voltage (or
current) response.] If, on the other hand, an ac (alternating current) signal is applied,
then an ac forced response is obtained, again with a possibly scaled-up/down amplitude
but strictly of the same frequency (and perhaps — in fact, usually — a different phase
angle) as the input signal. [While we’re at it, it’s pertinent to point out here, as implicitly
elucidated in the foregoing statements, as learnt in basic electrical circuit course, that a
voltage source at the input can entirely result in current (does not have to be just voltage)
at the output, and vice versa. There’s no hard and fast rule, it all depends on the
designer’s objective. However, the article of faith is that, the frequency of the forced part
must stay true to its origin regardless of the nature of the inputting signal].

We usually require a current response through an inductor or a voltage response across
a capacitor, the obvious reason being, as learnt in an earlier course, that these quantities
cannot change in zero time (i.e., instantaneously) through or across, these respective
elements. (Law of energy conservation would not permit the above to be violated since
that would imply the ability to come up with infinite amount or unlimited supply of
energy!)

Circuits with one energy storage element (capacitor or inductor) are known as first-order
circuits, whereas those with two energy storage elements [including both capacitor(s)
and inductor(s)] are called second order-circuits. A typical first order circuit has a voltage
or current source in series or parallel with a resistor and a capacitor or an inductor, and
possibly switch(es). Regardless of any number of resistors, switches and capacitors or
inductors that are involved, it’s still a first-order circuit so long as it does not mix
capacitor(s) and inductor(s). In this case, only one initial condition is required to
determine the response. A second-order circuit would, on the other hand, contain both
capacitor(s) and inductor(s) along with voltage and/or current sources(s), possibly in
addition to other passive network elements. Any number of resistors involved, as was
the case for a first-order circuit, is immaterial since a resistor only dissipates energy and
cannot store.



1.1 First-Order System

Any system with the ability to store energy in one form or to dissipate energy
stored, is a first-order system; so is any system with a single energy storage element
[capacitor(s) or inductor(s)] and a combination of sources and resistors (and possibly
switches). The three factors that uniquely determine the response of a first-order system
are;

1. initial conditions,
2.  steady-state solution,
3. thetime constant.

The response can be with respect to the variation of either voltage or current. In this
aspect it is convenient to consider the voltage across a capacitor, or current through an
inductor since these quantities, as explained earlier, respectively do not charge in zero
time (instantaneously) in these elements. Recall the relationship between voltage
across, and current through, an inductor; and (dually) current through, and voltage
across, a capacitor:

v, (t) = Ldiéit), i (t) = %f v, (O)dt; 1.1
ic(t) = Cdv;t(t), ve(t) = %j i-(D)dt 1.1a

Where v, , i; are voltage across, and current through, an inductor; i., v being current
through, and voltage across, a capacitor, respectively. (Note the duality between these
two pairs of relationships).

From elementary science, it was taught that if current through an inductor were to
dig (t)
Tatr
would then be infinite. Infinite voltage means infinite driven current which in turn means

change instantaneously, this would require an infinite supply of energy since

infinite energy (W = %Liz), a physical impossibility that violates law that energy cannot

be created (or destroyed, but can only be transformed from one form to another)! The
duality of the foregoing applies to voltage across a capacitor. Instantaneous change vis-
a-vis voltage implies infinite current which in turn means infinite voltage resulting in

unlimited supply of energy (W = %Cvz), thereby again violating the law of energy

conservation.



What all the foregoing means is that the value of a typical voltage across a capacitor
just prior to throwing a circuit switch (opening or closing), v-(07), in the same just after
the switch is thrown, v-(0%). So,

vc(0%) = vc(07) = v (0) 12
The above applies to current with respect to an inductor:
i,(0) =1i,(07) =i,(0) 1.2a

Voltage and current in a circuit are due to the superposition of two effects, namely,

(i) The presence of stored energy (which can either decay, or further accumulate if
a source is present) (ii) The action of external source(s) [forcing function(s) as they
are called in mathematics]. The response is in two parts: a. Natural response — consider
stored energy; b. Forced response — consider external sources.

Complete response is the sum of the two. We bear in mind that, depending on the values
and/or configuration of circuit elements, either of the two components of the total
response might entirely predominate, thereby necessitating that the other ought to be
ignored for all practical purposes!

1.1.1 Source-Free RL Circuit

-

Y Y'Y

- A ¢
a4+
M
Py

Figure 1.1 a source-free inductive circuit

Consider the series connection of a resistor and an inductor, as shown in Fig. 1.1. Our
goal is to determine the circuit response, which we’ll assume to be the current i(t)
through the inductor (also obviously through the resistor). We select the inductor
current as the response in order to take advantage of the idea that the inductor current
cannot change instantaneously. At t = 0, we assume that the inductor has an initial
current [, or

i(0) = I,



Applying KVL we have that

Ri+v, =0 13
di
Ri+L—=0 1.4
dt
di
a Tt
di R
a- L'
di —R
T=Td 1.5

Att = 0 the currentis I,
Integrating Eq 1.5, we have Eq 1.6
‘Wgi  (t-R
[

t

; —Rt
lnilﬁgt) =—

0
—R
Ini(t) —Inl, = T(t_ 0)

i(t) —Rt

I, L

In

i(t
O aep

Iy
1.6

i(t) = I,e Rt/L

Thus, the natural response of the RL circuit is an exponentially decaying result of the
initial current. The current response is shown in Fig. 1.2. It is evident from Eq 1.6 that the

time constant for the RL circuit is
1.7




with 7 again having the unit of seconds. Thus, Eq 1.6 may be written as

i(t) = I,e /" 1.8
With the current in Eq 1.8, we can find the voltage across the resistor as
vr(t) = iR = IyRe™t/* 1.9
The power dissipated in the resistor is
p = vgi = I¢Re™?t/" 1.10

The energy absorbed by the resistor is

Ztt

t t 2t 1 2t 1 2t
wr(t) = f pdt =f [2Re " dt = —EflgRe | = —EtlgR(e = — 1) joules;
0 0

0

L
=R
or
1
Wi(t) = EL1§(1 — e 2]
/o,
At t=r1
i(t
5 ) =e 1=03679 = i(r) =0.3679I,
o)

Check fort = 271, 31

At, for instance, t = 57, i(t) = (I,)e~> =~ 0.0071,, that’s less than one percent of the
original magnitude of the signal of interest (i.e., it's equally applicable to voltage). What
it entails is that, although a decaying signal theoretically never get to be exactly zero

6



except at time 't’ tends to infinity), yet for all practical purposes it’s virtually that, as far
as an engineering designer is concerned!

Example 1.1: For the circuit of Fig 1.3, determine the voltage of the 40 () resistor as a
function of time and the circuit parameters.

Figure 1.3

Solution:

The assumption is always made that circuit conditions are “long” enough to have settled
down the circuit so that a steady state condition has been reached. In the above circuit,
prior to opening the switch it is assumed that it had been closed long enough for the
inductor (energy storage element) to have been fully energized (by the presence of the
dc battery). The switching action then takes the battery entirely out of the circuit so that
it becomes sources-free. The response v(t) thus is entirely a natural (“transient”) one
that depends on the initial conditions of the circuit elements, and whose duration
depends on the time constant of this particular circuit (Leg/Req).

] di
KVLatt =0%: —U+101L+5a=0
Ohm’s law:
o
LT T
10v d v
= —yp—— 45— (——) =
VT30 T dt( 40)
dv
Rationalizing, —40v—-10v—-5—=0

dt



= % + 10v = 0, leading to the characteristic equation: s + 10 = 0,

producing the single root at s = —10.
= v(t) = Ke 1% with K as yet-to-be determined constant.
From the initial conditions, i, (07) = % = 2.4 A since the inductor presents a short

circuit to the dc battery.

But i,(07) =1i,(07) =1i,(0) = 2.4 A for the reason that has been severally
adduced [current does not change instantaneously (finite change in zero time) through
an inductor].

= v(07) = i(0%) x 40 Q, by ohm’s law
=(-24A)x400=-96V=Ke’ =K
= v(t) = —96e~10tVy

Taking cognizance of the time constant, which is easily determined in this case of first
order circuit by inspection, the nature of the answer could have been readily written
down:

_L(eq) 5H
"“Req) (40 +10)Q

after removing the battery. So, time constant

=—=0.1
T 0 0.1s

t
= i, (t) = Ke o1 = Ke™ 1% and the rest of the procedure is as the foregoing.
and the rest of the procedure is as the foregoing.

To determine the voltage across the 40 Q resistor (which, incidentally, was the original
requirement),

Vo (t) = 40 X (—2.4 e710t) = —96e~10t Y
as before when it was derived directly. At, say, t = 100 ms,

v(100 ms) = —96e~10(100x107%) — _gge-1 = _3532V



The negative result indicates a “wrong” orientation of the battery, meaning that a
“positive” voltage would have been obtained simply by reversing the polarity of any of
the network active elements.

The foregoing analysis has to do with a source-free circuit, that is, a circuit with no driving
source (forcing function). The sole purpose of the dc source (i.e., the battery) in the just
concluded example above, was to initially energize the elements (that are “energize-
able”), in this case just the series inductor, and thereafter it’s taken entirely out of the
circuit.

Example 1.2: In the circuit shown in Fig. 1.4, the switch has been open for a long time
and then suddenly closed at t = 0. Determine i, (t). Hence att = 0.15 s find the
values of (a) i;, (b) i; (c) i,

2Q

0.4H
2A Q) =0 80

Figure 1.4
Solution:

By current division rule,

8
lL(O) =1, =m><2 =16A

2

i (t) = Ioe‘(ﬁ)t =1.6e StAAtt = 0.15s,

(a) i;(0.15) = 1.6e~5x015) = (.756 A
(b) i; = 0 A (Short circuit)
(c) i, =2—0.756 = 1.244 A

[Note: the current source plays no role after t= 0, so the response is entirely a natural
one.]



Example 1.3: The switch in the RL circuit shown in Fig. 1.5 is moved from position 1 to
position 2 at t = 0. Obtain

(@) wvg and v, with polarities as indicated.
(b) The powers dissipated Py and P;,

on

ORI

4H

Figure 1.5
Solution:
(ai) For Vg
At position1 (i.e.t < 0): i(07)=i(0")=2A
At t > 0 position 2

4 1
100 25

i(t) =i(0M)e /T = 2725t A

T =

Since the same current passes through the resistor,
Ve = iR = (2e7251)(100) = 200e 25tV
(aii) ForV/;

v, = % = 4—d(22:5t) = —200e~25¢
(b) For Pgand P,
Recall Pz = IVy = (2e725%)(200e72%Y)  Pp = 400e™25(725t = 400e >0t W

P, =1v,
But, V, = 4= (2¢72) = —200e 5V P, = —200e~25¢ x 2725 = —400e~5% W
10



1.1.2 The Source-Free RC Circuit

A source-free RC circuit occurs when its dc source is suddenly disconnected. The energy
already stored in the capacitor is released to the resistors.

= i ir(t)
C +

1)

Figure 1.6: Source-free RC circuit
Consider a series combination of a resistor and an initially charged capacitor, as shown
in Fig. 1.6. (The resistor and capacitor may be the equivalent resistance and equivalent
capacitance of combinations of resistors and capacitors.) Our objective is to determine
the circuit response, which, for pedagogical reasons, we assume to be the voltage v(t)
across the capacitor. Since the capacitor was initially charged, we can assume that at
time t = 0, the initial voltage is

v(0) =V, 1.11
with the corresponding value of the energy stored as
1
w(0) = ECVO2 1.12

Applying KCL at the top node of the circuit in Fig. 1.6 yields

ic+irg=0 1.13
] dv ] v
From i, = CE and i = R’
dv v
—+ == 1.14
Cdt +R 0 a
dv v
—+—=0 1.14b
dt + RC

This is a first-order differential equation, since only the first derivative of v is involved.
Rearranging,

11



dv

— = ——dt 1.15
v RC

1 = ‘ +InA

nv= RC n

with In A as the integration constant of the indefinite integral. (What do you think would
have resulted if we chose simply A, instead of in A, as the constant of integration? Let
the reader discern!) Thus,

In—-=-—— 1.16

Taking power of exponential e [so-called “natural number” (find out its value by raising
same to the power of 1 using your pocket calculator!), not to be confused with natural
response as their technical relationship is merely mathematically coincidental!]
produces

v(t) = Ae t/RC
But from the initial conditions, v(0) = A = V.
Hence, v(t) = Vye t/RC 1.17

So, the voltage response of the RC circuit is an exponentially decaying result of the initial
voltage. Since the response is due to the initial energy stored and the physical
characteristics of the circuit, and not due to some external voltage or current source, it’s
called the natural response of the circuit.

The natural response of a circuit refers to the response (in terms of voltages and currents)
of circuit itself, with no external sources of excitation.

vk
Vo —]

0.368V, /

_t
Voe =

Figure 1.7 The voltage response of RC circuit
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The natural response is illustrated graphically in Fig. 1.7. Note that at £ = 0, we have the
correct initial condition asin Eq (1.11). As t increases, the voltage decreases toward zero.
The rapidity with which the voltage decreases is expressed in terms of the time constant,
denoted by 7, the lowercase Greek letter tau. The time constant of a circuit is the time

required for the response to decay to a factor of é or approximately 36.8 percent, of its

initial value.
Thatis,att = 7, Eq (1.17) becomes

Voe */RC = Y e~1 = 0.368V,
or

118

In terms of the time constant, Eq (1.17) can be written as

v(t) = Vye /7 1.19

With a calculator it is easy to show that the value of ? is as shown in Table 1.1. It is
0

evident from Table 1.1 that the voltage v(t) is less than | percent of V; after 5t (five
time-constants). Thus, it is customary to assume that the capacitor is fully discharged (or
charged) after five-time constants. In other words, it takes approximately 5t for the
circuit to reach its final state or steady state when no changes take place with time (i.e.,

in the absence of a forcing function). Notice that for every time interval of 7, the voltage
is reduced by 36.8 percent of its previous value: v(t + 1) = ? = 0.368v(t), regardless

of the value of t.

Table 1.1
v(t
Values of (©) = l/T
o
t v(t)
7
T 0.36788
2T 0.13534
3T 0.04979
4T 0.01832

13



5t 0.00674
Observe from Eq (1.18) that the smaller the time constant, the more rapidly the voltage
decreases, that is, the faster the response.

This is illustrated in Fig. 1.9. A circuit with a small-time constant gives a comparatively
fast response in that it reaches the steady state (i.e., final value) due to quick dissipation
of energy stored, whereas a circuit with a large time constant by comparison, gives a
slow response because it takes longer to reach steady state. Whether time constant is
small or large, however, the circuit reaches steady state in five time-constants.

UV A

Tangent at t=0
0.50

0.37

0.25

Figure 1.8 Graphical determination of the time constant T from the response curve
With the voltage v(t) in Eq (1.19), we can find the current iz (t),

v(t V.
in(t) = % = Eoe—t/f 1.20

The time constant may be viewed from another perspective. Evaluating the derivative of
v(t), in Eq (1.17) at t = 0 we obtain

()
dt \1,

(Employ Duality Principle to predict that for RL circuit.) Thus, the (negative) reciprocal of

— _ie—t/RC — 1 1

RC —o _RC

t=0 T

the time constant is the initial rate of decay, or the time taken for Vi to decay from unity
0

to zero, assuming a constant rate of decay. So, viewed from another perspective, time
constant is the time taken by a signal to decay to zero, if it were to theoretically keep

14



decaying at the same initial rate. But we know that, in reality, the rate of decay is not
constant but rather keeps changing and getting (in this particular case) less negative (i.e.,
increasing) as its approaches zero.

This initial slope interpretation is used in the laboratory to find 7 graphically from the
response of an oscilloscope. To find T from the response curve, draw the tangent to the
curve att = 0, as shown in Fig. 1.8. The tangent intercepts with the time axisat t = 1.

Figure 1.9 Plot of Vi = et/ for various values of the time constant
0

The power dissipated in the resistor is
VZ
p(t) = vig = F"e—Zt/r 1.21
The energy absorbed by the resistor up to time t is

v RC\VZ _at 1 at
we(t) = f%e‘”/mdt = —(7>?0e_ﬁ +k = —ECVOZe‘E + k 1.22

With k, the constant of the indefinite integral, as the initial (internal) energy stored in
the system. kis ideally nonzero for this particular circuit [a practical capacitor is modeled

15



as an ideal capacitor in parallel with some (internal) resistance]. Ignoring k, however, and
the minus sign since energy is a scalar quantity (or it can be viewed as capacitor
dissipating energy to, instead of absorbing from, the resistor), capacitor energy is
expressed as

1
we(t) = ECVOZe‘Zt/RC joules ()) 1.23

Note: If the capacitor is replaced with a practical inductor — modeled as an ideal inductor
in series with some (internal) resistance — then the required response would be current,
meaning that duality principle would tell us that the corresponding energy expression is

1
w(t) = ELVOZe‘ZtR/L | 1.24

Notice thatast — 0, wgz(0) — %CVO2 which is the same as w(0), the energy “initially”

stored in the capacitor. The energy that was initially stored in the capacitor is eventually
dissipated in the resistor. In summary:

The keys to working with a source-free RC circuit are:

(1) The initial voltage v(0) = V,, across the capacitor
(2) The time constant T

With these two items sorted out from the particular circuit configuration, we readily
obtain the response of the capacitor voltage v, (t) = v(t) = Vye /" With this, other
variables (capacitor current i., resistor voltage vy, and resistor current ig) can be
determined. In finding the time constant; T = RC, R is often the Thevenin equivalent
resistance at the terminals of the capacitor; that is, we take out the capacitor C and find
R = Rpy, atits terminals.

Example 1.4: In Fig. 1.10, let v-(0) = 15 V. Find v, v,and i, fort > 0.

8 Q

sa

== 01F 12Q

- A 4+

Figure 1.10
16



Solution:

We first need to make the circuit in Fig 1.10 conform to the standard RC circuit in Fig 1.6.
We find the equivalent resistance or the Thevenin resistance at the capacitor terminals.
Our objective is always to first obtain capacitor voltage v.. From this, we can determine
v, and i,.. The 8 Q and 12 Q resistors in series can be combined to give a 20 Q resistor.
This 20 Q resistor in parallel with the 5 Q resistor can be combined so that the equivalent
resistance is

_20><5_
12045

Hence, the equivalent circuit is as shown in Fig. 1.10a, which is analogous to Fig.1.6.
The time constant is
T=R,qC =4(01)=04s

§ Req = = 0.1F

Figure 1.10a Equivalent circuit for the circuit in Fig. 1.10

Thus,
v = v(0)e~t/T = 15e~t/94 y, = v = 1525y
From Fig. 1.10 we can use voltage division to get v,:

12
12+ 8

v, = v = 0.6(15e72°t) = 925ty

Finally,
vx

iy =75 = 0.75¢™>% A

17



Example 1.5: The switch in the circuit in Fig.1.11 has been closed for a long time, and it
is opened at t = 0. Find v(t) for t > 0. Calculate the initial energy stored in the

capacitor.
t=0
30 10
R ST VWA—
+
Figure 1.11
Solution:

For t < 0 the switch is closed; the capacitor is an open circuit to dc, as represented in
Fig.1.11.1(a). Using voltage division,

9
ve(t) =——=(20) =15V, t<o0
c(®) =575 (20)
Since the voltage across the capacitor cannot change instantaneously, the voltage across
the capacitoratt = 0~ is the same att = 0*(or 0), or
Uc(O) = VO == 15 V

For t > 0, the switch is opened, and we have the RC circuit shown in Fig. 1.11.1(b).
[Notice that the RC circuit in Fig. 1.11.1(b) is source-free; the independent source in Fig.
1.11 is needed to provide the initial energy in the capacitor.] The 1 Q and 9 Q resistors in
series give

Ryg=1+9=10Q

18



3Q 1Q

AVAVAY, o
+
¥ 90 <
C) 20V § 3
o
(a)
1Q
o AVAVAY,
+_—

§ 28 Ve=t5v < [ 20mF

(b)
Figure1.11.1(a) t<O0,(b) t >0

The time constant is

T=ReqC=1O><20><10_3=0.25

Thus, the voltage across the capacitor fort > 0 is

v(t) = v (0)e~t/T = 15¢~t/02y
orv(t) = 157>tV

The initial energy stored in the capacitor is

1 1
we(0) =5 CvE(0) =5 X 20 X 1073 x 15% = 2.25]

Example 1.6: Att = 0, the switch in Fig.1.12 is moved from position 1 to 2. Solve for
i(t); determine voltage across each 250 kQ resistor of the circuitatt = 1s

19



1 t=0 2
_ 5 2
250 KQ § 250 KQ
20V ___
—+— 500 pF
i
Figure 1.12

At t<0 wvc(0)=20V

At t>0T=R..C
7= (500 x 103)(500 x 107°)

T=250s
t
v(t) = 20e 250 V = 200004t y
dv _d(20e70004r)
ic(t) = C — =500 x10 GT

i.(t) =500 % 107° x 20 X (—0.004)e 0004t

i.(t) = —4 X 1075¢0-004¢
= —40e™0004t A

The voltage across resistor is v (t) = i (t)R

vp(t) = (—40 X 1070e70004) v x 250 kQ)
vp(1) = —40 x 1070e0-004(1) x 250 x 103

Att=1s

vp(1) = —10e7000% = _996V

Example 1.6: For the circuit in Fig. 1.13, the switch has been open for a long time

Determine ] att = 0%

20



t=0

IS ANE SR S

Figure 1.13
Solution:
1(0™ =3><(—)=1.5A
%) 3+1+2
= V,q(07)=15%x2=3V
Vo0 (07) =3V
3V
1(0%) = -(_) — 34
= I1(0%) 10 3

Example 1.7: For the circuit Fig.1.14, given that V = 10 V, determine d’;—(tt) at the given

instant in time

5Q
AVAVAY O
glon =1 F
— 20V 4 <
o
Figure 1.14
Solution:
) _ 10V —1A
lioa = 100
20—10
iSQ - % - 2 A
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=c dve .
le = =1 —1

. ladv,
T3 dr

=2A-1A=1A

= %=4><1A=4V/s

Alternatively, applying KVL to the loop
—20+5i; +10(i; —i,) =0 = 15i; —10i, =20
V+103,—-i) =0
—10i; +10i, = —10
for V=10V

%k
Solving Eqgs ** and * simultaneously,
dv(t)
,=ic=1A& i;,=2A=C
i, =ic i It
dv.(t i 1
(@ e 1,
dt c 0.25
1.2 Exercises 2. For the circuit Fig. 2 the switch has

1. (a) For the circuit Fig. 1, express the

been open for a long time. Determine |

att =07,
voltage of the 50 Q resistor as a
. . N ;
function of time and circuit AN,
parameters. (b) What are the initial e 1a
currents through each of the two § i 05 p——
. . . . 2Q
resistors and the inductors in Fig. 1? (DM §
20Q
t=0
vy =50 ——3ov % o Figure. 2
w ! 3. For the circuit of Fig. 3, switch is
Figure. 1 closed for a long time, then opened at

22



t = 0. Determine current through the 4. Given the voltage signal v(t) =
1uF capacitoratt = 07. 5sin(0.57 + /3) V determine (i)

dian f i oh
6. In Fig. 4, identify the element/parts radian frequency (i) phase (iii)

A,B,C,DandE;j, k|, mandn. Then
match each electrical component with 5. Why is it usually required, as a

frequency in hertz (iv) the period

its mechanical counterpart. transient response, either current

A oG

10

—— 5V 1pF —— 4ﬂ§

through an inductor, or voltage across

a capacitor?

Figure. 3
|
K 1 [
m B D
hy h, A C

W
v

Coupled tank diagram Electrical equivalent circiut

Figure. 4
7. Given R = 2 MQ in RC circuit of the form of Fig. 5, C if we want a time constant of 10 s
Answer: C = 5 X 107°F = 5 puF
8. To what voltage V,, of the capacitor of Fig. 5 decay over a period of one time constant?

Answer: V. (t) = 0.368V,
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CHAPTER 2
DRIVEN R-L AND R-C CIRCUITS

2.0 R-CCircuit with Step Response
We now consider a simple R-C series circuit shown Fig. 2.1:

R

+ VR -

ir(t)

Figure 2.1 RC Driven Circuit

Applying Kirchhoff’s Voltage Law (KVL) to the single loop gives:

t

. 10
—vs(t) + ig()R + Ef oozR(t) dt =0 2.1

Rearranging, and noting that the derivative of an integral expression would produce the
original (zeroth derivative) function, we then differentiate across to obtain:

dig(t) 1 dv,(t)

R—a +ELR(t): dt

2.2

When the dc source of an RC circuit is suddenly applied, the voltage or current source
can be modeled as a step function, and the response is known as a step response.

The step response of a circuit is its behaviour when the excitation is the step function,
which may be a voltage or a current source. The step response is the response of the
circuit due to a sudden application of a dc voltage or current source.
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(a) (b)

Figure 2.1.1(a) An RC circuit with voltage step input; (b) an equivalent circuit

Consider the RC circuit in Fig. 2.1.1(a) which can be replaced by the circuit in Fig. 2.1.1(b),
where V;is a constant dc voltage source. Again, we select the capacitor voltage as the
circuit response to be determined. We assume an initial voltage 1, on the capacitor,
although this is not necessary for the step response. Since the voltage of a capacitor
cannot change instantaneously,

v(07) =v(0") =V, 2.3
Where v(07) is the voltage across the capacitor just before switching and v(0%)is its
voltage immediately after switching. Applying KCL, we have
dv v —Vu(t
4+ —5() =0
dt R
Or
dv v |74
—_— + —_—
dt RC RC
where v is the voltage across the capacitor. Rearranging terms, Eq (2.4) becomes, for
t>0,

2.4

_dv_v-¥, 25
dt RC '
or
dv dt
U—Vsz_ﬁ 2.6

Integrating both sides and introducing the initial conditions,

t t

In(v — VIR = ——

nw =W =~
t

Info(8) = ;1= In (V= 1)) = =2+ 0
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Or

ml—Y% 1t 2.7
"Wo—v.” "RC '

Taking the exponential of both sides

v—V .
=e ", T=RC
w-v ~ 7
v—Vy= Vo= Ve /"
Or
v(t) =V, + (Vo= V)e /5t >0 2.8
Vo t<0
Th = 2.
s v(®) {Vs +(WVo—V)e ™ t>0 9
or, more compactly,
v(t) = Vou(=t) + [Vs + (Vo — V)e /" lu(t) V 2.9b

[*NB: A quick review of the unit-step function might be helpful here!]

This is known as the complete response (or total response) of the RC circuit to a sudden
application of a dc voltage source, assuming the capacitor is initially charged. The reason
for the term "complete" will become evident a little later. Assuming that Vs> Vo, a plot
of v(t) is shown in Fig. 2.2. [Food for thought: What would the Fig 2.2 look like for the
case Vs< Vopl!]

Figure 2.2 Response of an RC with initially charged capacitor

If the capacitor is uncharged initially, then V, = 0 in Eq (2.9) so that

_ (0, t<o0 210
v(®) = {Vs(l —e /)t >0 '
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which can be written more compactly as
v(t) =Vs(1—e /u) Vv 2.11

This is the complete step response of the RC circuit when the capacitor is initially
uncharged. The current through the capacitor is obtained from Eq (2.11) using current-
voltage relation for capacitor:

dv 1
[ =(— = —_—_—— —t/t
i(t)y==C It C (0 T) Vee YTu(t),

With t = RC,
V
i(t) = Ese_t/RCu(t) A
Eq 2.2 can be seen as a typical first-order differential equation, whose general form is:

dx (t)
dt

a, + apx(t) = f(t) 2.12

where x(t) represents either the capacitor voltage or inductor current, and f(t) may be
a voltage or current source (called forcing function in calculus), the reason being, as has
been severally adduced, that these quantities cannot change in zero time (i.e.,
instantaneously) across and through, the respective circuit elements. It is called a linear
first-order ordinary constant-coefficient differential equation. It’s linear because terms

2
like [x(£)]? or [d’;—(tt)] , do not appearin the equation. It is first-order because the highest

derivative is once; and ordinary because no partial derivatives are involved, that is, the
function is differentiated just with respect to time, and not with respect to any other
variable(s) or network parameter(s).

The coefficients (a,, a,_1,...a4,a,) are constants because they are not functions of
time (i.e., time-independent).

2.0.1 Solving First-Order Differential Equation

As earlier mentioned, the response is of two parts, namely, (1) the natural response,
determined by setting the driving source (forcing function) equal to zero, and (2) forced
response (called particular solution in mathematics).

The latter is a response to a (particular) forcing function, say, voltage or current source,
without regard to the initial conditions of the circuit elements, and this component of
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the total response remains after the transient portion of the response (solution) must
have died off. Thereafter the solution (response) depends entirely on the nature of the
driving source. By the last statement is meant that, for instance, if the driving source is a
dc source, then the forced response would also be a dc type; on the other hand, if the
driving source is an ac source, voltage or current, then the resulting forced response
would also be ac in nature with the same frequency, only differing, perhaps, in its
amplitude and phase.

For the typical first-order differential equation stated earlier in Eq 2.2, to solve for the
natural response, we make the equation homogeneous by setting the forcing function
f(t) equal to zero:

dx(t)

alT + aox(t) =0 2.13

Because the parts are separable, a straightforward rearranging and integration would
yield:

f [y
o X a J,

where x' is typically understood to be a function of time [i.e.,x'(t)] despite the (t)
omission, and x, is its initial value. (x’, t"are so-called “dummy variables”.)

t t
= —ao—

Qo
- s, = - (%)
a

a;

0

X t
In x —In x, =ln(—>=—a0—

X _%,
= —=e @
Xo
Finally,
_%0,
x =|x(t) = xpe “ 2.14

An alternative approach to determining the natural response is to look for a function
that replicates itself upon differentiation (and, therefore, integration). The only function
with this peculiar behaviour in all of mathematics, is the exponential function a™ in
general, and in particular the natural number-based exponential e™. (The trigonometric
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functions sine and cosine do not satisfy this requirement because they only replicate
their own negatives, and even then, after differentiating or integrating twice).

So, we assume a solution in the form of: x(t) = KePt, where K and p are yet-to-be
determined constants. Substituting this in the given first-order differential equation,
we obtain:

a1 L (KePt) + ag(KePt) = 0= a,KpeP* + agKeP' = KeP*(azp + ag) = 0
Three possibilities are:

(1) Kequalszero — unacceptable because it results in the triviality of 0 = 0, indicating
an identically zero response!

(2) eP! is zero — again unacceptable since this can only be true if time tends to
negative infinity for a positive value of p,or positive infinity for a negative value of p, on
account of the fact that the operating exponential factor must of necessity — left on its
own as this is the case here — depreciate in order to avoid violating the law of energy
conservation.

3) aip+ag=0=p= —%, which is most reasonably acceptable!
1

So,x(t) = Ke~%t/a

It remains to determine the value of the unknown constant K. This is accomplished by
resorting to just one initial condition of the network quantity. For a first-order system,
just one initial (boundary, as called in mathematics) condition, as the name implies, is
adequate, whereas in yet-to-be-looked-into second-order system, we’d need an
additional boundary (extreme, viz. terminal) condition in order to be able to evaluate the
values of two resultant unknown constants.

Therefore, given that x(0) [or more precisely, x(0*)] = 0, x(0) = Ke® = K = x,. Once
again, finally,

x(t) = xoe~%t/n

Be reminded, once more, that the above expression strictly applies to just the natural
response (called homogeneous response in mathematics) and does not consider any
forced portion that’s generally a component of the total response. Here, the response
depends entirely on the initially energized state(s) of the circuit element(s), or lack
thereof.
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For the circuit of Fig. 2.1, R corresponds to a;, and 1/C (please, not C!) corresponds to

a,. So, i(t) = i(O)e_(%)% = J,e~Y/RC¢, with I, understood to be the initial value of the
(series) current. Since the power (index) of the exponential term must necessarily be a
numeric (“unitless”), RC therefore must have the dimension of time. To show this to be
consistent by other means is left as an exercise.

In summary, (at the risk of repetition) the above analysis applies strictly to source-free
circuits, so i(t) ought to be more properly written as iy(t), with the subscript N
indicating “natural” (response).

A further investigation of “RC”: Setting t = RC,

it)=Ile = lf—t) =el=1%037 So, at time t = RC (or ReqCeq for multiple R’s

0 el
and/or C’s) for a typical R-C circuit, a responding signal (be it current or voltage) would
have decayed to approximately 37% of its initial value. Viewed from an alternative
perspective, this is the time required for an exponentially rising signal to reach
approximately 63% (why?) of its final value.

In the foregoing case (and as met previously), RC is a product known as the time
constant, designated by the Greek letter 7 (tau).

Fig.2.2.1 shows the plots of capacitor voltage v(t) and capacitor current i(t).
i(t) 4

Figure 2.2.1 Source-free RC circuit: (a) voltage response (b) current response

Rather than going through the derivations above, there’s a systematic approach — or
rather, a short-cut method — for finding the step response of an RC or RL circuit. Let’s re-
examine Eq 2.6 which is more general than Eq 2.11. It is evident that v(t) has two
components. Classically there are two ways of decomposing this into two components.
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The first is to break it into a "natural response and a forced response" and the second is
to break it into a "transient response and a steady-state response." Starting with the
natural response and forced response, we write the total or complete response as

Complete response = natural response + forced response
(stored energy)

Or V= vN + vF 215
where vy = Voe T
and vp = Vs(1—e7t7)

We are already familiar with the natural response vy of the circuit, as discussed in
chapter 1. vg is known as the forced response because it is produced by the circuit when
an external "force" (a voltage source in this case) is applied. It represents what the circuit
is forced to do by the input excitation. The natural response eventually dies out along
with the transient component of the forced response, leaving only the steady-state
component of the forced response.

Another way of looking at the complete response is to break it into two components,
one temporary and the other permanent:

Complete Response = Transient Response + Steady — state Response

—=Temporary part + Permanent part

Or V= vr + Ugg 2.16
where vp = Vo —V,)e /" 2.17a
and Vgs = VS 2.17b

The transient response v is temporary; it is the portion of the complete response that
decays to zero as time approaches infinity. Thus, the transient response is the circuit’s
temporary response that will die out with time.

The steady-state response vgs is the portion of the complete response that remains after
the transient response has died out. Thus, the steady-state response is the behaviour of
the circuit a “long time” after an external excitation is applied.

The first decomposition of the complete response is in terms of the source of the
responses, while the second decomposition is in terms of the permanency of the
responses. Under certain conditions, the natural response and transient response are
the same. The same can be said about the forced response and steady-state response.
Whichever way we look at it, the complete response in Eq (2.8) may be written as
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v(t) = v(0) + [v(0) — v(o0)]e~t/" 2.18

where v(0) is the initial voltage at t = 0*and v() is the final or steady-state value.
Thus, finding the step response of an RC circuit requires three things:

1. theinitial capacitor voltage v(0)
2.  thefinal capacitor voltage v(o0)
3. thetimeconstantt

We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from the circuit
fort > 0. Once these items are determined, we obtain the response using Eq (2.18). This
technique equally applies to RL circuits as we shall see in the next section.

Note that if the switch changes position at time t = tyinstead of t = 0, there is a time
delay in the response, so that Eq 2.18) is adjusted to

v(t) = v(e0) + [v(ty) — v(e0)]e~ ¢ to)/ 2.19
where v(t,) is the initial valueat t = t, (not necessarily 0). Keeping in mind that Eq

(2.18) or (2.19) applies only to step responses, that is, when the input excitation is
constant (i.e., a dc source).

[If the term “transient” is at all used in describing natural response, then it properly
belongs inside quotation marks to indicate just its fleeting nature and not its actual,
purely technical characteristics. A purely natural response is not one and the same as
the transient component, despite the erroneous habit of some texts that tend to use the
two interchangeably. When there’s a case where the two are equal, then it’s strictly
coincidental and nothing more! By the same token, forced response is not identical with
steady-state response; the two components approach equality only as time tends to
infinity. This is because, whereas steady-state response is a constant value, forced
response has a transient portion in addition to a constant part (strictly note here that |
didn’t say “component”, but “part”!) within its whole, the latter of which remains
following the disappearance of the transient portion as time tends to “infinity”. It’s this
remaining portion that equates to steady-state response.]

We shall illustrate these differences with an example:

Example 2.1: In the circuit on the Fig. 2.3, it’s required to determine (a) v.(t) as the
output being the capacitor voltage; (b) The series current i(t).
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+ R=1kQ
C A~ Uc(t) C =470 uF
V=12V _— ) v,(0)=5V

Figure 2.3
Solution:

Either i(t) or v.(t) can be determined, and the other then derived from the
relationship:

dv (t)

N 1.
ic(t) = CT = v:(t) = EJ ic(t)dt

To determine i(t) directly,

1 t
—V, +i(OR + Ef i(Hdt =0
0

. dv(t)
Vo +i(®)R+v:(t) =0= -V, + ICT R+ v(t)

For determining v, (t) as the response [note that i(t) is here necessarily i (t)!]:

From (a), differentiating across to clear the integral

R d;(tt) +2 i) =0
di(t) 1 1 . . :
It + RC () =0=s+ RC= 0  (sisthe differential operator)
with a single root at
1 1

ST TRCT T103x470 x 10-6

The time constant T = RC = 103 x 470 X 107® = 0.47 s

33



= i(t) = Ke™t/047

But
[12 —v(0)]V [12-v(07)] (12 -5)
i(0Y) = = = = (. 7A
(0™ 1k 10° 1000~ 00
t t
= i(t) = 0.007¢ 047 = 7e¢ 047 mA
1 106
N - —t/0.47
v.(t) sz(t)dt 470f0.007e dt
10° 0.47
ve(t) = 775(0.007) (— - )e-f/o-‘” +K=—7e /%% + K
v,(0") =v,(07)=5=-7e""+K = K =12
Finally,

ve(t) = (12 = 7e7 /47 u(t) v
Alternatively, from equation (b)

dvc(t) dve() 1 v
b (D) =V, = ;t +R—Cvc(t)=é

RC

Transient response v r(t) = Ke t/RC = Ke~t/047
Steady-state response v.;; = 12 V (as the capacitor is now an open circuit)
ve(t) = vegs + verp(t) = 12 + Ke™t/047
ve(0) =v,(07)=5=12+K=K=-7
ve(t) = (12 — 7e7t/°47)u(t) V, as before

dve(t d
i(t) =ic(t)=C v;t( ) _ 470 x 10_6E(12 — 7e7t/047)

1
=470x1 ‘6[ - (—_ —t/0-47)]
70x107°|0—7 047 ¢

= 0.007¢7t/047 A

as previously determined directly above. The natural response vy (t) is evaluated by

ignoring the source Vj:
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dvcy(t
RC;—Nt() + vey () = 0, which leads to:

ven (t) = Ae™ /%47 with A a different constant from K above.
ey (0) =5 = vy (t) = 5e7 /0477

Total response is the sum of either: = natural response plus forced response or =
transient response plus steady-state response
the second component of the latter of which is necessarily constant, i.e., time-
independent.

t

For the example above: Transient response: —7e 047 V

Steady-state response: 12 V Natural response: 5e~t/947V To evaluate the forced
response Vg (t), we equate the two sums:

12 — 7e—t/0.47 — Se—t/0.4—7 + vCF(t)
— vCF(t) — [12 _ 7e—t/0.4-7] _ Se—t/0.4-7 =12 — 12e—t/0.47 — 12(1 _ e—t/0.4-7)

So, v (t) (complete response) = vy (t) + vep(t) = [5e7¢/047 + 12(1 —
e—t/0.47)]u(t) Vv

For a quick comparison:

(12 — 7e~ %47 )u(t)Vv

ve(t) = {or [Se—t/0.47 + 12(1 — e—f/0-47)]u(t) \Y

Forced response,12(1 — e~t/%47), therefore, has a “transient” (as in temporary and not
in the technical sense) portion within it (—12e~*/%47), and approaches equality with the
steady-state value of 12 Vonly after that particular transient portion has decayed
toward zero as time tends to infinity. (Here’s once again upbraiding those texts that
erroneously equate the two, as well as implying that natural and transient responses are
one and the same and proceed to use them interchangeably. If, in the latter case, they
happen to be equal, then it’s purely coincidental as they can sometimes — depending on
the choice of network parameters thereby affecting the particular time constant — even
be each other’s negative!) Two graphs below give a quick overview of these two different
routes of getting to the same destination.
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To check for the correctness of the results and the legitimacy of Fig. 2.4, boundary (i.e.,
extreme) conditions have to be considered. Knowing the values of the signal at the time
equal to zero (initial value), and then at the time tending to infinity (final value), as well
as at the times at which the values become (if applicable as done in calculus),
respectively, maximum and minimum, helps in quickly appraising the graphical
behaviour of the signal response in each case, and hence a sketch of same.

