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PREFACE 

This book originates from notes used in teaching Electromagnetic Field Theory 

course at the final year HND level in Electrical/Electronic Engineering Department, 

Federal Polytechnic, Oko, Anambra State, Nigeria. Along with other materials 

gathered by the author during his degree and post-degree years of academic 

pursuit, and over fifteen years of teaching experience in accordance with course 

curriculum guidelines from the National Board for Technical Education (NBTE), this 

text, “ELECTROMAGNETIC FIELD THEORY with Application for Undergraduate 

Students”, was written. 

The content of each chapter was designed to accommodate Higher National 

Diploma (HND) and Bachelor of Science/Engineering (B.Sc./B.Eng.) undergraduate 

students as the materials presented were made comprehensive enough to cover 

both classes of programs at their final year and mid-course levels respectively. 

Chapter 1 covers the introduction to electric and magnetic fields, vectors and 

scalar quantities, gradients and curl of vectors. Chapter 2 covers introduction to 

divergent and Stokes’s theorems, Maxwell’s equations and Gauss′s law with their 

applications and chapter 3 talks about Electrostatics. 

Chapter 4 and 5 cover capacitance of capacitor and electromagnetic induction. 

electromagnetic equations, Ampere’s circuital laws, Faraday’s law, Gauss’s law and 

more and in chapter 6, while electromagnetic waves analysis and wave 

propagation in a lossless medium are in chapters 7 and 8 respectively. 

Also, at the end of the chapters are enough review problems designed to help 

student exercise their level of comprehension of the treated matters, and by so 

doing, internalizes the underlying principles of lessons taught. 
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CHAPTER 1 

ELECTRIC/MAGNETIC FIELD BASIC THEORY  

1.0 Circuit and Field Vectors 

The circuit theory studied in electrical electronics engineering is used to predict with 

accuracy the “performance” of electrical network with regards to the followings:  

• The voltages and currents  

• The simplicity (as can be applied to any electrical network) 

• The usefulness (helps in evaluating performance parameters of any network).   

Meanwhile, in microwave or R.F transmission, we generally deal with transmitting power 

and voltage or current, as it is very difficult to open or short circuit at high frequency. 

Power is actually expressed in terms of integrated effects of voltages 

( 𝐸,⃗⃗  ⃗ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑) and current (𝐻,⃗⃗⃗⃗  𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑)  

 

 

 

 

 

The Fig. 1.1 shows that the ratio V/I cannot be evaluated on any high frequency link, 

instead 𝐸⃗ / 𝐻⃗⃗  are evaluated for calculation of power transmitted.  

Also, Electromagnetic field theory. Electromagnetic field theory deals with field vectors 

𝐸⃗  𝑎𝑛𝑑 𝐻⃗⃗ . Voltage and currents are integrated effects of electric and magnetic fields.  

Again, Electromagnetics: Electromagnetics is study of effects of electrical charges at rest 

and in motion. Moving charges produce a current, which gives rise to magnetic field.  

The varying electric and magnetic fields are coupled, producing electromagnetic field.  

More difficult. Because of large number of variables involved, calculations are difficult in 

electromagnetism.  

TE TE R.F. (TE         Terminal equipment)  

Tx Rx 

“Fails” 

Figure. 1.1 Radio Frequency link 
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It should be noted that when current is constant around a circuit, voltages and currents 

are functions of one variables “time” 

In uniform transmission-line theory, the “distance” along the line is an added variable. In 

this, we define R, L, C, G in terms of length. 

Finally, the Four Fundamental Vector Field Quantities in Electromagnetics are: 

𝐸⃗ = Electric field intensity  

𝐷⃗⃗ = Electric flux density  

𝐵⃗ = Magnetic flux density  

𝐸⃗ = Magnetic field density  

Used in study of electric and magnetic fields in materials media, as 𝐷⃗⃗ = 𝜀𝐸⃗ 𝑎𝑛𝑑 𝐵⃗ =

𝜇𝐻⃗⃗    𝑤ℎ𝑒𝑟𝑒 𝜖 𝑎𝑛𝑑 𝜇, are permittivity and permeability of medium respectively.  

1.1 Scalars and Vectors Review  

 Elementary physics taught is that scalars have only magnitude (size) whereas 

vector have both magnitude and direction. That means that the former cannot have a 

negative value (at least when not technically speaking), examples of which include mass, 

distance, speed commonly encountered in mechanics, and energy etc. that is met 

commonly in thermodynamics. However, mass with direction becomes force (or weight 

when caused by the acceleration due to earth’s gravity), distance with direction be one’s 

displacement while directed speed is velocity. Energy with direction is used to perform 

work (both have the unit of joules); these results are all examples of vector quantities; 

and these unlike scalars, can indeed take up negative values. Scalars can be seen as one-

dimensional quantities along x axis that start from zero and only move “eastward” (to 

the right on x-y coordinate system). Vectors, on the other hand, can exist in one -, two- 

and three dimensions and can take up negative values. The above is without prejudice to 

the fact that, from a pure mathematical point of view, scalars can indeed also be 

presented by negative quantities as long as they are single real numbers. Here, also, 

vectors are restricted to two- and three-dimensional spaces, thereby leaning out the 

trivial one dimension. 
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 This course deals with SCALAR and VECTOR FIELDS, and by field is meant 

summarily a function that connects a point (usually taken at the origin) to a general point 

in space.  

1.1.0 Vector Algebra  

 By definition, a typical vectors location is taken to be the origin (tail) of a 

representative arrow. In textbooks the bold face type is used to indicate a vector 

quantity, and the italic type is for a scalar. In these notes, however, vectors will be 

indicated by letters with an arrow at the top, while scalars will be letters without an 

arrow, or equally, arrowed letters straddled by two upright lines:  A = |𝐴 |. 

 Addition or subtraction of vectors in two (or three) dimensions follow the 

parallelogram law (rule), and is associative and well as commutative and distributive: 

𝐴 + 𝐵⃗ + 𝐶 = 𝐴 + 𝐵⃗ + 𝐶 = 𝐴 + 𝐵⃗ + 𝐶 ,      1.1 

(𝑎 + 𝑏) (𝐴 + 𝐵⃗ + 𝐶 ) = 𝑎(𝐴 + 𝐵⃗ + 𝐶 ) + 𝑏(𝐴 + 𝐵⃗ + 𝐶 )    1.1.1 

𝐴 − 𝐵⃗ = 𝐴 + (−𝐵⃗ ), that is to say, the positive 𝐴  is added to the negative of 𝐵⃗ . Two 

vectors are identical off (if and only if) they have the same magnitude and direction. By 

this is meant that the actual (tail) locations of the vector to be compared are, 

mathematically speaking, inconsequential. 

= +
𝐴 + 𝐵⃗  

𝐴  

𝐵⃗  

𝐴  

𝐴 + 𝐵⃗  

𝐵⃗  

𝐵⃗ + 𝐴  

𝐵⃗  

𝐴  

𝐴 − 𝐵⃗  

-𝐵⃗  

𝐴  𝐴 − 𝐵⃗ = 𝐴 + (−𝐵)⃗⃗ ⃗⃗  =
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For vectors, there are three different types of coordinate systems, namely, (1) the 

rectangular (2) the circular cylindrical and (3) spherical coordinate systems and each one 

can be converted to the others equivalent. 

1.2 The Rectangular Coordinates  

 Here the right-hand-rule is employed or the right-handed screw with positive y 

axis pointing to the right (“east”) of the board, the positive x axis pointing to the “North” 

and positive x axis pointing out of the board. Another view is of the right hand with the 

thumb, the forefinger and the middle finger representing, respectively, x, y and z axis. So, 

negative x will point to the “inside” of the board, negative y “westward”, and negative z 

“southward”. 

Example 1.0: 

y

z

x

-3 -2 -1 0 1 2 3 4

A(1,2,3)B(2,-1,4)

 

For the above 𝑥𝑦𝑧 plane, A is the point at which the planes 𝑥 = 1, 𝑦 = 2 𝑎𝑛𝑑 𝑧 = 3 

intersect (at each location the plane is parallel to the other two coordinates), and B is 

where the planes 𝑥 = 2, 𝑦 = −1 𝑎𝑛𝑑 𝑧 = 4 intersect. 

𝑟 𝐴 = 𝑥 + 2𝑦 + 3𝑧 

𝑟 𝐵 = 2𝑥 − 𝑦 + 4𝑧 

𝑅⃗ 𝐴𝐵 = 𝑟 𝐵 − 𝑟 𝐴  = (2 − 1) 𝑎̂𝑥 + (−1 − 2) 𝑎̂𝑦 + (4 − 3)𝑎̂𝑧 

    = 𝑎̂𝑥 − 3𝑎̂𝑦 + 𝑎̂𝑧   

with 𝑎̂𝑥, 𝑎̂𝑦𝑎𝑛𝑑 𝑎̂𝑦 being unit vectors in the directions of x, y and z axis respectively. The 

scalar values of 𝑟 𝐴, 𝑟 𝑩 (also known as their modulus) Are: 
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| 𝑟 𝐴|   =  𝑟𝐴 = √12 + 22 + 32 = √14 

| 𝑟 𝐵|  = 𝑟𝐵  = √22 + 12 + 42= √21 

Also, |𝑅⃗ 𝐴𝐵| = |𝑎̂𝑥 − 3𝑎̂𝑦 + 𝑎̂𝑧|  =  √12 + 32 + 12 = √11 

𝑟 𝐴 = 
𝐴

√𝐴𝑥2 + 𝐴𝑦2 + 𝐴𝑧2
= 
𝑎̂𝑥 + 2𝑎̂𝑦 + 3𝑎̂𝑧

√12 + 22 + 32
 

=
𝑎̂𝑥

√14
+ 
2𝑎̂𝑦

√14
+ 
3𝑎̂𝑧

√14
 

is the unit vector in the direction of 𝐴  [actually 𝑟 𝐴 which is here not used, to avoid double 

subscript (𝑟 𝑎𝐴)].  

Check that the modulus of 𝑎 𝐴  (𝑜𝑟 𝑎 𝐵) gives unity: 

√(
1

14
)
2

+ (
2

14
)
2

+ (
3

14
)
2

= √
1

14
+
4

14
+
9

14
= √

14

14
= 1 

1.3 Vector Field: The Dot Product  

By definition, the dot product is the product of the magnitudes of given two vectors and 

the cosine of the smaller angle a between them. Because this results in a scalar, one can 

therefore only have a dot product of two vectors, since there’s no dot product of a scalar 

and a vector! 

𝐴 ∙ 𝐵⃗  (′′𝐴 𝑑𝑜𝑡 𝐵′
′
) = |𝐴||𝐵| cos 𝜃𝐴𝐵         1.2 

= |𝐵||𝐴| cos 𝜃𝐵𝐴 = 𝐵⃗ ∙ 𝐴         1.2.1 

and so, obeys the commutative law. Dotting a vector by itself simply produces the 

magnitude of the vector squares.  

𝐴 . 𝐴 = |𝐴 ||𝐴 | cos 𝜃 = |𝐴 |
2
= 𝐴2 

Resolving the dotted result of two vectors along their component axis; 
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𝐴  ∙ 𝐵⃗ = (𝐴𝑥 𝑎̂𝑥 + 𝐴𝑦𝑎̂𝑦 + 𝐴𝑧 𝑎̂𝑧) ∙ (𝐵𝑥  𝑎̂𝑥 + 𝐵𝑦 𝑎̂𝑦 + 𝐵𝑧 𝑎̂𝑧)   1.3 

= 𝐴𝑥𝐵𝑥 𝑎̂𝑥 ∙  𝑎̂𝑥 + 𝐴𝑥𝐵𝑦 𝑎̂𝑥 ∙ 𝑎̂𝑦 + 𝐴𝑥𝐵𝑧 𝑎̂𝑥 ∙ 𝑎̂𝑧 + 𝐴𝑦𝐵𝑥𝑎̂𝑦 ∙ 𝑎̂𝑥 + 𝐴𝑦𝐵𝑦 𝑎̂𝑦 ∙ 𝑎̂𝑦 + 𝐴𝑦𝐵𝑧 𝑎̂𝑦 

    ∙ 𝑎̂𝑧 + 𝐴𝑧𝐵𝑥 𝑎̂𝑧 ∙ 𝑎̂𝑥 + 𝐴𝑧𝐵𝑦 𝑎̂𝑧 ∙  𝑎̂𝑦 + 𝐴𝑧𝐵𝑧 𝑎̂𝑧 ∙ 𝑎̂𝑧 

Observe that An Bm’s are all scalars and two dotted unlike unit vectors disappear since 

𝑎𝑥, 𝑎𝑦, 𝑎𝑧 are mutually perpendicular (cos 900=0), leaving: [𝐴 ∙ 𝐵 =  𝐴𝑥𝐵𝑥  + 𝐴𝑦𝐵𝑦 +

 𝐴𝑧𝐵𝑧,  

because 𝑎̂𝑥 ∙  𝑎̂𝑥 = 1
2, =  𝑎̂𝑦 ∙ 𝑎̂𝑦 = 𝑎̂𝑧 ∙ 𝑎̂𝑧 = 1  

dotting a vector 𝐴  with a unit vector in any direction results in mechanically 

advantageous result of merely determining the component of that vector along the axis 

on which the unit vector lies:  

𝐴 . 𝑎̂ = |𝐴 ||𝑎̂| cos 𝜃𝐴𝑎 = 𝐴 cos 𝜃𝐴𝑎 

Example 1.1: Given the vector 𝐹 = 𝑧𝑎𝑥 + 3.5𝑎𝑦 − 2𝑥𝑎 and the point 𝑃 (3, 2, 4) 

determined (1) 𝐹  𝑎𝑡 𝑃.  