Ve,
ve(® / ss ve(t)

12 12

10 ‘\\\\\

o) 0

,
/
5 50/

Figure 2.4 [v¢(t) = ver(t) + Vsl [vc(t) = ven(t) + vep()]

2.1 Step Response of an R-L Circuit

Consider the RL circuit in Fig. 2.5(a), which may be replaced by the circuit in Fig. 2.5(b).
Again, our goal is to find the inductor current i as the circuit response. Rather than apply
Kirchhoff's laws, we will use the simple technique in Egs. (2.15) through (2.19). Let the
(total) response be the sum of the transient and the steady-state responses:

R t= R

C) Vs L : CDVSu(t) L :

(a) (b)
Figure 2.5 an RL circuit with a step input voltage
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Method 1
i = iT + iSS 220

We know that the transient response is always a decaying exponential, that is,

2.21

x| e~

ir = Ke t/7, T=

where K is a constant to be determined.

The steady-state response is the value of the current a longtime after the switch in Fig.
2.5(a) is closed. We know, furthermore, that the transient response essentially,
practically dies out after about five-time constants. At that time, the inductor
approximates a short circuit, and the voltage across it is, therefore zero. The entire
source voltage V; appears across R. Thus, the steady-state response is

_5 2.22
g = R .
Substituting Eqs (2.21) and (2.22) into Eq. (2.20) gives
V
i=Ke /" + ﬁs 2.23

We now determine the constant K from the initial value of i. Let I, be the initial current
through the inductor, which may come from a source other than V. Since the current
through an inductor cannot change instantaneously,
i(0Y) =i(07) =1, 2.24
Thus, att = 0, Eq (2.23) becomes
Vs Vs
IO:K+E:> Kzlo—ﬁ

i(t) &
Iy

SIPS

0

Figure 2.6 Total response of the RL circuit with initial inductor current I,
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Substituting for K in Eq. (2.23), we get

V. V.
i(t) = ES + (IO - Es) e Rt/Ly(t) A 2.25

This is the complete response of the RL circuit. It is illustrated in Fig. 2.6. The response in
Eqg. (2.25) may be written as

i(t) = i(0) + [i(0) —i(c0)]et/" 2.26

where i(0) and i() are the initial and final values of i respectively. Thus, finding the
step response of an RL circuit requires three things:

i.The initial inductor current i(0) att =0
ii.The final inductor current i(o)
iii.The time constant t

We obtain item 1 from the given circuit for t < 0, and items 2 and 3 from the circuit for
t > 0. Once these items are determined, we can then readily put down the expression
for the complete response using Eq. (2.26). Keep in mind that this technique applies only
for step responses.

Again, if the switching takes place at time t = t; instead of t = 0, Eq. (2.26) becomes

i(t) = i(o0) + [i(0) — i(o0)]e Rt/ 2.27
If ip, = 0, then
0, t<o0
{® ES(1 — e RULA, t>0 8a
Or more compactly,
V
i(t) = ES (1—e R/Mu(t) A 2.28b

This is the step response of the RL circuit with no initial inductor current. The voltage
across the inductor is obtained from Eq. (2.28b) using v = L di/dt. We get

di L L
t) =L—=V,—e Rt/ =—, t>0
v(t) dt STR® =R
or
v(t) = Ve R/lu(t) v 2.29

Fig.2.7 shows the step responses in Eqgs (2.28) and (2.29)
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i(t)a v(t)a
4 v,
E S
0 - 0 ;
(a) (b)

Figure 2.7 Step responses of an RL circuit with no initial inductor current: (a) current
response (b) Voltage response.
Method 2
Refer to the RL circuit Fig. 2.5:

(KVL): Vo = i(OR + L% 230

Separation of variables allows us to write:

Ldi®) _ 40 Lfi(t) di() f dt 2.31
VO - l(t)R l(O) VO l(t)R '

A simple change of variables [x = V; — i(t)R = dx = —Rdi(t)] leads to:
L i(©)

——{In [Vo —i(t)R] —In(Vy, —i(O)R)} =t (s is the differential operator)

Vo—i(OR] Rt
n[ - i(O)Rl -1
lo — i-(t)Rl -y

—I(0O)R

i(OR=0— (0 —i(0)R)e™ T 2.33

Buti(0*) =i(07) = i(0) = 0, because, prior to the closing of the switch, no current
was flowing, and still no current flows immediately after closing the switch because, as
has been severally pointed out, current does not change instantaneously through an
inductor.
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= i(t) =2 — e RYL = |0 (1 — e RU/LYu(t) A 2.34

Method 3
Making the left-hand side of Eq. (2.31) a definite integral while the right side is indefinite,

we have:

L
—Eln [Vo—i(H)R]=t+K 2.35

= V,— i(t)R = e REFK/L

i(0Y) =i(07) =i(0) =0 =V, = e RK/L

RK
— _T=IHVO=K=_EIHV0 2.36
L _ L
—Eln[VO —i()R] =t — = Vo
L .
E{In[VO —i(t)R] — InVy} = —t
LI Vo —i(DR] _ .
R v, |~
Vo —i(R Rt
= nl——|=——
Vo L
_ Vo — i(OR _ S-RE/L
Vo
= i(t)R = Vo — Vye R/L
. Vo
i(t) = = (1—eR/M)u(r) A 2.37

“Reading” the circuit, before closing the switch, no current flows, and immediately after
the closure, still no current flows because of the presence of the inductor. Substituting

zero for t in the above expression for i(t), results in

i(0) = %(1—6)0) =0
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At the (terminal) steady state, i.e., as t = oo, transient portion has died off, leaving just

% as the (steady-state) response. Reading from the circuit, the inductor appears as a

S

short circuit in the steady state, and a simple application of Ohm’s law results in ~ as

the current response.

At two-time constants, a signal must have decayed, therefore, to (0.37)% = 0.1369,
approximately 14 of its initial value, at three-time constants, (0.37)3 = 0.0506,
approximately 5% of the original value. At five time-constants, a typical signal has gone
down to (0.37)° = 0.007, approximately 0.7% of its initial value. In essence, even
though, theoretically, a decaying exponential signal (function) gets to be zero only at
time infinity, yet for all practical purposes, the time “infinity” might just be a few ticks of
the seconds hand of the clock representing five-time constants! It is worthy of note to
be mindful that the “second” above might in some circumstantial configuration, be
replaced by “micro-seconds”!

So, by inspection, time constant for a first order circuit is the quotient of the coefficient
of the derivative term and that of the (zeroth derivative) function. Note that x(t) can be
expressed in a lightly varying, more tell-tale form as:

—t/(%
x(t) = x(0)e Gy Thereby immediately discerning the time constant termt = %
0

Time constant, therefore, depends on the values of the network parameters (elements),
and in the foregoing case these are resistance and capacitance. Investigate that for RL
circuit, the equivalent time constant would be 7 =L/R (the dual of RC). Also investigate
(as an exercise) that L/R (as well as RC) also has the dimension of time, that is, seconds.
So, for series RL circuit (actually parallel with current source, if viewed strictly from its
dual perspective!),

i(6) = i(0)e" 1

TZE

e . . . d
In the typical first-order homogeneous differential equation, a, d—f + agx = 0, where we
ended up with a;p + a, = 0 as the characteristic equation in determining the response,

. . . . lld ”
a cut-to-the-chase determination of the root can be made simply by replacing the d—f

with p (differential operator) — [and hence x by unity (1)]— or an "s" as is commonly
done to account for the general complex nature of the root(s) of the equation.
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2.1.1 Driven RL, RC, RLC Circuits

Figure 2.8

The equivalence of the two circuits in Fig. 2.8 can be established by noting a quick review
of the unit step function:

0,t<a

1t>a 2.38

u(t—a)={

The value of u(t — a) at exactly t = a is, strictly speaking, not determinate (undefined,
or “infinity”), although it’s generally, practically assumed that u(t — a) starts to take on
the value of unity fromt = a.

In the above circuits, the switch is turned on at t = 0, resulting in a driving source voltage
of V, volts which is a dc (i.e., constant) potential. It may be safely assumed that the
inductor was initially fully energized, and its reactive nature would induce an
exponentially decaying response. The response of the current through the inductor, are
of two parts (components):

1. A natural response (“transient”) due to the initial (energy) condition(s) of the
network element(s) that would eventually die off at time “infinity”, leaving ...

2. ..aforcedresponse, that replicates the very nature of the forcing function (driving
source). By this is meant that, a dc forcing function would induce a dc forced response,
whereas an ac forcing function would likewise give rise to an ac forced response. So, the
input and output signals would possess similar frequency (and therefore similar basic
character), only, possibly, differing in their amplitudes and phase angles.

The total response is the sum of the two component responses (natural and forced):

i(t) = iy(t) + ip(t) with both term general being time-dependent.
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2.1.2 A More General Approach

For a general equation with a forcing function (i.e., source, as we’re now beyond age of
homogeneity!):

dy
—+py=0Q 2.39
dt Y 3

where y [understood to be actually y(t) since it’s in general time-dependent] stands for
either current or voltage signal. Rearranging Eq. 2.39,

dy + pydt = Qdt 2.40

with the forcing function Q = Q(t), since it’s in general, again, time-dependent. It’s
further assumed that p is a positive constant, and momentarily and for simplicity
that Q is also a constant. Multiplying Eq. 2.40 across by the integrating factor

el Pdt = oPt: oPty 4 ypePt = QePdt 2.41
Using the rule for the differentiation of a product (chain rule) on Eq. 2.41:

d(yePt) = ePldy + ypePtdt = QePldt 2.42

Integrating both sides of Eq. 2.42: fd(yept) = f QePtdt
= yePt = f QePtdt (+K) 2.43

y = e‘ptj QePtdt + Ke Pt 2.44

where K is the constant of the indefinite integration.
For the natural response (no forcing function),
Q =0= yy(t) = e Pt = Ke Pt 2.45

and p is never negative for any circuit with only resistors, inductors and capacitors, and
that depends only on the passive circuit elements, meaning, therefore, that we’re here
concerned only with forward-looking time.

For the steady-state response, assuming momentarily that Q is constant (dc forcing
function):
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QeP*

p

Yss = Y(t > ) =e7PfQ f ePtdt + Ke PH(t - o) = e7Pt = Q/p

= y(t) =y +yr = Q/p + Ke Pt 2.46

For the circuit of Fig. 2.8y, = Q/p = V"/R (inductor is short) p =% =T
=1/p Applying initial conditiony(0) =Y, y(0) = Q/p +K=K=Y,— Q/p

Finally,

y(t) = Q/p + (Yo - Q/p) e Pt =yss + yr(t) 2.47a

Rearranging,

y(@© = (Yp) =) + Yoe P = yp(0) +yn (D) 2.27b
i.e., two different summations of the same result.

So, given a circuit with a driving source (mathematically known as forcing function), these
steps need to be taken in order to be able to readily put down the expression for the
complete response, either way:

(Leq) .
(Req) ’
2. determine the initial value (Y, in the foregoing case);

1.  Determine the time constant T = (Ry,)(Ceq) 07

3.  Evaluate the steady state-response, which is achieved by zeroing all the reactive
elements in the circuit (shunting all the inductors and open-circuiting all the capacitors).

Then, any or all of the fundamental laws of electrical circuits can be applied to
determine the above. (Remember that the three laws that govern any circuit, namely,
KVL, KCL and Ohm’s law, are applicable at any point in time and space, i.e.,
instantaneously or at a steady state.

Having done all of these, then:
Complete response = (Steady — state response) + (Initial value minus Steady — state value)e "
or

= (Steady — state response)(1 — e PY) + (Initial value)e Pt
y
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Comparing and contrasting the two different expressions for the complete response
shown in Eq. 2.47, would enable one to quickly appreciate what the writer have
previously emphasized: steady-state response Q/p and the forced response (Q/p) (1-

e~Pl), are not, as made obvious here, one and the same! They become equal only after

the transient portion of the forced response (— Q/p) (e~PY), has died off as time tends
to infinity. Similarly, natural response (Y,e P!) and the transient response (YO -

Q/p) e~ Pt, are obviously not interchangeable (as some texts erroneously assumed based

on a situation that may be peculiar to a particular circuit and therefore offer a special

case). If, for instance, steady-state value (Q/p) equates to zero — as in a dc current

through a capacitor, or — dually — a dc voltage across an inductor— then and only then
will the natural and transient responses be each other’s equal. Furthermore, if perchance
the steady-state value is twice the initial value, then natural and transient responses
actually become each other’s negative! (This of course would depend on the choice of
elemental circuit parameters.) So, touché! — for some texts that tend to use the two
interchangeably. (Analogously, it’s exhibiting mathematical dishonesty, for instance, to
employ a rectangle, or even more grievously a square, when required to prove a property
of a four-sided figure! Upholding of scientific integrity dictates that we should use, by
way of generalising, a figure with four unequal sides, because every rectangle is a four-
sided figure but not vice versa.)

Example 2.2: In the circuit of Fig. 2.9, determine i, (t) for all time (—o0 < t < o)

25u(t)V 40

12Q

i,(©

Figure 2.9
Solution:

Leq

To get the time constant, T = —,
Req
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when all the sources (both voltage sources) are zeroed by short circuiting them, and their
Thevenin equivalent resistance R, is thereby determined:

R,y =4 12—(4)(12)—48—39
eq = 4l C(4+12) 16
6 H
Leq:6H:>T:3—QZZS

Transient response:

t
ir(t) = Ke /" =Ke™2

To evaluate the steady-state response, we note that the inductor presents a short circuit
to the dc (total) voltage, the 12 Q) resistor is therefore shorted out leaving only the 4 ()
“seen” by 25 + 25 =50 V. So,

] 50V
liss = E =125A
Total response:

t
lL(t) = iLSS + lLT(t) = 125 + Ke_E

To evaluate the constant K (note carefully that the K here is different from the constant
attached with respect to the natural response), the initial value of the current prior to
t = 07 must be determined. Only the 25 V supply is operating as the step voltage is zero
prior to the time t = 0. In this first steady-state situation the 6 Q resistor is shorted out
by the inductor seen as a shunt by the dc battery resulting in

25V
lL(O ):m:625A

i,(0") =i,(07) =625=125+K = K = —6.25

Finally,

t
i;(t) =125—-6.25e 2t >0
That is,

6.25 A, t<o0

i;(t) = t
10 {12.5—6.25e‘5A, t>0
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t
Combining these two expressions, i, (t) = 6.25 + (6.25 — 6.256_5) u(t) A

i,(t) = 6.25 + 6.25 (1 - e_%) u(t) A

The validity of the above expressions can be ascertained by applying “special” times at
t = 0 and t — oo to determine the initial and steady-state responses, respectively.

Notes on natural and forced responses: As some texts erroneously equate natural and
transient responses, and forced and steady-state responses, and proceed to same use
interchangeably, let’s use the just-concluded example to clearly show the respective
differences:

= Natural response is evaluated “independently” by equating Ae /2 = 6.25 att = 0™
(note that A is a different constant from K) giving A = 6.25, whereas the total response
was summed up before evaluating the plain K

So, i y(t) = 6.25e7/2 (for inductor current),
ip(t) =is(1—e 2) =125(1—e ) At >0
Fort > 0, ig; = 12.5 A (constant, i.e., time-independent)
ipr(t) = [i,(0) — i s let? = (6.25 — 12.5)e"t/? = —6.25e"/2 A

Thus i}, becomes equal to i;z(t) onlyast — oo, and i;(t) and i;y(t) are actually each
other’s negative! This is because, as | pointed out previously, the steady-state response
(12.5A) is twice the initial value of 6.25 A [evaluated by substituting t = 0 in the
expression for (total) i, (t)]

Example 2.3: In the circuit of Fig. 2.10, the coil has a 10 Q resistance and a
6 Hinductance.If R = 14 Q,V = 24V and the switch is opened att = 0, determine:(a)
iz (t) (b) the voltage across coil of the circuitat t=0.1s

Figure 2.10
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Solution:
(a) t < 0 (Switchis closed):
24
(0) =ir(07)=—=24A
i(0%) = ix(07) = 5
t > 0 (Switch is open):

= —24/24=1A
s =T77110 Y

ir =Ke %, wheret = 6 H/(10 + 14) Q = 0.25 s
ig(t) = iss + ir (1)
ir(t) =1+ Ke ™t
ip(0) =1+ KeS°
24=1+K
K=14
ip(t) =1+ 1.4e %A
(b) i(0.1) =1+ 1.4e7*0V = 1,94 A
Thus,
Vioa + Vi = ir(10 + 14) = 1.94 x 24 = 46.52V
But
Veoir =V — (Vipa + Vi) = 24 — 46.52
Veoir = —22.52V

Example 2.4: For the circuit shown in the Fig 2.11 below, the switch has been open for
a long time and is then suddenly closed at t = 0. Calculate:

24V t=0

Z D .

4Q iy

8H

Figure 2.11
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(@) iyatt=03s
(b) the steady state power supplied by the source of the circuit
(c) energy stored in the inductor

Solution:
(a) t < 0 (switchis open): i,(07) = 0 = [i,(07)] = i,(0)

t — oo (Switch is closed): i,(0) =24V/4Q =6A
i2(t) = i(0) + [i5(0) — ip(e0)]e~"/7,

L
wheret=— =-= 25
Req 4

iz(t) =6+ (0-— 6)e‘0-5t =6 — 6e 05t = iz(t) =6(1- e—O.St) A
Att = 0.35:i,(0.3) = 6(1 — e 05%03) = i,(0.3) =0.836 A

()P = +1)V

24 24
P=<E+T>AX24V=8X24=192W

(W, =2 Li?
1
W, (t) = 7 % 8 x [6(1 — e~ 05t))?

W,(t) = 144(1 — 2e %5t + e78) ]

Example 2.5: The circuit of Fig. 2.12 is under steady state with the switch at position 1.
At t = 0, the switch is moved to position 2. Find i(t)

1 400
)
2
T sov i_( 10V 20mH
Figure 2.12

At t < 0 (at point 1)
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, 50
i(0) =5 =125A

At t = oo (at point 2)
] 10
l(oo) = E =0.25A
_ 20X 1073 1
T30 T 2000

i(t) = 0.25 + (1.25 — 0.25)e 2000
i(t) =0.25+ e—2000t A

Example 2.6: The circuit of Fig.2.13 is under steady state with the switch at position 1.
At t = 0, the switch is moved to position 2. Determine

(i) v
(ii)  The current in the circuit i,
(iii) The energy stored in the capacitor and resistor

/1%‘), 5kQ

2

R e 1uF A~ v
100V —— 50V ‘

Figure 2.13
Solution:
At t <0 (atpoint 1)
v.(07) = v,(0%*) =100V
At t = oo (at point 2)
V() = =50V

7=RC =(5x%x10%)(1x107%)
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1
=200

v.(t) = =50 + (100 + 50)e~200¢
v.(t) = =50 + 150e 200t v

(ii)  The currentin the circuitatt > 0

i=iC=Cdt

d
ic = 1 X107 {150 72°% — 50}

=1x107°%x 150 — 200e 200t
i, = —0.03e~200t A
i, = 307200t mA

(iv) Energy in capacitor w, = %Cvc2

1
W =5 X 1x 107%(=50 + 150 72°")?

We = 5T x 10-s 0B — DI

w, =5x 1077 x 2500 (3e7200t — 1)?
w, = 1.25 X 1073(3e7200t — 1)2
w, = 1.25 (9400t — 6200t } 1) ]

Energy in resistor

t. 2
URr
Wp = J _dt
o R
But vp =ip = (—0.03e7290t)(5 x 103)
vp = —150e7200t y

t (—1506_200t)2
VR = JO 5000
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22500 (¢
Wg = ———

—-400t d
500 J, ‘

4.5p—400¢ t

"R =" 200

0

Evaluating the boundaries
wgp = —0.01125 e7499t 4+ 0.01125¢°
wg = 0.01125 — 0.1125 e 400
wg = 0.01125 (1 — e~400t) ]
wgr = 11.25(1 — e~400) ]
Example 2.7: For the circuit of Fig. 2.14, determine the

2 MQ

Figure 2.14

(i)  Current through the and voltage across the capacitoratt = 0Tand t = 0~
(ii) Thecurrentinthecircuitatt =70s

Solution:
(i) At t<o0
v(07)=v(0") =0V i(0)=0A

At t = 0% [immediately the switch’s is close]

(0 = £e(0") = 1 =
i(0%) = i,(0") =1.2x 10"° A
i(0%) = i,(0%) = 12 uA
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(i) v(O)=0V

Where

At

v(0) =24V
t
U(t) = VO + (VO - Voo)e_;
7=RC =(35%x107%)(2 x 10°)
T=170

1
v.(t) = 24 — 24e 70t V

Cdv d t
io(t) = == =35 10_5%(24 - 24e‘%)

1 t
i.(t) =35%x107°%x —24 X —%e_%

i.() = 1.2 X 10~5¢ 770 A
t =70s
i.(70s) = 1.2 x 107 %!
i.(70s) = 4.415x 107° A
i.(70s) = 4.415 pA

Example 2.8: The circuit of Fig. 2.15 is under steady state with the switch at position 1.

At t = 0, the switch is moved to position 2. Determine

(i) i)

(ii)  How much energy is dissipated in the 2 Q resistoratt = 2 s

Figure 2.15
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Solution:
(i) Atpointl(i.e., t <0)
i(07) =i(0*) = ? =4A
At point 2 (i.e., t = )
i(o0) = 42—0 =20A

05 _1
2 4
i(t) =20+ (4 — 20)e™*
i(t) =20 —16e 4 A
i(t) =20 —16e 4 A

(i) Energyat 2 Qresistoratt = 0.25s
t
Wp = f i2 Rdt
0
t
Wg = f 2 X (20 — 16e~*)2dt
0

t
= f 2 X (400 — 640e~* + 256e78) dt
0

640e~% 256e-8t]"
4 8

=2 l400t +
0

= 2[400t + 160e~*t — 32¢~8]|}

Evaluating the boundaries

wg = 800t + 320e~* — 64e78 — 320 + 64

At t=0.25s
wg = 53.0599]
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Example 2.9: The switch in the circuit of Fig.2.16 is closed at t = 0, at which moment
the capacitor has charge Q, = 500 uC, with the polarity indicated. Determine q and i
att >0

t=0 1kQ

C) 50V £ —— 20uF

Figure 2.16
Solution:

Given Qp =500 pCatt <0

Recall Qo = Cvc(p)
_ Qo _500x107°
Ve® = T 0% 106
Veoy = =25V
At t=o
v(t) = Ve + (Vg — Voo )e /7
1
T=1x103x20x10‘6=%
v(t) = 50 + (25 — 50)e~>%
v(t) =50 — 75750ty
But Qp = Cvy

Qo = (20 x 107%)(50 — 75e759%)
= 0.001 — 0.0015e73% C

Q. = 1000 — 1500e 5% pC
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¢ v 20 x 10-6 d[50 — 75e7°0]
= e T dt
i =20x107%x —75 x —50e50¢

i, =0.075e750t A
— 708_50t mA
i. =0.5X107° X 52.64 x —4000e 4000t
i, = —0.10528¢ 4000t
i, = —105.28¢~%000t ;A

Example 2.10: Obtain the current i(t), for all values of ¢, in the circuit shown in the
Fig.2.17.

To obtain i(t) below for all time

50u(t) v

+ -

100

100 T 2(-t) A
02H

Figure 2.17
Att <0
_ 10 20
‘w=Tg510"% 20" 1A
(0 =i(07)=1A
Att >0
—V = iR,
; -V _ =50 =50
® Ry 10410 20
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lo = —2.5A

Fortimet
i(t) =i + (ig — ico)e /"
. L 02 02 1
R,, 10+10 20 100
i(t) = —25+ (1+ 2.5)e"100¢
i(t) = —2.5+ 3.5¢7100t A
2.2 Exercise 3. For the circuit shown in Fig. 3,

] . . determine v(t) when the switch
1. ForFig. 1: (a) Determine the time .
has been opened for a long time
and then suddenly closed at t =
(b) With C changed to L, 0*.

determine the time constant

constant of the network

40

(c) With C again changed to 2L,

determine T %‘zo +
T 12A 120 80> T

Figure 3

4. The circuit of Fig. 4 was under

Figure 1 steady state before the switch
2.  For the circuit of Fig. 2, given that was opened. IfR; =1Q,R, =
dt

voltage is 24 V, determine v.(07)

given instant in time.
and v,(07). Also find i(0%)

109Q
O t=0 i
N
1 I — | R
— 40V 200 T F c :
_ 3 e
T v —— Ebar
- Ry
0
Figure 2 Figure 4
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Answer: i(0t) = -8 A

5. Determine i of Exercise (4)1s

after the switch is opened.

Answer:i = —1.08 A

6. The initial current in the inductor
L of the circuit of Fig. 5 with S
open [,. Determine the current
after S is closed

Ry

24V—_—

Figure 5

Answer: i; = [ ,e~(R/Lt
7. In the circuit of Fig. 6, the switch
is closed at t = 0 when the 2 H
inductor has a current [, = 10 A.
Find the voltage across the

resistor.
ane
e
2H L(, =10A 3H 6H
Figure 6

Answer: Vi(t) = 40e7tV

8. A 240V dc generator supplies
current to a parallel circuit
consisting of a resistor and a coil
as shown in Fig.7. The system is in
a steady state. Determine the
current in the coil one second
after the breaker is tripped.

Circuit breaker

.
240 v 600 0 200 H
- 3000

Figure 7

Answer:i = 0.0089 A
9. What is the voltage induced in
the coil and the voltage across the

coil 1s after the breaker is tripped
in the circuit of Fig.7

Answer: v ,;; = —5.34 'V

10. Thecircuit of Fig 8 is under steady
state with the switch at position
1. Att = 0, the switch is moved to
position 2. Find i

1 40 Q

I
10V 20 mH
50V _—— "(

Figure 8
Answer: V., = —50 + 150e~200t y

11. Find t > 0 in the circuit of Fig. 9.
Assume the switch has been open
for a long time and is closed at
t = 0.Calculatev(t) att = 0.5s.

20 t=0; 6Q

[
I
I

Figure 9



CHAPTER 3
TRANSIENT IN R-L-C SOURCE-FREE CIRCUIT

3.0 Introduction

In the previous chapter we considered circuits with a single storage element (a
capacitor or an inductor). Such circuits are first-order because the differential
equations describing them are first-order. In this chapter we will consider circuits
containing two energy-storage elements. These are known as second-order circuits
because their responses are described by differential equations that contain second
derivatives.

Typical examples of second-order circuits are RLC circuits in which two or more passive
elements are present. Examples of such circuits are shown in Figs. 3.1 and 3.5

3.1 Source-Free (Parallel) R-L-C Circuit

Areas of application that have to do with the understanding of the natural behavior of
the parallel R-L-C circuit include filter designs, communication networks etc.

Consider the parallel RLC circuit shown in Fig 3.1. Assume initial inductor current I, and
initial capacitor voltage V/;:

1 0
i0)=1I, = Zf v(t)dt 3.0a
v(0) =V 3.0b

Figure 3.1

For the parallel-connected circuit shown above, an assumption can be made that the
resistor is used to “practicalize” the “ideal” capacitor*. [*Recall: A practical capacitor is
modelled as an ideal (i.e., zero internal resistance) capacitor in parallel with some
resistance, and a practical inductor is, on the other hand, modelled as an ideal inductor
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in series with some (internal) resistance]. Therefore, the implication of the circuit in Fig.
3.1 is that a practical capacitor is in parallel with an ideal inductor. Obviously, it would
be best to determine the voltage as the response since this is common to all three
network elements, and thereafter, if need be, each of the branch currents can then be
evaluated. Were we to set up any of the branch currents as the object for determination,
the intermediate step would still involve determining the voltage, which then exposes
the redundancy of the initial step!

To obtain the integral-differential equation that describes the response of the above
network (either current or voltage), we take a single KCL involving nodal equation:

U+1ft dt— i)+ 2o 3.1
RTL) VT G T '

With the assumed direction of the current at time t, shown. Differentiating Eq. 3.1
across to clear the integral term:

1dv 1 d?v
— v+ C

= 2
Rdt L dt? 0 3

with i(t,) “zapped” out, being a constant term.
Rearranging Eq. 3.2,

d2v+1dv+1 — o 33
dtz "Rar LVT '

The characteristic eq. 3.3 is

CZ+<1) +<1) 0 3.4

s —)s+{=)= .

R L

Applying the “almighty formula” for ax? + bx + ¢ = 0 to determine the roots of x (in
our cases, representing complex frequency s = (a + jw)

a=C
—b ++Vb?% — 4ac b:l
X = R 3.5
2a 1
:_
)

So,
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S1,S2 = 3.6a

Rearranging,

1
S1,82 = m_ 3.6b
—1

Sy = + 3.6
S92 = 5pc* | 2cR)2L ¢

-1, ( - )2 - 3.7

- = _— .

552 = 5pc* [\2rC) T IcC

for a parallel connection.
Keeping faith on expression of the response, for example voltage in the case above, we
write the response:

v(t) = K;e51t + K,es2t 3.8
Where;
=it (o) 39
517 ToRC 2rCc) T IC 74
1 (1 )2 1 200
%2 = ToRC 2rC) T LC '

Each of the terms for v(t) in Eq. 3.8 is a solution, therefore, their linear combination is
also a solution.

For simplicity and ease of reference, let’s designate the expressions in Egs. 3.9a and
3.9b involving the network parameters R, Land C with terms:

1

— = 1
2RC a 3.10a



where a(Greek letter alpha) is the neper frequency, also called exponential damping
coefficient

1
Wy = —— 3.10b
° " VIC

where w, (omega zero) is the resonant frequency already met in an earlier course.
(Complex frequency s = a + jw)

So, S1 = —a+Ja?—we? s, = —a—Ja? — wy? 3.11a,b

With the expressions Eq. 3.11 for the two roots s; and s,, three different possibilities
exist of the types of responses depending on the relationship of @ and w,:

1. a> w, = two real and unequal roots, and the responding signal is called over-
damped circuit signal;

2. a = wy = two real and equal roots, leading to critically damped circuit signal;

3. a < wy= two complex conjugates (and therefore, unequal) roots, leading to a
signal called under-damped sinusoid.

3.1.1 For Over-damped Condition

Example 3.1: Assigning values to the circuit of Fig.3.1tobe R =4Q, L=5H, C =

%F, with initial current i;(0) = 5 A, and initial voltage v(0) = 0, a= ﬁ =
20 1 1
m—2.5 wo—\/T_C—\/—E—\/Z—Zrad/s
20
s1=—a+a?—wy?=-25+/252-22=-25+15=-1
s, =—25—-15=—-4
v(t) = Kie "t + K,e ™
U(O) :0:K1+K2:>K1:_K2
% = —Ke~t — 4K,e~%
as this, being a second-order differential equation, needs two initial conditions to
compute the response. We make use of i.(t) = C%:O and evaluate att = 0*:
dv,(t) .
C C;t =i.(0%)
t=0%
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dv(t)
dt

- (%) (—K, — 4K,)

t=0%
ic(0%) = ir(0*) +i,(0%)

v(0

20i.(0%) =20 x 5 = 100 = 3K,

_ 100 K = 100

1 — 3 4 2 — 3

) 100y _, 100\ _,,
Finally, v(t) = (T) et — (T) e "tV

100
v(t) = T(e_t —e v

To sketch the response in Fig. 3.2, we identify the critical points, namely,

The initial value of the sum (i.e., difference, actually, of the two terms);

Final value of the signal (zero, since both are decaying exponential terms);

The time at which the maximum value occurs; and...

The maximum value itself.  v(0) = 0 obviously, and v(e) = 0 as the two terms

W

have both damped out.

For time at maximum:

dv(t) 100,
- (—p— 4 —4t
Tt 3 (—e P+ 4e7)

At maximum point,

dv(t) B

dt 0

100
T (_e_tmax + 46_4tmax) =0= _e_tmax + 49_4’tmax =0

- e_tmax — 46_4tmax - 1 — 4.3_4'tmax/e_tmax

1 = 4.3_3tmax - e_3tmax — —
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1
= _Stmax = IHZ

3tax =In4

In 4
tnax = T =046s

where t,,4, Stands for time at which maximum voltage response occurs.

100
v(0.46) = —>—
e4%X0.46

= (100/3)(0.63 — 0.16) = 15.67 V

e0.46

v(t)

100 _,
—e
30 A 3
‘\‘%‘ Oe"” (absolute valueos 1008"“)
15 ™ _
“ v(t) (dif ference of absolute values)
1 2 3 t
Figure 3.2 The graph of Over-Damped Response
3.1.2

Critically-Damped Response (Parallel Circuit)

For critical damping, the term inside the square root sign, a? — w,? is theoretically
set equal to zero, making the two roots (value of —a) equal to each other. We say,
theoretically, because it’s physically impossible to construct a parallel R-L-C circuit
whereby the neper frequency « is exactly equal to the radian frequency w,.

So, S1 =S, =—a=—w, 3.12
1 1
— _—
2RC \/IC
1 1
4R2C?2  LC
L = 4R?*C 3.13
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Example 3.2: From Example 3.1, in order to make L = 4R?C (thereby effecting a = w,
for critical damping), we alter the values of R, leaving L and C (thus w,) unchanged

until @ and w, become equal. Using the same initial conditions as in Example 3.1

L=4R’C =>R=- f ( \/100—5.(2
\IE

Check: a = m 2 —| = 5 =2
=—== ’ =4 = 2rad/s
Refer to Egs. 3.2 and 3.3

Cd2v+1dv+1_ 3.14
dt> Rdt L '
dzv 1 dv+ 1 0

= B T T
dt? RC dt LCU
d?v dv
= F'{'de—ﬁ'd v=20 3.15

1
where @ = wo= NiT

The general solution for critically damped case is:
v=e “(Kit+K,) =e (Kt +K,) 3.16
U(O) == 0 == eo[Kl(O) + Kz] = 0 = KZ = 0

So, v(t) is simply: v(t) = K te™?t

dv(t
dg: ) = _2K1 te_Zt + Kle_Zt

dv(t) 1 K = i(0*
—=| =550 = (01

t=0

2o = ic(0) = ir(0%) +1,(0%)
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O+
=UR(4 ) {5—0+5=5

K; = 20 X 5 = 100, with the same initial conditions imposed on v, i;.
Finally, v(t) = 100te™2t V

To sketch the response

—dZEt) =100 (—2te %t + e~2%) = 0 at maximum value.
o2t
tmax = m =05s
0.5 50
v(t)
20
15
10
5
1 2 3 t

Figure 3.3 Graph of Critically-Damped Response
3.1.3 Under-damped Parallel Circuit

Here, @ < w,, making the term inside the square root sign negative, signing rise to

complex roots for s4, s5:

suS; = —at Jat—w,t=—at \/(_1)((‘)0 —a?)
:_ai \/_1 lwoz—az = — i]wd 317

Where wy; = +/w,% — a? is called the natural resonant frequency.
S1 = —a+jwg; S; = —a — jwg 3.18a,b

[The roots are complex conjugates; strictly note that w,, the square root term, is itself
real, as is always the case with the imaginary part of any complex quantity!]
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The response can be written in the same manner as for the over-damped case, since the
roots here are different (even if conjugate):

v(t) = K e51t + K,e52t
v(t) = K eCotkeat 4 g, e(-a-joalt
v(t) = e"% (K e/?at + K,e~/®at)
(Euler’s identity: e/* = cosa + j sina)
v(t) = e *[K;(cos wyt + j sinwyt) + Ky(cos wgt — jsinwgt)]
v(t) = e *[(K, + K;) cos wyt + (K; — K,)j sinwgyt] 3.19a
v(t) = e *(A; cos wyt + Ay sinwgyt) 3.19b
Where A; = K; + K,, A, = j(K; — K;), replace the former constants in Eq. 3.19a.

Question: Why is there no complex term in the final expression for v(t) in Eq. 3.19b?
Explanation: s;, s,; K; and K, are generally all complex quantities, and it’s entirely
possible to obtain real numbers from the addition (or multiplication) of complex
numbers. In general, s; and s,; K; and K, are respectively one another’s complex
conjugate; and addition of complex conjugates results in a real number (twice their real
parts). (For actual physical system, this can be viewed as being “self-practicalized”!) As
in the previous case, the two constants A; and A, are evaluated from initial (and maybe
also, final) conditions.

Example 3.3: Assign the valuesof L =5 H,C = % F tothe circuit of Fig.3.1, but this time

around force a to become less than w, (@ < w, ) by increasing the value of R to, say 6 ().

1 20 5

= wg =+ w,?—a?
=422 —1.6672 = 1.105rad/s

v(t) = e 1967t (4, cos 1.105t + A, sin 1.105t)
With the same initial conditions as in Example 3.1:

v(0) = e%°(4;cos0+A,sin0) =4, =0
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So, v(t) is simply: v(t) = A,e1%%7tsin 1,105t

dv(t
d(t ) = A,(1.105e 1667 c0s 1.105t — 1.667e 1667t sin 1.105t)
1\dv(t
(ﬁ) di) =i.(0Y) =ix(0")+i,(0")=0+5=5V/s

1 1
= (%)A2(1.105e° cos 0 — 1.667e°sin 0) = (%)(1'105’42) =5

_ 20 x5
27 1.105

Finally, v(t) = 90.50e 7197t s5in 1.105¢ V

= 90.50

Notice that the above expression for v(t) involves both a damped part (e ~1¢°7t) and
asinusoidal factor (sin 1.105t), resulting in a damped sinusoid.

Sketching under-damped signal (see Fig.3.4):
The sinusoidal factor, considered alone,

starts at zero for t = 0; is zero again for t = %, where n is any integer;
b ima(+) at t = —— 3,7,11
ecomes maxima att =———,n=23,7,11, ...
2 X 1.105

dv(t
Setting = 0, and after the requisite manipulation:

tan1.105¢t = 1.105/1.667

_1 (1105
fan (L8
1.667

1105 =0.530s

= maximum occurs att =

Maxima: t = 0.530 + nmw,n even Minima: t = 0.53 + nm,n odd
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v(t)

0.42

-0.04

Figure 3.4 Underdamped Response Curve

3.2 Source Free R-L-C Series Circuits

An understanding of the natural response of the series RLC circuit is a necessary
background for future studies in filter design and communications networks.

Consider the series RLC circuit shown in Fig. 3.5. The circuit is being excited by the energy
initially stored in the capacitor and inductor. The energy is represented by the initial
capacitor voltage V, and initial inductor current I,. Thus, att = 0,

1 0

C
|
A
VR R L
i(t)
Figure 3.5
A single KVL gives:
Ldi(t) +i(t)R + ! ft'dt t)=0
I [ C [ v.(t) =

to
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Eqg. 3.21 could have been derived directly by taking the dual of the expression for the
parallel-connected circuit we dealt with previously:

Cdv+1V+1ft dt—i (t)=0 Ldi+R'+1ft'dt (t,) =0 3.22
—_— J— — J— frnd = —_— —_ —_ = .
ad R L) T T R

1 N (1)2 1 R+ (R)2 1 223
= —— —] ——s —— — ——= .
Sv52 = "opc* [\2rc) T IC 2L~ J\2L) T cL
Thus, for the above series connection:

R 1 1
a = —;w, = — = ——(same as for parallel connection)

2L’ VCL  VIC

i(t) = K;e51t + K,e52t(over-damped)
i(t) = K testt + K,eS2t (Critically-damped)
i(t) = e % (A, cos wyt + A, sin wyt)(under-damped)

with wg = \/we? — o2, as in the case for parallel connection

Example 3.4: For the circuit of Fig.3.5, assigning the values for the network:

R=4MQ;L=2H;C= % uF; i(0) = 4 mA; v.(0) = 4V, determine and sketch i(t)
fort > 0.