Solution:  

 (1) To determine 𝐹  𝑎𝑡 𝑃, 

𝐹 (𝑟 𝑝) = 4𝑎𝑥 + 3.5𝑎𝑦 − (2)(3)𝑎𝑧 = 4𝑎𝑥 + 3.5𝑎𝑦 − 6𝑎𝑧 

(2) The scalar component of 𝐹  𝑎𝑡 𝑃 in the direction of 𝑎𝑁 = (2𝑎̂𝑥 − 𝑎̂𝑦 + 2𝑎̂𝑧)/3: 

(𝐹 . 𝑎 𝑁) = (4𝑎̂𝑥 + 3.5𝑎̂𝑦 − 6𝑎̂𝑧).
2𝑎̂𝑥 − 𝑎̂𝑦 + 2𝑎̂𝑧

3
  

=
8 − 3.5 − 12

3
=
7.5

3
= −2.5 

(3) the vector component of 𝐹  in the direction of 𝑎 𝑁. 

(𝐹 . 𝑎̂𝑁)𝑎𝑁 = −2.5 ×
(2𝑎̂𝑥 − 𝑎̂𝑦 + 2𝑎̂𝑧)

3
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= −1.667𝑎̂𝑥 + 0.833𝑎̂𝑦 − 1.667𝑎̂𝑧 

(4) The angle 𝜃𝐹𝑎 between 𝐹 (𝑟 𝑝) and 𝑎̂𝑁:  

−2.5 = 𝐹 . 𝑎̂𝑁 = |𝐹 | cos 𝜃𝐹𝑎 ⟹  cos 𝜃𝐹𝑎 = −
2.5

|𝐹 |
 

cos 𝜃𝐹𝑎 = −
2.5

√6 + 12.25 + 36
 = −

2.5

8.02
 

𝜃𝐹𝑎 = cos
−1(−

2.5

8.02
) = 71.83° 

You can try this: Consider the vector field 𝐶  = yax – 2.5xay +3.5az and the point P (4, 5, 2). 

We wish to find: C at P; the scalar component of 𝐶  at P in the direction of aN = 
1

3
 (2ax + ay 

– 2az); the vector component of 𝐶  at Q in direction of aN; and finally, the angle 𝜃𝐶𝑅  

between C (rC) and aN.  

Notice that in this proceeding example, the component of the vector 𝐹  can be 

dependent on the magnitude of the scalar component of a vector located at P, in any 

direction.  

1.4 The Vector Product 

By definition, the vector (or cross) product of 𝐴  and 𝐵⃗  is:  

𝐴 × 𝐵⃗ (A cross B) = 𝑎̂𝑁|𝐴 ||𝐵⃗ | sin 𝜃𝐴𝐵 ,   𝑤𝑖𝑡ℎ   𝜃𝐴𝐵   being the smaller angle between 

𝐴  𝑎𝑛𝑑 𝐵⃗ . 

Therefore, 180𝑜 > 𝜃𝐴𝐵 > 0
𝑜; and 𝑎̂𝑁 is the unit vector normal to the plane containing 

vectors 𝐴  𝑎𝑛𝑑 𝐵⃗  with its direction obeying the right-handed screw rule when 𝐴  is turned 

into 𝐵⃗ .  

𝐴  × 𝐵⃗ = (𝐴𝑥𝑎̂𝑥𝑦 + 𝐴𝑦𝑎̂𝑦 + 𝐴𝑧𝑎̂𝑧) × (𝐵𝑥𝑎̂𝑥 + 𝐵𝑦𝑎̂𝑦 + 𝐵𝑧𝑎̂𝑧)   1.4 

= 𝐴𝑥𝐵𝑥𝑎̂𝑥 × 𝑎̂𝑥 + 𝐴𝑥𝐵𝑦𝑎̂𝑥 × 𝑎̂𝑦 + 𝐴𝑥𝐵𝑧𝑎̂𝑥 × 𝑎𝑧 
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+𝐴𝑦𝐵𝑥𝑎̂𝑦 × 𝑎̂𝑥 + 𝐴𝑦𝐵𝑦𝑎̂𝑦 × 𝑎̂𝑦 + 𝐴𝑦𝐵𝑧𝑎̂𝑥 × 𝑎̂𝑧 

+𝐴𝑧𝐵𝑥𝑎̂𝑧 × 𝑎̂𝑥 + 𝐴𝑧𝐵𝑦𝑎̂𝑧 × 𝑎̂𝑦 + 𝐴𝑧𝐵𝑧𝑎̂𝑧 × 𝑎̂𝑧 

This time around 𝑎̂𝑥 × 𝑎̂𝑥 = 𝑎̂𝑦 × 𝑎̂𝑦 = 𝑎̂𝑧 × 𝑎̂𝑧 = 0, because sin 0 = 0, when a vector is 

crossed onto itself! 

Combined,  

𝐴 × 𝐵 = (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦)𝑎̂𝑥 + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧)𝑎̂𝑦 + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥)𝑎̂𝑧 

Though this looks quite complicated, the cyclic nature of the terms lends itself to easy 

remembrance, once the first grouping is put down. Notice  that y into z and x into y 

implies  (𝐴𝑦𝐵𝑧……)𝑎̂𝑥, and the negative second grouping is put down by merely 

exchanging the subscripts y, z  attached to A, B respectively: 𝐴𝑦𝐵𝑧 ⟹𝐴𝑧𝐵𝑦 

 𝑥𝑦𝑧;   𝑦𝑧𝑥;  𝑧𝑥𝑦 cyclically for the second and third grouped terms.  