! ! 108 = 10* rad/
wy = = = = rad/s
VLC (i)xlO‘6
200
_1@?_4><106_106
YT T ox2

wa = Jwo? — a? =+/108 — 106 = /99 x 106 = 103v99 rad/s
i(t) = e~1090¢( A, cos 103V99t + A, sin 103v/99¢)

i(0) = 0.004 = A,
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di(t) B

e~1000t(—103/994, sin 103v99¢ + 103v/994, cos 103V99)

dt
—1000e~19%%¢( 4, cos 103v/99¢t + A, sin 103v/99¢)
di(t) 5 ]
L— = v,(0) = 2 (10V994, — 10004, ) = iz (0)R — v,.(0)

t=0

2 (103v994, — 1000 x 4 x 1073) = —4 x 1073 x 4 x 10° — 4

2(103v994, — 4) = —16000 — 4 = —16004

=)

A, =22 21+ 0.804
2 (103+/99)

i(t) = e~1009¢(0.004 cos 103V99 t — 0.804 sin 103v99 t) A

The overdamped, critically damped and underdamped response curves are the same
as the parallel case with voltage and current duality

Example 3.5: The current in a circuit is given by a second order equation:

2i+3di+2'—0
dt? dc ot T

With initial conditions i(0%) = 2 A, Z—i (07) = 1 A/s, determine the time t current i(t)

takes to reach the maximum value.
Solution:

d?i

di ]
az +3 I +2i=0
Characteristic equation is

p?+3p+2=0
Where the roots are
p1 =—1,p, = —2 [overdamped]

Recall the current response for overdamped response

i(t) = Ajestt + A,es?t
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i(t) =Ae t + A,e™ %t (i)

i(0) = Aye™©@ + 4,72
2 = A1 + AZ
A+ 4, =2 (ii)

Taking the derivative of i(t) in equation (i)

di(t) _ _
dt ES _Ale t — 2A2€ 2t
- _ —~A;e™® —24,e72(®)
dtle=o
1 = _A1 - 2A2

Recall equation (ii) and equation (iii)
Al + A2 = 2
A+ 24, = -1

Solving (ii) & (iii) simultaneously for the value of A; and A,

i(t) =5e t—3e7%4

ai(t)
ac

0

For imax

di(t)
dt

—5e t+6e 2t =0

6e %t =5et

6e—Zt+t — 5
6e t=5
5
—t =
¢ %
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—t=1In [5]

6

—t = —0.1823
t =0.1823 s = 182.3 ms

Example 3.6: The circuit of Fig below is under steady state and the switch is open at
t = 0. Find the frequency of the current i;. Also, determine its magnitude.

t=0
50

|

SF;\
—— 10V # 2H

Figure 3.6
Solution:
(@) To determine the frequency f and i,

At t(0%)

10
i,(01) = §,(07) == =2A

t 2di;
vdt+ =

5 X 10—6f0 a ° KVL

2di,

2

200000 det+

d?i,

dt?
2p? + 200000 =0

+ 200000i, =0

p% — 100000 =0

_ 10 di(0%)
Where i, (0%) = < = 2A; It

<0A/s
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p= v/—100000 (underdamped)
p = —j316.227
wg = 316.227 rad/s
Recall i for underdamped response
i(t) = e*(B; cos wgt + B, sinwyt)
Where a =0
i(t) = By cos(316.23t) + B, sin(316.23t)

But wy; = 2mfy

o _©a_ 316223
d=or T ox3142 0
f, = 50.3 Hz

i, (0")Y=2.2B;=2andB, =0
Hence the circuit instantaneous currentis i(t) = 2 cos 316.23t
Where amplitudeis i; =2 A
Figure 1

3.3 Exercise 3. (i) Determine the natural
response i(t) for the circuit Fig.
2. (ii) at what time does the
current achieve maximum value?

1. (i) Determine the natural response
v(t) for the circuit of Fig. 1. (ii) at what

time does the voltage achieve ) ) ]

. . . (iii) determine this maximum
maximum value? (iii) determine this ai

. . d value. Given that (— =5A s)
maximum value. Given that (d—: = dat /

20 mH
4V/ s) . AV
v(t)
. i(t)
ir t ic 100kQ A0pF ——
1 L
6Q 7H =T
Figure 2
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3. For a parallel RLC circuit with
inductance of 100 mH and capacitance
of 40 uF, determine, resistor values
that would lead to

(i) over-damped
(ii) under-damped

(iii) critically-damped responses
respectively.

4. For a parallel RLC circuit containing
50 Q) resistor with parametric values of
a = 500s"!and w, = 400 rad/s
determine: (i) C (ii) L (iii) sq (iv) s,

5. For a parallel RLC circuit with
inductance of 200 mH and capacitance
of 800 pF what are the resistor values
that would lead to

(i) over-damped
(ii) under-damped
(iii) critically-damped responses

6. Given a parallel RLC circuit
containing 25 Q resistor with

1

parametric values of ¢ = 250 s™" and

wo = 400 rad/s, determine

(i) C (ii) L (iii) 51 (iv) s,

7. For a parallel RLC circuit with
inductance of 50 mH and capacitance

of 500 uF what are the resistor values
that would lead to (i) over-damped (ii)
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underdamped (iii) critically-damped
responses respectively

8. For a parallel RLC circuit containing
100 Q resistor with parametric values
ofa = 1000 s~! and w, = 800 rad/s,
determine (i) C (ii) L (iii) sq (iv) s,

9. In the circuit of Fig.3 the parameter
of coil and coil 2 are respectively, 1.5 H

and 8 Q and 0.5 H and 4 Q. |fC=%F

and it is charged to 100V, determine
the current 0.2 s after the switch is
closed.

Coil 1 c Coil 2

+

'

t=0
Figure 3
Answer:i = —5.49 A
10. What is the voltage across coil 2 in
the circuit of Fig. 3at £t = 0.2 s?
Answer: v = —27.44V

11. If the switch in Fig.4 closed att = 0,
find v(t) for t = 0 and w(0).

15Q

20u(-t)V
()
NV

Figure 4



15Q

12. In the circuit of Fig.5, the switch is i ;{0 i

moved from position 1to 2 att = 0. Vo 2
2:(0+ 1
Determine M o § 0.1H
dt?
T 100uF
Figure 5
dZ- ot
Answer: % = 108A/s?
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CHAPTER 4

TRANSIENT IN R-L-C CIRCUIT DRIVEN BY A FORCE
RESPONSE

4.0 R-L-C Circuit with Force Response

As we learned in the preceding chapter, the step response is obtained by the sudden
application of a dc source.

4.0.1 Step Response of a Series R-L-C Circuit

Consider the series RLC circuit shown in Fig. 4.1. Applying KVL around the loop for t > 0,

t=0

MM ‘@©

Figure 4.1 Step response applied to a series RLC circuit

di .
LE+Rl+v=vS 4.1
But
] dv
i = CE

Substituting for i in Eq (4.1) and rearranging terms

d’v Rdv v

Vs
- == 4.2
dt? + Ldt + LC LC

which has the same form as Eq. (3.2). More specifically, the coefficients are the same
(and that is important in determining the frequency parameters) but the variable is
different. (Likewise, see Eq. (4.9).) Hence, the characteristic equation for the series RLC
circuit is not affected by the presence of the dc source.

The solution to Eq. (4.2) has two components: the transient response v, (t) and the
steady-state response v (t); that is,
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v(t) = v(t) + v (t) 4.3
The transient response v, (t) is the component of the total response that dies out
with time. The form of the transient response is the same as the form of the solution
obtained in Section 3 for the source-free circuit. Therefore, the transient response v, (t)
for the overdamped, underdamped, and critically damped cases are:

v, (t) = A e5tt + A,e5?t (overdamped) 4.4a
v.(t) = (A; + A,t)e~ % (Critically damped) 4.4b
v, (t) = (A; cos wyt + Ay sinwyt)e %t (Under damped) 4.4c

The steady-state response is the final value of v(t). In the circuit in Fig. 4.1, the final
value of the capacitor voltage is the same as the source voltage V. Hence,

Vs (t) = v(0) =V 4.5

Thus, the complete solutions for the overdamped, underdamped, and critically damped
cases are:
v(t) + A et + A,es2t (overdamped) 4.6a
v(t) + (A; + A,t)e ™% (Critically damped) 4.6b
v(t) =V, + (4, cos wyt + A, sinwyt)e™* (Under damped) 4.6¢
The values of the constants A; and A, are obtained from the initial conditions: v(0) and
dv(0)
dt
the current through the inductor. Therefore, Eq. (4.6) only applies for finding v. But once

=V
=V

. Keep in mind that v and i are, respectively, the voltage across the capacitor and

. . . d .
the capacitor voltage v, = v is known, we can determine i, = Cd—:, which is the same
current through the capacitor, inductor, and resistor. Hence, the voltage across the
. . . . . . di
resistor is vg = iR, while the inductor voltage is v, = Ld—;.

Alternatively, the complete response for any variable x(t) can be found directly,
because it has the general form

x(t) = x5 (t) + x:(t) 4.7

where the x,; = x() is the final value and x;(t) is the transient response. The final
value is found as in Section 3. The transient response has the same form as in Eq. (4.4),
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and the associated constants are determined from Eq. (4.6) based on the values of x(0)
dx(0)

and v

For a d.c. excitation, the forced response,

v¢(t) = vy, say for a voltage signal
Natural response:
v, (t) = K e52t
Complete response v(t) = v (t) + v, (t)
=V + Kie%tt + Kye®?!
With the unknown K; and K, yet to be determined from initial conditions.

The same basic procedure used for R-L and R-C driven circuit, also obtains here the
only difference being that, whereas only one energy storage element was involved in the
former case, meaning that only one initial condition was required, this time around, two
different initial conditions would be required since it now contain two energy-storage
elements.

4.0.2 Step Response of a Parallel R-L-C Circuit

Consider the parallel RLC circuit shown in Fig. 4.2. We want to find i due to a sudden
application of a dc current. Applying KCL at the top node for t > 0,

it)

I, —
s T R L ¢
t=0
_

/1

Figure 4.2 Parallel RLC circuit with an applied current

v o dv
§+l+CE=IS 4.8
But
di
sza
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substituting for v in Eq. (4.8) and dividing by LC, we get

d2i+1di+i_ls 40
dt2  RCdt LC LC '

has the same characteristic equation as Eq. (3.4).
The complete solution to Eq. (4.9) consists of the transient response i, (t) and the steady-

state response i, that is,
i(t) =i.(t) +is(t) 4.10

The transient response is the same as what we had in Section 3. The steady-state

response is the final value of i. In the circuit in Fig. 4.2, the final value of the current

through the inductor is the same as the source current I;. Thus
i(t) = I;+ Ajesit + A,es2(overdamped)

i(t) =1, + (A, + Ayt)e % (Critically damped) 4.11

i(t) =1, + (A cos wyt + Ay sinwgt)e*t (underdamped)

The constants A; and A, in each case can be determined from the initial conditions for i
and di/dt. Again, we should keep in mind that Eq. (4.11) only applies for finding the
di

inductor current i. But once the inductor current i;, = i is known, we can find v = LE

which is the same voltage across the inductor, capacitor, and resistor. Hence, the current
. . . . . d .
through the resistoris i = %, while the capacitor currentis i = Cd—:. Alternatively, the

complete response for any variable x(t) may be found directly, using
x(t) = x5 (t) + x:(t) 4.12
where x4, and x; are its final value and transient response, respectively.

4.1 General Second Order Circuit

Now that we have mastered series and parallel RLC circuits, we are prepared to apply
the ideas to any second-order circuit having one or more independent sources with
constant values. Although the series parallel RLC circuits are the second-order circuits of
greatest interest, other second-order circuits including op amps are also useful. Given a
second-order circuit, we determine its step response x(t) (which may be voltage or

current) by taking the following four steps:
dx(0)
dt

1. We first determine the initial conditions x(0) and and the final value x (o),
as discussed in Section 2.
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2. We turn off the independent sources and find the form of the transient response
x:(t) by applying KCL and KVL. Once a second-order differential equation is obtained,
we determine its characteristic roots. Depending on whether the response is
overdamped, critically damped, or underdamped, we obtain x;(t) with two unknown
constants as we did in the previous sections.
3. We obtain the steady-state response as

Xss(t) = x(00) 4.13

where x (o) is the final value of x, obtained in step 1.
4. The total response is now found as the sum of the transient response and steady-
state response

We finally determine the constants associated with the transient response by imposing

the initial conditions x(0) and dj;—(to), determined in step 1.

We can apply this general procedure to find the step response of any second-order
circuit, including those with op amps. The following examples illustrate the four steps.

Example 4.1: For the circuit shown in Fig.4.3, determine:
i,(07)

v:(07)

vRp(0%)

i;,(0)

i (0.2 ms), given iy = 10u(—t) — 20u(t) A

vk wnh e

is T 10uF —~ V¢

i, ()

Figure 4.3
Solution:
Fort = 0%, ig = 10u(—t) —20u(t) A=10—-0=10A

The inductor and capacitor are like short and open circuit, respectively, as “seen”
by the d.c source
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(1) i,(0") =i (07)=i;=10A

(2) v.(0")=v,(07) =vr(07) =i, x200=10A x20Q =200V

(3) vr(0tH)=200x%xi,(0")=200x%xi,(07)=20%x10=200V

(4) i (0) =is(0)=0—-20=—-20A (Capacitor is open)

5. To determine the natural response, we set the source equal to zero, resulting in a
series R-L-C circuit with

R 20 \
A= == = 104
2L 2x1073 » _
1 1 . critically damping
Wo = = = 10%*rad/s
°"VIC VIx103x10x10° /

lL(t) = iL,SS + iL,T - —20 + e_lot(Klt + Kz)

i,(0")=10=—-20+K, = K, = 30

di,
+) — L___
v, (07) dt g+

=1x 1073 x [e710"t K, — 10*e 1" (K, t + K;)]
=1 x 1073[K; — 10*K,]
v,(0) = 1,(0%) — v (0*) = 200 — 200 = 0
= K, — 10*K, = 0
K, = 10*K, = 10* x 30 = 3 x 10°
i,(£) = —20 + e~ 1°"t(3 x 105¢ + 30)
i(0.2ms) = —20 + ¢~10%x02x107%(3 5 105 x 0.2 x 1073 + 30)

60 + 30
(60430

= —20 =

90
=—-20+ ol —20+12.18 =-7.82A

Table 4.1 Summary: R-L-C Circuits

Parallel Connection Series Connection
1 R
a=— a =—
2RC 2L
w ! W = 1
0™ Vic 0™ JVic
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a > w, = overdamped:
fn(®) = Kie5tt + K,eS2t, with s, s, = —a + a2 — wy?
a = wy = critically damped:

fu(®) = e (Kit + K;)
a > wy = underdamped:

fu(®) = e (K, cos wyt + K, sin wyt),
With wy = \/m

N.B: in all these cases fy (t) stands for the natural response of either current through an
inductor or voltage across a capacitor. Voltage cross, and current through these
respective elements can be found from the relationships

di, (t)
n=L—g
. dv(t)
e = dt

And as has been repeatedly noted, these cannot charge instantaneously in these
respective elements

Total response:
f(t) = f,s(steady — state) + fr(transient)

Example 4.2: For the circuit shown in Fig.4.4, determine:

31.25 H

- 100 Q 2mF —_ V¢
20 + 40u(t) v() v :

Figure 4.4
(i) i.00)
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(i)  v:.(0)

(iii) iLss

(iv) Expression fori;(t),t > 0
(v) hencei (0.25s)

Solution:

fort =07, wvgissimple 20V, (inductor is short and capacitor is open), therefore,

() i(07) =555 =02A=0,(0") =iy (0)

(i) ve(07) =vx(07) =0.2A % 100Q =20V = v(0") = 1,(0)
_ (20+40)V _ 60

(i) i = =2 =064
. _1 1 1 -1
(iv) a= 2RC ~ 2x100x2x10~3  4x10-1 25s
1
Wy =4rad/s >a =25

 V3125x2x 103
wg = V4% —2.5%2 = 3.122 rad/s
ip(t) = 0.6 + e 25 (K, cos 3.122t + K, sin 3.122t)

diy (t)
dt

t=0%

= 31.25[3.122K, — 2.5K;]

v,(0%) = 31.25 = 31.35[—2.5K, + 3.122K,]

v, (0%) + vy — v.(07) = (20 + 40) — 20 = 40

i,(01)=02=06+K, =K, =—04

40
3.122K, — 2.5K, = 3.122K; — 2.5(~04) = 5~ = 1.28
_(1.28-1)

2= 3o = 0.089
i, (t) = 0.6 + e 25(—0.4cos 3.122t + 0.089sin 3.122t) A

[(—0.4 cos 3.122 x 0.2) + (0.089 sin 3.122 x 0.2)]
eZ.SXO.Z

(v) i,(0.2s) =0.6 +

[—0.4 x 0.81 + 0.089 x 0.585]

= 0.6+ o5
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[—0.324 + 0.0521]
= 0.6+ = 0.6 — 0.1649 = 0.4351 A

eO.5

Example 4.3: Write the equation governing V; and V, in the circuit of Fig. 4.5 and
determine the initial conditions on these voltages.

1H
i~y

>§ 50 20 0.5F
T 10A

Figure 4.5

Using KCL relating node 1&2

For node 1
Vi

Vi

Fore Node 2
det+V2+05dV2 det—o

z 2 T dt e

For the initial condition
7, (0Y)=10%x5=50V V,(0t) =0V

The initial conditions above is giving by the first derivatives of the voltage V; and V,

dv;(0%)

Framie —5v,(0%) = —-250V/s

When the current source i = e~ tA

—t Vl
™t =<+ | Vidt = | Vadt
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det+VZ+05dV2 det—o
2 2 ~odt =

v1(0%) =5i(0*) =5x1=5V

v,(07) =0

t=0
%\
Lg
2Q “l/ 2Q
Y, I\
T— 100V 1H

i(t)

Figure 4.6

Example 4.4: In the circuit of Fig. 4.6, write a set of integral differential equations to
solve for v. Find the natural response of the circuit and the time the current takes to
reach maximum value.

(a) Tosolve forV

Applying KVL (for final condition)

i
100=2i+2i+4f idt + —
. dt

di t .
—+4J idt +4i =100
dt 0

With initial condition v(0) = iyR

, v(0) 100
l(O) :T:TZSOA

1
v(0%) = 5 x 100 = 50

The natural response of a circuit is
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d2i+4di+4'—0
dt? dc b7

With the initial conditions i(0%) = 2 A,

di((i(:f) =4A/s
Solving for i as the natural response,
Recall
d?i  4di )
PTE] + ar +4i=0

The characteristic equation is given by
s?+4s+4=0
Sl = _2, SZ = _2

Recall the response of a critically damped response

i(t) = Ajest + Aytest = (A + Ayt)est

i(t) =Ae 2 + A,te™?t

(Critically damp)

i(0) =A,e72*0 4+ 4,(0)e 20 = 2 = 4,

A1:2

Taking the derivative of i(t)

di(t
( ) = _ZAle_Zt - 2A2te_2t + Aze_Zt
dt
di(t
d( ) —24,e72© —24,(0)e™2 + 4,72
t t=0
4=-2(2)+4,
A, =4+4=38

i(t) = 2e %t + 8te™2t
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i(t) =(2+8t)e %A
Example 4.5: A critically damped circuit has the natural response i = 4te 1%t A,

When does i reach its maximum value?
Solution:
From i = 4te 10t
di
— =4t X —10e710t 4 4710t
dt
di
— = —40te 10t 4 410t
dt
) di
lmax — a =0
—40te 10 4 4710t =

4710 = 40te~10¢

1 =10t
t ! 0.1
=—=0.1s
10
Example 4.6: In the two-mesh network of circuit of Fig.4.7, the loop currents are

selected as shown. Write the KVL equation and find the current i; and i, att = 0,
taking i(0) = 0

t=0 50 50
"

Figure 4.7

Solution:
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5i, + z lQo + f il(t)d(t)] +5i, =100 @)
2 0

»
2 45 (ii)

100 = 10i, + 2
00 = 10i; +2—

Making i; the subject of formula in Eq (ii) we have

100 — 10i, — 222
— dt

B = z
=20 — 24, — 0 4diz )
B = i) A (ii)
Differentiating Eq (i) at @, = 0 and i, = 0,
diy | iy di, .
5;'{';'{'55—0 (IV)

then substituting for i; in Eq (iii) into Eq (iv)

sd(zo 2i 04di2)+1(20 2i 04di2)+5di2—0
dt )T 2= o -

dt dt
5 zdi2 04dzi2 +1(20 2i 04di2)+5di2—0
dt  dt 2 EAR dt ~
di, 2d2i, di, _di,
—10—=— 10—i,—02—=+5—2=
dt dt2+0 2 =0 dt+5dt 0
2d2i, di,
— —522=_j, =-1
dt2 > dt 2 0
dtz + SZE + lz = 10 (V)
Let d =D
dr
[2D? +5.2D +1];, = 10 (vi)

2p2+52p+1=0 [Characteristic equation]

_—52iV5ﬂ—4x2x1
p= 2% 2
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_ =52+ V27.04—8

p 4
524 V1904 -52+436
p= 4 - 4
| —52+436  -52-436
P=""7 o 4

p=-021 or p =—2.39
i2 — Ae—O.th + Be—2.39t
From Eq (vi)

o 10e°t
2y T D2 152D +1

For(D = 0 =0)
_ 100t
2r T 20002+ 5.2(0) + 1

i, = 10 A
iz = izn + lzf
ip(£) = Ae™021t 4 Be239 4 10

From Eq (vii) substituting for initial conditions

i20)=A+B+10 = A+B=-10 = A=-10—B

di,
—4| =-0214-239B=0
dt l,—
. —2.39B 11,388
o021 '

Putting Eq (viii) into (ix)
—11.38B=-10—B
B(1-11.38) = -10

5 - -10
~ —10.38

90

=098 &4 =-10-0.963 = —-10.963

(vii)

(viii)

(ix)



i,(t) = 0.963e~23% — 10.965¢ %2t + 10 A
From Eq (iii)
i, =20 —2i, — 0 4‘“2
n T EERFT

i, = 20 — 2(0.963e~23% — 10.963e~°2¢ + 10)

d
— 04—-[0.963¢7#3% —10.963¢ %21 + 10]

i1 =20 —1.926e7%3% + 21.926e %21t — 20 + 0.9121e~%3% — 09217021t
i; = 21.005e7 %21t — 1,005e%3% A

Example 4.7: In the circuit of Fig.4.8, with i; and i, as shown,

t=0 Ry R,
B \

i1

Figure 4.8

a) Obtain a differential equation for i; by KVL

b)  Obtain the characteristic equation and write the initial conditions

c) ForV=240V, L; =0.1H, L, =02H, R; =500, R, =100 Q, obtain the
instantaneous values of i; and i,

Taking the initial conditions as: i; (0*) = i;(07) =0, i,(0*) =i,(07) =0,

ai;(0%) _ v
dt Ly
Solution:
a)  Ryiy+ L1+ Ryip =V (i)
Ryiy + (Ry + Ry)iy + L 2=V (i)
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Differentiating equation (i)

d' 2
Rl§+L1

The eliminating i, and % between Eqs (i), (ii) & (iii) we have

d? L.L, dt L, YT L,
Let 4 _ D
T
RyL;{ + R,L; + R{L, RiR, R,V
D* + ( )D + ] = = ODE
[ LiL, L,L, i L,L,
(iv)
b) Again,letD =p i.e. the characteristic equation is given by:
RL; + R,L, + R,L R{R
p2+<11 2L 12)+12=O
LiL, LiL,

¢) Forl, =0.1H, L, =02H, R, =500, R, =100Q

(iii)

(iv)

)

[Dz 4 (50 x 0.1+ 100 x 0.1 + 50 x 0.2) 50 x 1001 100 x 240

0.1 0.2
25
[DZ +——D+ 25000] = 1200000
0.02 i

[D? + 1250D + 250000];, = 1200000

T0Ix02 i, 0.1x0.:2

(vi)

Let D = p: p? + 1250p + 250000 = 0 [Characteristic equation]

_ —1250 + V12502 — 4 x 1 x 250000
P= 2x 1

—1250 £ V562500
Pa2) = )

—1250 + 750 —1250 — 750

p, = —250 or p, =-1000 (Overdamped response)
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iy, = Ae ™25 4 Be1000t (vii)

FromEq (iv)
[D? +1250D + 250000];, = 1200000

1

= x 1200000¢°
"y T D2 ¥ 1250D + 250000 €

For(D =0 =0)

o 1200000¢% 12
"7 = 02 1 250(0) + 250000 _ 25
120
llf = E =48A

i1(t) = Ae=250t 4 Be~1000t 4 4.8
(ix)

Att =0
i(o) = Ae™?50(0) 4 Be=100000) 4 4.8
0=A+B+48
A+B=-48 (x)

Differentiating Eq (ix)

di; (t
1) _ —250A4e725%t — 1000Be 100t
dt
@ _ 5504 — 10008 = —2400 (i)
dat lg=o
di(t)
= —2504 — 1000B
dt
t=0
di, (t di,;(t) V, 240
Where L, 1(8) =1, cllg ) = L_O =01 [initial condition]
1 .
di(t)
——~2 —2400A
dt /s
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2400 = —2504 — 1000B

2504 +1000B = —2400 (xii)
From Eq(x)
A+B=-48
A=-48-B (xiii)

2504 + 1000B = —2400
Using substitution method of solving simultaneous equations, substitute (xiii) into (xii)
250(—4.8 — B) + 1000B = —2400
—1200 — 2508 + 1000B = —2400

750B = —2400 + 1200

_ —1200
750

B=-16

Substituting the value of B into Eq (xiii)
A=-48—-(-16)=—-48+1.6=-3.2
i1(t) = —1.6e71000t _ 3 2p=250t 4 4.8
i1(t) = 4.8 — 1.6 71000t _ 32250t A (xi)

But i, from Eq (i) is given by
RiL; +L b + Ryi, =V
1L 10t 1l2

di
—1 4 50i, = 240 (xii)

50i, + 0.1
h dt

Substituting the Eq (xi) into Eq (xii)

d
50(4.8 — 1.6e71000t _ 32,7250t 4 0.1E(4.8 — 1.6 71000t _ 3 2250t 4 50,
= 240

240 — 80e 1000t — 160 ~1000¢ 4 80250t 4 50j, = 240
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e 1000t (160 — 80) + e~25%¢(80 — 160) + 50i, = 0

80e 1000t — 80250t = 504,

—50i2 — 80(8_1000t _ e—ZSOt)

i2 =16 (_e—IOOOt + e—250t)

i, = 1.6e7250t — 1 671000t A (xiii)
4.2 Exercise AA
1.  Onthe circuit of Fig.1. are 3 %_SH sour— mHM@
passive elements, with a voltage and a
current defined for each. Determine
eat att=0"and att =0* Figure 3

i 60

4u(t) A
[
AAAL
w
T
|
~
=
|
i
[$)]
>
[

Figure 1

2. For Fig.2 find: (i) a (ii) w (iii) i(0™) (iv)

di :
pri (v) i(0.5ms)
200 O
g 1H 80 uF —— 2u(—t) Al T
Figure 2

3. For Fig.3. Find: (i) i(t) (ii) i(20 ms)

4. For Fig. 4 Given ig = 5u(—t) — 10u(t) A,
determine:

(Di,(07) ((@Dve(0%) (EiD)vg(0") ((w)iy(e0)
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(v) i,(0.015s)

.
10 Q= vp(t)
B +
i 5uF _|_
T ts W =ee
o
[$a]
3
I
i
Figure 4

5. For Fig. 3, determine (i) a (ii) w (iii)
i(0%) (iv) % Vi@, £> 0 (v
hence i(10 ms)

6. Given ig = 30u(—t) — 60u(t)A for
Fig. 4, determine: (i) i, (07) (ii) v.(01)

(i) v (0%) (iv) i1, (00) (v) if,(t),t > 0,
(vi) hence i; (0.2 ms)



7. Find the complete response v and
then i for t > 0 in the circuit of Fig.5

Figure 5

Answer:i =2 — 6e 2t + 473t A

8. In the RLC circuit of Fig. 6, V is a dc
source. Write a formal expression for
the initial charge on the capacitor is

zero.
R L
YTYTYN
+ VR - £ - .
i v v T~ C
i
Figure 6
-R
Answer Pi=—+
2L
2
R 1 _
() —re=-a+h
-R
P, = — —
27
&) =
2L Lc —

9. State the initial condition to
evaluate the constants of integration
in Exercise 8. Define w,, the resonance
frequency and express the
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characteristic root in terms of « and
wO

Answer: P,P, = —a + /az - w}

10. Find an expression for v.(t) for
t > 0 in the circuit below Fig. 7

3000

— 150V

v i ¥ =0 i i
SmH 2000 TzonF
Figure 7

Answer: v,(t) = 905000t _
zoe—ZOOOOOt A4

11. After being opened for a long time,
the switch in Fig. 8 close at t = 0. Find
(a) i, (07); (b) v, (07); (c) ir(07); (d)
ic(0%); (e) v:(0.25)

y lc

480 =0

3u(-t)4
i
N
§
Y
/1
N
s
T
5
I

Figure 8

Answer:

1A;48V;2A; —3A; —17.54V
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CHAPTER 5
TWO-PORT NETWORK

5.0 Introduction

A port is a pair of terminals at which a signal may enter or leave a network. The rule is
that what goes in is what equally comes out. But for a two-port network, we have two
of such a pair of terminals. One pair may be used as input for, say, an energy signal while
the other pair is used as the output for the load see Fig. 5.1.

Two-Port networks find applications as important building blocks in electronic
systems, automatic control systems, communication systems, and transmission and
distribution systems.

iq 41"‘> <L
ao—*= ao0— ————o0b
One-Port + Tow-Port +
Network 41 Network V,
O — a, i . ob’
07
’ -~ —
iq lg iy’
(a) (b)

Figure 5.1

As mentioned earlier, for each part, what goes in is what comes out, and we’re not much
concerned with the internal circuitry of the network (i.e., viewed differently, it might just
be regarded as the proverbial block box!) Note the conventional direction of the arrow
at the top of (output) port b, see Fig. 5.2b for the Two-Port network. Also, it’s assumed
that for simplicity, the network is a linear one, and no independent source(s) are
involved, while there may be dependent source(s).

When a quotient involves terms at the same port, it is known as a driving point
term, while if it involves terms at two different parts, it is called a transfer term. The
qguotient is normally that of transform pairs, and for a two-port network can be
impedance, admittance, or simply voltage or current gains, since we’re obviously talking
about quotients of voltages and/or currents:
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V5 (s)

Voltage transfer function G1,(s) = G
in = 1
Gain = | L(s)
current transfer function «;, (s) = 1.05)
1
i ; _ (s
Transfer impedance function Z15(s) = e
2
(Reverse) Transfer impedance function Zy.(s) = ‘;2((;)
1
; ; _ I1(s)
Transfer admittance function Yi,(s) = )
2
Reverse transfer admittance function Y,.(s) = "/2((?)
1

All of the above involve signals at two different ports, hence the term “transfer”.

There may also be driving point function whereby the quotient is of signals at the same
Vi(s) a(s) Ii(s) I(s)
1;(5) " 1(8) " v1(s) " Vo ()’

port for example: (During point functions of like terms are

identically unity).

For two-port networks, there are four different sets of parameters, of which we’ll
in this textbook deal with z, y and t parameters only while the rest will only come up for
an honourable mention!

The parameters are:

1. z (Orimpedance) parameters:
Vi=filly, 1) = zy41; + Z1212} (Z11 Z12) (11)
=
Vo = fo(ly, 1) = za114 + Z331; Z21 Z22/ \Ip
2.y (Or admittance) parameters:
I = f1(V,V5) = y4 V1 + )’12V2} N (3’11 }’12) <V1)
I = f(V,V3) = ya1Vi + y22Vs Y21 Y22/ \V,
3.  h (Or hybrid or “mixed”) parameters:
Vi =fily,V2) = hyaly + hlZVZ} N (hu h12) (11)
I = f,(I1,V2) = Ya1l1 + hyoV, ha1 hyy ) \V;
There may also be “inverse hybrid” where the letter merely exchanges -V for I; I for V,
and h for g:

L=fW,L)=g11Vi+ 91212} — (911 912) <V1>
Vo =LV, 1) = g21 Vi + 92217 921 922/ \1,
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4. t— (ortransmission or ABCD) parameters:

Vi =fiVy, 1) =tV — t1212} N (t11 tlz) (Vz>
I = f,(Vy, 1) =ty Vo — ty,l, ta1 a2/ \Ip

(The reason for the minus sign will become apparent, later).

As pointed out earlier, the sets of parameters to cover are: z, y and t. As we shall in
this textbook concentrate more on the t parameters, that is, transmission parameters,
not least because of its relationship to other “sister” courses in electrical as well as
electronics engineering.

5.1 Impedance Parameters ‘Z’

Impedance and admittance parameters are commonly used in the synthesis of filters.
They are also useful in the design and analysis of impedance-matching networks and
power distribution networks.

4, L
Linear . Linear +
I
1’4 Network v, kL 4 Network V, 2
O—
(a) (b)

Figure 5.2 The linear two-port network: (a) driven by voltage sources, (b) driven by
current sources

We discuss impedance parameters in this section and admittance parameters in the
next section.

A two-port network may be voltage-driven as in Fig. 5.2(a) or current-driven as in Fig.
5.2(b). From either Figs. 5.2(a) or (b), the terminal voltages can be related to the terminal
currents as

Vi =z + 2451, 51
Vo = 25111 + 23315 '
or in matrix form as
V1 _ Z11 Z12 11 _ 11
Vz] - [221 Zzz] [12] = 2] Iz] >-2
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where the z terms are called the impedance parameters, or simply z parameters, and
have units of ohms.

The values of the parameters can be evaluated by setting I; = 0 (input port open-
circuited) or I, = 0 (output port open-circuited). Thus,

W W
Z11 = I_ ) Z1p = I_
17,=0 2'n=0
5.3
V, V,
Z1 = I_ y  Zyp = I_
17,=0 2l=0

Since the z parameters are obtained by open-circuiting the input or output port, they are
also called the open-circuit impedance parameters. Specifically,

Z11 = Open circuit input impedance
Z1, = Open circuit transfer impedance from port 1 to port 2 5.4
Z51 = Open-circuit transfer impedance from port 2 to port 1

Z5, = Open circuit output impedance

According to Eq. (5.3), we obtain z;; and v,; by connecting a open-circuited
voltage V; (or a current source I;) to port | with port as in Fig. 5.3(a) and finding I; and
V5 we then get

_ 4 _ Vs e e
Z11 = T Z21 = T .
1 1

I Vi L=0 4’11 =9 V; <7[2
— m = ——o0 O— Z12 = =
1 S . I

4 Zy = 11/_12 V2 " Z3 Z‘I/—Zz V2

(a) (b)

Figure 5.3 Determination of the z-parameters: (a) finding z;1 & z,1 (b) finding z{, & 25,

Similarly, we obtain z;, and by z,, connecting a voltage V, (or a current source [,) to
port 2 with port | open-circuited as in Fig. 5.3(b) and finding I, and V;; we then get

Vi Va
Z1p = I_, Zyy = I_ 5.6
2 2
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The above procedure provides us with a means of calculating or measuring the z
parameters.

Sometimes z;; and z,, are called driving-point impedances, while z,; and z;, are
called transfer impedances. A driving-point impedance is the input impedance of a two-
terminal (one-port) device. Thus, z;; is the input driving-point impedance with the
output port open-circuited, while z,, is the output driving-point impedance with the
input port open-circuited.

When z;; = z,,, the two-port network is said to be symmetrical. This implies that
the network has mirror like symmetry about some center line; that is, a line can be found
that divides the network into two similar halves.

When the two-port network is linear and has no dependent sources, the transfer
impedances are equal (z;, = z,,), and the two-port is said to be reciprocal. This means
that if the points of excitation and response are interchanged, the transfer impedances
remain the same. As illustrated in Fig. 5.4, a two-port is reciprocal if interchanging an
ideal voltage source at one port with an ideal ammeter at the other port gives the port
same ammeter reading.

I _— _» | Reciprocal
Reciprocal ~
1 2 1 2
14 Two-port Two-port 14
Lo— |

(a) (b)

Figure 5.4 Interchanging a voltage source at one port with an ideal ammeter at the
other port produces the same reading in a reciprocal two-port.

The reciprocal network yields V = z;,1 according to Eq. (5.1) when connected as in Fig.
5.4(a), but yields V = z,,1 when connected as in Fig. 5.4(b). This is possible only if z;, =
Z51. Any two-port that is made entirely of resistors, capacitors, and inductors must be
reciprocal. A reciprocal network can be replaced by the T-equivalent circuit in Fig. 5.5(a).
If the network is not reciprocal, a more general equivalent network is shown in Fig.
5.5(b); notice that this figure follows directly from Eq. (5.1).
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A v,
A
_ ) zah

(a) (b)
Figure 5.5 (a) T-equivalent circuit (for reciprocal case only), (b) general equivalent

circuit

It should be mentioned that for some two-port networks. the -parameters do not exist
because they cannot be described by Eq. (5.1). As an example, consider the ideal
transformer of Fig.5.6. The defining equations for the two-port network are:

1
V1 = ;VZ' and 11 = _nlz 57

I, 1,
1:n

Figure 5.6 An ideal transformer has no z-parameters.

Observe that it is impossible to express the voltages in terms of the currents, and vice
versa, as Eq. (5.1) requires. Thus, the ideal transformer has no z. parameters. However,
it does have hybrid parameters as we shall see in Section 5.4.

Example 5.1: Determine the z parameters for the circuit in Fig. 5.7.

20Q 30Q

Z 400

Figure 5.7
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Solution

METHOD | To determine z;; and z,4, we apply a voltage source V; to the Input port and
leave the output port open as in Fig.5.8(a). Then,

I
! 200 300 h

e
R —

+
)h 400 V2

(@
Figure 5.8 (a) finding z;,& 254

I 200 300 I

Y
& 400 )

(0)
Figure 5.8 (b) finding 21, & z,,
V. 20 4+ 40)I
Zyy = — = @0+10hL _ ¢ q
I I

that is, z;4 is the input impedance at port 1.

=—= =40Q
Z21 I, I,
To find z,, and z,,, we apply a voltage source I/, to the output port and leave the input
port open as in Fig. 5.8(b). Then,

vV, 40 Vo (30 + 40)1, _ 70

=—= =40, == Q
Z12 A A Z22 A A

Thus,

1= [600 f00
400 700
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METHOD 2 Alternatively, since there is no dependent source in the given circuit, z;, =
Z,1 and we can use Fig. 5.5(a). Comparing Fig. 5.7 with Fig. 5.5(a), we get

Z12=4OQ=Z21
le—Z12=20.Q = Z11=20+212=6OQ
222_212:309 = 222:30+212:7OQ

Example 5.2: Find I; and I, in the circuit in Fig. 5.9.

+ 211 = 402 +
215 = j202

= .
10040"1/() A 721 =j300 v, 100
= 237 = 500

Figure 5.9
Solution

This is not a reciprocal network. We may use the equivalent circuit in Fig. 5.5(b) but we
can also use Eq. (5.1) directly. Substituting the given z parameters into Eq. (5.1),

Vi, =401, + j20I, 5.8

V, = j30I; + 501, 5.9
Since we are looking for I; and I,, we substitute

V, =10040°, V, =-101,
into Egs. (5.8) and (5.9), which become
100 = 401, + j201, 5.10

—-10I, = j30, + 501, = [, =j2I, 5.11

Substituting Eq. (5.11) into Eq. (5.10) gives

100

100 = j80I 201 = |, =—=
J380I, + j201, 2= 7100

—Jj
From Eq. (5.11), I; = j2(—j) = 2.