However, in a more compact easily remembered form we write the determinant:   

   𝐴 × 𝐵⃗ = |

𝑎̂𝑥 𝑎̂𝑦 𝑎̂𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

|     1.4.1 

Example 1.2:   Given  𝐴 = 3𝑎̂𝑥 − 2𝑎̂𝑦 + 𝑎𝑧 , 𝐵⃗ = −2𝑎̂𝑥 − 𝑎̂𝑦 + 4𝑎̂𝑧, then  

  

𝐴 × 𝐵⃗ = |
𝑎̂𝑥 𝑎̂𝑦 𝑎̂𝑧
3 −2 1
−2 −1 4

| 

= [(−2)(4) − (−1)(1)]𝑎̂𝑥 + [(1)(−2) − (3)(4)]𝑎̂𝑦 + [(3)(−1) − (−2)(−2)]𝑎̂𝑧 

= (−8 + 1)𝑎̂𝑥 + (−2 − 12)𝑎𝑦 + (−3 − 4)𝑎𝑧 

= −7𝑎̂𝑥 − 14𝑎̂𝑦 − 7𝑎̂𝑧 
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1.5 Unit Vector  

 A unit vector (𝐴̂) has the direction of main vector (𝐴 ) but is of unit magnitude. It is 

the ratio of vector itself by its magnitude.  

𝐴̂ =
𝐴 

|𝐴|
      1.5 

 

Fig 1.2 Vector Addition 

 

|𝐴| = √𝐴𝑥2 + 𝐴𝑦2 + 𝐴𝑧2, where 𝐴𝑥, 𝐴𝑦, 𝐴𝑧 are components of vector 𝐴  along  𝑥, 𝑦, 𝑧 

directions.   

Example 1.3 given point M (-1,2,1), N (4, -4,0) and P (-1, -3, -4), find:  

(a) RMN  

(b) RMN + RMP   

(c) |rM| 

(d) 𝑎̂MP 

(e) 2|rP|– 3|rM|  

 Solution  

(a)  [4 – (-1)]ax + [-4 -2]ay + [0-1]az = 5ax – 6ay – az 

(b)  (5ax - 6ay – az) + (-ax -5ay -5az)) = 4ax – 11ay – 6az   



                                                                                                     Electromagnetic Field Theory 

10 
 

(c)  √1 + 4 + 1 = √6 = 2.45 

(d) (
𝑎𝑥−5𝑎𝑦−5𝑎𝑧

√25+25+1
) = -0.14ax – 0.7ay – 0.7az    

(e)  [2√(4 + 9 + 16)-3(√1 + 4 + 1)] = 3.42  

Example 1.4: A vector field  𝑟⃗⃗   is expressed in rectangular coordinates as: 

  𝑟⃗⃗  ={125/[(x-1)2+(y-2)2+(z+1)2]} {x-1) ax +(y-2) ay + (z+1) az}  

(a)  Evaluate  𝑟⃗⃗   at A(3 5, 4)  

(b) Determine a unit vector that gives the direction of  𝑟⃗⃗    𝑎𝑡 𝐴(2,4,3)  

(c) Specify unit vector extending from origin towards point M (2, -2, 1) 

 

Solution  

(a) 6.579ax + 9.869ay + 16.447az  (Put x=3, y=5, z=4) 

(b) 0.218ax + 0.436ay +0.873az  𝑟  at A(2,4,3) 

(c)        (d)  𝑎̂𝑀 = 
𝑀

|𝑀|
= 

2𝑎𝑥−2𝑎𝑦−𝑎𝑧

√(2)2+(−2)2+(−1)2
 

 = 0.667ax – 0.667ay – 0.333az Ans 

Example 1.5:  Add the following vectors  

(a) 𝐴 = 16𝑥̂ + 3𝑦̂ 𝑎𝑛𝑑 𝐵⃗ =  3𝑥̂ − 7𝑦̂ 

(b) 𝐴 = −8𝑥̂ + 12𝑦̂; 𝐵⃗ = −5𝑦̂ + 15𝑥̂; 𝐶 =  −2𝑥̂ + 47𝑦̂ 

Solution: (a)  𝐴 + 𝐵⃗ = (16 + 4) 𝑥̂ + (3 − 7)𝑦̂  

  𝐴 +𝐵⃗ = 20 𝑥̂ − 4𝑦̂ Ans 

 (b)  𝐴 +𝐵⃗ + 𝐶 = (−8 + 15 − 2) 𝑥̂ + (12 − 5 + 4)𝑦̂ 

  𝐴 + 𝐵⃗ +𝐶 = 5𝑥̂ + 54𝑦̂ Ans 

1.6 Properties of Vector Product 

1. Associative Law  (𝐴 𝑥 𝐵⃗ )𝑥𝐶 ≠𝐴 × (𝐵⃗ ×𝐶 )    1.6 
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2. Distributive law  𝐴 𝑥 (𝐵⃗ +𝐶 ) =𝐴 𝑥𝐵⃗ + 𝐴 𝑥𝐶     1.6.1 

3. Cross product AB sin 𝜃 is the area of parallelogram PQRS of which vectors 𝐴 𝑎𝑛𝑑 

𝐵⃗  are two adjacent sides, see in Fig. 1.3  

 The cross-product operation is useful for obtaining the unit vector normal to two 

given vectors at a point, i.e.  

1𝑁 =
𝐴 𝑥 𝐵⃗ 

𝐴𝐵𝑠𝑖𝑛𝜃
 

For unit vectors along 𝑥̂, 𝑦̂, 𝑧,̂ we have  

𝑖𝑥  𝑥 𝑖𝑥 = 0;
𝑖𝑦  𝑥 𝑖𝑥 = −𝑖𝑧
𝑖𝑧  𝑥 𝑖𝑥 = 𝑖𝑦

 

𝑖𝑥  𝑥 𝑖𝑦 = 𝑖𝑧;

𝑖𝑦  𝑥 𝑖𝑦 = 0;

𝑖𝑧  𝑥 𝑖𝑦 = −𝑖𝑥

 

𝑖𝑥  𝑥 𝑖𝑧 = 𝑖𝑦;

𝑖𝑦  𝑥 𝑖𝑧 = 𝑖𝑥
𝑖𝑧  𝑥 𝑖𝑧 = 0

 

     

𝐴 𝑥𝐵⃗  

𝐵⃗  

𝐴  

Q R

SP

1 N

 

Figure 1.3 (a) Product of two vectors related to Area of Parallelogram 

Thus, cross product of two identical unit Vectors is the null vector 0. If we arrange the 

unit vectors in the manner ix iy izix iy, then going to right the cross product of any two 

successive unit vectors is the following unit vector, whereas going to left the cross 

product of any two, successive unit vectors is negative of the following unit vector.  Also, 

cross product is not commutative since.  

𝐵⃗ ×𝐴 = |𝐵||𝐴| sin 𝜃 (−𝑖𝑁) = −𝐴𝐵𝑠𝑖𝑛𝜃𝑖𝑁 = − 𝐴 ×𝐵⃗  

Component of a vector in a vector in a particular direction is given by dot multiplication 

of the vector and unit vector in that direction as in Fig 1.3(b) 



                                                                                                     Electromagnetic Field Theory 

12 
 

                𝐶 = (𝐶 . 1𝐴) 1𝐴 + (𝐶 . 1𝐵) 1𝐵                                                          1.7  

     

C
1 B

1 A

𝛽 
𝛼 

                                                                                                                 

Figure 1.3 (b) Component of vector 𝐶  in 2 directions 

1.7 Scalar Triple Product 

[𝐴 ∙ (𝐵⃗ ×𝐶 )] Scalar triple product involves three vectors in a dot product operation and a 

cross product operation.  

It gives the value of volume of parallel-piped having the three vectors as three of 

its contiguous edges.    

𝐴 ∙ (𝐵⃗ ×𝐶 ) =𝐵⃗ ∙ (𝐶 ×𝐴 ) =𝐶 ∙ (𝐴 ×𝐵⃗ ) 

𝐴 ∙ ( 𝐵⃗ × 𝐶 ) = |
𝐴1  𝐴2 𝐴3
𝐵1  𝐵2 𝐵3
𝐶1  𝐶3 𝐶3

|                                                    1.8 

 

Example 1.7 The three vertices of a triangle are located at P(6, -1, 2), Q(-2, -3, -4) and 

N(-3, 1, 5). Find: (a) RPQ; (b) RPN; (c) the angle.  

Solution: 

(a) -8ax - 2ay – 6az [Hint: 𝑅𝑄 − 𝑅𝑃 = (−2 − 6)𝑎𝑥 + (−3 + 1)𝑎𝑦 + (−4 − 2)𝑎𝑧) ] 

(b) -9ax + 2ay + 3az [Hint: 𝑅𝑁 − 𝑅𝑃 = (−3 −  6)aX + (1 +  1)ay + (5 − 2)aZ 
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(c) 59.60
  [Hint: 𝜃 = cos−1 (

(𝑅𝑄− 𝑅𝑃).(𝑅𝑁−𝑅𝑃)

|𝑅𝑄− 𝑅𝑃| |𝑅𝑁−𝑅𝑃|
=

50

√(64+4+36)(81+4+9)
) 

Example 1.8 If 𝑃⃗ = 2𝑎𝑥 − 3𝑎𝑦 + 𝑎𝑧 𝑎𝑛𝑑 𝑄⃗ = −4𝑎𝑥 − 2𝑎𝑦 + 5𝑎𝑧 , we have to find 𝑃⃗ 𝑥𝑄⃗ . 

Solution: 𝑃⃗ ×𝑄⃗ = |

𝑎𝑥 𝑎𝑦 𝑎𝑧
2 −3 1
−4 −2 5

| 

= [(−3)(5) − (1)(−2)]𝑎𝑥 − [(2)(5) − (1)(−4)]𝑎𝑦 + [(21)(−2) − (−3)(−4)]𝑎𝑧 

𝑃⃗ × 𝑄⃗ = –13ax – 14ay – 16az Ans  

Example 1.9:  The three vertices of a triangle are located at A(6, -1, 2), B (-2, 3, -4), and 

C(-3, 1, 5). Find: RAB x RAC (b) the area of triangle (c) a unit vector perpendicular to plane 

in which triangle is located. Solution  

(a) 24𝑎̂x + 78𝑎̂y + 20𝑎̂z  

(b) 42  

(c) 0.286𝑎̂x + 0.928𝑎̂y +0.238𝑎̂z.  

Example 1.10: Refer to Example 1.5 and find angle of the resultant vector with respect to 

x-axis.  

Solution: let us say 𝐶 =𝐴 +𝐵⃗ = 𝟐𝟎𝒙 − 𝟒𝒚̂ 

∴ magnitude of   𝐶 =|𝐶| = √(20)2 + (4)2    = 20.396 

Angle of ‘C’ w.r.t. x-axis 

Solution: lets us say 𝐶 =𝐴 +𝐵⃗ = 𝟐𝟎𝒙̂ − 𝟒𝒚̂ 

∴ magnitude of 𝐶 = |𝐶| = √(20)2 + (4)2 = 20.396 

Angle of “C” w.r.t. x-axis 

∝ = 𝑐𝑜𝑠−1 (
𝐶𝑥
|𝐶|
) = 𝑐𝑜𝑠−1 (

20

20.396
) 

∝= 11. 310 Ans. 
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Example 1.11: Given 𝐴 = 6𝑥̂ +2𝑦̂ + 10𝑧̂, 𝐵⃗ = 3𝑥̂ +4𝑦̂ + 7𝑧̂. Find (a) the area of 

parallelogram of which 𝐴 𝑥 𝐵⃗  are adjacent sides, (b) unit vectors normal to plane 

containing 𝐴  𝑎𝑛𝑑 𝐵⃗  

Solution: (a) area of parallelogram of which 𝐴  𝑎𝑛𝑑 𝐵⃗  are adjacent sides 

|𝐴 ×𝐵⃗ | = |
𝒙̂ 𝒚̂ 𝒛̂
𝟔 𝟐 𝟏𝟎
𝟑 𝟒 𝟕

| 

= 𝒙̂(14 − 40) − 𝑦̂(42 − 30) + 𝑧̂(24 − 6) 

= −𝟐𝟔𝒙̂ − 𝟏𝟐𝒚̂ + 𝟏𝟖𝒛̂ 

Area of ||𝑔𝑚 = √262 + 122 + 182 

𝐴𝑟𝑒𝑎 = 33.82 Ans 

(b)            𝑖𝑛 =
𝐴 𝑥 𝐵⃗ 

|𝐴 𝑥 𝐵⃗ |
  

⇒ 𝑓𝑟𝑜𝑚 (𝑎) | 𝐴 𝒙 𝐵⃗ | = 33.82 

𝐴 𝒙 𝐵⃗ = −26𝑥̂ − 12𝑦̂ + 18𝑧̂ 

∴  𝒊𝒏 = (0.029)(−26𝑥̂ − 12𝑦̂ + 18𝑧̂) 

= −0.77𝑥̂ − 0.35𝑦̂ + 0.53𝑧̂ 

𝒊𝒏 = −0.77𝑥̂ − 0.35𝑦̂ + 0.53𝑧̂ Ans 

Example 1.12: Evaluate:  

(a) 𝐴× ( 𝐵⃗ ×𝐶 ) 

(b) (𝐴 × 𝐵⃗ ) ∙ (𝐶 ×𝐷⃗⃗ )  

(c) (𝐴 ×𝐵⃗ ) × (𝐶 ×𝐷⃗⃗ )  