Thus, I, =220° A, I, =12 — 90°A
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5.2 Admittance Parameters

In the previous section we saw that impedance parameters may not exist for a two-port
network. So, there is a need for an alternative means of describing such a network. This
need may be met by the second set of parameters, which we obtain by expressing the
terminal currents in terms of the terminal voltages. In either Fig. 5.10(a) or (b), the
terminal currents can be expressed in terms of the terminal voltages as.

I I
+
-4 +
Y11 V1
I
' O) Vl
I V, =0
Y21 = 2
#, I
B S
+
Y .
12 A
V; =0 , Vs I,
2
Y22 = V_2

Figure 5.10 Determination of the y-parameters: (a) finding y{1& y24, (b) finding
Y12 & Y22

I = y11V1 + y12 V5 512
I = y21V1 + 25V, '

or in matrix form as
L] _ (Y1 Y12 V1] _ Vl]
12] T2 y22] [Vz =1 v, 513

The y terms are known as the admittance parameters (or, simply, y parameters) and

have units of Siemens.

The values of the parameters can be determined by setting V; = 0 (input port
short-circuited) or V, = 0 (output port short-circuited). Thus,
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I L
Y1 = 7 v Y12 = V_
1ly,=0 2ly;=0 514
I, I, )
Y21 = 7 v Y22 = V_
1v,=0 2v1=0

Since the y parameters are obtained by short-circuiting the input or output port. They
are also called the short-circuit admittance parameters. Specifically,

y11 =Short-circuit input admittance

Y12 =Short-circuit transfer admittance from port 2 to port 1 5.15
Y1 =Short-circuit transfer admittance from port | to port 2

Y, =Short-circuit output admittance

Following Eq. (5.14), we obtain y;; and y,; by connecting a current I; to port | and short-
circuiting port 2 as in Fig. 5.10(a), finding V; and I, and then calculating

Iy I

7 Y=y 5.16

Vi1 = v,

Similarly, we obtain y;, and y,, by connecting a current source [, to port 2 and short-
circuiting port 1 as in Fig. 5.10(b). Finding I; and V,, and then getting

Iy I

72, Vo2 =5 5.17

Y12 = v,

This procedure provides us with a means of calculating or measuring the v parameters.
The impedance and admittance Parameters are collectively referred to as immittance
parameters.

For a two-port network that is linear and has no dependent sources, the transfer
admittances are equal (y;, = ¥21). This can be proved in the same way as for the z
parameters. A reciprocal network (y;, = y,1) can be modeled by the m-equivalent
circuit in Fig.5.11(a). If the network is not reciprocal, a more general equivalent network
is shown in Fig.5.11(b).
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O Y12 O O O
g +

+ * +

V;
« mm EmEe oap, QO

y12V2 yauWi
O_ O O O
(a) (b)

Figure 5.11(a) m —equivalent circuit (for reciprocal case only), (b) general
equivalent circuit

Example 5.3: Obtain the y parameters for the  network shown in Fig. 5.12

2Q

40 8Q

Figure 5.12

Solution:

METHOD 1 To find y;; and y,;, short-circuit the output port and connect a current
source I; to the input port as in Fig. 5.13(a). Since the 8 ( resistor is short-circuited, the

2 Q resistor is in parallel with the 4 Q) resistor. Hence,

4 I I
V1=11(4‘ ” 2)=_Ill y11=_=4_=0755
3 Vl _11
3
By current division,
2
= =2 _h_ T
2= 31T 3 YZ1—V1— ill =
3
i, 20 4127 i, 20 4]27
i L " 40 80 V,=0 Vi=0 4Q 8Q 1’2
(a) (b)
Figure 5.13
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To get y4, and y,,, short-circuit the input port and connect a current source I, to the
output port as in Fig. 5.13(b). The 4 (Q resistor is short-circuited so that the 2 2 and 8 Q
resistors are in parallel.

8 I, I, 8
V2=Iz(8 ” 2)2512, y22=V—2=§=§=0.6255
5
By current division,
4
=5 24 _h_Tsh 0.5S
5

METHOD 2 Alternatively, comparing Fig. 5.12 with Fig 5.11(a).

1
)’12——55—3’21
1
3’11+3’12=Z = Y1 =-—Y12=0.75S
1 1
)’22+3’12—§ = 3’22=§—y12=0.6255

as obtained previously.

Example 5.4: Determine the y parameter for the two-port shown in Fig.5.14

80 i 40,
—
o——J\/\/\/ e}

20

Figure 5.14

Solution

We follow the same procedure in the previous example. To get y;4 and y,;, we use the
circuit in Fig.5.15(a). in which port 2 is short circuited and a current source is applied to
port 1. At node 1,
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=2l +=
8 1oty
Vl - Vo
Butl; = 3 ,therefore
Vi=V, 3V,
0= +—
8
o=Vv,-V,+6V, = V,=-=5l,
80 TR S LI 80 e it A,
I v, 20 V,=0 V=0 2Q L2
(@ ®)
Figure 5.15(a) finding y;1 andy,4, (b) finding y{, and y,,
Hence,
-5V, -V,
I = ‘é 2 =—0.75V,
And
I, —=0.75V, — 015 S
Y11 v, s,
At node 2,
VO —
+ 211 + 12 = 0
Or
-1, = 0.25V, — 1.5V, = —1.25V,,
Hence,
I, 1.25V,
=—= =—0.25S
Va1 v, sV,
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Similarly, we get y;, and y,, using Fig.5.15(b). at node 1

0-1 Vo Vo=V,
0-— 0
But, I; = therefore,
Vo Vo Vo=V,
0=——=+—
8 + 2 4
Or 0=-V,+4V,+2V, -2V, = V,=25l,
Hence,
L —-V/8
=—= = —0.05S
Yiz =y = sy,
At node 2
— V2
+ 211 + 12 = O
1 2V,
Or -1, = 0.25V, — Z(Z.SVO) -5 = —0.625V,
L 0.625V, 0255
Y2 =y = sy T

Notice that y;, # y,4 in this case, since the network is not reciprocal.
5.3 Transmission Line Parameters (ABCD-Parameters)

Since there are no restrictions on which terminal voltages and currents should be
considered independent and which should be dependent variables, we expect to be able
to generate many sets of parameters.

I L

—_ —
o—+ ——0
+ Linear +
14 Two-port V2

- 5
07

Figure 5.16 Terminal variable used to define the ABCD parameters
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Another set of parameters relates the variables at the Input port to those at the output

port. Thus,
V1 = AVZ - BIZ
I, = CV, — DI, >-18
Or
Vl]_A B[Vz]_ [Vz]
L]~ le 4 _, =2 >.19

Egs (5.18) and (5.19) relate the input variables (V; and I;) to the output variables (V, and
—I,). Notice that in computing the transmission parameters. —I, is used rather than I,
because the current is considered to be leaving the network, as shown in Fig. 5.18, as o
opposed to entering the network as in Fig. 5.1(b). This is done merely for conventional
reasons; when you cascade two-ports (output to input). It is most logical to think of I, as
leaving the two-port. It is also customary in the power industry to consider I, as leaving
the two-port.

The two-port parameters in Eqgs. (5.18) and (5.19) provide a measure of how a
circuit transmits voltage and current from a source to a load. They are useful in the
analysis of transmission lines (such as cable and fiber) because they express sending-end
variables (V; and I;) in terms of the receiving-end variables (V, and —1,). For this reason,
they are called transmission parameters. They are also known as ABCD parameters. They
are used in the design of telephone systems, microwave networks, and radars.

The transmission line parameter is best illustrated by taking on a very simple, practical
example using a T-type network:

I Ry R, I
— —_—
O O

+
+
O O

Figure 5.17 A T-type network
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(For I,, negative reversal, means I, pointing +ive left is equivalent to —I, pointing —ve
right)

Before taking on the actual example, a quick method for determining
t11, t12, t21, tao, Or equivalently, A, B, C, D respectively, is in order:

From set 4 above:

%4
tll = V_1 520
2'R=0
A numeric (“unitless”) being a quotient of two like quantities.
V.
t12 = _1_1 521a
2'y,=0
With the unit of “Ohms”
I
t21 == _1 521b
Vs I=0
With the unit of mhos (O) or Siemens(S)
I
tzz = _I_l 522
2lv,=0

Again, with no unit

So, transmission parameters are another version of “hybrid” since it's a mixture of

different units (and no units). In keeping faith with the earlier designations, t;4 (— %)
2

H “ . . . I
can be conceptualized as some port of “reverse (negative) voltage gain’, while t,, (—1—1)
2

can be thought of as “reverse because itse(negative) current gain” (= &,;). ty, is
(negative) transfer impedance function —z;,(s), while t,; is (positive) transfer
admittance function y;, S.

In summary

Vi

11 = 1,
V2 1,=0

A=t , open circuit reverse voltage gains. 5.23
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C=ty =— , open circuit transfer admittance 5.24
V2 1,=0
%
B =t = ! , short circuit transfer impedance 5.25
(_12) Vy=0
I
D=t,,= : , short circuit reverse current gain 5.26
(_12) V,=0

To determine the ABCD parameters by “direct” (recommended) method, let’s refer
to the T network on Fig. 5.17 by way of illustration.
— 7

_ (Ry+R)  (Ri+R)
~ Y LR T R(numeric)

= A

12=0

After recalling mesh analysis and noting the various impedance (resistance) being “seen”
by V,,V,, respectively and applying Ohm’s law.

R, is “dead” owing to the zeroing of I,

L 1 :
= —0 (mho) or siemens (S)

11
C = —
I,=0 Il(R) R

= 7

Next, we fine

Because it’s easier and

itis unitless} merely involves current
division rule

R L (R+Ry)

I
D=— =1 = =
27N (R+Ry) (L) R

= m

V2=0

Lastly, with V, shorted, R and R, are in parallel, and together they’re in series with R;
Ohm'’s law at input port

V.
— =R+ (RIRy)

Iy
I [Ry + 22
B = 148 T T (ReRy)
_12 V=0 (_12)
I

From above = (R+R,)/R

(—1)

R + R,\ /R;R + R;R, + RR,

= 5= () )

R R+R,
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_ (R{R + RyR, + RR,) q
N R

Because it possesses the dimension of resistance as unit

[Ry + R] [RiR + RiR, + RR,]

(é g)z 1R [RI?I-RZ]
R R

Example 5.5: Set the valuesof Ry =2, R =10, R, = 4 Qin the T-type network of
Fig. 5.17. Determine the transmission line parameters.

Solution:

2+10
A=¥=12

10
[(2)(10) + (2)(4) + (10)(4)] _ 68
B = 10 = 10 =6.8()
C = t_1_ 0.1 O(mh i S
=2=10-" (mho)or siemer (S)
(10 + 4)
D = T =14
A B 1.2 6.80Q
(C D) - (0.1 O 14 )

The determinant of this square matrix is:
AD — BC =(1.2)(1.4) — (6.8)(0.1) =1.68—-0.68 =1
And leads us, by chance to the statement:

When the determinant AD — BC = t;,t,, — t1,t,4 is equal to unity, then the network
is known as a reciprocal network.

Meaning that in terms of the transmission or inverse transmission parameters, a network
is reciprocal if

|AD—BC=1, ad —bc =1|

A transmission parameter (ABCD) network is said to be symmetric (possess
symmetry) if: A = D. Is the network in the foregoing example symmetric or not?
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Example 5.6: Lets double the respective values of the given data in Example 5.5 for the
T-type network of Fig. 5.17 to be R, =4 Q,R = 20 Q, R, = 8 ). Determine the ABCD
parameters.

Solution:

4+ 20
A=g=12

20
_ [()(20) + (4)(8) + (20)(8)] 272
B = >0 =50 =13.6Q
C = ! =0.050
=>5=0.
_(20+8)
D——ZO =14
A B\ _( 12 13.60Q
(C D)_(0.0SO 1.4)

One can see that, upon doubling each of the R is; A and D are unaffected (the numeric
remain unchanged); B is doubled from its previous value; and C is halved from its former
value!

The determinant of this square matrix,
A=(1.2)(14) - (13.6)(0.05) =1.68—-0.68=1

As before so, saying the network elements up or down all by the same factor, does not
alter the reciprocity of a given T network.

Example 5.7: Determine the ABCD parameters of the m-type network shown in Fig. 5.18.

I 100 I

— —>

O O
+
+
7, 50 200 v
o] O

Figure 5.18 A typical m-network
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Now, for a look at a pie —(r —)[or A — (delta —] connected two-port network:

Ao 14 _ L[5 @ao+20] _ (5)(30)/( +30)
& a=s h [5+1(5)+20] x 20 (5> 20)/35
_ G)E0E5) _ T
(5x20)(35)
c=h = h —35—0350
oV, =0 - ,(5x20)/35 100
I I 15
D = —_— = = = 3
—I 5 5
2p=o I [5+1o]

20 € having been shorted out and then using current division

5%10
B = ﬁ _ 1,(5110) _ [_5+10)
TG 0)
; 50x%x 3
Using the result for B above = == 10 Q
= 9)=los50 15"

It should be pointed out that, in each of the two cases above, i.e.,, the T — and m —
connected networks, putting I, “properly” without a negative sign, would merely result
in negating the values for B and D. this is trivial as long as we are clear about the sign
convention!

Let’s examine what results when two T — connected two-port networks are
connected in cascade.

I 20 40 I

+ —
O
I —lz/

Lo

Figure 5.19 T-type network connected in cascade
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Example 5.8: Let’s recall the T — connected network in Fig. 5.17 and use an alternative
(less recommended) method for finding the transmission (ABCD) parameters by
imposing a 1 V source voltage as an input voltage V; as seen in Fig. 5.19.

Solution:

We “impose” 1 V source (Fig.5.19) representing V;, which is an independent variable

along with I,
: : Vi
First, we determinet;; = B=B = —
_IZ V2=0
Req 2+(10|I4)—2+40—68
- 14 14
C ¢ divisi [ av) [ (14) (10) 10
=1, = X|—)=—
urrent division 2 ( ) 10+ D 8 12 8
14
= B= 1 _98_ 6.8 Q)
() 10
And so on with A, C, and D
Mesh 1: vV, =121 + 101, (i)
Mesh 2: V, =101, + 141, (i)

From (ii) 101, =V, — 141,
Dividing (ii) by 10
z= [, =01V, — 141, (iii)
Comparison Eq (iii) with the second equation in Eq.5.18 shows that:
C=010 and D =14

From mesh 1: V7, =12(0.1V, — 1.41,) + 101,
V, = 1.2V, —16.81, + 101,
V; = 1.2V, — 6.81,, (iv)
Comparison Eq (iv) with the first equation in Eg. 5.18 shows that
A=12,B=6.38
(él g) - (0.1i20 6'15.;49)' as before

Even though | do not recommend this later method because of its cumbersomeness, I'd
admit that some might find it actually more palatable than the previous method owing
to the fact (as it appears) that it might be impervious to error. However, this is for those
who feel at home with mesh analysis or node-voltage analysis (at this stage everybody
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should!). note, however, that in this case, the current I, is in anticlockwise, not clockwise,
direction as in classical mesh analysis.

Example 5.9: Find the transmission parameters for the two-port network in Fig. 5.20

I 10Q 3L I,
+ - O

20Q

Figure 5.20
Solution:

To determine A and C, we leave the output port open as in Fig. 5.21(a) so that I, = 0 and
place a voltage source V; at the input pon. We have

V1 - (10 + 20)]1 = 30]1 and V2 == 2011 - 311 == 1711

Thus,

= 0.0588 S

V., 301 I I
L_-"1_-1765 C=—=—
v, 171, v, 171,

To obtain B and D, we short-circuit the output port so that V, = 0 as shown in Fig. 5.21(b)
and place a voltage source V; at the input port. At node a in the circuit of Fig. 5.21(b),
KCL gives

%o Yoy =0 5.27
10 20

I
I, 10Q 3L I, 3 I

= D I S e
;

200 V2 § 200 v, =0

)
N\
~
AN
()
N
=

(a) (b)

Figure 5.21 (a) finding A and C (b) finding B and D
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ButV, = 3I; and I; = (V; —V,)/10. Combining these gives

V, =3LV, =131 5.28
Substituting V, = 31, into Eq (5.27) and replacing the first term with I;
% 17

11—20+12=0 = %Ilz—lz
Therefore
D=—I—1=§=1.176 B=—E=i=15.29ﬂ
I, 17 ’ I, (_%)11

Example 5.10: The ABCD parameters of the two-port network in Fig.5.22 are
[ 4 20 Q]
0.1S 2

100

50y [T] R,

O

Figure 5.22

The output port is connected to a variable load for maximum power transfer. Find R; and
the maximum power transferred.

Solution

What we need is to find the Thevenin equivalent (Z;, and Vry,) at the load or output

port. We find Zrp,, using the circuit In Fig. 5.23(a). Our goal is to get Z,, = ‘1/—2 Substituting
2
the given ABCD parameters into Eq. (5.28), we obtain

I; = 0.1V, — 21, 5.29.2
At the input port, I; = —101;. Substituting this into Eq. (5.29.1) gives

—101, = 4V, — 201, 5.29.3
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11 = _04V2 + 212

I I I R
100 :2_ 1001, 1_2 Th
* +
" [T] h 1V 50V 1 [T] h Vry Ve R

(a) (b) (©)
Figure 5.23 (a) finding Z, (d) finding V1, (c) finding R, for maximum power transfer
Setting the right-hand sides of Egs. (5.29.2) and (5.29.3) equal.
0.1V, — 2I, = —0.4V, + 21, = 0.5V, =4I,
V2

4
Hence, ZTh=1_=E=8Q
2 .

To find Vrp,, we use the circuit in Fig. 5.23(b). At the output port I, = 0and at the input
port V; = 50 — 101;. Substituting these into Egs. (5.29.1) and (5.29.2).

50 — 101, = 4V, 5.29.4
I; = 0.1V, 5.29.5
Substituting Eq. (5.29.5) into Eq. (5.29.4),
50-V, =4V, = V,=10
Thus. Ve =V, =10V
The equivalent circuit is shown in Fig. 5.23(c). For maximum power transfer,
R, = Zr, = 8Q

The maximum power is

=3.125W

VTh>2 _ V& 100
JTh) R, =Lt

P =1I°R =( = =
L™ \2r, 4R, 4 x8
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5.4 Relationships Between Parameters

Since the six sets of parameters relate the same input and output terminal variables of
the same two-port network, they should be interrelated. If two sets of- parameters
exist, we can relate one set to the other set. Let us demonstrate the process with two
examples.

Given the z parameters, let us obtain the y parameters. From Eq. (5.2),

H-f -mf] s
Or
g] =[] “2] 531
Also, from Eq. (5.9),
nl=bn wallnl=01]) 532
Comparing Egs. (5.31) and (5.32), we have that
[y] = [2]7? 5.33
The Adjoint or the [z] matrix is
Z22 _Z12]
—Z21 Zn

and its determinant is
Ay= 211255 — Z12221

Substituting these into Eqg. (5.33), we get

[ Z22 _Z12]
Y11 Y12 —221 Z11
[)’21 3’22] >.34
Equating terms yields
Z22 Z12 Z21 Z11
Y11 = A_z, Y12 = _A_z’ Y21 = A_z’ Y22 = A_z 5.35
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Table 5.1 provides the conversion formulas for the six sets of two port parameters. Given
one set of parameters, Table 5.1 can be used to find other parameters. For example,
given the T parameters, we find the corresponding h parameters in the fifth column of
the third row.

Table 5.1 Conversion of two-port parameters

z y T
z Z11 7, Y22 Y1z A Ar
Ay Ay C C
Z21 272 Y21 Y11 l 2
A, A, C C
y Z2 %1z yy Y12 D Ar
A, 4 B B
_f1 Y21 Y22 1 A
A, A B B
T Z11 A, V22 1 A B

Also, given that z,; = z,, for a reciprocal network, we can use the table to express this
condition in terms of other parameters. It can also be shown that

But
[(] # [T]T 5.36
Example 5.11: Find [z] of a two-port network if

_[10 150
[T]_[zs 4

Solution
IfA =10, B=1.5, C =2, D =4, the determinant of the matrix is
Ar =AD —BC =40—-3 =37
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From Table 5.1

Thus,
] = [055 12'5] &

Example 5.12: Obtain the y parameters of the op amp circuit in Fig. 5.24. Show that the
circuit has no parameters.

I

—»

(e, + R
+ AWV O
_ +
ilo

V R,

V2

L
<

<
RiZ

Figure 5.24
Solution:

Since no current can enter the input terminals of the op amp. I; = 0, which can be
expressed in terms of V/; and V, as

I, = 0V; + 0V, 5.37
Comparing this with Eq. (5.12) gives
Y11 =0=y1,
Also,
Vo = R3ly + 1,(Ry + R3)

where I, is the current through R, and R,. But I, = V;/R;. Hence,
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Vi(R1 + R)

V, = R, +
312 Rl
which can be written as

__BatRy) Ve
2 R\R; ' " Rs

Comparing this with Eq. (5.12) shows that

(Ry +Ry) 1

Y21 = — R.R; y22:R_3

The determinant of the [y] matrix is

Ay = Y11Y22 = Y12Y21 =0

Since A, = 0. the [y] matrix has no inverse; therefore, the [z] matrix does not exist
according to Eq. (5.33). Note that the circuit is not reciprocal because of the active
element.

5.5 For Two-Cascaded Two-Port Network

4 A !
—>
+ B + +
+
A Network A A v, Network B A
— 0 0
Figure 5.25 Cascaded Two port network
A:Vl :tA11V2_tA1212 :tA11V3+tA1213 5.38
11 = tA21V2 - tAZZIZ = tA21V3 + tA2213
B: V3 = t311V4, —_ tBlZI4' 5.39

I; =tg, Vs —tp,, 14
So, Vy = ta, (tg, Vo —tg,,Lu) + ta,,(ts,,Va — ts,,1s)
= (ta tsy, + tay,tey, )Va — (ta ts, + ta,ts, ) a
L =ty (ts, Vo —te,ls) + ta,,(ts, Ve — ts,,1s)
= —(ta, ts,, + ta,ts,,)a
C:(ta,,te,, + ta,,te,, )Va 5.40
D:(ta,, ts,, + ta,,ts,, )]s 5.41
So, to transit from port 1 to port 4:
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Combining Eqs.(5.38 to 5.41) we have Eq.5.42

(A B) _ (tAlltBll + tA12 t321 tA11 tB12 + tAlZ thz) 542

¢c D tAthBll + tAzz t321 tA21 tB12 + tAzz thz .

But: (tAn tA12) <t311 tB12> — (tA11tB11 + tAlZ th1 tA11tB12 + tA12thz> 5.43
tA21 tAzz t321 thz tAzz tB11 + tAzz th1 tA21th1 + tAzzthz

Eq.5.43 shows that for two-port networks in a cascade, the net ABCD parameters are
just the (successive) products of the individual ABCD parameters. Applications wise, this
unique property comes in quite handy!

5.6 Further Examples on Two-Port z11 = (9 +j4)Q z;,
Network = (6+/j4)Q 75,

. = (8+/49)Q 7z,
1. Determine the z parameters for = (6+ 00
the circuit shown in Fig 5.26. the
output port includes a controlled 2. Draw the z parameters model for
voltage source. the circuit of Fig.5.26

0 Solution: see Fig.5.27

h

_h g

30 2 b

-—

_ b 1 2 P
O

Input
ot | v, v, O”‘p:’t 9+j40 6+j40
. por
6+4j40
I [] I Vi

V2
6 +jH)I, @B +j8l
1' 2

Figure 5.27
3. The following open-circuit

Figure 5.26
Solution: since the actual parameters

of the circuit are known, and the .
o ] ) currents and voltage were determined
circuit is relatively simple, the z .

i experimentally for an unknown two-
parameters may be determined by

iting the two | t port:
writing the two c'>op equa |ons: V. = 100200V v, = 30200V
Vi=1[3+(6+ D]l +[6+ 4LV, V,=7520° V| V,=5020°V
— 21 L=12520°A|  L=520°4 ]
= [6 + j4]l, + [6 + j4]I, Determine the z parameters.
Simplifying V; =19 + j4|I, + |6 + % %
. p y g 1. [ ]]1 [ le=_1 =@=80212=_1 :@:69
jalLV, = [8 + j4lL, + [6 + j4lI, I 125 I, 5
V2 S 60z, = 50 _ 100
z = — = = = — = =
Thus, the z parameters are 20 =0 125 2 =0 °
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4. Draw az parameter model for
the circuit of Prob 3
Solution: see Fig.5.28

I 1 2

I

|

‘ )
Figure 5.28
5. Determine the z parameters for
the network of Fig 5.29

I 1kQ 10kQ I

141 3kQ v,
Figure 5.29
Solution: the loop equations become
vV, = 40001,

V, = 30001, + 13,0001,
Thus, z;; = 4 kQ,
Z1p = Zy1 = 3 kQz,, = 13 kQ)
6. InaTnetworkZ; =3 20°Q,
Z, =4,90°Q, Z3 =34 —90°Q. Find
the z parameters

Solution:
Zy1 =21+ Z3 =3 2£0° 4+ 32-90°
= 4.242 £—45°0Q)
Zip = Zy1 = Z3 = 3 £4—-90°0Q
Zoyp =2y + 73

=4.,90° 4+ 3 2-90° = 12£90°Q
7. Determine the z parameters of a
T network having Z, = (3 + j4) Q,
Z, =14£-90% and Z; = (3+j2) Q
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Solution:
z11=21+Z3=03B+j4) +(3+j2)
= 6+= 8.484 2£45°0Q
Zip =Zy1 =Z3=3+j4=3+j4Q
Zyy =Zy+Z3=—j1+ (3 +j4)
=3+j3
= 4.242 £45°0
8. Find the z parameters of the
network of Fig.5.30

I R h

V V

Figure 5.30
Solution:
I; and I, are not independent, the z
parameters cannot be found
9. Find the y parameters of the
network of Fig.5.30
Solution:
I, = —1,, withV, = 0, we obtain

yi1 =zand y, = ——

R R

With V; = 0, we have
_ 1 q _ 1
Y21 = R and y;; = R

10. Determine the z parameters of
the network of Fig.5.31

I h

" R 12

Figure 5.31



Solution: h 20 h

sinceV; =1, '
With I, =0 Z;1 =R
andz,; =R h 10 20 l .
WithI; =0 z12 =R
and z,, = R
11. Obtain the y parameters of the Figure 5.33
network of Fig.5.31 Solution:
Solution: since V; and V; are not Redrawing the diagram of Fig.5.32 we
independent, the y parameters cannot have Fig. 5.33
be found Vi Vi Iy
12. Find the z parameters of the V2 =0L = 1+1 - 2 and 71 R
network of Fig.5.31 1
_h 1 v 20 2 - E S
: ‘ : he o 1%
2 2\2
Vi V2
ID a D . Z—%Vl andlll—zl:}ﬁz:_%:ym
' : V2
Figure 5.32 V,=0;I, =2
Solution: I, = 0 V, =41 >
and 21, = (2 + 2 + 4)I = 81 = 2V, b 2 _ . _1_5¢
Thus, Z91 =‘I/—:=§= 1Q =275, enCe,V2 =Y = g _8

Vi=@OhL+2(L, -1 14. Find the z parameters of the

1 5
=)L +2 <11 — le> = Ell network of Fig.5.35b
Solution:
Thus' v, 5 211 = Ry + Ry + 2Ry, Z12 = Ry
lezzzzﬂ :ZZI' ZzzzRy‘l‘Ry
= 2R,
11 = O Vz == 212
or Zyy = ‘I’_Z =20 15. As a 2-port network, determine

the transmission parameters of the
13. Find the y parameters of the transformer as shown in Fig 5.36
network of Fig. 5.32
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Ih 40 Q 5:2 la le 5 sz

v, 2 I
v, %H 200 ‘vz v, V,
2=50 T =5t 200
. V. I
Figure 5.36 >L=-—"—-Z
17 20%x25 25
Solution:
olution = —0.02V, + 0.4, *
I1 . 2x I2
400 52 | . Vy =401, +V, = 401, + 2.5V,
’ | 20 = 40(—=0.02V, + 0.41,) + 2.5V,
Vv, 1X: 20Q A
V; = —=0.8V, + 161, + 2.5V,
V1 = 17V2 + 1612 * ok
Figure 5.37
From * and **, the transmission
From Fig. 5.37, the transformer’s turns parameters (ABCD) are then:
ratio is:

[ 1.7 16 Q]
—-0.020 04

5.7 Images Impedance

This is a concept used in electronic network design and analysis and mostly in filter design:
By image impedance is implied the impedance “seen” looking into a port of a network
particularly two-port networks (although it’s also applicable to networks with more than
two parts).

For a two-port network, Z; stands for the impedance seen looking into port 1 when port 2
is terminated with image impedance Z;,.Z;; and Z;, will generally not be equal to except
for symmetrical or anti-symmetrical networks.

O

Zy

Figure 5.38 ‘L’ network
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Fig. 5.38 is a simple “L” network with series impedance Z and shunt admittance Y, with
the respective port image impedances.

VA Zin Ziz Z

© AVAVAY AN\, o
. : o
o o

Figure 5.39 T-section of L-network

To determine the image impedance, a “T” section is formed from back-to-back L-
sections, as in Fig. 5.39.

1
Zy =7+ 5.44

2Y + —

To determine Z;;, we “eliminate” Z;, by forming back-to-back L-section in T-section (The

two Z;,’s oppose each other) Z and Z;; are in series and their series admittance is now

in parallel with the two Y’s. As per the rule, their net admittance is determined by simple

addition. The reciprocal of this sum, gives rise to an impedance that is in series with the

Z on the left and the impedance “seen” by the Z;; on the left is this series combination.
From the foregoing without going through the whole rigmarole,

Z
Zilz = Z2 -|—? 5.45

To determine Z;,, form a m —section from back-to-back L-section as in Fig. 5.40:

Z Ziy J \‘ZM Z
NN o o

o AVAVAV. o)
inz § Y v § ZzzJ
o o o— 0

Figure 5.40 m-section of L-network
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Working with admittances (which can be easily derived from the “dual” of that for Z;;
just treated in Eq 5.44:

1
Vio =¥+ ———
27
Y+Y;,
= |Yp=v2+7 5.46

Combining Eqgs 5.44 and 5.46 we have Eq 5.47
Z
v = — 2P =Yy Y7

Zy |72+ z(z+§)

Y: 2, Y 1
2 vz 4 Y(Y+Z)
77
~ |22 =27/ 5.47

Yy

For practical determination of image impedance, we measure short-circuit impedance
Zsc, which is the impedance of port 1 where port 2 is short-circuited, and Z,, that is,
impedance of port 1 when port 2 is short-circuited.

= Ziy= vV (Zsc)(Zoc) 5.48
The “black box” configuration of the network is in Fig. 5.1. For filter design, L network is
referred to as a half section. Two half-sections in cascade are equivalent to a T section

or 1 section, depending on their respective orientations.

(Zl-2 N %) 5.49

Definition of image impedance: The input impedance of an infinitely long chain of

cascaded identical networks (with the parts arranged so that like impedance faces like).
For reciprocal network (AD — BC = 1)

Ziy = A5 5.50
e Jep '
Ly = ¢b 5.51
i2 = |¢g .
Image propagation term ¥ = cos™ 1 vVAD 5.52

Y for a transmission line segment is equivalent to the (propagation constant of
transmission line) x (the length)
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When used for filter design, Z;; the image impedance for port 1, is termed Z;r, and Z;,
is termed Z;;

L Ly G
o— Y TYTY L o o— YN [
Il ©
Ly = Cyk?
L= Ck? T ¢ G, —— L,
L, = C k? T
O O O O

@ (b)
Figure 5.41 (a) constant ‘k’ low-pass filter half section (b) Constant ‘k’ band-pass filter
half section

k?=27/Y 5.53
k(Q) is the limiting value of Z; as the size of the section (in terms of values of its
components, inductances, capacitances etc.) approached zero, while keeping at its initial
value. It also represents the image impedance of the section at resonance, in the case of
band-pass filters, or at w = 0 in the case of a low-pass filter.

’ij \/Z
k = —_— = —_
JjwC C

For low pass half-section,

For image impedances,

lim Z;, =k 5.54
Z,Y—0
Image impedance:
Zip? =7 + k?
1 ) , 1

i
Given that the filters do not contain any resistive elements, image impedance in the pass
band of the filter is real, and in the stop band it is purely imaginary.
For low-pass half section:

Zn® = —(wL)* + 7 5.56
Transition occurs at cut-off frequency given by w. = 1/VLC

At less than w,, Zjr = L\ w.? — w? isreal. At > w., Zip = jLyw? — w2 is

imaginary. When the electrical properties of a 4-terminal network (2port) are
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unaffected even after interchanging input and output terminals, the network is called a

symmetrical network. Otherwise, it is called asymmetrical or unsymmetrical.
Asymmetrical networks have the following electrical properties.

1. Iterative impedance

2. Image impedance

3. Image transfer constant

5.7.1 Iterative Impedance

It is the impedance measured at one pair of terminals of a network in the chain of
infinite networks.

—O O o) O o) O
Zo; _» To infinity
—O O O ] O ]
.................... — 10 0 0 O 0 o
To infinity «—— «— 7'
..................... —10 0 0 O 0 o

Figure 5.42 One pair of a network

It can also be viewed, as the impedance measured at any pair of terminals of the
network when the other pair of terminals is terminated in the impedance of the same
values as shown in Fig. 5.43.

0—10 0— —O O—r—0
Assymetrical Assymetrical 7
(S , ' <+ 02
z 01 network VA 01 Z 02 network
O0—ro0 0— —O O0——o0
Figure 5.43

Iterative impedance for any asymmetrical networks are of different values when
measured at different parts of the network, and these are represented by Z,; and Z,,
respectively at port 1 and port 2.
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5.8 Insertion Loss

When a network is inserted between a generator and a load, load current
decreases and hence power delivered to the load also decreases. The loss in power
delivered to the load by insertion of the network is known as insertion loss. This is
generally expressed in decibels and nepers.

O O —
Zg
Zy,
14
L o O
Figure 5.44

In Fig.5.44(a), there’s no network between the generator and the load. But in Fig.5.44(b),
a 4-terminal network is inserted between generator and load.
Current through Z; with the network inserted is I,.

1

. . I
insertion loss = a = In —| nepers, or
2
I .
a = 20log 1—1 decibels
2
In terms of power ration,
1, |Py
a = -In |=| nepers, or
2 P,
Py .
a = 10log . decibels
2

So, insertion loss is equivalent to the number of nepers or decibels by which current in
load, or power delivered to the load, is charged due to insertion of a network.

When the current delivered to the load is greater than that from the source
(I, > I,), then there’s negative loss, i.e. insertion gain.
Example 5.13: For the circuit Fig. 5.45, determine insertion loss when network N is
inserted between load and source.
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Network ‘N’

R; = 100Q 120Q

+
@I 2

AN

R, = 1000

Figure 5.45
Solution:

To solve for Iy without N network, consider the circuit of Fig. 5.46.
I R, = 1009

—

v, = 10VC> R, = 100Q

Figure 5.46 Solving for I; without network N
|78 10

" (R +R,) (100 + 100)

To solve for the total current in the circuit of Fig. 5.45 with N inserted,

Iy R, = 1000 1200
— AAAY, AVAVAY,

v, = 10V<+> 1200 § §RL =1000Q

I,

=05A

Iy

Figure 5.47 Solving for I; with network N included
10
(100 + 120 + 120 || 100)
10 (10)(11)
(220 + 2200 ~ (2420 + 6000)

220

I:('T" total) =

_ U = 0.0364 A
302

I, (by current divider rule) = 0.364 [ﬁ] = 0.0199
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.05
0.0199

0.05
0.0199

Insertion loss a@ = 20 log (%) = 2010g( ) =8.00dB, or a = ln( ) = 0.921

neper.
Example 5.14: For the network Fig. 5.48, determine the insertion loss.

50 5Q

@ 5,00 = —j50 § R = sa

Figure 5.48
Solution:
Before insertions we consider Fig. 5.49 to solve for I; as in the proceeding example.

Ry =50
WA~ -0
Iy
b 520°
% RL = SQ
Figure 5.49
V 20°
I = =5 = 0.52£0°A

(Rs+ Ry) (5+5)
After insertion we consider Fig.5.50 to calculate the total current I using voltage divider
rule.

Iy Ry=5Q 50
—— VW AN

— —j50

Figure 5.50
- 5240° 540°
T [5+101 (—j5)] [5 4 Q0G5
(10-j5)
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_ 520 540°
~ (7—j4) 8.06.2—29.74°
_0.62£29.74°(—j5) _ (0.62£29.74°)(524—90°)

= 0.62 £29.74°

b= 10 — j5 11.18 £26.57°
0.277£—86.83°
0.520° 0.5
a = 20log 0277,-8.830 = 2010g|m| = 5.13dB

5.9 Symmetrical Network

Shown in Fig. 5.51 is a typical (T-type) symmetrical network:
Zy Zy
2 2
1O O 2

§ZZ

Figure 5.51
Characteristics impedance Z, = +/(Zy.)(Zs.), where Z,., Z,. are open and short circuit
impedance, respectively see Figs. 5.53 and 5.54.
Total series arm impedance and shunt arm impedance must be Z; and Z,
respectively.

4 4
2 2
o NN NN
Zy ——> Z Z
O )

Figure 5.52 Input impedance looking when looking into the input of Fig 5.51 circuit
For the circuit of Fig. 5.52,

Z Z
-t (o)

Z

7 Zz(jl"'zo)
Z

2 Zy+T 47,
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Zy Zy Zy ZyZy

Z:Zo | o ZiZa I’ ZiZy  ZaZy

= /o +—+ 7
202 0 2 4 2 2
22
= ZO =T+ZIZZ
Z,?
- ZO = T-I_ZIZZ
Z zZ
2 2
10 AYAVAY, AYAVAY, 02
Zoc " §ZZ
10 o 2

Figure 5.53 A short circuit Equivalent circuit of Fig 5.51
For the circuit of Fig. 5.53,

Zy
Zioc = Zz0c = Zoc = > + Z,

Zy Z
2 2
10 AV VY
2
-, 7

Figure 5.54 A short circuit Equivalent circuit of Fig 5.51

For the circuit Fig. 5.53,

Z Z
Zisc = Zasc = Zsc = 7 + (7) Z,
717,
() )
SN
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Z1Z3

7,5 ZiZ +
¢ 24z
7 72
(2o Z:) = (24 2:) (T + 22,

Z,*
=7 + 2,72, = Zy" = Zy = (Zo) Zse)
= (Geometric mean of open and short circuit impedances measured at any pair of
terminals)

Example 5.15: For the network shown in the Fig. 5.55, determine the characteristics
impedance, open and short circuit impedances

500 500
10 O

2000

Orny

1'0

Figure 5.55
Solution:

7,2 1002
Zo= |—+ 2,7, = Tt (100)(200) = /2,500 + 20,00 = 150 Q

Z
Zoe = —+ Z, = 50 4+ 200 = 250 Q

2
10,000
Zse =50 450 |1 200 = 50 + =900

Zy 150
Zoe 250
Example 5.16: A symmetrical T-network comprising pure resistances has open-and short

circuit impedances of 400 £0° Q,30040° Q, respectively. Design a symmetrical T-
network

Refer to Fig. 5.53.
Solution:

Or: Zsc = = 90 Q

Zpe = =+ Z, = 400
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Zy Zy
Ze =~ + (ZZ I 7) =300

Z
= 7,.2="2+27,%+27,7, = 160,000

4

2
2 Zy
—  7,2=160,000— (2 + 7,7,

4

Z,% = 160,000 — Z,% = 160,000 — (Z,.)(Zs.)
= 160,000 — (400)(300) = 160,000 — 120,000 = 40,000
= Z,=2000

7, 7, 7,
- 2 =400 == +200 = - =200 0

10 AAYAY

21 _ 5000
- =

1’0

AAAY o
2

21 _ 5000
o=

§ Z, = 2000

5.10 Exercise

1. A two-port network has

transmission parameters with matrix

(e 1)

(a) Determine its input impedance at
port Lwithl, =0

(b) Determine its input impedance at
port 2, giventhat[; = 0

2. For Fig. 1, given that the
transmission parameters of the 2port
networkareA=C=1,B=2,D =3,

(a) Determine the value of Z;;,

Figure 5.56

(b) Determine same if I, is reversed

|
+ 2-port +
100
Y1 Network v
Zin
Figure 1

3. Atwo-port network has
transmission parameters with matrix

<2A B )

Cc 2D

(a) Determine its input impedance at
port 1 with I, =0



(b) Determine its input impedance at
port 2, giventhat[; = 0

4. For Fig. 2, given that the
transmission parameters of the 2port
network are

A=C=2,B=4D =6,
(a) Determine the value of Z;;,

(b) Determine same if I, is reversed

|1 |2
+ 2-port +
200
Y* Network Va
Z\ﬂ
Figure 2

5. The 2-port network in Fig. 3 has
transmission parameters with matrix

& )
c D
(i) Determine its input impedance at

port 1, giventhatl, =0

(ii) Determine its input impedance at
port 2, giventhatI; = 0

10— ——02
2-port
Network
10 09
Figure 3

6. An ideal transformer, depicted in
Fig. 4 has a turns-ratio of 2:1.
Considering high voltage side as port 1,
and low voltage side as port 2, what
are the transmission line parameters
of the transformer?