Solution: (a) let us first evaluate (𝐵⃗ ×𝐶 ) assume it to be  𝐷⃗⃗  
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∴ ( 𝐵⃗ 𝑥 𝐶 ) × 𝐷⃗⃗  =  |

𝑥̂ 𝑦̂ 𝑧̂
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧

| 

𝑥̂(𝐵𝑦𝐶𝑧 − 𝐵𝑧𝐶𝑦) − 𝑦̂(𝐵𝑥𝐶𝑧 − 𝐶𝑥𝐵𝑧) + 𝑧̂(𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥) 

⇒                    𝐴 𝑥 𝐵⃗ 𝑥 𝐶 = 𝐴 𝑥𝐷⃗⃗ =  |

𝑥̂ 𝑦̂ 𝑧̂
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐷𝑥 𝐷𝑦 𝐷𝑧

| 

There 𝐷𝑥 = 𝐵𝑦𝐶𝑧 − 𝐵𝑧𝐶𝑦 

𝐷𝑦 = 𝐶𝑥𝐵𝑧 − 𝐶𝑧𝐵𝑥 

𝐷𝑧 = 𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥 

∴             𝐴 𝑥(𝐵⃗ 𝑥𝐶 ) =  ∑𝑥̂ (𝐴𝑦(𝐵𝑥𝐶𝑦 − 𝐵𝑧𝐶𝑦) − 𝐴𝑍(𝐶𝑥𝐵𝑧 − 𝐶𝑧𝐵𝑥) 

= ∑𝑥̂ ( 𝐴𝑦 𝐵𝑥𝐶𝑦 − 𝐵𝑧𝐶𝑦) − 𝐴𝑍(𝐶𝑥𝐵𝑧 − 𝐶𝑧𝐵𝑥) 

= ∑𝑥̂ (𝐵𝑥(𝐴𝑦𝐶𝑦 + 𝐴𝑧𝐶𝑧) − 𝐶𝑥(𝐴𝑦𝐵𝑦 − 𝐴𝑧𝐵𝑧) 

= (𝐴 ∙𝐶 ) 𝐵 − (𝐴 ∙𝐵⃗ ) 𝐶  

⇒𝐴 𝑥 (𝐵⃗ 𝑥𝐶 ) = (𝐴 ∙𝐶 ) 𝐵 − (𝐴 ∙𝐵⃗ ) 𝐶  

(b) let us assume 𝐶 𝑥𝐷⃗⃗ = 𝐸⃗  

∴          (𝐴 𝑥𝐵⃗ ). (𝐸⃗ ) = 𝐴 (𝐵⃗ 𝑥 𝐸⃗ ) 

[intersecting dot and cross products]  

= 𝐴 ∙ (𝐵⃗ 𝑥(𝐶 𝑥𝐷⃗⃗ ))  

= 𝐴 ∙ ((𝐵⃗ ∙𝐷⃗⃗ ) 𝐶 −(𝐵⃗ ∙ 𝐶 )𝐷⃗⃗ )   

= (𝐵⃗ ∙𝐷⃗⃗ ) −(𝐴 ∙ 𝐷⃗⃗ ) (𝐴 ∙𝐶 )   
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∴           (𝐴 𝑥𝐵⃗ ). (𝐶 𝑥𝐷⃗⃗  ) (𝐴 ∙𝐶 ) =(𝐴 ∙𝐶 ) (𝐵⃗ ∙𝐷⃗⃗ ) −(𝐴 ∙ 𝐷⃗⃗ ) (𝐵⃗ ∙ 𝐶 )  𝐴𝑛𝑠 

(c) let us assume 𝐶 𝑥𝐷⃗⃗  = 𝐸⃗  

∴             (𝐴 𝑥𝐵⃗ ) 𝑥 𝐸⃗ = (𝐴 ∙𝐸⃗ ) 𝐵⃗ − (𝐵⃗ ∙𝐸⃗ )𝐴  [𝑓𝑟𝑜𝑚 (𝑎)] 

=   (𝐴 ∙ (𝐶 𝑥𝐷⃗⃗ ) ) − (𝐵⃗ ∙ (𝐶 𝑥𝐷⃗⃗ ) ) 𝐴  

(𝐴 𝑥𝐵⃗ ) 𝑥(𝐶 𝑥𝐷⃗⃗ ) ([𝐴 ∙⃗⃗ ⃗⃗ (𝐶 𝑥𝐷⃗⃗ ) ]  𝐵⃗ ) − ([𝐵⃗ ∙ (𝐶 𝑥𝐷⃗⃗ ) ] 𝐴 ) 

1.8 Physical Interpretation of Gradient  

 Maximum space rate of change of a physical function is called gradient of that 

function, e.g if scalar function V represent temperature, then ∇𝑉 = 𝑔𝑟𝑎𝑑 𝑉 is 

temperature gradient or rate of change of temperature with distance.  

 ∇𝑉 is a “vector quantity”, its direction being that in which the temperature 

changes most rapidly. 

                  ∇𝑉 =
𝜕𝑉

𝜕𝑥
𝑥̂ +

𝜕𝑉

𝜕𝑦
𝑦̂ +

𝜕𝑉

𝜕𝑍
𝑧̂                                             1.9 

     

With reference to fig 1.4 (a), we have defined an equipotential surface V(r) wherein 

𝜕𝑉

𝜕𝑙
  is derived of scalar V at point P in direction 𝜕𝑙 (change in length) 

𝜕𝑉

𝜕𝑛
 is derivation in direction of normal 

𝜕𝑉

𝜕𝑛
>
𝜕𝑉

𝜕𝑙
  (∴ 𝑃𝑄 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑉0𝑎𝑛𝑑 𝑉1  

(as shortest distance between any two lines is perpendicular between them) 

⇒        
𝜕𝑉

𝜕𝑙
=

𝜕𝑉

𝜕𝑙 cos 𝜃
 

                                                              ⇒        
𝜕𝑉

𝜕𝑙
=
𝜕𝑉

𝜕𝑛
cos 𝜃                                                    1.10 
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        (
𝜕𝑉

𝜕𝑛
1𝑁  ⇒ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑐𝑎𝑙𝑎𝑟 𝑉) 

                                                                                             
Figure 1.4 Equipotential Surface Vr = V(x , y , z) 

The gradient lines are orthogonal (perpendicular) to the equipotential lines (level 

surface). 

Note: 𝛁𝑽. 𝒅𝒍 = 𝟎 𝑜𝑛 𝑒𝑞𝑢𝑖𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  surface (as potential remains same throughout)  

 

Example: 1.13 Given the potential field, V=2x2y – 5z, and point P(4, 3, 6), we wish to find  

(a) The potential V (i.e E=- 𝛁𝑽) 

(b) The electricity field intensity  

Solution: (a) The potential at P(-4, 5, 6) is  

𝑉𝑝 = 2(−4)
2 (3) − 5(6) =  66 V 𝑨𝒏𝒔 

(b) we may use gradient operation to obtain electric field intensity  

𝐸 = −∇𝑉 = −4𝑥𝑦 𝑎𝑥 − 2𝑥
2 𝑎𝑦 + 5𝑎𝑧 𝑉/𝑚 

The value of 𝐸⃗  at point P is  

𝐸𝑝⃗⃗⃗⃗ = 48𝑎𝑥 −32𝑎𝑦 + 5𝑎𝑧 V/m 

And    |𝐸𝑝| =  √(48)2 +−32)2 + (5)2      = 57.9 V/m 𝑨𝒏𝒔 

Example 1.14:  Find gradient of a scalar function of position v where v(x, y, z)= x2 y +ez. 

calculate the magnitude of gradient at point P (1,5, -2).  
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Solution:  𝑣 (𝑥, 𝑦, 𝑧)  =  𝑥2𝑦 + 𝑒𝑧 

  

Gradient:                        𝑣 =  𝛁𝑽 =
𝜕𝑣

𝜕𝑥
𝑎̂𝑥 +

𝜕𝑣

𝜕𝑦
𝑎̂𝑦 +

𝜕𝑣

𝜕𝑧
𝑎̂𝑧 

= (2𝑥𝑦)𝑎̂𝑥 + (𝑥
2) 𝑎̂𝑦 + (𝑒

𝑧)𝑎̂𝑧 

At P (1, 5, 2)     ∇𝑉 = 10𝑎̂𝑥 + 𝑎̂𝑦 + 𝑒
−2 𝑎̂𝑧 = 10𝑎̂𝑥 + 𝑎̂𝑦 +

1

𝑒2
𝑎̂𝑧 

= 10𝑎̂𝑥 + 𝑎̂𝑦 + 0.1353𝑎̂𝑧 

|∇𝑣| = √(10)2 + (1)2 + (0.1353)2 = 10.051 

• “∇V" at any point is perpendicular to constant V surface that passes through that 

point.  

• In electrostatics, ∇⃗⃗ 𝑥 𝐸⃗ = 0, as curl of any vector is zero, then vector is 

represented by gradient of another scalar i.e, 𝐸⃗ = −∇𝑣 where “V” is scalar 

potential.  

1.9 Physical Interpretation of Divergence  

                                                                                                                                  
Figure 1.5 Divergence 

Net outward flow per unit volume is called divergence (for a compressible fluid).  

Derivation: the rectangular parallel-piped is assumed, ∇𝑥, ∇𝑦, ∇𝑧 is an 

infinitesimal volume element within the fluid (e.g., water, or steam) as in Fig. 1.5.  

If 𝜌𝑚 is mass density of fluid, flow into the volume through L.H.S face is 

𝜌𝑚 𝑣𝑦 ∆𝑥. ∆𝑧⇒ 𝑣𝑦 is the average of y component of fluid velocity through left hand face 

(as density =mass/volume and velocity=distance/time, ∆𝑥. ∆𝑧= 𝑎𝑟𝑒𝑎). 
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Corresponding velocity through the R.H.S face will be  

𝑣𝑦 + (
𝜕𝑣𝑦

𝜕𝑦
) ∆𝑦        1.11 

Flow through this face is  

             𝜌𝑚𝑣𝑦 + [
𝜕(𝜌𝑚𝑣𝑦

𝜕𝑦
 ∆𝑦] ∆𝑥 ∆𝑧                                                     1.12  

  The net outward flow in y direction is  

𝜕(𝜌𝑚𝑣𝑦)

𝜕𝑦
 ∆𝑥 ∆𝑦 ∆𝑧 (𝑖. 𝑒, 𝑅. 𝐻. 𝑆 𝑓𝑙𝑜𝑤 − 𝐿.𝐻. 𝑆 𝑓𝑙𝑜𝑤)  1.13 

Similarly, the net outward flow in z dirn   
𝜕(𝜌𝑚𝑣𝑦)

𝜕𝑦
 ∆𝑥 ∆𝑦 ∆𝑧    1.14 

   X dirn 
𝜕(𝜌𝑚𝑣𝑦)

𝜕𝑦
 ∆𝑥 ∆𝑦 ∆𝑧     1.15 

Total net outward flow is [
𝜕(𝜌𝑚𝑣𝑦)

𝜕𝑦
+
𝜕(𝜌𝑚𝑣𝑦)

𝜕𝑦
+
𝜕(𝜌𝑚𝑣𝑦)

𝜕𝑧
] ∆𝑥 ∆𝑦 ∆𝑧                            1.16 

Where ∆𝑥 ∆𝑦 ∆𝑧 represent volume of parallel-piped.      

The next outward flow per unit volume is  

𝜕(𝜌𝑚𝑣𝑥)

𝜕𝑥
+
𝜕(𝜌𝑚𝑣𝑦)

𝜕𝑦
+
𝜕(𝜌𝑚𝑣𝑧)

𝜕𝑧
= 𝜕𝑖𝑣(𝜌𝑚𝑣) = ∇. (𝜌𝑚𝑥                               1.17 

For incompressible fluid, divergence is always zero. (Solenoidal) 

Divergence      +ve for valve on steam boiler opened  

    -ve for evaluated light bulb broken  

Example 1.15  Find div 𝐷⃗⃗  𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 𝑖𝑓 𝐷⃗⃗ = 𝑒−𝑥 sin 𝑦 𝑎̂𝑦 + 2𝑧𝑎̂𝑧 

Solution: Divergence is given by  
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𝑑𝑖𝑣 𝐷⃗⃗ =
𝑑𝐷𝑥
𝑑𝑥

+
𝑑𝐷𝑦

𝑑𝑦
+
𝑑𝐷𝑧
𝑑𝑧

= −𝑒−𝑥 sin 𝑦 + 𝑒−𝑥 cos 𝑦 + 2

= 2 (𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 sin 0 = 0).          

Also, the value is the constant 2, regardless of location.  

Example 1.16:  Find the value of constant c for which vector  

𝐴 = (𝑥 + 3𝑦)𝑎̂𝑥 + (𝑦 − 2𝑧)𝑎̂𝑦 + (𝑥 + 𝐶𝑧)𝑎̂𝑧  is solenoidal. 