140

|1 |2
+ i
v, Transformer v,
Figure 4

7. Shown is a two-port network with
transmission matrix T, with
parameters T;;. A 1 Q resistor is
connected in series at terminals a (port
1) as in Fig. 5. What are the ABCD
parameters of the modified 2-port
network (the dashed box)?

Transformer

Figure 5

8. As a 2-port network, determine the

transmission parameters of the

transformer as shown in Fig. 6

100
" 21 <
:
{ v g ‘ é 50 § A

Figure 6

9. A two-port network has the
parameters A=1+j1,B=2Q,C =
1+ j1.55and D = 3. What are the



input current and voltage, when the Answer: 200£30° mA,100£120° mA

tput i t of 100 mA th h
outputisacurrent o m roug 13. Obtain the y parameters for the

circuit in Fig. 10.

a resistive load of 10 Q7

10. (a) Define Insertion loss for a given

6Q 2Q
network Oiol Vo
(b) For the network in Fig. 7 determine §3ﬂ -
the insertion in decibels and nepers,
after inserting network N (dashed box) ° °
between the source and the load Figure 10
T T T T T T oo — Answer: y;; = 0.625S,y,, =
Ry = 1000 1200 —0.125 S, Vo1 = 0.375 S, Voo =
0.125S

14. Find the transmission parameters

for the circuit in Fig. 11

I
1

I I

I I

I I

I I

I I

! ! R, =109

T I 1200. I

v, = 10V } }

T \ |

I I

I I

I I

I I

[ i

oo ! o ’\/2\(/2\, N
Figure 7 60
11. Find the z parameters of the two-

port network in Fig. 8. 0

16Q

Figure 11

O

Figure 8 Answer:A = 1.5, B=220Q, C =

Answer:z,; = 28,2y, = 2y = 7y, = 125mS D = 2.5

120

14. Obtain the y parameter for the T

12. Calculate I; and I, in the two-port network shown in Fig. 12

of Fig. 9.
O
| 60 180
Z1 = 6Q | o =~
Z12 = —jQ *
221 = —jAQ Vo 120
Zzp = 8Q
> O
Figure 9 Figure 12
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CHAPTER 6
THE COMPLEX FREQUENCY PLANE

6.0 Introduction

In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a
circuit with a constant frequency source. If we let the amplitude of the sinusoidal source
remain constant and vary the frequency, we obtain the circuit's frequency response. The
frequency response may be regarded as a complete description of the sinusoidal steady-
state behavior of a circuit as a function of frequency.
The frequency response of a circuit is the variation in its behavior with
change in signal frequency

The sinusoidal steady-state frequency responses of circuits are of significance in
many applications, especially in communications and control systems. A specific
application is in electric filters that block out or eliminate signals with unwanted
frequencies and pass signals of the desired frequencies. Filters are used in radio, TV, and
telephone systems to separate one broadcast frequency from another.

We begin this chapter by considering the frequency response of simple circuits
using their transfer functions. We then consider Bode plots, which are the industry-
standard way of presenting frequency response. We also consider series and parallel
resonant circuits and encounter important concepts such as resonance, quality factor,
cutoff frequency, and bandwidth. We discuss different kinds of filters and network
scaling. In the last section, we consider one practical application of resonant circuits and
two applications of filters.

6.1 Transfer Function

The transfer function H(w) (also called the network function) is a useful analytical
tool for finding the frequency response of a circuit. In fact, the frequency response of a
circuit is the plot of the circuit's transfer function H(w) versus w, with w varying from
w=0tow =0

A transfer function is the frequency-dependent ratio of a forced function to a
forcing function (or of an output to an input). The idea of a transfer function was implicit
when we used the concepts of impedance and admittance to relate voltage and current.
In general, a linear network can be represented by the block diagram shown in Fig. 6.1.
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X(w) Linear network Y(w)
— >
Input H(w) Output

Figure 6.1

The transfer function H(w) of a circuit is the frequency-dependent ratio of a phasor
output Y (w) (an element voltage or current) to a phasor input X (w) (source voltage or
current).

Thus,

H(w) = @) 6.1

W) =—— .
X(w)

assuming zero initial conditions. Since the input and output can be either voltage or

current at any place in the circuit, there are four possible transfer functions:

Vo (w)
H = Vol in =—— 2
(w) = Voltage gain V(@) 6.2a
I,(w
H(w) = Current gain = % 6.2b
V,(w
H(w) = Transfer Impedance = () 6.2¢c
Ij(w)
: Iy (w)
H(w) = Transfer Admittance = 6.2d
Vi(w)

where subscripts i and o denote input and output values. Being a complex quantity,
H(w) has a magnitude H(w) and a phase ¢; thatis, H(w) = H(w)4£¢

To obtain the transfer function using Eq. (6.2), we first obtain the frequency-
domain equivalent of the circuit by replacing resistors, inductors, and capacitors with
their impedances R, jwL and 1/jwC. We then use any circuit technique(s) to obtain the
appropriate quantity in Eq. (6.2). We can obtain the frequency response of the circuit by
plotting the magnitude and phase of the transfer function as the frequency varies. A
computer is a real time-saver for plotting the transfer function.
The transfer function H(w) can be expressed in terms of its numerator polynomial N (w)
and denominator polynomial D(w) as

N
H(w) = % 6.3
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where N(w) and D (w) are not necessarily the same expressions for the input and output
functions, respectively. The representation of H(w) in Eq. (6.3) assumes that common
numerator and denominator factors in H(w) have canceled, reducing the ratio to lowest
terms. The roots of N(w) = 0 are called the zeros of H(w) and are usually represented
as jw = zy,2, .... Similarly, the roots of D(w) = 0 are the poles of H(w) and are
represented as jw = pq, Pz -wor-

A zero, as a root of the numerator polynomial, is a value that results in a zero

value of the function. A pole, as a root of the denominator polynomial, is a

value for which the function is infinite.

To avoid complex algebra, it is expedient to replace jo temporarily with s when
working with H(w) and replace s with jw at the end.

Example 6.1: For the RC circuit in Fig. 6.2(a), obtain the transfer function V,/V; and its
frequency response. Let vg = 1, cos wt
R

—AM— —AAA—

1
vg () *D Cc = vo(t) |74 CD jw—C:: Vo

(@) (b)
Figure 6.2(a) time-domain RC circuit (b) frequency-domain RC circuit

Solution
The frequency-domain equivalent of the circuit is in Fig. 6.2(b). By voltage division, the
transfer function is given by

v,  1/jwC 1
Hw)=—= — = -
Vo R+1/jwC 1+ jwRC
We obtain the magnitude and phase of H(w) as
1 w
H=—, ¢=—tan'—
w 0
1+ (w—o)
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0.707

—45°

—90°

critical points and then sketch.

At w=0,H=1and ¢ =0. At w =00, H=0 and ¢ = —90°. Also, at w =
wo, H = 1/4/2 and ¢ = —45°. With these and a few more points as shown in Table 6.1,
we find that the frequency response is as shown in Fig. 6.3. Additional features of the

Figure 6.3
Where wy = 1/RC. To plot H and ¢ for 0 < w < oo, we obtain their values at some

frequency response in Fig. 6.3 will be explained in Section 7 on lowpass filters.

Table 6.1 (for example, 6.1)

“ H ¢ “ H ¢
Wo Wo
0 1 0 10 0.1 —80°
1 0.71 —45° 20 0.05 —87°
2 0.45 —63° 100 0.01 —89°
3 0.32 —72° 0 0 —90°

Example 6.2: For the circuit in Fig.6.4, calculate the gain I,(w)/I;(w) and its poles and

Zeros
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io () }
40

05F
<D i ()
2H

Figure 6.4
Solution:
By current division
+ j2w
I(w) = — T l(w)
4+ j2w + -
jo0.5

Or
I(w) jOSw(4+j2w)  s(s+2)
L(w) 1+j20w+ (jw)? s2+2s+1’

The zeros are at
s(s+2)=0 = z;=0,z,=-2
The poles are at
s2+2s+1=(s+1)?=0
Thus, there is a repeated pole (or double pole) atp = —1

6.2 Poles and Zeros Consulate

The complex frequency 's’ has both real and imaginary parts in general
s = 0 + jw, where g (lower case letter sigma of Greek alphabets) in the neper frequency
and w (lower-case letter omega) is the radian frequency. Any forced response can be
portrayed graphically as a function of the complex frequency.
For the driving point (taken at the same terminal) input impedance:
Z(s) = 4 4 55 (, to study how the impedance varies graphically with o, we set
s=a+j0=f(a)=4+55=4+500
The root (zero) of this:
4
5
This pole (the value of o that makes Z(s) infinite) is ¢ = .

4450=0>0=-—

To plot |Z(0)| [absolute value of Z (&) versus @, we determine the article point

since the graph would be a straight line [not crossing into the negative portion of f(s)]
see Fig. 6.5
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A |Z(J)|
30

26
|Z(—6>| = 114 — 5 x< 6]

25

= |—26] = 26

20

15

10

Figure 6.5

For the response as a function of w, we “suppress” o, letting s = jw
= Z(jw) =4+ j5w
= |ZUw)| =416 + 25w?

=3 w
ang Z(jw) = tan™?! e

For the magnitude, a single pole is at infinity, a minimumat w = 0 = |2Ucu)| =4,

zero at
16 + 250 =0 = w =+ —E=+j_4
- 25 75
w=0=ang Z(jw = 0)
w = too :angZUw)=i%
1Zconly
|4 + j20| = V16 + 400 e

= 20.40

z20.a

w=1= |Z(w)| =14+ j5I
=16 + 25 = 6.4 1°

w=_a sﬁz'(jm);f’zj =
Figure 6.6
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ang Z(jw)k

90°+
asol /\

—45°T

-90°

Figure 6.7
For the frequency domain function given by

(s+3

ﬁ(s)zﬁ,thezeroisat5+3=O:>5=—3.

The poleisats +4 =0 = s = —4 see Fig. 6.8

w1 3 2 1 0 12}

Figure 6.8

For plots of |I7(]'a))| and ang V(jw) vs

o g _|Uo+3)| ljw+3] | (w*+9)
|V(/a))| B ‘(jw+4) Cjo+ 4] | (w?+16)

— 2
As w increases (or decreases) without bound, |V(/'a))| approaches % =1as

maximum.

Atw=0,|[7(jw)|=\/1:96=%
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~

AN
0.5 4
Y w
Figure 6.9
7 )_(3+jw)(4—jw)_12+ja)+w2
YT T 16wz 16+ w?
o (12 + w?)? + w?
Vil =17 o

ang V(jw) = tan™! (m)

w=0=ang V(jw) =tan"10 = 0

w - 00(or—00)=>angl7(jw)—>0

ang V(w)

Figure 6.10

Example 6.1: For the pole-zero constellation shown in Fig. 6.11, obtain an expression
for the gain that is a ratio of polynomials in s.

149



wh
N H(O) =30
(@ ja )
Zeros at -6 - 8 + j4 and — 8- j4
the last two forming a
conjugate pair;
Jj2
Poles at -4-j4 and
its conjugate -4 - 4j
Y
4
-6 3 2 o
(@ K —j4
Figure 6.11
Solution:

k(s+6)(s+8—j 4)(s+8+j4)
(s+4—-jd)(s+4+j4
_k(6)(8—j4)(8+j4)  6(64+16)  6x80

H(s) =

HO) =30=—0 Tha+a ~“lev1s T3
_ (30)(32) _
480
ﬁH(s)=2(s+6)(s+8—j4)(s+8+j4)

(s+4—-j4)(s+4+j4)
_ 2(s+6)[(s +8)* +47]
- (s+4)2 + 42

_ 2(s+6)(s* + 165 + 64 + 16)

s2+8s+ 16+ 16
_ 2(s®+22s% 4+ 1765 + 480)

s? 4+ 8s + 32
Note: whenever zeros and/or poles contain imaginary part(s), then they must occur in

conjugate part(s). This is in conformity with the physical reality that, although there
might occur imaginary quantities theoretically the addition of two complex conjugates

always produces a real number!

Example 6.3: For each of the pole constellations in the Fig. 6.12 which applies to a
voltage gain G, obtain an expression for the gain that is a ratio of polynomials in s.
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jo

(a) G(1)=8 ) 6@)=6

-j6
Figure 6.12
Solution:
@) k xs(s+2)
YV GTDG+3)GE+4)

k(3)
(2)(4)(5)
320

= k==

320 (s + 25)
3 )(s+ D(s?2+7s+12)

= 6(1)=8=

G(s) =(

320
) (£%) (5% +25)
"~ (s34 852+ 19s + 12)

B (320s2 + 64s)
"~ (353 4 2452 + 575 + 36)

kx(s+j6)(s—j6)  kx(s*+36)

(s+2)(s—2)(s+4) (s2—4)(s+4)

_ k(45)

NOIQ)

(OG5 _14
45 3

(1452 + 504)
(3s3 4+ 12s%2 — 125 — 48)

(b)

G(3) =6

G(s) =
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Example 6.4: For each of the pole constellations in the Fig. 6.13, which applies to a
voltage gain G, obtain an expression for the gain that is a ratio of polynomials in s.

jo jo © G(0)=30 o
@ =8
j6 o Jj4
(b) G(©)=6 3
j‘KS 6 fl v j ‘; 8 -6 4 2
-j6 c j4
Figure 6.13
Solution:
k xs(s+6)
@ ) =FreeT 9
kx (7)(1)
=6¢(1)=8=———-
() )
k =51.43
51.43(s®> + 6
oo G(s) = (S S)
(s2+12s + 48)
_kx(s+j6)(s—j6)
(b) G(s) = s(s+4)
= G(0)=6=1limks>’=k=6
S—00
6(52 + 36)
=G = (s?2 + 4s)
kx(s+6)(s+8+j4)(s+8—j4)
() G(s)= . .
(s+4+j4)(s+4—j4)
kx(6)(8+j4)(8—j4
G(0)=30= ( )(. / )(. R
(4+jH4 -4
30 = 6k X (64 + 16)
B (16 + 16)
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. 30(32)
N GICO NS

2(s +6)(s? + 165 + 64 + 16)
(s2+8s+16+16)

=G(s) =

_ 2(s®+ 225% + 1765 + 480)
B (s2 4+ 8s +32)

Example 6.5: For each of the pole constellations in the Fig. 6.14, which applies to a
voltage gain G, obtain an expression for the gain that is a ratio of polynomials in s.

jo jo
@ cay=8 N
(b) G(eo) =6
fKS 6 i ¢ -4 4‘:
Figure 6.14
Solution:
K x s(s + 6) 6 KX)o _ o 45 _ 360
= = L —-8= k= -
@ GFDG18) )9 77
360 s(s+6) 360 s?+6s

=0 = TG +8) - 7 sZ+125132
K x (s —j6)(s +j6) k(s*+36)

(b) G(s) = s(s+4) 52445

= G(0)#6

= k = indeterminate

k(s? + 36)
= G Sl E—— 0<k<
(s) s2+ 45 @
6.3 The Decibel Scale

It is not always easy to get a quick plot of the magnitude and phase of the transfer
function as we did above. A more systematic way of obtaining the frequency response is
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to use Bode plots. Before we begin to construct Bode plots, we should take care of two
important issues: the use of logarithms and decibels in expressing gain.

Since Bode plots are based on logarithms, it is important that we keep the following
properties of logarithms in mind:
1. logP,P, =logP; +logPh,
2. logi—: = logP; —logP,
3. logP™ =nlogP
4. logl=0
In communications systems, gain is measured in bels. Historically, the bel is used to
measure the ratio of two levels of power or power gain G; that is,

G = Number of bels = loglollz—z 6.4
2

The decibel (dB) provides us with a unit of less magnitude. It is 1/10th of a bel and is
given by

GdB == 10 logloi_i 6.5

When P; = P,, there is no change in power and the gain is 0 dB. If P, = 2P,, the gain is

GdB = 10 loglo 2 = 3dB 6.6

And when P, = 0.5P; the gain is

GdB = 10 loglo 05 = _SdB 6.7

Egs (6.6) and (6.7) show another reason why logarithms are greatly used: The logarithm
of the reciprocal of a quantity is simply negative the logarithm of that quantity.

L L

B —»
o—— +
* ﬁ, Network RSV
P1 PZ
Figure 6.15
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Alternatively, the gain G can be expressed in terms of voltage or current ratio. To
do so, consider the network shown in Fig. 6.15. If P; is the input power, P, is the output

. . . . . v
(load) power, R; is the input resistance, and R, is the load resistance, then P; = O.SR—1

1
and P, = 0.5V} /R,, and Eq. (6.5) becomes

i
PZ R,
GdB = 10 loglo_ ES 10 10910 — 68
Py Vi
Ry
V2 Ry
= 10 10g10 (71) + 10 10g10 R_Z
V2 R,
GdB = 20 10g10 71 - 10 10g10 R_l 69

For the case when R, = R;, a condition that is often assumed when comparing
voltage levels, Eq. (6.9) becomes

V.
Gap = 20 1og1072 6.10
1

Instead, if P, = I?R, and P, = I?R, for R; = R, we obtain

I
Gup = 20 1og101—2 6.11
1

Three things are important to note from Egs. (6.5), (6.10), and (6. 11):
1. That10logiois used for power, while 20 logio is used for voltage or current, because

2
of the square relationship between them (P = % = IZR)

2.  That the dB value is a logarithmic measurement of the ratio of one variable to
another of the same type. Therefore, it applies in expressing the transfer function H in
Egs. (6.2a) and (6.2b), which are dimensionless quantities, but not in expressing H in Egs.
(6.2c) and (6.2d).

3. It is important to note that we only use voltage and current magnitudes in Egs.
(6.10) and (6. I l). Negative signs and angles will be handled independently as we will see
in Section 7
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With this in mind, we now apply the concepts of logarithms and decibels to construct

Bode plots.
6.4 Exercise jw jo
G@EB) =9 A G(0) =6
" SRR .
1. For each of the pole constellations j O !
in Fig.1 which applies to a voltage gain &
G, obtain an expression for the gain S o 4 4 ]
that is a ratio of polynomialsin s 2
‘ o 4 R 3
G@) =10 v GE) =6 I @ ®
""""" Jj8 @ Jjs
Figure 2
—O—X 3 O 5. Calculate H,g for H(s) equal to:
-4 -3 2 »1 4 -2
(@ O G p—— 10 (s + 100)
a p iy > =5 (i ii S
Figure 1 6. Calculate |H (jw)| for H,p equal to (i)
40dB (ii) -40dB
2. Calculate Hyp for H(s) equal to: 0dB (ii) -40d
100 7. For each of the pole-zero
(i)m (ii) 100 (s + 200) constellations in Fig. 3 which applies to
a voltage gain G, obtain an expression
3. Calculate |H (jw)| for Hp equal to (i) for the gain that it is a ratio of
30dB (i) -30dB polynomials in s
4. For each of the pole zero o
constellations in Fig. 2, which applies ° "
to a voltage gain G, obtain an 6@ =10 © 6o -8 je
expression for the gain that is a ratio
of polynomials in s. % 5 9 s PR
-j6

Figure 3

8. Calculate H,;p for H(s) equal to :

10
O =0y

511009 (i) 10 (s + 100)
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9. Calculate |H(jw)| for Hyg equal to (i)
40d8B (ii) -40dB

10. Calculate |H(jw)| for H,p equal to
(i) 80dB (ii) -80dB (1l1) 0
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11. For each of the pole-zero
constellations in Fig. 4 which applies to
a voltage gain G, obtain an expression
for the gain that is ratio of polynomials
ins (jw)



CHAPTER 7
BODE PLOT

7.0 Introduction to Bode plot

Basic of any frequency response is to plot magnitude M and angle @ against input
frequency ‘w’. When ‘w’ is varied from 0 to oo there is wide range of variations in M and
@ and hence it becomes difficult to accommodate all such variations with linear scale.
Hence H.W. Bode suggested the method in which logarithm values of magnitude is to be
plotted against logarithm values of frequencies such plots are called logarithm plots
which allows us to show a wide range of variations in magnitude on a single paper.

So, in general Bode plot consists of two plots

1. Magnitude expressed in Logarithm values against logarithm values of frequency
called magnitude plot.

2. Phase angle in degrees against Logarithm values of frequency called as phase angle
plot.

7.0.1 Magnitude plot

The magnitude can be expressed in its Logarithmic values by finding out the value
201log,0|G(jw)|, which has a unit as decibel denoted by dB.

For Bode plot |G(jw)| = 201log0|G(jw)| dB

Such decibels values are to be plotted against log;, @ magnitude plot can be shown as
in Fig. 7.1

7.0.2 The phase angle plot

GG |4
In dB

Magnitude plot

-
Log w

Figure 7.1
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The Phase Angle Plot: In this angle of G(jw) is to be expressed in degrees which is
to be plotted against log w

The phase angle plot can be shown as in Fig. 7.2.

2G(jw)

In degrees
Phase angle plot

Log w

Figure 7.2

As for both plots X-axis is Log log w both may be drawn on the same paper with
common X-axis.

Note: To predict the closed loop stability from the frequency response of open loop
system, the magnitude and phase angle of open loop transfer function G(jw) H(jw)is
to be plotted against Log w and not only G (jw).

So, for Bode plot, magnitude in dB and phase angle in degrees are the magnitudes
and phase angles of G(jw) H(jw), plotted against log w

7.1 Logarithmic Scales (Semi-log Papers):

To sketch the magnitude in dB and phase angle in degrees against logw the
logarithmic scale is used. This is available on semilog graph paper. In such paper the X-
axis is divided into a logarithmic scale which is nonlinear one. While Y-axis is divided into
linear scale and hence it is called as semilog paper.

The interesting part about X-axis is the distance between 1 and 2 is greater than
distance between 2 and 3 and so on. Similarly, on such a scale, the distance between 1
and 10 is equal to the distance between 10 and 100 or between 100 and 1000 and so on.
This distance is called 1 decade.

This is because log 1 = 0 and log 10 = 1. The distance is 1 decade which is divided
into 10 parts according to logarithmic scale i.e. Log 2,Log 3, ------

Now Log 10 = 1 and Log 100 = 2. The distance is again (2 — 1) i.e. 1 decade
same as between Log 1 and Log 10, further divided into parts as Log 20, Log 30,.....
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So, X-axis is available, which is divided into two, three, or four such cycles i.e.
decades.

So, it is not necessary to find logarithmic value of w but the logarithmic scale
available takes care of logarithmic value of w. The advantage of the scale is the wide
range of frequencies can be accommodated on a single paper.

As log 0 = —oo itis obvious that x-axis cannot be calibrated from 0 but as per
requirement the smallest frequency may be selected as starting frequency like 0.01, 0.1
etc. This hardly affects the result of the frequency response.

The Y axis is divided into linear scales similar to standard graph paper.

To clear the idea of semilog paper and decade the graph paper is shown in Fig. 7.3.

a4
< 2
% ©
s >
DECADE 1 DEICADE|Z DECADE 3 DECADE 4
Lolg
1 203 100 D 3 101 2 0 102 200 103

Non Linear | X:

EXI)q
Figure 7.3 Semi-log paper

The main advantage using the logarithmic representation is that the multiplication
and division of magnitudes get replaced by the addition and subtraction respectively.
The experimental determination of the transfer function is easier if frequency response
data is presented in the form of the logarithmic plot. Such a plot shows both low
frequency and high frequency characteristics in the same diagram.

7.2 Standard Form of Open Loop T.F. G(jw) H(jw):

K's?(s+Z)(s + Z,) ...
sP(s+ P)(s+P,) ..

Consider G(s)H(s) =
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Note that either sZ or s? will be present at a time and not both. But this form is
not useful to sketch the Bode Plot.

Hence it is necessary to rewrite the G(s) H(s) in the time constant form.

SZK(1 + Tys)(1 + Tys) ...

G(s) H(s) =
(s) H(s) sP(1+Tys)(1 + Tys) ...
Wh K—lezzx""xl{
TR = P X Py % .

Again either sZ or s” is present and not both.
The standard time constant form can be denoted as

K(1+Tys)(1 4 Ty,s) .....
sP(1+Tys)(1+ Tys) ...

G(s)H(s) =

K= Resultant system gain P =Type of the system
T,,T,, T, Tp, ... .... =Time constants of different poles and zeros.

Each of the factor involved in G(s)H(s) above will contribute to magnitude and
phase angle variations of G (jw) H(jw) in frequency domain. Frequency domain transfer
function can be obtained by substituting. s = jw in above expression

KA+T, jo)1+T,jw)....
(J)PA+T, jo)(A1 + Ty jw) .....

G(w)H(w) =

Now basic factors which very frequently occur in the above form can be identified
and studied separately.

List of such basic factors is,

1.  Resultant system gain K, constant factor. (When G (jw) H(jw) is expressed in time
constant form).

2. Poles or zeros at the origin. (Integral and Derivative factors) i.e., (jw)E" Either
poles or zeros at origin will be present.

3. Simple poles and zeros also called as first order factors of the form(1 + jwT)*!

4. Quadratic factors which cannot be factorized 2 into real factors, of the form

28 s? S jow\?
1+—s+— z1+2€]<—>+<—>
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Once the behaviour of such factors is clear in frequency domain then by adding
logarithmic plots of such factors, the resultant logarithmic plot for any G (jw) H(jw) can
be obtained. The process of obtaining logarithmic plots for such factors can be simplified
by using asymptotic approximations for each factor. But by adding corrections to such a
plot, if necessary, an accurate plot may be obtained.

7.3 Bode Plots of Standard Factors of G(jw) H(jw)

For each factor procedure to obtain its Bode Plot can be divided into following steps.
Step 1: Replace ‘s’ by ‘jw’ to convert it to frequency domain.
Step 2: Find its magnitude as a function of w

Step 3: Express the magnitude in 'dB' by 20 log;(|G(jw)H (jw)|

imaginary part

Step 4: Find phase angle by using tan™?! [ ] = @ in degrees

real part

Step 5: With required approximations, plot magnitude in dB and phase angle in
degrees against log w by varying w from 0 to o

Let us start with the basic factors one by one.

7.3.1 Factor 1: System gain ‘K’
G(s)H(s) =K
i.e. G(w)H(jw) =K +jO

IGGw)H(jw)| =vK?+0=K
Its ‘dB’ value = 20 log,o K dB
As gain 'K' is constant, 20 log, K is always constant though ‘w’ is varied from 0 to
So, its magnitude plot will be straight line parallel to X-axis.

So, magnitude plot for K > 1 is a line parallel to X-axis at a distance of 20 log K above
0dB reference line. While for K < 1 it is at a distance of 20 log K below 0 dB reference
line.
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Semi-Logarithmic Graph Paper

Horizontal axis:  Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm

1 2 3 4 5 6 7 891 2 3 4 5 6 7 891 2 3 4 5 6 7 891 2 3 4 5 6 7 891
—~
3
O
jas)
on)
3
) Mag plot
xQ +4
< A PN
S or i =1V
>
S
=

+2 Y
[y
v 20Log(i)
dB —» T
Mag plot
20Log(kK)
for K=0.]1
A0 I PR Oy Oy I P I N R [ g 1 P R I . A1 1 P P
¥y
0.1 1 10 Log w

Fig 7.4 Contribution by K

This means that in the variation of |G (jw)H (jw)| effect of ‘K’ is constant equal to
20 log K dB for all frequencies. This means 'K' shifts the magnitude plot of
|G(jw)H(jw)| by a distance of 20 log K dB upwards if K > 1 and downwards if

This fact is useful to design 'K' for the required specification. In such case
|G(jw)H(jw)| plot can be plotted with ‘K’ as unknown and then it just can be shifted
upwards or downwards so as to meet the required specification. This shift is nothing
but 20 log K dB, from which required ‘K' can be determined.

Phase angle plot:
As G(w)H(jw)=K+j0

imaj part 0
undj part. >=tan‘1——0"

c ding 0 = tan”! )
orresponding @ = tan real part

K
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So, it does not affect the phase angle plot as its contribution to phase angle plot is 0°
This means that phase plot specifications remain as it 1b for any positive value of ‘K’

But if 'K’ is negative, it always contributes independent of frequency. —180’ to the
phage angle plot

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

o Vertical axis: Linear, 5 mm

S 4

=

=

<

=

=

=

=

=

=

WV

%

3

=

=W

90°

For K O
odB
-907
Jlor K O
-180
0.1 1 10 Log»

Figure 7.5 Factor 2: Poles or zeros at the origin (jw)*”

Let us consider for simplicity single pole at the origin

1
G(s)H(s) =
6(je) = — = —
Y= T 0w
1 1
For magnitude Plot » |G(jw)H(jw)| = ——==—
a’+w?

1
Magnitude in dB = ZOlog;dB

= 20log(w) 1 dB
= —20logw

Therefore, this equation is similar to y = mx i.e., 1 pole at the origin contributes
to the magnitude plot according to the equation —20 log w i.e., according to the straight
line of slope ' — 20’
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Let us see the unit of the slope.
Equation is |G(jw)H(jw)| = —20log w
If w=1- |G(w)H(jw)| = 0dB
w=10- |G(w)H(jw)| = —-20Db, w =100 » |G(jw)H(jw)| = —40 dB
w=01- |G(w)H(w)| =+20dB

Now 10 times changes in frequency range is called as 1 decade described earlier
i.e. 1 pole at origin reduces the |G(jw)H(jw)| at the rate of — 20 dB per decade.
Hence the slope of magnitude plot for 1 pole at the origin is called— 20 dB/decade.

So, magnitude plot for 1 pole at origin is a straight line of slope — 20 dB/decade.

Nowatw =1 |G(jw)H(jw)| = 0dB i.e., this line intersects the reference 0 dB line
atw = 1.

At w = 0.1 it has magnitude +20 dB while at w = 10 it has magnitude of —20 dB.

As w = 0 cannot be indicated, starting frequency may be selected as per the
requirement. This contribution is valid for range of w from 0 to co.

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
2
<
RS
3
=
stope=20dB/d e
+20 TPOLEATORIGH
N
N
N
0dB
N
N
N
-20 ™
\&
for K| < 0
-40
w=0.1 w=1 =10 Log w

Figure 7.6 Contribution by 1 pole at origin
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To sketch such a line of slope — 20 dB/decade, first mark the intersection point of w =
1 with 0 dB line and then go up by 20 dB for each 1/10%" reduction in frequency from
w=1i.e. +20dBforw = 0.1, +40 dB for 0.01 or go down by 20 dB for each 10 times
increase in frequency from w = 1i.e. — 20 dB for w = 10, — 40 dB for w = 100 and
so on. Then draw a straight line, as shown in the Fig. 7.6

Consider two poles at origin G(s)H(s) = slz
() H(w) = 1 1
Go)H(w) =753
GUH () = = =
Y H (e 0 0

1
|G(jw)H (jw)|in dB = ZOIOgE = 20log(w)™? = —40log w

So, it is straight line of slope — 40 dB/decade.

In logarithmic plot, multiplication gets replaced by addition. One point is important
to note that at w =1, |G(jw)H(jw)| = 0dB i.e., this line though has slope
— 40 dB/decadeit intersects 0 dB lineat w = 1

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm
. 2 s 4 s erash 2

+60

AW
+40 N%,
< N\
%
AN Commjon intérseftibn)
+20{ 2 NI\
22N point of w =[T With[0 ine
NN\ -

0dB

f0r1— Slope {40dB/de Jor =, slop—20¢B/decade

AN

-20

[ar%,m pe|-60dB/degfrade ~

-40 N

w=1 w =10 Log w

Figure 7.7 Contribution by poles at origin

Similarly, for 'P' number of poles at the origin
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1
G(s)H(s) = —

<P
G(w)H(w) = 11 P ti
(jw)H(jw = imes
. . 11 _ 1
|G(jw)H(jw)| = ;';“-Ptlmes = @Y7
1
|G(jw)H (jw)|in dB = 20 log Ok = 20log(w)? = =20 x Plogw

So, this is a straight line of slope — 20 X P dB/decade but again intersecting
with 0 dB lineatw =1

Therefore, magnitude plot for 'P' poles at the origin gives a family of lines passing
through intersection of w =1 and 0 dB line having slope — 20 X P dB/decade as
shown in the Fig. 7.7.

Now if there is zero at the origin i.e.
G(s)H(s) =s
Gw)H(w) =0+ jw
~ magnitude in dB = 20 log w dB

This is equation of a straight line whose slope is +20 dB/ decade. The only change is the
sign of the slope, for pole it is — 20 dB/decade while for zero it is +20 dB/decade but
for both, intersection of line with 0 dB occurs at w = 1 only.

In general, for P number of zeros at the origin
G(s)H(s) = s*
Gw)H(jw) =jw " jw - jw - P times
1G(jw)H(jw)| = ”
Magnitude in dB = 20 X P Log w
ie. slope = +20 X P dB/decade
So, it gives family of lines with slopes as +20,+ 40 ......+20 X P dB/decade

passing through intersection point of w = 1 with 0 dB line as shown in the Fig. 7.8.
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Semi-Logarithmic Graph Paper

Horizontal axis:  Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
+60,
/
+40 /, ,/
/ /Z //
/
// / P
+20 7/ >
/ %
/; P - fors? e +40dB/decade
y 4
0dB
/) for(s, slop +20dB/decade,
7 ///
/
/ HEN \\“_\ 1 } ) M
-20 / S, Slope +60dB/decade
/
/Y
/| /
/ 1/
4wy
/
/
/
/
/
oo/
w=0.1 w=1 w =10 Toga

Figure 7.8 Contribution by zeros at origin
A zero at the origin increases the magnitude at a rate of +20 dB/decade.

Phase Angle Plot: Consider 1 pole at the origin

1 1
H(s) ==G(jw)H(jw) = —
G(s)H(s) SG(]a)) (jw) io
LG')H')—LlLl— o = —180°
o) Hjw) = 270 250 = 550900 —

This is independent of ‘w’. So, phase angle plot of ‘pole at origin is line parallel to x-axis
contributing —90° to phase angle.
For 2 poles at origin, G(s)H(s) = iz

N
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1 1

iw) Hjw) = — —
G(jw) H(jw) o jw
1 0°

2G(jw)H(w) = LLA

—=———=-180°
jw jo 90°-90°

Angle gets added to each other.

In general P number of poles at the origin contribute —90° X P angle to overall
phase angle plot. This contribution is irrespective of w

Similarly, for a zero at the origin,
G(s)H(s) =s
Gw)H(jw) = jw
2G(w)H(jw) = 20 + jo = +tan‘1% = +90°
1 zero at the origin contributes +90°. The contribution is the same as that of the

pole; the only change is its sign. In general, 'P' number of zeros at the origin, the total
angle contribution is +90°xP, irrespective of value of w. This can be shown as in Fig. 7.9.

Semi-Logarithmic Graph Paper

Horizontal axis:  Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
2 s 4 s srssh . !
D zeros-at-the origi
+180° -
T zerojat thejorigin
+90° -
0
nole at the prigin
-90° -
180° es-atthreorigir
w =01 w=1 @ =10 Log w

Figure 7.9 Angle contribution
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Before going to the next factor, let us see the addition of the first two factors on
semi-log paper.

The magnitude plots for poles or zeros at the origin are straight lines having slope

— 20 X P dB/decade or + 20 X P dB/decade respectively passing through
intersection point of w = 1 and 0dB line. Now adding magnitude plot of 'K' to the
above means to shift the straight line drawn upwards or downwards by 20 Log KdB
depending. on whether K is greater or less than 1. This shift is experienced, will be
same by all points on the straight-line representing poles or zeros at the origin. Hence
net addition of 'K' and pole or zeros at origin will be a line parallel to line representing
poles or zeros at the origin at a distance of 20 Log K dB above or below the 0 dB line.
Consider G(s) H(s) = % s0G(jw) Hjw) = ]1—(2

7.3.2 Factors are:

i. Constant K = 10, its contribution to magnitude plot is 20log K = 201log 10 =
+20dB.

ii. 1 pole at the origin whose magnitude plot is straight line of slope
— 20 dB/decadepassing through intersection point of w = 1 and 0 dB line.

Now at w = 1, total magnitude will be addition of magnitudes of Kand 1/s.
i.e. = 20 dB due to ‘K’ +0 dB due to 1 pole at origin
atw=1 =20dB

i.e. after addition of two lines, intersection point of w = 1 and 0 dB will shift upwards
by 20 dB. So, to draw resultant of the two, we can generalise the procedure as,

i. Draw magnitude plot for K.
Db
decade’

iii. Shift intersection point of w = 1 and 0 dB on the line representing 20Log K

ii. Draw straight line representing pole at origin i.e. of slope — 20

line.
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iv. +Draw a parallel line to the line representing the pole at the origin from the point
obtained in step (iii).

The slope of this line will be the same as the slope of the line representing poles or zeros
at the origin. In this example slope of resultant line will be — 20 dB/decade. This is
because slope of 20 Log K line is 0 dB/decade.

Note: When two lines are added together, the resultant line always has a slope
which is algebraic addition of the individual slopes of the two lines which are to be added.

So, magnitude plot for above G (s) H(s) is shown on the next page.
Phase Angle Plot:

Prepare the table of individual angle contributions and add them to get resultant phase
angles.

Contribution by By 1 pole at Resultant @,
@ K origin
0 0° -90° -90°
10 0° -90° —9(°
40 0° -90° —90°
1000 0° -90° —90°
o) 0° —-90° —-90°

So, phase angle plot is straight line parallel to x-axis as shown with phase angle —90°
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Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
Magin dB
+40
esultant mag plot
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—
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N gy
\~~
~
-20 >~
ST N
Phase angle 1 pole at origin -20 db/decade
in degree
0
Resultant phase dle plot
-90° L
w=0.1 w=1 w =10 Log w
Figure 7.10

So, whatever may be the open loop T.F. G(s)H(s) factors, the first step in sketching
Bode plot should be the line adding poles at the origin or zeros at the origin and
20 Log K line by the procedure discussed above.

From above discussion we can conclude one important fact that “The starting slope
of the Bode Plot for the function G (s) H(s) gets decided by number of poles or zeros at
origin presentin G(s) H(s)."

E.g., Starting slope of Bode Plot for G(s)H(s) = % is —20 dB/decade as there is one

pole at the origin.

20(s+1)
s2(s+2)(s+4)
as there are 2 poles s at the origin in G(s)H(s). Let us go to the next factor.

Starting slope of Bode Plot for G(s)H(s) = will be — 40 dB/decade

7.3.3 Factor 3: Simple poles or zeros (First order factors)

1+ Ts)ttie (14 joT)*!
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Let us start with a simple pole

1
G(S)H(S) = (1 + TS)_l = m = G(]OJ) H(]a)) = —1 T Tw
1 _

in dB magnitude = 201log[1 + (wT)?]™! = —201log+/1 + w?T? dB

Now instead of sketching a magnitude plot exactly according to this equation we
can approximate this into two regions and can draw a straight-line approximated
magnitude plot and then by applying corrections we can modify it to an accurate one if
required.

The approximation is,
i For low frequency range w < %i.e w?T? &« 1 hence can be neglected.

Magnitude in dB = —20log1 = 0dB

So, for low frequencies it is straight line of 0 dB only. Thus, the contribution by such a
factor can be completely neglected for low frequency range, as it is very small.

ii.  Forhigh frequency range w > % o1 < w?T?
Magnitude indB = —20logw T dB

i.e. it is straight line of slope —20 dB/decade. As again for every decade (10 times)
change in 'w'magnitude still decreases by 20 i.e. slope is —20 dB/decade. But the
intersection of this line with 0 dB line will give us a range of high frequency and low
frequency. i.e. two lines, O dB line for low ‘w' and line with slope —20 dB/decadefor
high are going to intersect when, —20log wT = 0 dB

i.e wT =1

. 1
l.e w ==
T

This frequency at which change of slope from 0 dB to —20 dB/decade occurs is called
as Corner Frequency, denoted by w,.
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wczf

Hence asymptotici.e. approximate magnitude plot for such factor is 0 dB line up to w, =

1

% and line of slope —20 dB/decade, when w > w. i.e. above w, = pet The magnitude

plot shown above is called the Asymptotic Magnitude Plot.

Error Application:
Now let us see how to apply error correction for such asymptotic plots, if required.

The actual equation of magnitude plot is

Magnitude in dB = —201log V1 + w?T?
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Semi-Logarithmic Graph Paper

Horizontal axis:  Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
A
Magin dB
40
2
0dB__,
\\ 20-dBrdown
20 by
R NC
DECADE CHANGE
IN w
-40 .
Slope -20 dB/dec
= = w =10 =
0] Olw_fL 0} 1w 1 flO w =100 Log w
10T T ©=7
Figure 7.11

Now by approximation at w = w, = L magnitude in dB = 0 dB. But actually, it can

=
be calculated as,

Actual magnitude in dB = —20log+/1 + w2T?

1 o 1
=—20log 1+ E-T , Substituting w; = T= —20logV2 = -3 dB

2
Similarly,at w = T
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Actual magnitude in dB = —20 log /1 + % T2 = —2010g\/§ = —-7dB

But approximate magnitude in dB at w = ;is

2
= —20logwT = —ZOIOgF xT
=—6dB

~ Correction at w = ;is —1dBi.e. 1dB down

1
While at w = —
ileatw = -

Actual magnitude in dB = —20 Log /1 + ﬁTZ = —ZOlogg =-1dB
Approximately = 0dBas w = % is less than w, i.e. in low frequency range.

Correction at w = % =1dBi.e1dBdown

General error values are

Table 7.1
Frequency w - W, 2w, We
2
Error 3 dB down 1dB down 1dB down

By applying these errors, the actual magnitude plot may be obtained, if required, as
shown in Fig.7.12
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Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
Mag in dB
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Figure 7.12
For simple zero, i.e. first order zero,
G(S)H(s)=(1+Ts)
GUw)H(w) = (1 4+ jwT)

|G(jw) Hjw)| =+/1+ (wT)?
- Magnitude indB = 20logVv1+ w?T?-dB
Hence all the analysis is applicable for a simple zero with change in sign of slope.

The magnitude plot for simple zero is a straight line of 0 dB up to w, = 1/T and then
straight line of slope +20dB/decade for all frequencies more than corner frequency.

The errors are +3dB for w,. and +1dB for w, = 2w, or % Hence analysis of a simple

zero is very much simple when analysis of a simple pole is clear.
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It is as shown in Fig. 7.13

Note that varying the value of 'T' i.e. time constant, it shifts the corner frequency 'w,'
to the right or 'left, but the shape remains the same as above.

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

\{ertical ?xis:K } SL!an"fg 5mm )
Magin dB
40 Tt ICP: T il
20
0dB
-20
pproximated (dotted)
-4
®=01 1 w=1 1 w =10 10 w =100 Log w
“=Aor @e =7 0=
Figure 7.13
Phase Angle Plot: Consider a simple pole
G(S)H(s) = —
S)H(s) =
1+Ts
6(jw) H(jew) = — 6(jw) H(jw) = ——— = tan"! T
w w)=———m =~ LG(w w)=————==tan " w
1+ jwT tan-1 2T
1

While for a simple zero,

G(s)H(s)=1+Ts

wT
Gw)H(jw) =1+ jowT ~ £6(w)H(jw) = tan_lT = +tan"! wT
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So, the shape remains the same. Only the sign of the angle’s changes from negative
to positive when the factor changes from pole to zero. Such a plot is to be constructed

by actually calculating angles for different frequencies. So, make a table as shown in table
7.2.

Table 7.2
W + tan~! wT (+for zero, —for pole)
w, 1 +5.71°
10 10T
w, 1 +26.6°
2 2T
_1 +45°
W, = ?
20, = 2 +63.4°
T
100, = % +84.3°

This can be shown as in Fig. 7.14

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm

or simple zero

+90

+45

-45°

-90°

For|simple pol.

I w =10 Tlo w =100 Log w

Figure 7.14
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The shapes will remain the same, for various values of 'T' time constants.
It is important to note that phase angle is +45° for a zero or pole at w = w, = %

Example 7.1: Sketch the Bode Plot for the system having

20

G(S) H(S) = m

Sol.: First see that given G (s) H(s) is in the proper time constant form or not. If not
arrange it in the time constant form. Now identify the factors.

i. K = 20

Its magnitude = 20 Log 20 = +26 dB

ii.  1pole atorigin. Its magnitude plot is straight line passing through intersection
point of w = 1 and 0 dB with slope — 20 dB/decade.

iii. Simple pole =

comparing with L

14+0.1s 1+Ts
T =0.1
Lol
Ce=TT01"

i.e. Asymptotic magnitude plot is 0 dB up to w = w, = 10 and then straight line of
slope — 20 dB/decade. Procedure to Plot resultant

i. Draw 20 Log K line.
ii. Draw line for 1 pole at origin
iii. Shift intersection point of w = 1 and 0 dB on 20 log K line and from this point draw
parallel to a line representing 1 pole at origin. This line will have slope — 20dB/
decade.
iv. This addition of K and pole at origin will continue, as it is till next factor becomes
dominanti.e.at w = w, = 10.

Hence resultant slope from w = 10 onwards will be (— 20 dB/decadeas starting
slope) + (— 20 dB/decade) due to simple pole i.e. resultant — 40 dB/decade. This
will continue up to w — o as there is no other factor present in G(s)H(S).

Procedure to draw — 40 dB/decade line: Mark the point of intersection of w = 10 and
line representing addition of K and 1/s. From this we want to draw slope of
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— 40 dB/decade. So, whatever is the magnitude of G (jw) H (jw) corresponding to this
intersection point, will get reduced by 40 dB for a decade change in w i.e. at w = 100.

So, mark that point and draw the line. OR on semi-log paper itself, draw the lines of
different slopes as — 20, —40, — 60, — 80, +20dB/decade etc. very light as shown
and then draw parallel to these lines of the required slope in magnitude plot. Such lines
are shown in Fig.7.15. Draw such lines very light and then draw parallel to these lines
from the required point of required slope.

For the phase angle plot prepare the table of angles as below

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm

e \-20 dB/d
AN
44 N laolaB/bedade
AN
X \\
+20md i
N,
Figure 7.15
Table 7.3
w in rad sec @ duetolpoleat| @ due to simple| @z Resultant
origin pole tan™1 0.1w
0.1 —90° —0.57° —90.57°
0.5 —-90° —2.86° —92.86°
1 —90° —5.7° —95.7°
2 —-90° —-11.3° —-101.3°
10 —-90° —45° —135°
50 —90° —78.79° —168°
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@ due to simple pole = —tan™! wT = —tan" ! 0.1 w

@ due to 1 pole at the origin is always —90°. If required, more’ w’ values may be
selected to draw the smooth curve. Let us combine all the things on semilog paper to
complete the Bode plot

Observe:
Semi-Logarithmic Graph Paper
Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm
A
N\ ResUiltant -20dB/dedade
/ | | w|=]d.|flort simple pole
N
+40 N~
\ \\ R
\\\ \\ e Y P K dB
[ od
+20 u AN \ ~<__
\:\\\ Effectof K ™~ i ;-“‘t;l: °'“r2
0dB — \\
\‘ \
\\ \\
N
-20 N\
N
N
-40 N
N\ AN
N\
N
\\
N
N
™
—90° ~
N
\
—105°
N esultant
phaselangle
—120° <
—130°
\
—150°
w=01 WET W = 10 w =100 Legw
Figure 7.16
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1. 20log K line

2.  Line of slope — 20 dB/decade as only 1 pole at origin.

3. Intersection point of w = 1 and 0 dB shifted on 20 Log K line and line parallel to
—20 dB/ decade is drawn which is resultant of Kand 1/ s.

4.  This continued till next factor becomes dominanti.e. w = w, = 10.Till w = w, =
10, simple pole contributes 0dB only and there is no change in the slope..

So, from intersection point —20 dB/decade lineand w = 10 line i.e. point P shown slope
is changed by —20 dB/decade and hence directly resultant of slope —20 + (—20) =
— 40 dB/ decade is drawn from point P. This is drawn parallel to —40 dB/decade line
drawn light on semilog paper shown in Fig. 7.16.

7.3.4 Factor 4: Quadratic factors

Consider quadratic pole of the form,

G(s)H(s) = 2 — expressed in time constant form
1+ w—S +
n

w2
1
1+2¢ (2) + ("—“’)2

wWn

G(jw) Hjw) =

where w is variable and w,, is constant for that factor.

1 1
1426 (£) - (2)

1G(jw) H(jw)| =

=@ vty

. Magnitude in dB = 20log

[-@T e
ot [1- ()] +oe (2
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w12\’ w \?
Magnitude in dB = —201log (1— [—] > +4¢&2 (—) dB
Wy, Wy,

Approximation:

2
For low frequency, w <K w,, - (wi) K1
n

MagindB = —20log1 = 0dB

Thus, similar to a simple pole, quadratic pole also is negligible till its corner frequency
occurs.

2 4
For high frequency, w > w,, and 4&2 (wi) K (wi) as is very low.
w\2]?
~ Magnitude in dB = —20log l(—) l
w?’l

w \? w
= —20log (a)—) = —40 logw— = —40logw + 40 log w,
n

n

This is equation of straight line of slope — 40 dB/decade.

Hence general magnitude plot for quadratic factor is 0 dB line till corner frequency
and then a straight line of slope — 40 dB/decade.

To find corner frequency w,,

w
~40log— = 0dB

n

Le.—=1

So w,, is the corner frequency for such factor
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Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
.
Mag in dB
Asymptotic Mag. plot for quadratic factor
40
20
/
OdD
I= ‘\\
=) N
= N
20 = AN
N
\\ OrdBrdegade
¥
4 Decade N
N
N
=01 w=1 w =10 @ =100 Log w
w w
Pt oo =10
(o] wo
Figure 7.17

But the above asymptotic plot is not so accurate as the error for the quadratic factor not
only depend on w but also on the value of ¢ damping ratio.

Let us see the effect of variation of £ on the magnitude plot.

w12\’ w \?
Actual magnitude in dB = —20log <1 — [—] ) + 4¢&2 (—)
wn wn

w
Nowatw = w, = —=1
wWn

Actual magnitude in dB = —20log/4&?2. Let us prepare a table for various values of and
corresponding error values. See Table 7.4
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Table 7.4

¢ Accurate Approximate error for
magnitude in dB magnitude in dB guadratic pole
0.1 + 13.97 0 +13.97 dB up
0.2 + 7.95 0 +7.95dB up
0.3 + 4.43 0 +4.43 dB up
0.4 + 1.93 0 +1.93dBup
0.7 —2.92 0 2.92 dB down
0.9 —5.10 0 5.1 dB down
1 —6.02 0 6 dB down

And due to the errors calculated above the magnitude plot for quadratic pole gets
modified as shown in Fig. 7.18:

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis:v Linear, 5 mm )
3 )
. — =+1 &
Mag in dB o ay
20
10|
/ N\
/ \\ =00t
/ e T -
0dB. T o \
NI \
b N\ [H—&=03
£ =107 I \ \\ \\
- "N
10 N\
N .
symptote o
oI e-4U db/decade
20
£ =11 N\~
AN
\\
N\,
1 1 O
O 0 =YY

Figure 7.18 Quadratic pole
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Hence it is necessary to modify magnitude plot for 2nd order quadratic pole as
shown above at its cornet' frequency for various values of "¢’

Students can use Table 7.4 to decide correction for given ¢ or find the correction using
the formula,

Correction = —201log 2¢ dB at w = w,, of pole
Positive correction upwards and negative correction downwards.

The magnitude plot to a quadratic zero can be obtained by reversing the sign of the
slop" of' basic asymptote and then by reversing the signs of the corrections at corner
frequency for various values of ¢. Hence it looks like as shown in Fig. 7.19

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm v )
MagindB“ z s 4 s 57890 2 s 4 s 67891 2 RSN EELE
40
4
30 /
w /
C — =1 say /
° /
20 /™
ASyMmplote O
10 Ly fopes +40 dB/decade
P
§=07 p oAl
] yu innl
'/ / & = 0.3
0 dB a A
T ~—— /
/[T
AN =01
-10 AN /
N7
-20
Quadraticlzero
Magpole
0.1 i Q Log w

Figure 7.19 Quadratic zero

Let us see phase angle table:

187



G(w)H(w) =

fi dratic pol
1_ (g)z ey (wﬂn) or a quadratic pole

wWn
00
2G(jw) H(jw) =
tan—1 {—26 (w({)wg)}
1-()
2§ (w/wy)
2G(w)H(jw) =tan™1{————=
G(jw) Hjw) = tan {1 /o)
The table for ¢ = 0.3 is shown below
2x03x—
w

Table 7.5
w 1)
Wy
0.1 —3.46°
0.5 —21.8°
1 —90°

Soat —=1lie w= W, = wy, it contributes —90° and hence must approach to —180°

wWn
as wi — oo But according to above formula when wi > 1, @ becomes positive, in such
case the angle contribution obtained must be considered, by subtracting 180° from the
positive (.
e.g. 2 =2 ~p=—tan"[-0.4] = —(-21.8) = +21.8°

wWn

But the actual angle contribution must be considered by applying correction of
—180° i.e., 21.8° — 180° = —158.19°. This happens because behaviour of tan™*
functions for the complex quantities with real part negative or imaginary part negative
cannot be identified on the calculator by using the above formula. Hence phase angle
table becomes,
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Table 7.6

w 1)

Wn
0.1 —3.46°

0.5 —21.8°

1 —90°

2 +21.8 - 180 = —158.19°
4 +10.09 — 180 = —170.9°
10 +3.46 — 180 = —176.53°
(o) —180

For quadratic zero, the sign of the angle should be made positive.

Note: For quadratic factors make sure that its roots are complex. If roots are real,
factorising it and considering its two components independently as Simple factors rather
than quadratic. The above discussion is applicable only when the roots of a quadratic

factor are complex conjugates of each other.

7.4 Steps to Sketch the Bode Plot

i. Express given G (s) H(s) into time constant form
ii. Draw a line of 20 Log K dB.
iii. Draw a line of appropriate slope representing poles or zeros at the origin, passing
through intersection point of w = 1 and0 dB.
iv. Shift this intersection point on 20 Log K line and draw parallel line to the line drawn
in step 3. This is in addition of the constant K and number of poles or zeros at the origin.
v. Change the slope of this line at various corner frequencies by appropriate value . i.e.
depending upon which factor is occurring at corner frequency. For a simple pole, slope
must be changed by — 20 dB/decade, for a simple zero by +20 dB/decade etc. Do not
draw these individual lines. Change the slope of the line ' obtained in step 5 by respective
value and draw line with resultant slope. Continue this line till it intersects the next
corner frequency line. Change the slope and continue. Apply necessary correction for

guadratic factors.
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vi. Prepare the phase angle table and obtain the table of w and resultant phase angle
by @ actual calculation. Plot these points and draw the smooth curve obtaining
the necessary phase angle plot.

Remember that at every corner the frequency slope of the resultant line must change.

100(s+4)

Example 7.2: A feedback system has G(s) H(s) = SGT05)G110)

Draw the bode plot and comment on stability.
Solution:

Step 1: Arrange G(s) H(s) in time constant form

G5y H(s) 100 x 4 x (1+5) 80 (1+3)

s s\ s
s><0.5x(1+E)x10x(1+5) s(1+25)(1+5)
In this problem, a simple zero is added to the previous example.

Step 2: Factors are

i. Constant K = 80

ii. 1 pole at origin,

1

iii. Simple pole —
pie pole, 1+2s’

T, =2,wc = Til = 0.5 rad/s.

iv. Simple zero, (1 + i) , Ty = i, Wep = le = 4 rad/s.

. 1 1 1
v. Simple pole, —,T3 = —,we3 === 10rad/s.
14 10 Ty

Step 3: Magnitude plot Analysis

i. For K = 80,20log K ~ 38 dB.

ii.  For 1 pole at origin, straight line of slope — 20 dB/decade. Passing through
intersection of w = 1 and

iii.  Shift intersection of w = 1 and 0 dB on 20logK line and draw parallel to

—20 dB/decade line representing addition of K and 1/s. This will continue till first
factor becomes dominant i.e, at w.; = 0.5. So, resultant must continue only up to 0.5.
iv. Atwc; = 0.5, simple pole occurs, individually contributing —20 dB/decade
hence resultant pole will have slope —20 — 20 = —40 dB/decade from 0.5 onwards
till next corner frequency occurs i.e. w¢y, = 4
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V. Atwcs = 4, simple zero occurs, individually contributing + 20 dB/decade hence
resultant plot will have slope —40 + 20 = —20 dB/decadeagain from '4' onwards till
next corner frequency occurs i.e., w¢z = 10.

vi. At wcz = 10, simple pole occurs, individually contributing — 20 dB/decade
hence resultant plot will have slope —20 — 20 = —40 dB/decade, again from'10"'
onwards. This will continue up to w — oo as there is no other factor present in
G(s)H(s)

Step 4: Phase Angle Plot

80 (1+/2)
G(jw) Hjw) = - - —
jo(1+ j2w) (1 +]E)
280 +j0 21 +j2
2G(jw) H(jw) = * -
Zjw £1 + j2w (L +j1—0)
£80 + j0 = 0° 1472 = ftan12 Al——900
o= J% = 2 e

ya ! tan"1 2w, <« tan™ —

= —tan , = —tan + —

T+j20 0 2 ST T 10

10
~Phase Angle
Table 7.7
) 1 —tan"1 2w +tan‘12 —tan‘lﬂ Dr

0.1 —-90° —-11.3° +1.43° —0.57° —100.4°
0.5 —90° —45° +7.12° —2.86° —130.7°
—90° —63.43° +14.03° —5.71° —145.1°
2 —-90° —75.96° +26.56° —-11.3° —150.7°
—-90° —82.87° +45° —21.8° —149.6°
10 —90° —87.13° +68.19° —45° —153.9°
50 —90° —89.42° +85.42° —78.69° —172.6°
00 —-90° —90° +90° —90° —180°
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Note that as simple zero (1 +j%) is more dominating than simple pole —(Hl,w)

10
forany frequency +ve angle contribution by zero will be more than negative angle

contribution by pole. Hence resultant cannot intersect —180° line but will run parallel
to —180°line at the end.

Hence it is clear that w,. = %, hence wy, is always less than w,. and hence the
system is always absolutely stable. In such a case G.M. can be said to be +oco0 dB. P.M
can be decided from Bode Plot.

Step 5: Bode plot and solution.

Also note that when there is addition of simple zero in the unstable system, the
GM. has to increase tremendously and the system becomes stable in nature. Addition
of zero in a system makes the system relatively more stable. (See Fig. 7.20)

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: . Linear, 5 mm
}
+60 | | | 11— Resultant|-20 dB/decade
\\ ~
I
Y N N 20log K = 38dB
NN TN [ [ [ I[-a0/dB/cade
\\ \\ NS . — |
+20 ‘\
N
~ \:\ "~ |_— -20 dB/decade
N N
~ | |— -40 dB/cade
0 dB —
N ——
o~
-20
™N
~
-40 S
N
0° N
g N
—90° L 4 ™
\\
N
—120
—180°
> -
0.1 t 1 10 100 logw
we1 = 0.5 wez =4 @e3 Wy =10.7
Figure 7.20
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800(s+2)
s2(s+10)(s+40)

Example 7.3: For a unity feedback system G(s) =
Sketch the Bode plot, asymptotic in nature. Comment on stability,
Solution:

Step 1: Arrange G(s) H(s) in time constant form.

) 800 x 2 x (2+1) 4143
v ) x0x (1) () (143

40

Step 2: Factors are

i Constant K = 4,
ii. 2 poles atthe origin, Siz

ii. Simplezero,142>, T; = l, We1 = =2 rad/s.
2 2 T

. . 1 1 1
iv. Simplepole, —, T, = —, wc, = — = 10 rad/s.
1+ 10 T,

i, Wez = Tls = 40 rad/s

1
v.  Simple pole, —, T5 =
Simple pole, —, T3 =

40

Step 3: Magnitude plot analysis

i. ForK = 4, 20log K = 20log4 = 12dB.
ii. 2 poles at the origin i.e. Siz It contributes a straight line of slope -40 dB/decade

passing through intersection point of w = 1 and 0 dB. So, the starting slope becomes —
40 dB/decade.
iii.  Shift intersection point of w = 1 and 0 dB on 20 log K line and draw parallel line

to — 40 dB/decade. This represents addition of K and Siz This resultant will continue till

first corner frequency w.; = 2.

iv. Atwc; = 2,simplezero occurs which contributes +20 dB/decade individually and
hence resultant slope from '2' onwards becomes —40 + 20 = —20 dB/decade. This
continues till ws; = 10.

V. At wcy = 10, simple pole occurs which contributes — 20 dB/decade individually
and hence resultant slope from 10 onwards becomes —20 — 20 = —40 dB/decade
again. This continues till w3 = 40.
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vi. At wcz = 40, Simple pole occurs which contributes — 20 dB/decade individually
and hence resultant slope from 40 onwards becomes —40 — 20 = —60 dB/decade. This
continues upto w — oo as there is no other factor present in G(s) H(s).

Step 4: Phase Angle Plot

4(1+2)
GUw)H(w) = . .
P2 jo el
G (1) (145
o) HUo) £4+j0 2142
LG(Jw)H(jw) = - .
c(w)? 21+ 21482
10 40
(W w
24 +j0=0° 21 +%=+tan_15
L(jw;)z' 2 Poles at origin = —180° always
1 ) q _ 1
41+j_w——tan Ean 41+j_w——tan 70
10 40
Phase angle
Table 7.8
) ) )
w 1 +tan"'—= | —tan!— | —tan"!'— Dr
(jw)? 2 10 40
0.2 —180° +5.7° —1.14° —0.28° —175.72°
2 —180° +45° —-11.3° —2.86° —149.16°
10 —180° +78.6° —45° —14.03° —160.43°
20 —180° +84.28° —63.43° —26.56° —185.71°
50 —180° +87.7° —78.6° —51.3° —222°
100 —180° +88.85° —84.28° —68.19° —243.54°
o) —180° +90° —90° —90° —270°

Step 5: Bode plot and Solution. (see Fig 7.21 on next page)
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Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm
Y
o
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N
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N
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\
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—240°
—270°
T
0-1 1 10 100
weq = 2 De2 wpe =18 @Wea = 40
=wge
.
Figure 7.21

3(s+1)(s+6)

Example 7.4: For a certain feedback systemG (s)H(s) = S2(sZ + 185 1 400)

Sketch the Bode plot and comment on G.M. P.M and stability

Solution:
Step 1: arrange G(s)H(s) in time constant form

3(s+ D(6)(1+5/6) 0.045(1 + s) (1 + 2)

52(400) (1 +-2=5+ %) s2(1+0.0455 + %)

G(s)H(s) =

Step 2: Factors:
i Constant K = 0.045
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- 1 .

i =, 2 poles at the origin

iii. Simplezero(1+5),T;=1,we =1
. . N 1

iv.  Simple zero (1 + g),TZ =2 Wz = 6

. 1
v.  Quadratic pole, —————~,W¢3 = w, = 20
(1+0.045$+m)

Now compare s + 18s + 400 with s? + 2§ w,s + w2
w2 =400, w,=20, and2fw, =18, & =045

Its corner frequency is 20 while as ¢ = 0.45, magnitude plot will exhibit +2 dB
overshoot at w3 = 20 (referring to the correction table given in discussion of
guadratic pole).

Step 3

i. K = 0.045 .. its contribution is 20log K = 2010g 0.045 = —27 dB
ii. SLZ’ 2 poles at the origin so magnitude pot is straight line of slope —40 dB/decade

passing through intersection point of w = 1 and 0 dB. this is the starting slope of the
magnitude plot.

iii.  Shift intersection point of w=1 and 0dB line on 20logK line i.e
—27 dB downward (as K < 1) and from that point draw parallel to —40 dB/decade line.

This will represent addition of = This will continue till first factor becomes dominant

having least corner frequencyi.e. wc; =1

iv. At wg; =1, simple zero occurs contributing +20 dB/decade individually hence
resultant will have slope —40 + 20 = —20 dB/decade. Hence ‘1’ onward slope of
resultant will be —20 dB/decade contributing up to next corner frequency w., = 6.

V. At wc, = 6, another simple zero occur contributing +20 dB/decade individually
making the slope of the resultant will become —20 + 20 = 0 dB/decade from 6 onward
i.e line parallel to x-axis till next corner frequency w¢3 = 20

vi. At w¢z = 20, quadratic pole occurs contributing 40dB/decade individually hence
the slope of resultant will become 0 — 40 = —40 dB/decade from 20 onwards and will
continue up to ‘e’ as there is no Other factor. But at w3 = 20 it will show overshoot of
+2 dB.

Step 4: Phase angle plot
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0.045(1+j0) (1+j2) 0045 (1+jo) (1+/%)

G(w)H(w) = . =
. N2 , (jw)? . N2 L w?
G)? (1+0.045j0 +22°)  (jw)? (1+0.045j0 = =)
£0.045 21 + jwsl +j=
2G(jw) H(jjw) = 22
£(jw)? 21+ 0.045jw — —
400
w w
£0.045+j0=0°  zl+4jw=+tanlw, 2«1 +jg = +tan_1g
L——=—-20X%X90° = -180°
(jw)?
As pole 2 at origin
1 _, 10.0450
ya ) — = —tan —
1+ 0.045jw — — 1——
400 400
Table 7.9
1 -1 L, w
@ —_ | TR @ | yan e _,10.0450 O
(w) —tan —
~ 200
0.1 —180° +5.7° +0.95° —0.25° —-173.6°
—180° +45° +9.46° —2.58° —-128.1°
6 —180° +80.53° +45° —16.52° —70.9°
10 —-180° +84.28° +59°¢ —30.96° —67.6°
20 —180° +87.13° +73.3° —90° —109.57°
50 —180° +88.85° +83.15° +23.19 — 180° —164.8°
= —156.8°
100 —180° +89.42° +86.56° +10.61 — 180° —173.4°
= —169.38°
00 —180° +90° +90° —180° —180°

As two zeros are always contributing more than a quadratic pole phase angle plot
cannot cross —180° but at the end will run parallel to it.

Step 5: Sketch the Bode plot and obtain the solution
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Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm

g
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AN
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+40 \\ | Res 20 dB/d
RN N -20 dB/dcade
+2 N 140 dB/decal
NN 20log K |= 12 dB
X
0 dB ~— —
NC
B \ = B/aecaade
-20 ™~ AN
N
G.M I
a0 ™~
=) ~ ~——
2%)790 \ I
I &
—120p S -
S —
—150° s
—180°
—210° \\
AN
AN
—240
—2709
wi B e :ao ous = 11 100
L'L i nll
Figure 7.22
7.5 Further Examples
50 (s+10) .
1. Draw a Bode plot for H(s) equal to (a) (b) 30 (show detailed
(s+100) (s+100)
derivations) (c) indicate the corner frequency(ies) in each of the above cases.
50 50
1
(a) = 100

(s +100) 14 J®
100

2
201og 50 — 20log100 — 20 log Vw? + 1002 = 34 — 40 — 20 log /1 +(=)
K= —-6dB
Forw « 100 = —6 dB;
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For w =100 => 34 —-40—-3 = —9;

For w >»> 100 = 34 — 40 — 20dB/dec

w<K100=>ang =0—-0=0;

w =100 = 0—45=45% w >» 100 = 0—-90 = —90;

20|dB/decr \\
\
50° \
Figure 7.23
b 30810 (s + 10 30><(s+10) 0l 30 x Vw? + 100
(s + 100) T s+100) | Vorr 1ot
30 x 10 /1 n ﬂ)
10
= 20log >
w
100 |1+ (F)
w2 w \2
=201log3 +20log |1+ (E) —20log |1+ (1—02)
w«K10 = K ~ w=10=10+3 — w =100 = 10 + 40 —
10 dB; 0=13dB 3 =47 dB



w > 10 = +20dB/ w K100 = ang = w=10= ang =

dec 0°; 45°, w =100 =
ang = —45°
® > 100 = —20 dB/ g
dec
.dB
40
10
o 162 A0 Log| (W/wk
-20
90
45 P
// N,
N
[9)
ag|(wfdoc)
45°
Figure 7.24

2. Draw the Bode plots [Show detailed derivations; indicate the corner frequency(ies)
in each of the cases] for H(s) equal to: 100(1 + s)/ (10 + s)(100 + s)

Solution: Given  100(1 + s)/ (10 + 5)(100 + s)

100 x (s + 1) 100 x Vw? + 1

= 201 =201
%8 |10 + 5) x (s + 100) 8o T 102 x Vao? 1 10°
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100 /1 + (%)2
1000 J1 + (%)2 x J1 + (%)2

=201og 10~ + 20 log /1 + (%)2 —20| |1+ (160—0)2 +log |1+ (%)2

w<Kl1=K=-20dB;

= 20log

w=1=-20+3-— w > 100 = —20dB/ ang = —45°, w =
0=-17dB dec 100 = ang = —45°
w=10= —-20+ w K100 = ang =
40—-3 =-17dB 0°;
w =100 = —-20 + w=1=ang =
80—-40—-3=-17dB 45°, w =10 =
- D ,/-':" U\\ TOTL og[(d/fudd)
7 N
O // N
py= \
P \\
a & AN ls dD/we)
452 N
<
Figure 7.25
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7.6 Advantages of Bode Plots

1. It shows both low and high
frequency characteristics of the
transfer function in a single diagram.

2. The plots can be easily
constructed using some  valid
approximations.

3.  Relative stability of the system
can be studied by calculating GM. and
P.M. from the Bode Plot.

4. The various other frequency
domain specifications like cutoff
frequency, bandwidth etc.

5.  Datafor constructing complicated
polar and Nyquist plots can be easily
obtained from Bode Plot.

7.7 Exercise

help in studying relative stability.
5. Draw the Bode diagram for

1. What are Bode Plots?

2.  State the advantages of Bode Plots.
3.  Explain the nature of Bode Plots for
a. Poles at origin

b. Simple pole

c. Simple zero

4.

6. Transfer function of the system
can be obtained from Bode plot.

7. It indicates how the system
should be compensated to get the
desired response.

8.  The value of system gain K can be
designed for required specifications of
GM. and P.M. from Bode Plot.

9. Without the knowledge of the
transfer function the Bode Plot of a
stable open loop system can be
obtained experimentally.

Explain the concept of gain margin and phase margin. Explain how these values

100(0.2s + 1)

G(s) =

(s + 1)(0.1s + 1)(0.01s + 1)2

Mark the following on the Bode diagram, recording the numerical values.

1.  gain crossover frequency
2. phase margin
3.  phase crossover frequency



4.  gain margin

a. Isthe system stable?

6.  Sketch the asymptotic Bode plot for the transfer function given below
2(s +0.25)

s2(s+1)(s+0.5)

G(s)H(s) =

From the bode plot determine
a The phase crossover frequency

b The gain crossover frequency

C The gain margins

d. The phase margins

e The system stable?

7. Determine the values of gain K for the open loop transfer function given below so
that
a. The gain marginis 15dB and
b.  Phase marginis 60°

K
jw (01w + 1w+ 1)

GUw)H(jw) =

8. Determine the value of K in the transfer function given below such that
The gain margin is 20 dB
The phase margin is 30°

K
jw(0.1lw + 1)(j0.05w + 1)

Gw)H(jw) =

9. Draw a bode plot for the following and determine gain and phase crossover
frequency. Also determine gain and phase margin. Using the Figure Q

a 10
’ 5(0.1s+1)
10
b ——
5(0.1s+1)2
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CHAPTER 8
FILTERS

8.0 Passive Filters

A filter is a passive filter if it consists of only passive elements R, L, and C. It is said to be
an active filter if it consists of active elements (such as transistors and op amps) in
addition to passive elements R, L, and C. We consider passive filters only in the textbook.
LC filters have been used in practical applications for more than eight decades. LC filter
technology feeds related areas such as equalizers, impedance-matching networks,
transformers, shaping networks, power dividers, attenuators, and directional couplers,
and is continuously providing practicing engineers with opportunities to innovate and
experiment. Besides the LC filters we study in this textbook, there are other kinds of
filters—such as digital filters, electromechanical filters, and microwave filters—which
are beyond the level of this textbook.

Filters separate different components which are mixed together, and in the case of
an electrical filter, components of different frequencies are separated from one another.

As a frequency-selective device, a filter can be used to limit the frequency spectrum
of a signal to some specified band of frequencies. Filters are the circuits used in radio
and TV receivers to allow us to select one desired signal out of a multitude of broadcast
signals in the environment.

To accomplish the above, inductors and capacitors are employed due to their
different characteristics with regard to frequency. For instant, inductive reactance

(2mfL) increases with increasing frequency, while capacitance reactance (#fc)

decreases with increasing frequency, and their filtering action depends on whether they
are placed in series or in parallel with their load.

Before going into a detailed discussion of filters, these terms need to be understood:

1. Attenuation: a reduction in signal amplitude
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2. High-pass filter: a filter that allows the higher frequency components of the
applied voltage to develop appreciable output voltage while attenuating or
altogether dominating the lower frequency components.

3. Low-pass filter: does the opposite of the above

4. Band-pass filter: passes only a specific band of frequencies from its input to its
output

5. Band-stop filter: blocks or severely attenuates only a specific band of
frequencies, while passing others of lower or higher frequencies.

6. Cut-off frequency is a frequency at which the attenuation of a filter reduces the
output amplitude to 70.7% of its value in the passband. In other words, the
frequency cut which the output voltage is reduced to 70.76% of its maximum
value.

8.1 ACand DC Components

In dc insertion, a direct current voltage is coupled or put in series with alternating
current voltage, to provide a pulsating (non-steady) direct current voltage. The effect is
to provide an output that does not change in polarity, either positive or negative
depending on the actual value of the d.c input. For a positive d.c component, the output
fluctuates in amplitude but remains on the positive side. For a negative d.c component,
the output fluctuates in amplitude but remains on the negative side. To filter out the a.c
component while blocking the d.c a transformer with a separate secondary winding, or
a capacitor, is used to block the (steady) d.c voltage. These procedures are known as
transformer or capacitor coupling. In the latter, which is common in amplifier circuits,
the coupling connects the output of one circuit to the input of the next, with the
requirement to include all frequencies in the desired signal while rejecting undesired
components. The result is that a specific d.c level is maintained for the operation of the
amplifier.
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8.2 Low-Pass Filters

O O— Y Y Y
R L
c = §RL § R,
(e O
(a) (b)
Choke
o AANA Y Y Y
R Ly Ly
C T~ § R, ™~ C RL§
(e (e
(c) (d)

Figure 8.1 Lowpass Filters (a) input = low and high frequencies, (b) input same as in
(a), (c) Bypass capacitor parallel with the load resistor, with input same as in (a), (d)
inductor in series with the load resistor, with input same as in (a).

Capacitor depends on the internal resistance of the generator supplying input voltage to
the filter. A low-resistance generator needs the T-filter so that the choke can provide
high series impedance for the bypass capacitor, otherwise the latter must have
extremely large value to short-circuit the low resistance generator at high frequencies.

When the input capacitors are effective as a bypass, the m —types are more
suitable with a high resistance generator. The L-type can also have the shunt by-pass
either in the input for a high resistance generator or across the output for a low
resistance generator.

For a balanced filter circuit, the series component can be connected on both sides
of the live without having any effect on the filtering action. In all situations, however,
the series choke can be connected either in the high side of the line, or in series in the
opposite side of the line
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8.3 High-Pass Filters

a

o}
Lo

)
L/

O O
(a) (b)

Cy C,

N | N N |
© 7| y © 7|

C
Q
L R, g8 Jh Ly R, §
O O
(c) (d)

Figure 8.2 High-pass Filters (a) input = high & low frequencies, (b) input same as in (a),
the choke is parallel with the load resistor (c) Passband capacitor parallel with the load
impedance, with input same as in (a), (d) inductor in parallel with the load resistor,
with input same as in (a).

High pass filter passes to the load all frequencies higher than the cut-off frequency,
designated f., while voltages at lower frequencies are severely attenuated. Depicted
above are the different configurations that high-pass filters can take. Notice that the
roles of c and L are interchanged with respect to the low-pass filter considered earlier.
This is because of the dissimilar behaviours of the inductor and the capacitor in the

. - 1 .
presence of an alternating current. Whereas capacitive reactance (ﬁ) decreases with

increasing frequencies, inductive reactance (2mfL) does just the opposite and these
peculiar behaviours are employed in reproducing signals at certain frequencies while
attenuating or completely rejecting them at other frequencies. Note also, that
exchanging the placements of R and C, or R and L, would turn a filter from a low/high
pass to high/low pass. The high-pass filters pass to the load all frequencies above the
cut-off frequency, f. in the graph below, whereas at lower frequencies, below f,
appreciable voltage cannot be developed across the load. Frequencies below the cutoff
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Av 4

Cut-off
frequency

fe f

Figure 8.3 Cut-off frequency

Frequencies are referred to as stop-band. Note the different RC, RL, RLC arrangements
in Fig. 8.2, and it’s always desirable to arrange them to cause a sharper response curve
which means narrower bandwidth. At the cut-off frequency, the amplitude is

1 . . . . ..
70.7% (ﬁ) of its value (maximum) at resonance. Here, impedance is minimum because

capacitive and inductive reactance cancel out each other, as learnt in an earlier circuit
theory course.

8.4 Band-Pass Filter

'y
|(
O O
< VYV
o 2
0.707 V,
= G 1~
O O
fc1
Figure 8.4

In its simplest form, a series placement of back-to-back C/R and R/C configuration gives
rise to a band-pass filter, going by the two already previously discussed. The response
curve is predictably as appearing in Fig. 8.4 with the result that the two different corner
(cut-off) frequencies are affected. However, at these cut-off frequencies the response is
70.7% of the (maximum) input. R, is usually made much higher (at least 10 times) than
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the value of R; this to ensure that the low-pass section does not become a load to the

high-pass section!

8.5 Band-Stop Filter

2R, 2R,

2¢;
I ,
= R, Vou

G
|
\

4
\

Gy
| £
'\

Figure 8.5 Band-stop circuit

Fig. 8.5 is a band-stop filter, affected by the parallel combination of a low-pass and high-
pass filter. The 2R; — 2C; components make up the low-pass and the R; —C,
components make up the high-pass filters. The response curve is as shown in Fig. 8.6,
with the low-pass section on is in Fig. 8.6(b), while

Vout

fn
(b)

Figure 8.6 Response curve of a Band-stop

(a)

Fig 8.6(a) constitutes the high-pass section. The response curve of Fig 8.6 (a) is a special
type of band-pass filter, called the notch filter where a single frequency, called the notch
frequency fy, constitutes the pass band. A greater circuit loss by the series resistances
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(2R;) than the series capacitances (C;) is the reason for the greater maximum signal
response in Fig. 8.6(a), than on Fig. 8.6(b).
There are other types of filters each one specialized for one purpose or another, namely:
Resonant filter and L-type resonant filter.

8.6 Resonant Filters

Where a turned circuit is used in filtering band of radio frequencies with small
values of L and C at resonance. Fig. 8.7 are two different configurations of resonant

filters. Fig. 8.7(a) is a parallel resonant.

R
Y Y Y o)
L

/1

c o
N L c A RL§
71 ;RL o

(a) (b)
Figure 8.7 Resonant filter circuits

Filter in series with the load R; and shown in Fig 8.7(b)is a parallel resonant filter that is
in shunt with the load. The series arrangement constitutes a band-stop filter, whereas
the shunt configuration gives rise to a band-pass filter.

8.7 L-Type Resonant Filter

For L-type resonant filter a special inverted version can be employed to affect

Y Y — YN Yl 0o
L Al
Ly 3 G
G 0]
NI Vin Ly C =< R,
1 o
Vin
O
(a) (b)

Figure 8.8 L-type Resonant circuit
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Either a band-pass or band-stop filter. In the Fig. 8.8(a), the parallel resonant L, C; circuit
isin series with the R; load, whereas in the same setup, series resonant L,(, circuit isin
parallel with the same. This is an inverted L, band-stop filter.

Fig 8.9(b) is of an opposite (dual) configuration from the one on Fig. 8.8(b). This
time the series L;C3 circuit is in series with the load, while the parallel resonant L,C,
circuit is in shunt with the same load, constituting a band-pass filter.

There are others such as crystal filters, where a thin slice of quartz brings about
effects of resonance by mechanical vibration at a specified frequency; interference
filters, used to rid power lines of interference; power-time filters; television antenna
filters etc.

Analysis of filters means analysis of transfer functions, usually written as a function
of complex frequencies, encountered earlier on, and in earlier courses. Just as time-
dependent responses of a circuit can be determined, responses that are frequency-
dependent can be analysed. In circuits where the response is not determined at the same
pair of terminals as the input, an expression that relates two quantities is called a transfer
function. So, transfer function relates two quantities taken at different pairs of terminals,
e.g., ratios of voltages to currents, of voltage to voltage, or ratio of current to voltage, or
current to current.

8.8 Application of Bode Plot to Filters
8.8.1 Frequency Response

Frequency response can be defined in 4 different ways:

1. Hy(s) = I;L((;) (Voltage amplitude-phase response) (voltage gain) 8.1a

where V; (s), V;(s) are the load voltage, source voltage, respectively.
11(s)

2. H(s)= ) (Current amplitude-phase response) (current gain) 8.1b
where I} (s), I;(s)are the load current source current, respectively.

3. Hy(s)= ‘;LT(SS)) (Impedance response). 8.1c

4. Hy(s) = IVLg (Admittance response). 8.1d

Note that in each of these cases, the expression relates the signal at the load to that at
the source. Analysis of the working of filters, therefore, means analysis of transfer
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functions. For instances for a low-pass filter earlier described the transfer function is (as
shown in Eq 8.2)

o AV o
+ +
R
Vin —— Vou
jwC
o o

Figure 8.9 RC low-pass filter

1
V —
0 __sc < 8.2
Vin R+—

Sc
by voltage divider rule, where the complex frequency is purely imaginary as the neper
frequency in this case is zero, meaning undamped sinusoid. The above expression can be

rationalized by multiplying throughout by
c Vs 1 1
_ — = =
V. TGCR+ 1) (1+jwCR)

The zero of the Eq 8.3 transfer function, s = oo, is the value of s that “vanishes” the

8.3

function, and the process of same, is (are) that (those) value(s) that makes(make) it
increases without bounds (infinite). That would be when the denominator is equal to

1 . . . .
zero,orsCR+1=0= — = @ single pole, i.e, the single factor of the denominator. To

investigate how both the amplitude and phase response to changes in frequency, a
technique known as Bode diagram or Asymptotic plot, has been developed, and named
after its investor, Henry Bode. Before going further to analyse the above low-pass filter
(output taken across the capacitor), let’s analyse the simplest transfer function:

H(s) =1 +2 8.4
|H(jw)| in decibels (Db) is defined as:
Hag = 20log|H (j)]
Note that this is strictly a definition therefore, no proof is required.
For the reverse, if Hyg is known then:
Hap

IH(w)| = 1050) 8.5
For example, |H(jw)| =1 = Hyg = 20log1 =0

|H(jw)| = 10 = H,p = 20log 10 = 20
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In general, |H(jw)| = 10" = Huz = 201log 10™ = n x 20 = 20n
=From Eq 8.5 therefore,

W ’ w?
|H(s)| = |[H(jw)| = 2010g|(1 +%>| =20log [(1 +¥

With w < a [no (omega) for less than a, i.e w < 0.1a],
Hzp = 20log1 =0

w>»a(w=10a) = Hzz = 20log (g),
Since ‘1’ can be ignored by comparison. This represents increase of 20dB per decade (ten
times the previous value) since, for instance, for an increase in no form a to 10a, H;p
increases from 20log1 = 0 to 201log 10 = 20 with a normalized to 1 or gradually,
20log10a — 201loga
= (201log10 + 20loga) — 20loga = 20log10 =20 x 1 = 20
For 10a to 100a, H,;p increases by
(201og100 + 20loga) — (20log 10 + 20loga) = 40 — 20 = 20, etc
The asymptotic plot is as shown in Fig. 8.10:

Semi-Logarithmic Graph Paper

Horizontal axis:  Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
/
A Fa /
ASymtotg I
\
\ P 102 /decade
Actual \
20 \ \ p
\ it
. / ] )
0 AREEEd
01a 0l1a ) 1Q0a 100a
Figure 8.10
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8.8.2 Comments on the Bode diagram (Asymptotic plot)

The scales of both axes (abscissa and ordinate) are logarithmically ruled, rather
than linear, as this presents better information on the amplitude response vis-a-vis
variations in the frequency. The abscissa is this normalized (“linearized”) by taking the
log of the quotient w/a (omega over a) as the scale rather than merely w. a is known as
the corner frequency, also called the cut-off frequency, break frequency, half power
frequency [because at w.(a) the power delivered to the load is half of what it was
(maximum) at resonance (wy)] or 3dB frequency, so called because 3dB (Actual
20 log\/m = 20log 21/2) is what has been approximated out by the asymptotic plot,
that is the difference between the actual value (3dB) and the asymptotic value (0). This
is also true for any amplitude response for asymptotic plots with multiple breakpoints.

The entire plot can be smoothened by determining the actual value of the response
around the break point. For instance, at w = 0.5a,

1 1
H,p = 201log(1 + 0.52) > = > x 201log(1 + 0.25) = 10log 1.25 ~ 1dB
And at 1.5a,

Hyp = 20log+/1+ 1.52 = 10log3.25 = 5, etc
At a decade lower or higher than the corner frequency (0.1a and 10a respectively), the

actual and asymptotic corresponds.

8.8.3 Phase Response

The phase angle of the function H(jw) =1 + % istH(jw) = tan‘lg 8.6
Forw < a,
tH(jw)=¢ ~tan"10=0
w=a= ¢ =tan 11 =45°
w>»a= ¢ =tan"too =90°
So, between about w =0.1a and w = 10a (a rise of 2 decades from 0.la to

10a [= log (SOTZ)] = log 100 = 2, ¢ goes from zero to 907, a rise of 45° per decade.
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Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
Y
ctual
135
90° i —eeEee
symtot \.’ —o=F »
| Be P
| Ry 45°/dedade
459 | =
| 7
\ T
e - ag jw
0.01a Dl1a ’Q 10a tBDa

Figure 8.11
It’s possible to plot both the amplitude and phase responses, on the same graph.

For the transfer function H(s) = (1%5) a reciprocal of the one we just dealt with in

a

Eqg 8.4, both the amplitude and phase responses are just a reflection of that for

H(s) =1+ 2 This is because, for instance, if

20logx = a, then 20 log G) = —a 8.7
A detailed analysis as the one close previously would show this to be so:

Hap = 20log|1/(1+22)| = 2010g1 — 20log |1 + 22| =0 - 20l0g |1+ 88

So, every value is the negative of the one obtained previously.

Semi-Logarithmic Graph Paper
Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm

2bota 1a A 1ba

-20

'
I

o

O
(=1
o

phgse, @, response of H(s)
RS
u1

Figure 8.12
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8.9 Analysis of Filters-Transfer Functions with Bode Plot
8.9.1 Low-Pass Filter

In the filter of Fig. 8.9, the output is taken across the capacitor.
By voltage-divider rule,

Vo joC 1
— = -—-H /sPp=— 8.9
Vin R+—— v 49 jwCR + 1
jwC
. Vo
Where voltage gain H, = Vo
i
Hy = | ! | 8.10.1
" ljwRC+1 T
B 1
J(CR)?> + 1
1
= 8.10.2
w
(w—) +1
Where w, = % is called the corner (or cut off) frequency
By definition
H,p = 20log Hy, where log is understood to be log
So, for the low-pass filter under consideration,
1
H g = 20log ———— 8.11

2
(2) +1
wWo
These cases are to be considered with respect to the gain in amplitude (amplitude
response): w K w, (frequencies far less than the corner frequency):

1
Hip = 2010gI= 20log1 =0
W = w:
_1 1
Hup = 20log1/V/2 = 20log27z = —5Xx20log2 = —3dB

And this represents the largest error (at the corner frequency) in the straight-line
approximation (see Fig.8.13) which assumes zero response up to w > w,.
w > w, (Far greater):
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1

Hup = ZOlog\/7 = ZOIOg% = 20log w, — 20logw 8.12

The first term is a constant that depends on the value of the corner frequency, while the

second term, — 20log w, in Eq 8.12, is the rate of fall of 20Db (decibel) per frequency
decade (i.e., per energy factor of 10)

Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
Approximate
/
/
0dB. 4
~
N
Exact amplitudée ~
—20 esponse H dB NN
T~
—40 ™
A ™~
N
B
—60] ~
-20/dB/decade ™
™
—80
'1 1 N
Figure 8.13

8.9.1.1 Phase Response (phase shift)

v, 1
Recall from Eq 8.10.1, Hy, 20 = Ven — JoCRI1L
w
= @¢=0—tan 'wRC =0—tan"?! (—)

W

For w < we,
P~—tan"10=0;
W = W,
®=0—tan 11 = —45°
So that the phase shift is midway between the maximum and minimum values at the
corner frequency w > w,,

®~0—tan"too =—-9Q°
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Semi-Logarithmic Graph Paper

Horizontal axis: Logarithmic, 4 cycles
Vertical axis: Linear, 5 mm
(9°)
[}
7.3
g [
3
=
L 2
38 - Approximate
@
02 <Y =
NS P vslog—
N+ G
—30° A ‘\‘ Where frequency has
N mnormalizedtow;
—45
RN
A DN
—90 45°/,
-2 1 [0] 24 3
n = Lolg| +—+
Figure 8.14
8.9.2 High-Pass Filter

Here the resistor and capacitor are interchanged, as should be expected intuitively:

o | o
+ 1 +
jwC
Vin R § Vou
o e

Figure 8.15

The output is now taken across the resistor:

vw_ R 1 1 613
Vi L P T _Jec '
m jwC JjwCR +1 1 w
Vo Vo 1
Hy 0 =—2>=H, = || = :
Vin Vi 1 — 1%

1
Whereas before, w, = o
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1
= Hup = 20logHy, = 20log T

w

= 20log

For w < w,,

)
H;g = 2010gw— = 20logw — 2 =log w,

Cc
Where —20log w,. is as in the case of low-pass filter a constant while 20 log w now

represents a rise of 20 decibels per decade.
W = W,

1 1
Hup = ZOlogﬁ = 20log2 2=-10log2 = —3dB

And represents the largest error between the approximate and exact graphs
w > w,, see Fig. 8.16
Hip = 20logl1 =0

Semi-Logarithmic Graph Paper

Horizontal axis:  Logarithmic, 4 cycles

Vertical axis: Linear, 5 mm
2 3 4 5 6 7891 2 3 4 5 6 7 891 2 3 4 5 6 7 891 2 3 4 5 6 7 891
3 >
L2 11 D__ 1 2
4/-/' -'.\
2 -y \Jadc /’f
/
20 /</ Exact
P
7
-40
<~
~ 1" approximate
P / PP
-60 /
= [
=
= 90°
u S <3
) 5
a \\ ‘\‘
I N
§_45° 52 /decade ™ s
QL N ~
~ S
s S TN
) Sedl - N
§ 00 LI Y X
<
<y
Figure 8.16

219



0=0-[-tan"t (Z)] = tant ()

For w < w,,

@ ~ tan" 1 oo = 90°
W= W,

@ =tan" 11 = 45°
w > W,

d~tan10=0

@ vs0log mi, where
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Figure 8.17
8.9.3 Circuit with Two Corner Frequencies

It’s possible to obtain more than one breakpoint with R-L or R-C circuits.
Example 8.1: Consider the circuit of Fig. 8.18, with the resistor in series with an inductor
at the output.

9990
(e O
+ +
1Q
Vin Vout
10mH
(o2 =l
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Figure 8.18

The 1 Q represent the internal resistance of the inductor coil.
Voltage divider rule gives:

Vo 14+j10x107%w
Vin 999+ 1410 x 1073w
1+j0.0lw 100+ jw

~ 1000 +j0.01w _ 100000 + jw
__100[1+j ()]
~ 100000 1+ ()]

105
102 1+

i)
)

v = 1051+ (

Two corner frequencies occur at w = 10%rad/s and at w = 10° rad/s

H;p = 20log H, = 20log
105 |[1 + ) 2]

= 201log{ 1073

a) 2
=201og 1073 + 20 log [1 + (1—02) ] —201log[1 + (@ + 10%)?]

3% 2010210 + = x 201 [1+(w)2] 201 [1+(w)2]
= 8 2 8 102 8 105

= —60 + 10log [1 + (%)2] —10log [1 + (%)2] (i)
When w « 102
Hyp ~ —60+0—0 = —60
w = 10%; (ii)
Hyp ~ —60 + 10log 2 = —60 + 3 = —57dB;
10% < w < 103;

From Eq (ii), @ = 102 rad/s, the second term of Eq (i) will starts to increase at

20dB/decade Eq (ii) 10 log [1 + (1%)2] ~ 10log (1102)2 = 20log (1%)

221



w > 10%, the last term of Eq (i) starts to decrease at —20 dB/decade [from

2
—101log (1%) = —201log (%)
These decreases would now cancel out the increase of the second term, leaving the
overall response of:
—60 + 60 (increase of 20dB /decade for 3 decades between 102 and 10°) + 0 = 0dB
@ =@y — Dp, where @y, D, denote the phase angles of the numerator, denominator,
respectively

¢ =tan™?! (%) —tan~?! (%)

For w <« 100
Pp=~0-0=0
100
W=—75= 10rad/s

@ ~ @y starts to increase at 45°/decade while @, remains approximately zero.
At the first corner frequency (w = 100 rad/s),

@ = tan~?! (@
100

At w = 1 krad/s (10xfirst corner frequency),
@ ~ tan"1oo — 0 = 90°
@ remains 90° up to 10k rad/s (second corner frequency = 10) and @, starts to
increase at 45°/decade, this causing @ = @y — @, to fall at 45°/decade.
At w = 10%(10 X second comer frequency),
@p =90° = 0 = 90° —90° =0
Note: the unit of the abscissa is log w, unlike in the previous cases, where it was

)—O=tan‘11=45°;

normalized to the one comer frequency.
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Figure 8.19
Example 8.2: Obtain the transfer function of the Operational amplifiers (OP Amps)
design for a lowpass filter.

Vin o +
O Vour
I A

I, R,

1
R -
! I JTC

|

Figure 8.20 Low pass filter with Op Amp

223



KCL at A: 11+12 +I3 =0 8.14a

Vi (Vour = Vi
= -= + M + (Vout - Vin)jwc =0 8.14b
Ry R,

Vout (Riz +ja)C> =Vin (Rll + Riz +ja)C>
Vout (1 + jwCRy) _ Vin(Rz + Ry + jwCRR;)
R, RiR;
Vout _ R, + Ry + jwCR{R,
Vin  (1+jwC Ry)R,

1 1 . 1 1 .
_R_1+R_2+]wC_R1_C+a+]w

1 - 1 8.15
R—2+](1)C Rz_C+jw
w, +jw
Where w; = R%C-I_RZLC and w, = 1/R,C 8.17
For R; = 1.01 kQ, R, = 100 kQ,C = 1 pF
1

= (@010x 109 T @os x 10-0) 0 +10=1000,

wq

Wy = W = 10rad/s
Vour 1000+ joo _ 1000[1+ (525)]
Vo 10+jo g0 [14(2)]

_ 100 1+ (=)
147 (35)

1 1
Vout w \?12 w\?12
H;r =201 = 20log 100 + 201 [1+— ]—201 [1+— ]
dB 0g » 0g og (1000) og (10)
w 2 w2
=4 101 1 —_— —101 1 —
0+ Oog[ +(1000)] Oog[ +(10)]
8.9.4 Bandpass Filter

The RLC series resonant circuit provides a bandpass filter when the output is taken off
the resistor as shown in Fig. 8.21. The transfer function is
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v () RS vy(0)

Figure 8.21
1% R
Hw) = 7" = : - 8.18
i R+j(wL——)

We observe that H(0) = 0, H(o) = 0. Fig. 8.22 shows the plot of |H(w)|The bandpass
filter passes a band of frequencies (w; < w < w,) centered on w,, the center
frequency, which is given by

1
Wy = — 8.19
°VIC
Figure 8.22

A bandpass filter is designed to pass all frequencies within a band of frequencies, w; <
w < w,

Since the bandpass filter in Fig. 8.21 is a series resonant circuit, the half-power
frequencies, the bandwidth, and the quality factor are determined. A bandpass filter can
also be formed by cascading the lowpass filter (where w, = w,) in Fig. 8.15 with the
highpass filter (where w; = w,.) in Fig. 8.15. However, the result would not be the same
as just adding the output of the lowpass filter to the input of the highpass filter, because
one circuit loads the other and alters the desired transfer function.
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8.9.5 Band-Stop Filter

A filter that prevents a band of frequencies between two designated values (w; and w,)
from passing is variably known as a bandstop, bandreject, or notch filter. A bandstop
filter is formed when the output RLC series resonant circuit is taken off the LC series
combination as shown in Fig. 8.23. The transfer function is

N e
v () PR

Figure 8.23

. 1
H(w) = % _ (o ~22) 8.20

i R+j(wL-——)

wC

Notice that H(0) = 1, H(o0) = 1. Fig. 8.24 shows the plot of Again, the center frequency

is given by.
1
Wy = — 8.21
° " JIC

while the half-power frequencies, the bandwidth, and the quality factor are calculated
for a series resonant circuit. Here, w, is called the frequency of rejection, while the
corresponding bandwidth (B = w, — w) is known as the bandwidth of rejection. Thus,

A bandstop filter is designed to stop or eliminate all frequencies within a band of
frequencies, w; < w < w,

Notice that adding the transfer functions of the bandpass and the bandstop gives
unity at any frequency for the same values of R, L, and C. Of course, this is not true in
general but true for the circuits treated here. This is due to the fact that the characteristic
of one is the inverse of the other.

In concluding this section, we should note that:

1. From Egs. (8.9), (8.13), (8.18), and (8.20), the maximum gain of a passive filter is
unity. To generate a gain greater than unity, one should use an active filter as the next
section shows.

2. There are other ways to get the types of filters treated in this section.
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3. Thefilters treated here are the simple types. Many other filters have sharper and

complex frequency responses.

Table 8.1
Summary of the characteristic of ideal filters:
Type of filter H(0) H () H(w,) or H(wy)
Lowpass 1 0 1
V2
High pass 0 1 1
V2
Bandpass 0 0 1
Bandstop 1 1 0

w, is the cutoff frequency for lowpass and highpass filters: w is the center frequency
for bandpass and bandstop filters.

A

|H ()]

; Ideal

Actual

0.707 pecccccccccccfecccccccccccccccccccccccccccccccccencceseccanceancaaaann

@o w2 w

Figure 8.24
Example 8.3: Determine what type of filter is shown in Fig. 8.25. Calculate the corner or
cutoff frequency. Take R = 2 kQ,L = 2H and C = 2 uF.

L

vi(0) R ¢ ==n®

Figure 8.25
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Solution:
The transfer function is
1
A R o _
H(s)=—=——"+5 s=jw 8.22.1

Vi SL+RI|I—

sC
1 o R
sC R+1/sC 1+sC

Substituting this into Eq 8.22.1 gives

R
(1+sRC) R .
H = = =
O = F T SRic+sL+R ° ¢
(1+sRC)
Or
R
H(w) = 8.22.2

—w?RLC + jwL + R
Since H(0) = 1 and H(o) = 0, we conclude from Table 8.1 that the circuit in Fig. 8.25
is a second-order lowpass filter. The magnitude of H is
B R
~ J(R = w?RLC)? + w?I?
The corner frequency is the same as the half-power frequency, i.e., where H is reduced

8.22.3

by a factor of \/% Since the dc value of H(w) is |, at the corner frequency, Eq. 8.22.3

becomes after squaring
RZ
2 J(R— wZRLC)? + w2l?

2 1_

Or
2

2=(1-w?l0)?* + (w};L>
Substituting the values of R, L, and C we obtain
2=(1-w?4x107%2 + (w,1073)2
Assuming that w,. is in krad/s,
2=>01-40?)?+w? or 16w} —-7w?-1=0
Solving the quadratic equations in w? we get w? = 0.5509 and —0.1134. since w, is real
w. = 0.742 krad/s = 742 rad/s
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Example 8.4: If the bandstop filter in Fig.8.23 is to reject a 200 Hz sinusoid while passing
other frequencies, calculate the values of L and C. Take R = 150 () and the bandwidth
as 100 Hz.
Solution:
We use the formulas for a series resonant circuit which states that:
B = 2m(100) = 2007 rad/s

But

R R 150

B:Z - L:E:m:023871‘l

Rejection of the 200 Hz sinusoid means that f; is 200 Hz so that w in Fig. 8.24 is
wo = 2nfy = 2m(200) = 4007
Since wy = 1/VLC
1 1
C =2l = @00n)2(02387)

= 2.653 puF

8.10 Limitations of Passive Filter

There are three major limitations to the passive filters considered in the previous section.
First, they cannot generate gain greater than |; passive elements cannot add energy to
the network. Second, they may require bulky and expensive inductors. Third, they
perform poorly at frequencies below the audio frequency range (300 Hz < f <
3,000 Hz). Nevertheless, passive filters are useful at high frequencies.

Active filters consist of combinations of resistors, capacitors, and op amps. They
offer some advantages over passive RLC filters. First, they are often smaller and less
expensive, because they do not require inductors. This makes feasible the integrated
circuit realizations of filters. Second, they can provide amplifier gain in addition to
providing the same frequency response as RLC filters. Third, active filters can be
combined with buffer amplifiers (voltage followers) to isolate each stage of the filter
from source and load impedance effects. This isolation allows designing the stages
independently and then cascading them to realize the desired transfer function. (Bode
plots, being logarithmic, may be added when transfer functions are cascaded.) However,
active filters are less reliable and less stable. The practical limit of most active filters is
about 100 kHz—most active filters operate well below that frequency.

Filters are often classified according to their order (or number of poles) or their specific
design type.
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Example 8.5: Design a bandpass filter in the using an Operational amplifier to pass
frequencies between 250 Hz and 3,000 Hz and with K = 10. Select R = 20 k(.
Solution

1. Define. The problem is clearly stated and the circuit to be used in the design is
specified.

2.  Present. We are asked to use the op amp circuit specified to design a bandpass
filter. We are given the value of R to use (20 kQ). In addition, the frequency ranges of
the signals to be passed is 250 Hz to 3 kHz.

3.  Alternative. We will use the equations developed so far in this section to obtain a
solution. We will then use the resulting transfer function to validate the answer.

4.  Attempt. Since w; = %, we obtain
2
1 1 1

C = Ror " ZnfiR X250 x20x 105 L83 0F
Similarly, since w, = Ricl
1 1 1
G = R, T InRR - 2 x3,000x 20 x 105~ 260 nF
From Equations in Example 8.3,
& _K w1 + W, _ Kfl + f> _ 10(3,250) _ 1083

R; W, f, 3,000
If we select R; = 10 kQ, then Ry = 10.83 R; = 108.3 k()
5.  Evaluate. The output of the first op amp is given by
V,—0 V,—0 s52.65x107°(V; —0)
20 + 20 + 1

0>V d
= - = —
! 1+5.3x%x1075s
The output of the second op amp is given by
V,—0 V,—0
1 - 2 —05
20 + 20
31.83s

_ 6366x107

V — —
2 1+ 6.366 X 104
6.366 x 10~*sV;

~(1+6366 x 10~*s)(1 + 5.3 x 10-55)
The output of the third op amp is given by
V,—0 V,—0
2 + )
10 108.3

=0- V, =10.83V, > j21 X 25°
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6.894 x 1073 sV;
"~ (1+ 6366 x 10~*s)(1 + 5.3 X 10-55s)
Let j2m X 259 and solve for the magnitude of I, /V;
V,  —j10.829
Vi (1+DO)
% = (0.7071)10.829, which is the lower corner frequency point.

i

V0=

Let s = j2m X 3000 = j18.849 k(1. we then get

Vo —j129.94
Vv, (1+4j12)(1+j1)
129.94 £90°

= = (0.7071)10.7912 — 18.61°
(12.0424£85.24°)(1.4142£45°) ( )

Clearly this is the upper corner frequency and the answer checks.
6. Satisfactory? We have satisfactorily designed the circuit and can present the
results as a solution to the problem.

8.11 Exercise

1. (a) Explain the basic function of a high-pass filter, with the appropriate graphical
sketch and relevant circuit diagram. (b) for a low-pass filter, what are meant by the
terms (i) passband (ii) stopband

2. In Fig. 1 is a circuit diagram for a non-inverting operational amplifier (op amp).
Determine the output voltage V,,,; in terms of the input voltage V;,, i.e a gain which is
a quotient of the two voltages. (bi) Shunt Ry and let R; increase without bound.
Analyse and determine the type of an amplifier that results thereby, by again finding
Voue in terms of Vy,,. (ii) By what other name is this type of amplifier known?

L

Fig. 1
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CHAPTER 9
TRANSMISSION LINES

9.0 Introduction

There are means of relaying signals (also power) from one point to another, usually a pair
of electrical conductors, with coaxial cables and twisted pair cable being some of the
examples. Having said this, | must point out that the lines are not merely “wire” or cables
in their simplest form, but rather are intricate cascades of electrical circuits! Bearing in
mind costs, convenience and ease of calculations that involve the properties of the
transmission line, they are then arranged in definite geometric patterns.

The goal of the transmission is to transport a typical signal with minimal loss. Loss
there must be when we’re dealing with physical realities, but the idea behind any design
is to minimize such.

Up to this point in your circuit theory series, we’ve dealt with the more familiar
low-frequency circuit where the wires that connect devices are justifiably assumed to have
zero resistance, and phase delays are absent across wires. Furthermore, short circuited
lines always yield zero resistance. Not so in high frequency transmission lines where the
above does not obtain and we have to expect the unexpected! For example, short circuits
can actually possess infinite impedance, and open circuits (the idealized model of an
infinite impedance) can actually behave like short circuited wires!

For low frequency signals and d.c signals, transportation normally involves very low
losses, but high frequency ones in the range of radio waves, losses are quite pronounced
and the objective of the design engineer is to eliminate or minimize such. So, here,
attention is focused on high frequency applications whereby the length of the line is of at
least the same order of magnitude as the least the same order of magnitude as the
wavelength of the signal under consideration. This is strictly with regard to systems of
conductors having a forward and return path.

Areas of application include communication engineering where study is made to
determine the most efficient use of power and equipment available to transfer for
example, as much power as possible from the feeder line into the antenna. To avoid power
wastage, a receiving antenna must be correctly matched to the line that connects it to the
receiver.
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To eliminate losses, we resort to “matching” the line to the load, by making the
factor known as the characteristicimpedance of the line, designated Z,,, equal or very close
to the load impedance (Z,). In d.c and low frequency a.c circuits earlier referred to, the
characteristic impedance of parallel wires is usually insignificant and can therefore be
ignored in analyzing circuit behavior. Here the phase difference between the sending and
the receiving and is negligible, the period of propagation is very small compared to the
period of the waveform under consideration. It can be practically assumed that the voltage
along all the respective points (of a low frequency, two conductor line) are equal and in-
phase with each other at any given point in time.

An idealized transmission line has an “infinite” length, this way all the energy is
absorbed and more is reflected back to the source, because the characteristic (natural)
impedance of the line is now matched to the frictions load impedance (Z,)

To investigate low voltage or current changes along transmission lines, the
following assumptions are made and the following parameters must be borne in mind, so
that circuit analysis can be employed.

The line is made up of continuous conductors with constant cross-sectional
configuration, and therefore indicating even distribution of the parameters, the problem
is tracked by considering a very short length of the line that would imply a very discreet
distribution of the parameters. The problem is tackled by considering a very short length
of the line that would imply discrete distribution of the parameters which are:

1. Resistance (R): The resistance of the conductors to the flow of current.
Inductance (L): Associated with the time varying signal, and depends on
the geometry of the cross-section of the conductors.

3. Conductance (G): Leakage current passes through the dielectric material
that holds the line in position.

4. Capacitance (C): A capacitive reactance to a time-varying signal due to
capacitor form from conductors and the dielectric in-between.

So, for a two-wire line, we deal with series inductance and resistance, and parallel (shunt)

capacitance and conductance, because any conductor (coil) possess “natural” resistance
and there is always capacitance formed wherever two conductors come close to each

other!

The totality of these parameters is obtained by multiplying by the length of the line, since
they are given on a per-length basis. Continuous distribution is approximated by its
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representation as a cascade of network of elements, with each element of length 6z, (delta
z).

I(z) R L 1(z + 6z)

Vico

Figure 9.1 A 2-cascade representation of transmission line

Using telegrapher's equation

I(z) R L 1(z + 62)
\ d /\/\/\/ Y'Y Y \
Vico
V(z) o G V(z + 6z)

Figure 9.1a One section of the transmission line

Consider one section of the transmission line for the derivation of the characteristic
impedance. The voltage on the left would be V and on the right side would be V(z + §z).
Fig. 9.1a is to be used for both the derivation methods.

The differential equations describing the dependence of the voltage and current on time
and space are linear, so that a linear combination of solutions is again a solution. This
means that we can consider solutions with a time dependence and the time dependence
will factor out, leaving an ordinary differential equation for the coefficients, which will be
phasors depending on space only. Moreover, the parameters can be generalized to be
frequency-dependent.
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Taking KCL at point (a) of Fig. 9.1a, the current through the parallel combination of
the capacitance and admittance elements is:

aV(2)
ot

Iee =1(z) = I(z + 6z) = Céz + G6zV(z),

with 8z indicating per unit length basis, and with the partial derivatives noted. Voltage
drops across the series combination of the resistor and inductor by KVL:

Ve =Vg +V, =[V(2) = V(z+ 62)]

d0l(z + 0z)

= RézI (z+ 8z) + L6z 5t

Recall from first principles

lim
Sx—0

fx+6x) — f(x)|  df(x)
ox dx

- |I(z+62) —1(2)] 0I(z)
SO, lim =
520 0z dz
dal(z)
So that, 1(z) —1(z+62) = — P 6z
av
Similarly, V(z) —V(z+82z) = — (')(ZZ) 6z
—al av
= @) 6z = Cézﬁ + G6zV(z)
0z at
d01(z) d
9z (G + CE) V)
Similarl V@) _ (R+La>1( + 62)
imilarly, 5y 5 )12+ 6z

9]
~ — (R + L E) 1(z) for §z small

For sinusoidal signals, dependence on line is expressed by e/®t and derivative dt expressed

. o(d L : —_— _—
by jw, (E e/¥t = ]wel“’t,recall), and partial derivatives then become total derivatives.

dl— (G +jwC)V 9.1
rri jw :
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W _ (R + jwL) I 9.2
dz JO '

Taking the second derivatives of I/, from Eq (9.2),

d?v . dl . . 2
Fz—(R +]a)L)E= (R + jwl) (G + jwC)V =vy*V 9.3

9.1 Propagation Constant 'y’
Where y? (gamma squared) = (R + jwL) (G + jwC)
Eq. (9.3) above has as its solution,

V= Vle_yz + Vzeyz 94

Where ¥y =V R+ joL)(G + jwC) 9.5

In general, y is a complex quality, and can therefore be represented by
y=a+jp

Substituting this is the expression for V/,

V =V,e~@tib)z 4y, ela+ip)z 9.6

By a similar analysis, current is expressed with I's replacing the VV's so, voltage at some

point z down the transmission line is made up of two components, namely:

a. Vie~(@+iP)z =y, e=Z¢=JBZ \yhose amplitude decreases (is attenuated) as

it travels down the line with z as e~%, while e /A% is just a phase term with no
effect on the amplitude. Therefore, this component is known as the forward, or
incident wave.

b. V,e@*tiB)z =y, 07 ¢JBZ increases with increasing z, but since voltage must
be attenuated as it travels along the line, z must then decrease to accommodate
this fact, therefore making this component to be known as the backward, or
reflected, wave, caused by a mismatch between the transmission line and the load.

So, the voltage at any point on the line a distance z from the sending end is the shin of the

voltages of the incident and reflected waves at the said point.

Line parameters, @ and 8 are determined by the line characteristics:
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1. a is known as attenuation coefficient, and the negative/positive
exponential of this is the rate at which the forward/backward wave is attenuated,
and is a function of R, L, G and C, with the unit being dB/m (decibels per metre) or
repers/m.

2. [ is the phase constant and shows the phase dependence of both the
incident and the reflected waves with distance z

PA=2n = f = 27”, where A (Greek alphabet lambda) is the signal wavelength.

3. y (Gamma, Greek third alphabet) is the propagation constant, and is the
complex sum of the attenuation coefficient and phase constant, where the former
is the real part, and the letter the imaginary part. y determines how the voltage (or
by implication the current) along the line changes with z

9.2 Characteristic Impedance

From the Eq. (9.2), Z—Z =—(R+jwl)I,
1 dv
— - X —
R+jwl dz

Differentiating Eq. (9.4)

dv
el —yVie TV +yV,e?? = y[V,e?* — Ve V7]

And substituting in the above for

1 14
|=———— X y[V,e¥? = V,e Vs = —— x [V e V% — V,e¥?
R+ jwL vivze el R+ jwL Vze 2¢"]

Substituting from Eq. (9.5) for y,

VR +jwl)(G + joC

|
(R+jwl)

X [Vle_yz - Vzeyz]

= I = (M>X[V6‘VZ—V9”] 9.7
R+ jwlL 1 z '

G+jwC . R+jwL
] , is an admittance. Therefore, ]
R+jwL G+jwC

impedance called the characteristicimpedance of the transmission line, determined by the

By analogy with Ohm’s law, its reciprocal, is an

line parameters R, L, G & C.
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P R+ jwL 9.8
7 |G +jwC '

Characteristic impedance Z, can be variously described as:

1. The value the load impedance must have to match the load to the line
(to either eliminate power loss, or at least minimize same), or

2. The impedance seen from the sending end of an infinitely long line, or

3. The impedance seen looking towards the load at any point on a matched

line, i.e moving along the line produces no change in the impedance
towards the load.

The transmission line is idealized as follows:

1. The line is uniform, straight and homogenous,
Line parameters R, L, G and C do not vary with atmospheric conditions
like temperature and humidity.

3. Line parameters do not depend on frequency,

4. The analysis is applicable only between the junctions on the line because
the circuit model on Fig. 9.2 (one of the cascades) is invalid across a
junction

The above assumptions may be occasionally taken into consideration as we analyze
transmission line.

9.3 Reflection from the Load

Shown in Fig. 9.2 where, V;e "! is the incident wave, while V,e¥! is the reflected or
backward, wave on a line with total length of L. If the load has an impedance equal to the
characteristic impedance Z,, therefore say that the line is matched, and there is no
reflected wave (theoretically speaking) as the incident wave is totally absorbed by the load.
It, however, the load is of a value different from Z,, then some of the incident wave would
be reflected, and the amount of reflection by the load. Is expressed in terms of voltage
reflection coefficient, designated by the Greek letter p (rho), and defined as the ratio of
the reflected voltage to the incident voltage at the load terminals.
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Vle—]/l B — e

Vz eyl

Figure 9.2 Incident wave (V,e7*!) and Reflected wave (V,e'})

Given that the load is at the position z = [,

VL = Vle_yl + Vzeyl 9.9
Vet 2\ .
=== vl — v
p Vi (V1>e lple 9.10

Where the last indicates that p in general would be a complex quantity that can be
expressed in polar form with |p| as the magnitude and Y as the phase angle of the
reflection coefficient.

From Egs. (9.7) and (9.8)

% V.
I, = (—1) e v — (Z—Z) el 9.11

Z; (Load impedance)= %
L

And from Egs. (9.9) and (9.11)

1 Vie "t + Vet
ZL = —=

N EENEE

Dividing through by V;e~"* and multiplying by Z,

1+
=)

. . . 1% . .
The term in the (inner) parenthesis namely (—Z)ez”l, is simply the voltage reflection
1

ZL:ZO

coefficient e, leading to
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1+
VARSI (1 — Z),or rearrange

_Zy—Zy
Z,+Z,

Oy 9.12

For Z; = 0 (indicating short circuit load),

Zo

p=-=-"1=lpl=1 p=m

0

Note that u = 1 asin Eq 9.10. so, in place of Y, we can use u
For Z; = oo (open circuit load):
Zy
P=Z—=1=>|P|=1,ll=0
L
By a similar analysis, current reflection coefficient is given by

(Zo—2,) _

Pr = Zo + 7, = —Pv

Where p,, stands for voltage reflection coefficient.
Zo
Z,=0=p=2=1=lp| =1 =0
0

Showing quality between the incident and reflected waves with no change in phase (with
KCL taken at the no-load terminal).

Z
Z; = oo (open circuit) = p; = _Z_L= -1=|pl=1L¢y=mr
L

Example 9.1: If Z; =75+ )50 Q, Z, = 25 Q, find the reflected coefficient

(75450 —25) 50450 1+
P = 75+/50+25) 100+,50 2+

_@+p@E-) 3+ 10
2241 5 5

1 o
stan™? 3~ 0.63£18.43

Example 9.2: The lossless transmission line has characteristic impedance of 75 () and
phase constant of 3rad/m at 100 MHz. Find inductance and capacitance of line/meter.
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L
Solution: Z, = \/;

Yy=8=wVLC
L
ZO C 1
,8 a)\/ (JJC
75 < 2mf — 1
3 X2 =¢
25 x 2mf !
= X ==
™=C
c 1
e =
25 X 6.28 x 108
= C = 63.69 pF/m|
Z2C =1
— L = (75)% x 63.69 x 1012 = 358 nH/m|

Example 9.3: A lossless transmission is 80 cm long and operates at a frequency of 600
MHz the line parameters are L = 0.25 pH/m and € = 100 pF/m. Find the characteristic
impedance, the phase constant, and the phase velocity.

Solution:

Since the line is lossless, both R and G are zero. The characteristic impedance is

0.25 x 10~ 6_509
100 x 1012

Since y=a+jp =\/(R + jwl)(G + jwC)

= jwVLC  we see that

B = wVLC = 2m (600 x 10%) \/(0.25 x 106-5) (100 x 10-12) =[18.85 rad/m

Also,
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_ 2m (600 x 10°)

=Y — 2 x 10° m/
~ B 1885 S

Z =0 (Short circuit)

Incident wave

-+— Reflective wave

Z, =00(Open circuit)

J | etc

etc

I
Figure 9.3 combination of ‘Short circuit Impedance A ‘, ‘Open circuit impedance B’ and

when the line impedance equals the load impedance C

9.4 Distortionless Line (g = %)

Distortionless line is the one in which attenuation constant ‘a’ is frequency
independent while phase constant is linearly dependent on frequency.

(a) y=a+jﬁ=J(R +joL) (55 + joC) 9.13
C
=\/;(R+ij)
C
= azR\/;andﬁza) LC 9.14
(b) po2o 1 9.15
PT B VIC '



(C) ZO = RO +]X0 = = - = - 916

R |L
= R, = E:\E; Xo=0 9.17

A lossless line is also distortionless line, but a distortionless line is not necessarily lossless

Example 9.4: A60 Q) distortionless transmission line has a capacitance of 0.15 nF/m . The
attenuation on the line is 0.01 dB/m. Calculate

a. the line parameters: resistance, inductance and conductance per
meter of line
b. velocity of propagation
c. voltage at a distance of 1 km and 4 km with respect to sending
end voltage.
Solution:

For a distortionless line,

and

=R C—001dB—0'01N/ =1.15%x 103N
=R LT T Teey /M T p/m

Line parameters:
R = aR, = (1.15 x 1073) X 60 = 0.069 /m
L =CR3=0.15%10"% x 60 = 0.54 uH/m

L_RC_R _0059
ST TRZT ez 1AmS/m
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_ 1 _ 1 _ 8
(b). V= VIC ~ V0.54x10-6x0.15x10~9 1.11x 10" m/s

(c). The ratio of two voltages at a distance x apart along the line
E e~ ax
Vi
At 1 km
|%
2 = g=1000a — =115 — (317 or 31.7%
Vi
At 4 km
V.
2 = g=4000@ — =46 — 0,01 or 1%
Vi

9.5 Low-Loss Dielectric

A low-loss dielectric is a good but imperfect insulator with a non-zero equivalent
conductivity such that t" «< € ' or ﬁ <« 1. Under this condition y can be approximated by

using binomial expansion.

y=a+jB =jwu € ll—ﬁ+ (i)zl

e

From which we can say

w€" [u (N, _
a = - (—) attenuation constant
2 E\m
rad
n = w ase constan
And 1 + m ph tant

‘a'for low — loss dielectric is a positive quantity and
is approximately directly proportional

to frequency. 3 deviates only very slightly from value 2,/u € (lossless dielectric)

1
,M(l .E">_5 ’H<1+'e")() ntrinsic i d
= — — — ~ — —
n 6 ] < = Je ]26’ 1) — intrinsic impedance
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We can say that H—" = 1 and here the electric and magnetic field intensities in lossy
y

dielectric are not in time phase as in lossless medium.

w 1 1 e"\? _
v, = 7 = 1-—= (E—) m/s phase velocity

Jue Ll BL\E

9.6 Equivalent Circuit in Terms of Primary and Secondary Constants

Equivalent T-section of a line of length §

R L R L
I(2) 507 _y 702 =62
— 2 2
1 NAN—— AVAVAY, 008 2
V(z)
Céz == Géz
1 A 2|

Figure 9.3 Equivalent ‘T’ Transmission Line Circuit

Equivalent T —section of a line of length §

R&z

: MO AAN

G 1 c C 1 G
EtSzg ——Eéz 8z == § 552

N

Figure 9.4 Equivalent '1t’ Circuit
Here, z=R+jowl)Q; y=(G+jwC)U

Secondary constants of line
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a. The input impedance of line is called its characteristics impedance

7 = z  |[R+jwl
7 Iy |G+ jwC

b. y=a+jp (Propagation constant)
° Real part a of y is measured of charge in magnitude of current or
voltage in each t-section and called attenuation constant.
° Imaginary part 8 of y equal difference in phase angle between the
input current and the output current or the corresponding voltages and
called phase shift constant.

¥y =zy = VR + jowL)(G + jwC)

C. The phase shift constant or wavelength constant f indicates the amount

by which the phase of an input current changes in a unit distance. In a distance
- . 2

equal to one wavelength 4, the phase shift is 27 radians, 1 = 7” wavelength.

d. The phase velocity of propagation is

)
v, =fA=—

B

Example 9.5: An open wire transmission linehas R = 5Q/m, L = 5.2 X 1078 H/m,
G=62x10"3Q/m, C = 2.13 x 10713 F/m, frequency = 4 GHz. Find Z,, y and vs.

Solution:

1 1
VIC V52x10-8x 213 x 10-10

=0.3%x10°=0.3%x108m/s

Vp=

w =2nf =27 x4 x 10° = 87 X 10° = 2.512 x 106 rad

R+ jwL
ZO == D ——
G+jwC

R+ jwlL =5+;2512%x10° x 52 x 1078
=5+ ;1306.24 = 1306.25 < 89.78’

G+jwL =62%x1073+2.512 x 10° x 2.13 x 10*°
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= 6.2 x 1073 + j5.35 = 8.18 < 40.79°

Zy = 12.64 < 24.49°

¥ =R +jwL) (G + jwl)

y = 103.37 < 65.23°

Example 9.6: A typical transmission line has a resistance of 8 Q/km, impedance of

2 mH/km, a capacitance of 0.002 puF/km and a conductance of 0.07 pus/km. Calculate
the characteristic impedance, attenuation constant, phase constant of the transmission
line at a frequency of 2 kHz. If a signal of 2 V is applied and the line terminated by its
characteristic impedance, calculate the power delivered to load

R+ jwL
Zy = /—
G+jwC

_j 8 + j4m x 2 x 1073 X 10

Solution:

0.007 x 107 + j4m x 0.002 x 1076 x 103

= 1.024 < —8.75° x 103 Q
= (1012.1 — j155.72) Q

y=a+jB =R+ joL) (G + jwC)
V(8 + jam x 2 x 1073 x 103)(0.007 X 10-6 + j4m x 0.002 x 10~¢ x 103)
= 0.02574 < 81.09 = 0.003987 + j0.02543
= a = 0.003987 Np/km
f = 0.02543 rad/km
Input voltage V; = 2V; [ = 500 km; Z, = 1012.1 ( (real part)
Since line is terminated in its characteristic impedance, Z;, = Z, = Z;,
Vs 2 B 2
ls = Z;, 1024 < —8.75° x 103 1024 < —8.75°
I, = I, e7"' = (1.953 < 8.75°)e(~0.003987+j0.02543)x500
[I,| = 1.953 x e7*9%3% = 0.2669 mA
P = |}]* Real (Zy) = 1012.1 x (0.2669) = 72.1 yW
w  4mx10°
V===

P78 0.02543

= 1.953 < 8.75 mA

= 494.22 km/s
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Example 9.7: A 600 () lossless transmission line is fed by a 50 Q generator. If the line is
200 m long and terminated by load of 500 Q, determine in dB's.

(i) Reflection loss
(ii) Transmission loss
(iii) Return loss.
Solution:
Z,—Z, 500—600 -100 -1 -1
~Z,+Z, 500+600 1100 100 11
i. Reflection loss = 101log, — =10 log 10@ = 0.036 dB

1-[p|2
lpl o

p

ii. Transmission loss = Attenuation loss + Reflection loss
= lossless + 0.036

=0+ 0.036 =0.036dB
iii. Returnloss = 10log;olp| = 10log;, (ﬁ) = —-10.414 dB

9.7 Sending-End Impedance

To determine the degree of mismatch between the source and line, we have to know the
impedance that the combination of transmission line and load presents to the source.
Sending end impedance is that looking into the line from the source:

z

Z

Zn— »

A
Figure 9.5 Sending end Impedance and Load Impedance
from Eqs. (9.4), (9.7) and (9.8)

Va Ve 4+ Ve’

7., =2 =
A7 T 70 verz —Vyer?

From Eq. (9.10), % = g2Vt

1
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e v 4 p e—Zyleyz
- ZA = ZO
e vz — p e—2vl pvz

After dividing through by V;

Multiplying through by e

eyle_yz _.|_ p e]/l—Z)/le)/Z e)/(l_z) + pe—V(l—Z)
ZA = “0 (eyle—)/z —-p eyl—Zyl eVZ> = “0 < eY(l—Z) — peY(l—Z) >

[ —z = xfromFig.9.5

er* + pe"’x)

= ZA = ZO <—eyx — pe_yx

(Z, — Z)

F =k "9
Tz

eyx + (ZL_ZO) e—yx
(ZL+Zo)

evrx — [M e~ vx
(Zp+Zy)

ZA =ZO

Multiplying through by (Z, + Z,)

(Zy,+ Zy)eV* + (Z, — Zy)e ™
(Z, + Zy)eV* — (Z, — Zy)e 7™

ZA:ZO[

Factorizing,

Zy (e +e ")+ Zy(e" — e"’x)l

Zy=12
4 0 [ZL(er —e V) + Zy(eV* + e YX)

Dividing through by 2 to give hyperbolic functions

7 7 ZLcoshyx+Zosinhyx]
4T a0 Z; sinhyx + Z, coshyx

Dividing through by cosh yx,

7 7 ZL+ZOtanhyx]
a0 Z; tanhyx + Z,

Putting x = [, Z, becomes Z;,, (sending-end impedance)
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_ 7 = Zo Z, + Zy* tanhyl 9.18a
i Z;tanhyl + Z, '
When normalized to the characteristic impedance Z,,
5 = Z;n 2L+ Z tanhyl]
" Zy |Zptanhyl + Z,
Normalized, load impedance z; = i—L
0
(%) + tanhyl
= Zin = | 775 9.18b
(Z_o) tanhyl + 1
z;, + tanhyl
Zin = — . 9.18¢

- z tanhyl +1

9.8 Low Loss Lines

Eq. (9.5): Y =V R+ joL)(G + joC)

Factoring out jwL and jwC,

R jwLy/ G jwC
(o +2) (e + 1)
JwL  jwL

V=\/(iwL) (jw0) joC T iac

1

R\ G
= jovVIC(1+—) (1 +—
. C( +ij) ( +ij)

1
2

Binomial series expansion of y gives:

jovic(14-R L R V(148 ¢
y=Jjo 2jwl 4 (wL)? 2jwC  4(jwC)?

For low-loss lines, R and G are very small, and can therefore be ignored:

R G
~ joVIC (14— x (1 +—
- yEjo C( +2ij) ( +2ij)
G RG
= jwVIC (1 -
J C( t 2ol t Zjwc (ij)ZLc)
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G R RG
= jwVLC (1 + )

2joC | Zjwl  4w?LC

= jwVIC (1 - 4<szLC N ZJZfL N zjﬁc“)
~ i = oV (i B4 4
a+jp = wJLC [(MJFW) + (1 4w2LC)]
= “Nw‘/_(mJ’zGc) B ~wle (1_4(szLC>

RC+GL 9.19
2L 72 |c '

RG
B~ wVlC (1 - 4w2LC)

R and G very small, so at high frequencies:

B = wVLC 9.20

Similarly,

7 = R+jwl ja)ija)CX<R+ja)L>
07 [6+jwC ™ |jwC” jwL  \G+jwC
1 1
]wL<R +1>(G +1> Lx(1+ R)zx(1+ ¢ )2
jwC \JwL JjwC C JjwL jwC
2 (1 ga) < (1 5700)
~ (=X — ) X1 ———
C 2jwL 2jwC

By binomial expansion, with terms in R?, G? neglected

7 L ( G + R RG )
= — X — —_
o™ Ic 2jwC  2jwl  4j2w2LC
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~ Lx(l jR+jG)
. lc 20l 2wC

—3 = .
) C vVery sma 0 C

Plugging Eq. 9.21in 9.19

_| R +GZ° 9.22
“=l2z, " 2 '

9.9 Lines of Zero Loss

For a relatively short line and operating at very high frequencies, it is reasonable to assume
zero attenuation, i.e., lossless line

R

Inthiscasey =a +j8 =0+ jB =jB

Replacing y by jf in Eq. 9.18b

z; + tanh jfl z; +jtan Sl
Zin = - - -
1+ z; tanh jBl 1+ jz, tan Bl

9.23

9.10 Quarter Wave Transformer

For a lossless line (@ = 0) and replacing y by jB in Eqg. (9.18a)

Z; +jZ,tan Sl
— Zin:ZO(L J 4o ﬁ)

Zy+jZ, tan Bl

Z;/tan Sl +jZ0)
Zy/tan Bl +jZ;

= Zin =1 (

d = quarter wavelength long = tan gl = tang = ©
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—+jZy JjZo\  Z
Z, =limZ,| 2 = (—) =22
" \2+jz, \iz,) "z,
= 20> =Zin 7, 9.24

For matching a given load to a given input impedance, a quarter wave section of lossless
line is used with characteristics impedance of

Zy = vV ZinZy,

Example 9.8: A 50 W lossless line has a length of 0.4A. The operating frequency is 300
MHz. A load Z; = 40 + j30 Q is connected at Z = 0, and the Thevenin equivalent source
atZ = —1is12 < 0° Vin series with Zp;, = 50 4+ j0 Q. Find (a) p; (b) S; (c) Z;y,.

Solution:
Using 9.23,

_(Zy+jZytan pl)
M (Zy + jZ, tan BL)

Putting Z;, = oo (we know thaté = 0) and dividing entire by Z; we get

a+0  z,  Z, . Z
00+ tanBl) jtanBl jtanpBl _ ’ tanpl

So, Zp =2

Ans:

(@  0.333 <90°
()  2.00
(c)  25.5+5.900

Example 9.9: Calculate the characteristic impedance of a quarter-wave transformer if a
120 Q) load is to be matched to a 75 (1 line.

Solution:

Zy = Y Zy Zin

Z2
= ZL=ZO=\/120><7 = 950
in

253



9.11 Stubs

Eq.(9.23) = z;, = % shows the variation of input impedance with the length of

the line and this property can be used in stubs (short lengths of line) for matching
applications. These are terminated in either short circuit or open circuit load.

Z,
Open — circuitload = z;, =0 =Z7;,, = —————
P L "' jz, tan Bl
! i cot Bl 9.25
Zin = = = —JCOo .
™ jtanpl J
o 0O+jtanpl .
Short circuitload = z;, = ————— = jtan | 9.26
1+0
For lossless line:
[
] I 1
! ! !
/ / !
/ / /
Positive / / /
reactance / )/ )/
// // //
0 A A7 (3 A ,o7 |52 31
Negative J/ 4 7/ 7 J/ 7 7
reactance | / )/ )/
/ / /
/ / /
Open-circuit stub Short-circuit stub
Figure 9.6 Stubs

Example 9.10: An ideal lossless , extension of line Zy = 60 (1 is terminated with Z; . Find
Z;y of extension when

(i) Z, = o0
(iii) Z, = 60 Q
Solution
i. Zin=2 where Sl =%x%
Zin=JZytan Bl = forZ, =0
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i. Ziy, = Teanpl 0 for Z,=ow

iii. Z, = 60Q
60 + j60 tan (%)

60 + j60 tan (%) -0

9.12 Standing Waves
For a lossless line (& = 0), the total voltage at a point z from the sending end:
= V= (Ve P? + 1V,e/P?)eiwt
Where e/t indicates the time dependence.

From p = (?) e?’t [Eq.(9.10)]

v =y, elor [e—jﬁ(l—x) 4 (%) oJF! e—jﬁx]
1

. v B\ i
For lossless line, p = (V—Z) eVl = (V—Z) eJ2hl
1 1

Since, @ =0 = |V = V,e/%t e Pl [e/F* 4 ¢=IFX] 9.27

This is the equation representing voltage standing wave (VSWR), made up of two
component waves, one of forward direction, and the other of backward direction reflected
from the load.

For a short circuit load (p = —1) and without the time dependence,

V =j2v, e P [e/P* — e IBX] =R Ve Plsinfx =V 9.28

The real part of the absolute value (modulus) of Eq. (9.28) is
[V| = R,|[j2V,e /P! sin Bx]|

= R,|[j2V;(cos Bl — j sin B1)] sin Bx]|

= R, |[2V,(j cos Bl + sin B1)] sin Bx|

||V| = 2V; |sin Bx| sinﬁl| 9.29
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2V,
For short circuit

2V,
For open circuit

|Vmax| for load
|Vmin| in-between

———
Figure 9.7 Standing Waves
For an open-circuit load (p = 1) under the same conditions,
V =V,e P (el + e7IF*) = 2V,e /Pl cos px = |V| = 2V, |cos x|
For a load in between short and open circuit, say e = 0.6 + j0.3,
V =V,e /Bl elP* + (0.6 + j0.3)e™/F¥]
V| = R [Vie P! |e/F + (0.6 + j0.3)e /F~|]

From Eq. (9.29), for (n — 1) = Bx,sin fx = 0, and the next minimum occurs at

T T A

B 2

It could be discerned that minima for short circuits occur at maxima for open circuit, and
vice versa. Both the adjacent minima and maxima are separated by half a wavelength with
the first minimum occurring at the load terminals for short circuit (maximum for open
circuit). For a load in between, the minima and maxima the between zero and 2V, but
with adjacent minima and maxima still half a wavelength apart.

Voltage standing wave ratio (VSWR)

|Vmax |
| Vmin |

1 < § < oo and depends on the degree of mismatch at the load (reflection coefficient).

By definition, VSWR = S =
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From Eq. (9.27), plugging in p = |p|e/¥

V =V,e TPe/P* + pe=iFx] 9.30
V=Ve P (1—x)[1+ |ple/¥-2F7)] 9.31
||Vmax| =V, (1+ |,0|)| 9.32

When (Y —2Bx) =2(m—1)mr,m=1,2,3,.., i.e when 2 (m —1) is a positive even

number, making cos(y — 2Bx) positive unity,

||Vmin| =V (1- |PD| 9.33

Wheny —28x) = (2m—1),m=1,2,3,.....i.e when 2m — 1 is a positive odd number,
making cos(y) — 28x) negative unity,

V(1 + 1+
_n@+leh _ IpI=S 934
n@—Iph) |1-Ipl
= p| = o2 9.36
SCES '

From Eq. (9.31) at the first voltage minimum, at x = x,,,;;, from the load,

Y—20x=m
%
Y =2BXmin + T = Z = Zyin = (7) Xmin

7 Vinin _ Vle—jﬁ(l—xmin)[l + |p|ej(1p_2ﬁxmin)]
min Lnin (Z—(l)) e JiBU—xmin) — (Z_z) eJBU=xmin)

Vle_jﬁ(l_xmin)[l + |p|e](lp_2:8xmln)]
- Vle_jﬁ(l_xmin) []_ — |p|ej¢_j2ﬁxmin] ZO

Vle—jﬁ(l—xmin)[l + |p|ej(‘/"2ﬁxmin)]
= Vle_jﬁ(l—xmin)[l — |p|ej(w_jzﬁxmin)] 0

1+ |ple’™
1—|ple/™

But from trigonometry (Euler’s identity), e/™ = cosm +jsinmt = -1
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1-|pl Zy
0 1+ |,0| S min
Normalized to the characteristic impedance,
7. .
’Z"Om = Zpin 9.37a
1
Zmin = § 937b
Similarly,
1+ |pl
Z =7y X ——
max 0 1-— |p|
Zmax =20 S 9.38
S = Zmax 9.38a

Example 9.11: A 50 Q lossless transmission line is terminated by a load impedance,
Z; =50 —j75 Q. If the incident power is 100 mW. Find the power dissipated by the load.

Solution:

Z1—Zy

The reflection coefficient = p = s
LT4o

_Z,—Zy 50—j75-50
"~ Z,+Z, 50—j754+50

p =0.36 —j 0.48 = 0.60 e /%3

Then, (Py = (1= |pl>){P;) = [1 - (0.60)?](100) = 64 mW
Impedance at a voltage minimum/maximum

Example 9.12: A lossless transmission line of Z, = 100 (1 is terminated by an unknown
impedance. The termination is found to be at a maximum of the voltage standing wave
and the VSWR is 5. What is the value of terminating impedance?

Solution:

We know that Z,,,,, = Z,.(VSWR) as the termination is at maximum of the voltage
standing wave.

| Zmax = 100 X 5 = 500 Q
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9.13 Load Impedance an a Lossless Line

This can be determined if the VSWR, wavelength (1) and distance from the load to the
nearest voltage minimum are known.

Equation: V = (Ve /FU=0)[1 + |p|e/W-262)]
Y —2Bx = (2m — 1), m=1,23,..

m=1=x=x,, >yY—2Bx=nm

= |l/):2.8xmin+n|
Z Zl+p 1+ |e] e/¥ 939
LA T, T AT T eledv '
From Eq (9.37)

(s- 1)
_ (S+1)
Z, =ZyX = 1)
(S+1)

From Eq. (9.36)

1+ [(5 1)] eJ 2BXmin + 1)

7 (S+1)
L= (S ) j(zﬁxmin + 1)
(S+1)
1+ [_(S_l) ejzﬁxmin
i .. (5+1)
e/ =cosm+jsinn =—-1= 27, =7, X =
— [— eJ2B%min
(S+1)
From Eqg. (9.39)
(S+ 1)+ (S — 1)(—e/2h*min)
L= X Zg

(S +1) — (S — 1)(—e/2Fomin)

S(]_ — ejzﬁxmin) + (1 + ejzﬁxmin)
O[S + e2Pxmin) + (1 — e/2Fxmin)

Dividing both the numerator and denominator by e/#*min
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S(ejﬁxmin — ejﬁxmin) + (e_jﬁxmin + ejﬁxmin)

=% [S(e_jﬁxmin + ejﬁxmin) + (e‘jﬁxmin - ejﬁxmin)

. S(=2jsin Bxpmin) + 2 cos fXpmin
— 70 8(2 cos Bxymn) — j2 Sin Bxmin

Dividing through by 2 cos fXpin,

—Sjtan Bx,,i, + 1
ZL — ZO S]_ : B min ]
J tan mein
1—jStan fx,,;
ZL=2Zo| J- B "””] 9.40
—J tan .mein
Normalized load impedance, %
0
B é _ 1 — Stanhjfxpin 941

Z,

" Zy | S—tanhjBx,n

Example 9.13: A 100 (} line feeding the antenna has VSWR = 2 and the distance from
load to the first minima is 10 cm. Design a single stub matching to make VSWR = 1. Given
f = 150 MHz

Solution: VSWR =2

I |_VSWR—1_1_033
Pl=VswrR+1 3

F =150 MHz

A=—==2m
f

We know that
Y — Zﬁ dmin =T
2T
Z,Bdmin =1l1—7T= 2)(7)(01 =0.21n
The position of stub
A -1
ly = yy= (cos™(p) — 2 dmin)
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2 0.1
|ly| = —(0.397 — 0.21) = — x (0.197) = 4.75 mm
4m

4
A Jv1—1pl? A J1—10.33|?
Length of stub = [, = Etan_1 (TW) = an~! (ﬁ) = 15 mm

Example 9.14: A UHF transmission line operating at 1 GHz is connected to Z; producing
reflection coefficient 0.5230°. Design single stub matching. Find VSWR.

Solution: f=1GHz
_3><108_03
“1x100 0™
lp| = 0.5
1+ |pl 1.5
WR = i
VS 1—|p| 05
=30 =2 rad
Y = —6ra

I, = % (Y +m—cos™(|p])) = A (E +m— cos‘l(O.S))

4T \6
_ A (77‘[ n)_ A ><571_5/1_1.5_625
“47\6 3) a6 24 24 M
A 1= |pl?
Length of stub = I, = —tan™? vi-lel”
21 2|pl

A (/T 5P
oz n 2% 05

A
=—Xx0.227r = 3.4 cm
2T
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9.14 Further Examples

1. A transmission line with the characteristic impedance of 250 Q is terminated in a
load of 100 . If the load is dissipating a continuous sinusoidal power of 50 watts,
calculate:

(i) the reflection coefficient

(ii) Voltage standing wave ratio

(i) reflected voltage |V,|

Solution:
. 100-250
(i) |'D| - |100+250| =043

. _ (pl+1) _ 143 _
(i) VSWR(S) =75 =55, = 2.50

(III) 50 — (Vmax)(Vmin)
Zo

_ Vi+ V)W, = 1)
250

V2 - V.2 = 12500

v, = /Viz — 12,500 = 0.43V;

V2 = (0.43V;)2 + 12500

U4 | 12500
ET = (1 -0.432)

=123.84V

50

2. A lossless transmission line with Z, = 60 ) is 40 m long and operates at 3 MHz,
the line is terminated with a load of Z; = 120 + j60 . Given that u = 0.8c on the
line, determine analytically. ¢ = 3 x 108 m/s:

(i) Load admittance

(i) Voltage reflection coefficient (magnitude & phase)

(iii) VSWR

(iv) Zin

(V) Zmax
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(Vi) Zmin

Solution:
M veto_ 1 U207J60 o500 0003330
Vo= 7 T (120 + j60) T (14400 + 3600) J7
- Z,—Z, (120+j60—80) (40 +j60) (2 +/3)
ii p = = =

T Z,+Z, (120+j60+80) (200+60) (10 +,3)

2 +3)(10—j3) (20 + 9 + 30 — 6) o
T T (100+9) 109 = V297 + 247 tan (ﬁ)

p = 0.34239.64°
(1+034) 134

VSWR (S) = = = 2.03
(iii) ) =T=039 ~ 0,66
u  (0.8)(3x108) 2 (402
0 2t 1070 s0m — - 2522 _
(iv) 2 7 3 x 10 80m = fl AT
4 g [PetiZotanBly 120 + j60 + j80tanm ] _ [120 +j60]
=20z, +jZ tan BIl — T [80 + (120 + j60) tanm) 80

Zin =120 + j60 Q
(V) Zmar = Zo S = 80(2.03) = 162.4 Q

Zo _ 0—39419
S 203 7

3. Adistortionless line (RC = GL) has Z, =80 Q, a = 25 mNP/m, u = 0.5, where
c is the speed of the light in a vacuum. Determine

(i) R

(i) L

(iii) G

(iv) C

(v) A at 100 MHz, (¢ = 3 x 108 m/s)

(Vi) Zomin =

Solution:

RC
RC=GL=>G=T
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=y =R +jwl)(G + joC) = \/ﬁ\](l +]%L> (+]wTC>

= ol B ) () e

R R
a =VRG
o7 (3) - () <o o ) - o2
R
Zo= |-

aZy = (VRG) \/g =R

R=(25%1073)(80) =20

R
w 1z, \N¢) [ |L

w
=— = = ===/ _| [2|VILC=L
f  wVLC JILC u u C
L 80
~(0.5)(3x 108)
L2 (25x1073)2 107°
G Ol i —— 625 X 5= 312.54 V/m

GL  (312.5x 107%)(533.33 x 107°)

c== — 83.33 pF
R 2 p

c_0.5><3><108

A= x 1076 = 1.5
f 100 o
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9.15 Exercise

1. (i) In not more than 15 words, define (explain) what is meant by transmission line.
(ii)Sketch and completely label 2 types of Transmission line
(iii) Name and explain the parameters involved in a typical transmission line.

2. (i) Define reflection coefficient.

(i)  Under what load conditions will there be total reflection from the load.

(iii) For lines of zero loss for a quarter wave transformer, determine the expression
for the characteristic impedance in forms of the input and load impedance.

(iv) In what way does the quarter wavelength section of a transmission line act as
impedance transformer?

3. (i) Whatis a stub, and how is it applied to the transmission line?

(i) Derive the expression for reflection coefficient in terms of load and
characteristic impedances.

4. Whatdoes (i) VSWR = 1 (ii) VSWR = oo, signify with reference to matching of

the transmission line to the load?

5.  Atransmission line with the characteristic impedance of 250 Q is terminated in a
load of 100 . If the load is dissipating a continuous sinusoidal power of 50 watts,
calculate:

(i)  The reflection coefficient

(ii)  Voltage standing wave ratio

(iii) Reflected voltage |V, |

6. Two voltage waves having equal frequencies and amplitudes propagate in

opposite directions in a lossless transmission line.

(i) Determine the total voltage as a function of distance and time.

(ii)  What kind of wave results (relating its behaviour with respect to position and

time)?

(iii)  Where do the zeros in the amplitude (i.e., null position) occur?

7. Alossless transmission line of 100 cm and operates at a frequency of 300 MHz,

the line parameters are L = 0.5 pH/m and C = 200 pF/m. determine:

(a) The characteristic impedance

(b)  The phase constant

(c) The phase velocity.
8. (i) Define the characteristic impedance of a typical transmission line
(ii)  In what other way can it be viewed
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9. An airline has a characteristic impedance of 60 Q and a phase constant of 2 rad/m
at 80 MHz, calculate the inductance/meter and the capacitance/meter of the line.
(R=0=G,a=0)

10. What is meant by a distortionless line?

11. Adistortionless line (RC = GL) has Z, = 160 ), « = 50 mNp/m, u = 0.8,

where c is the speed of the light in a vacuum. Determine R, L, G, Cand A at
100 MHz, (¢ = 3 x 108 m/s)

12. (i) Show that at high frequencies:

(R < wL,G < wl), y = <§\E+§\E> + jwVLIC

(ii) Obtain a similar formula for Z,
13. (i) Define reflection coefficient
(ii)  Under what load conditions will there be total reflection from the load
14. Derive the expression for reflection coefficient in terms of load and characteristic
impedances.
15. (i) Define the characteristic impedance of a typical transmission line

(ii) In what other way can it be viewed

16. An airline has a characteristic impedance of 80 () and a phase constant of 3.5

rad/m at 100 MHz, calculate the inductance/meter and the capacitance/meter of the

line.(R=0=G,a=0)

17. What is meant by a distortionless line?

18. Addistortionless line (RC = GL) has Z, = 80 Q, ¢ = 25 mNp/m, u = 0.5¢, where
c is the speed of the light in a vacuum. Determine R, L, G, C and A at 100 MHz,
(c =3 x108m/s).

19. An airline has a characteristic impedance of 200 2 and a phase constant of 4

rad/m at 180 MHz Calculate the inductance/meter and the capacitance/meter of the

line.(R=0=G,a=0)

20. Adistortionless line (RC = GL) has Z, = 1208, a = 50 mNp/m, u = 0.75c,

where c is the speed of the light in a vacuum. Determine at 160 MHz,
(c =3 x 108 m/s).

(i) R

(i) L

(i) G

(iv) CandA
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21.

(a)
(b)
(c)
22.

(i)

(ii)
(i)
(iv)
23.

(i)
(ii)
(i)

A lossless transmission line is 100 cm and operates at a frequency of 400 MHz the
line parameters are L = 0.75 pH/m and € = 300 pF/m. determine.

The characteristic impedance.

The phase constant.

The phase velocity.

A load of 25 + j50 Q terminates a 50 (1 line, given that the line is 60cm long and
the signal wavelength 2m, ¢ = 3 X 108 m/s. Determine analytically:

The load admittance.

The reflection coefficient (amplitude and phase).

Voltage Standing Wave Ratio.

Input impedance.

A lossless transmission line of characteristic impedance 150 Q is terminated in a
load of 350 + j200 Q, given that the length of the line is 80 cm and the signal
wavelength is 50 cm, ¢ = 3 X 108 m/s determine analytically the:

Load admittance.

Reflection coefficient VSWR.

Distance between the load and the nearest voltage minimum to it normalized

input impedance.

24.

(vii)
(viii)
(ix)
(x)
25.

(i)

(i)
(iif)
26.

(a)
(b)
(c)

A lossless transmission line with Z; = 60 (1 is 80 m long and operates at 6 MHz, the
line is terminated with a load of Z; = 120 + j60 Q. Given that u = 0.5¢ on the
line, determine analytically. ¢ = 3 x 108 m/s:

Load admittance.

Voltage reflection coefficient (magnitude & phase).

VSWR.

Zin

In a lossless transmission line, the velocity of propagation is 3.5 X 108 m/s.
capacitance of the line is 40 pF/m. determine:

Inductance per meter of the line.

Phase constant at 100 MHz

The characteristic impedance.

A lossless transmission line is 100 cm and operates at a frequency of 300 MHz the
line parameters are L = 0.5 uH/m and € = 200 pF/m. determine:

The characteristic impedance.

The phase constant.

The phase velocity.
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Circuit Theory with Application
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INDEX
A

ABCD-parameters 109

Active elements 8,44,201
A.C Component 202
Active filter 201,222,225

Admittance parameters 98,105

Alpha 61,145,233
Alternating current 2,202,204
Amplifier 202,225
Anti-symmetrical 127
Attenuation 205,237,247
Attenuators 202

Attenuation coefficient 233
Attenuation constant 238,243
Attenuation loss 244
Asymmetrical 131

Asymptotic Magnitude Plot 172,177
Asymptotic plots 172,210
Audio frequency 225
Automatic control systems 96

B

Band-pass filter 130,207
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Band-stop filter 202,206,222

Binomial expansion 240,247
Black box 129

Bode plots 153,160,199,225
Breakpoint 210,216

Break frequency 210

Broadcast frequency 141

C

Capacitance 11,74,229,237,263
Capacitors 1,11,43,100,142,203,225
Capacitor coupling 202
Characteristic impedance 233,254,263
Cascade 110,115,129,225,234
Choke 203

Clockwise 117

Circuit 1,98,163,220,240
Coaxial cables 228

Coefficients 27,76,230
Communication engineering 228
Complementary solution 1
Complete response  4,26,31,45,77,94

Complex conjugates 62,67,149,186

Complex frequency 60,145,208,223



Complex quantity 66,142,235

Conductance 229,239,243
Constants 27,67,77,95,159,241

Corner Frequency 174,190,210,227
Critically damped
Crystal filters 207

Current 1,10,52,101,202,230

Current response 2,5,41,71
Cutoff frequency 141,199,223
D

Damped sinusoidal  62,68,208
D.C Component 202

D.C Input 202

D.C Source 80

D.C Voltage 202
Decaying signal 6

Decibel (dB) 153
Decibel scale 152
Delta 230
Differential equations 59,85,230
Distortionless 239,259,262

Driving-point impedances 100
Driving source

1,8,28,42

Duality Principle 14,16

62,70,77,81,86
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Dummy variables 28

Duality 3,14,16,70

E

Electrical 2,23,44,98,131,201,228
Energy absorbed 6,15

Energy conservation 2,29
Energy-storage 1,59,78
Engineering 6,98,228,266
Exponential damping coefficient 61
Exponential function 28
Exponentially decaying 5,12,42
Euler’s identity 253

F

Feedback system 187,190,192
Filter 59,129,205

First derivative 11

First-order 2,27,41,59

First-order differential equation 27,28

Forced 1,31,45,77,141

Forcing function 1,42,141

Forced response 1,27,47,77
Frequency 2,64,76,80,190, 247,264
159,199

Frequency domain

Frequency-domain RC circuit 1



Frequency response 141,156,207
G

Gain 96,111,132,212,230
Gain K 159,200

Gamma 232,233

Generator 58,132,203
General solution 65

H

High-pass filter 205,218,231
Homogeneous 1,28,41
Homogeneous response 29
Homogenous solution 1

I

Images impedance 127

Imaginary part 66,145,160,185,233,242

Immittance parameters 105
Impedance parameters 99,104
Impedance-matching 98,201
Incident voltage 235

Inductors 2,22,43,100,205
Inductance 74,229,239,262
Interference filters 207
Insertion loss 132,134,139

Initial inductor current 39,59,69

272

Initial current 5,22,37,58,62
Initial conditions 1,25,65,85,90,142
Initially charged capacitor 11,26
Infinite” length 229

Integration constant 12

Intricate cascades 228

Iterative impedance 131

K

KCL 11,25,44,60,78,84,117,
220,231

Kirchhoff's laws 36

KVL 4,22,69,76,85

L

Lambda 233

LC filters 201,225

Length 129,250,257

Load impedance 203,225,246,260
Logarithmic Scales 157

Long time 9,18,20,48,58,95
Lossless line 239,249,255
Low-loss dielectric 240
Low-pass filter 130,208,215,227
L-section 128

‘L’ network 127



L-type Resonant filter 206

M

Magnitude plot 156,165,172,180,184,
193

Magnitude plot Analysis 187,190
Matrix 98,104,114,120,138
Maximum value 63,71,74,85,202
Maximum voltage response 64
Maximum power transfer 118,119
Mesh analysis 112,116,117
Microwave filters 201

Mismatch 232,244,252

N

Natural 1,9,30,35,42,45,59,69,74,85,229

Number 2,12,28,67,132,165,171,189,229

Natural number-based 28

Natural response 4,5,12,27,69,74,80
Neper 61,64,132,134,145,208
Neper frequency 61,64,145,208
Network parameter 27,35,41,61
Normalized 209,218,246256,263
Notch frequency 206

o)

Ohm'’s law 8,41,44,112,234

273

Open-circuit load 252
Open circuit  18,34,80,99,111,238,252
Open circuit impedance 238

Ordinary differential equation 230
Output port 100,102,104,107,117,118,
Over-damped 62,66,69

P

Parallel 2,17,41,61,70,81,180,207,229
Parallel resonant 141,206

Parallel R-L-C circuit 59,64,78
Particular solution 27

Passive elements 59,94,201,225
Passive filter 201,222,225

Passive network 2

Phase angle 2,42,156,160,167

Phase Angle Plot 156, 170,190,193
Phase constant 233,240,261

Phase response 207,211,213

Power delivered 132,210,243

Power gain 153

Poles 149,159,169,170,190,199,225
Poles or zeros 159,169,170,186

Pole-zero constellations 155

Polynomial 142,148,151,155



Port 31,45,76,96,105,112,138,164,228
Propagation constant 129,233,242
Power dissipated 6,15,254
Power-time filters 207

Practical capacitor 15,59

Practical inductor 16,59

Q
Quadratic factors 159,180,186
Quadratic pole 181,185,193

Quarter wavelength 248,261

R
Radian frequency 23,64,145
Radio 141,201,228

Real and equal roots 62
Reciprocal 14,100,128,153,211

Reciprocal network 100,103,105,129

Reflected voltage 258,261,263
Reflected wave 232,234,236
Reflection loss 244

Resistance 11,41,137,217,239,243
Resonant filters 206

Resonant frequency 62,66
RLC circuit 42,59,69,79,95

RLC filters 225

S

Second order 2,71,79
Secondary constants 241,242
Second-order system 29
Sending end impedance 244
Semi-log Papers 157
Series resonant 207,220,225
Short-circuit 105,107,117,129, 203
Short-circuit impedance 129

Short circuit load 236,250

Signal 1,14,23,36,41,62,97,141,233,262
Source-free circuit  8,30,59,77

Standing waves 251,252

Steady-state 1,34,45,80,141

Step response 24,38,78,80
Stored energy 4,31
STUBS 250

Symmetrical network 127,131,135

Symmetry 100,113
Symmetric 113

T

Tau 13,30

Terminal voltages 98,104,109

T-equivalent circuit 100,101



The Source-Free RC Circuit 10
T-filter 207
Time constant  5,13,23,35,41,180,190

Time-domain RC circuit 143

Total response 1,29,46,80
Transfer admittance 97,105,111,142
Transfer impedance 97,100,111,142
Transitory 1

Transmission 109,113,140
Transmission lines 110,228,229

Transmission line parameters 109,113,

Transmission loss 244
Transient 1,7,31, 47,59,76
Transient response 31,45,80

T-section 128,241

T-type network 110,113, 114,115
Two-Port network 105,115,139

Trigonometric functions 28
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Thevenin equivalent 16,46,118, 249

Transient Analysis 1
\"
Velocity 241,243,267

Voltage 1,11,20,30,45,84,154,208

Voltage minimum/maximum 254

U

Unsymmetrical 131
Under-damped 62,68,70
Unequal roots 62

w

Wavelength 228,248,255,263

Wavelength constant 242

Y

Y-parameters 104

4

Zero 2,15,44,162,176,194,237

Z-parameters 99,101
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