Solution: for a solenoidal vector field 𝐴  

    Div A=0  

    ∇. 𝐴 = 0 

⇒  [𝑎̂𝑥
𝜕

𝜕𝑥
+ 𝑎̂𝑦

𝜕

𝜕𝑦
+ 𝑎̂𝑧

𝜕

𝜕𝑧
] [(𝑥 + 3𝑦)𝑎̂𝑥 + (𝑦 − 2𝑧)𝑎̂𝑦 + (𝑥 + 𝑐𝑧)𝑎̂𝑧] = 0 

⇒  
𝜕

𝜕𝑥
(𝑥 + 3𝑦) +

𝜕

𝜕𝑦
(𝑦 − 2𝑧) +

𝜕

𝜕𝑧
(𝑥 + 𝑐𝑧) = 0 

⇒  𝑐 = −2 

• Divergence of scalar has no significance, as dot product cannot be applied to 

scalar quantities.  

• Divergence is positive when source spreads out every, as then the net flow of flex 

is in outward direction.  

• Divergence is negative when sink intakes the power given by source, as then 

system has inward flown flux. 

• Divergence is zero, if system is neither a source or a sink, as then there is zero net 

outward flow of flux. 

1.10 Physical Interpretation of Curl  

Rate of change of vector field is called curl, “circular rotation”. 

 Assumed here is stream of water over which leaf a float, therefore, if velocity at 

surface is entirely in y direction, ⇒ translational motion.  
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If there are eddies or vertices in stream flow ⇒ Rotational +Translational  

Vx

Vy

y

x

( x + V
Va x 

ay

( x + )V
Va y 

ax
dx

Leaf

z

y

)dy

                                           
Figure 1.6 Stream on surface of which floats a leaf  

The rate of rotation/angular velocity at any point is measure of curl of velocity of water 

at that point. 

(∆ 𝑥 𝑣)𝑧 Rotation/curl of v in z direction.  

+ve value denotes rotation from x to y. i.e counterclockwise dir” with reference to Fig. 

1.6; 

A positive value for (
𝜕𝑣𝑦

𝜕𝑥
) → rotate leaf in CW dir”    

A positive value for (
𝜕𝑣𝑥

𝜕𝑦
) → rotate leaf in CW dir” 

 The rate of rotation about z axis is proportional to difference between these two 

quantities  

(∆ 𝑥 𝑣)𝑧 = 
𝜕𝑣𝑦

𝜕𝑥
−
𝜕𝑣𝑥

𝜕𝑦
      1.18 

Similarly (∆ 𝑥 𝑣)𝑧 = 
𝜕𝑣𝑧

𝜕𝑦
−
𝜕𝑣𝑦

𝜕𝑧
       1.19 

And (∆ 𝑥 0)𝑧 = 
𝜕𝑣𝑥

𝜕𝑧
−
𝜕𝑣𝑧

𝜕𝑥
        1.20 

⇒  ∇𝑥𝑣 = (
𝜕𝑦𝑧

𝜕𝑦
−
𝜕𝑣𝑦

𝜕𝑧
) 𝑥̂ + (

𝜕𝑣𝑥

𝜕𝑧
−
𝜕𝑣𝑧

𝜕𝑥
) 𝑦̂ + (

𝜕𝑣𝑦

𝜕𝑥
−
𝜕𝑣𝑥

𝜕𝑦
) 𝑧̂  1.21  

𝑵𝒐𝒕 𝒏𝒆𝒄𝒆𝒔𝒔𝒂𝒓𝒚 𝒕𝒐 𝒉𝒂𝒗𝒆 𝒄𝒊𝒓𝒄𝒖𝒍𝒂𝒓 𝒎𝒐𝒕𝒊𝒐𝒏 𝒕𝒐 𝒉𝒂𝒗𝒆 𝑪𝑼𝑹𝑳, 
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𝒊𝒇 𝒗𝒙 = 𝟎, 𝒗𝒚 𝒗𝒂𝒓𝒊𝒆𝒔 𝒊𝒏 𝒙 𝒅𝒊𝒓", (𝛁𝒙𝒗)𝒛 =
𝝏𝒗𝒚

𝝏𝒙
⇒ 𝑪𝑼𝑹𝑳 

 Other way. The curl of vector 𝐵⃗  is a vector whose magnitude is maximum net 

circular of 𝐵⃗  per unit area as the area tends to zero and whose direction is normal 

direction of area when the area is oriented to make the net circulation maximum.  

                                 ∇ × 𝐵⃗ = lim
∇𝑠→0

∮ 𝐵.𝑑𝑙
→  

∇𝑠
 1𝑛

𝐴𝐶

                                              1.22 

If curl of any vector is zero then it is called irrotational.  

• If the divergence of vector is zero, then that vector quantity can be expressed as 

curl of another, ∇. 𝐵⃗ = 0 then 𝐵⃗ = ∇𝑥𝐴  (𝐴  is magnitude vector potential)  

Example 1.17  If 𝐴 = 𝑥𝑧3𝑎̂𝑥 − 2𝑥
2𝑦𝑧 𝑎̂𝑦 + 2𝑦𝑧

4 𝑎̂𝑧, find ∇⃗⃗ 𝑥 𝐴  at point (1, -1, 1). 

Solution ∇⃗⃗ 𝑥 𝐴 = |

𝑎̂𝑥 𝑎̂𝑦 𝑎̂𝑧
𝑑

𝑑𝑥

𝑑

𝑑𝑦

𝑑

𝑑𝑧

𝑥𝑧3 −2𝑥2𝑦𝑧 2𝑦𝑧4

| 

= 𝑎̂𝑥 [
𝑑

𝑑𝑦
(2𝑦𝑧4) −

𝑑

𝑑𝑧
(−2𝑥2𝑦𝑧)] + 𝑎̂𝑦 [

𝑑

𝑑𝑧
(𝑥𝑧3) −

𝑑

𝑑𝑥
(2𝑧𝑦4)]

+ 𝑎̂𝑧 [
𝑑

𝑑𝑥
(−2𝑥2𝑦𝑧) −

𝑑

𝑑𝑧
(𝑥3𝑧)] 

= 𝑎̂𝑥(2𝑧
4 + 2𝑥2𝑦) + 𝑎̂𝑦(3𝑥𝑧

2) + 𝑎̂𝑧(−4𝑥𝑦𝑧)𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 (1, −1, 1) 

∇⃗⃗ 𝑥 𝐴  = 𝑎̂𝑥(2 − 2) + 𝑎̂𝑦(3) + 𝑎̂𝑧(4) = 3𝑎̂𝑦 + 4𝑎̂𝑧 

Example 1.18: Show that the field 𝐹 = (
150

𝑟2
) 𝑎̂𝑟 + 10𝑎̂∅ (cylindrical coordinate) is 

irrotational and non-solenoidal.  

Solution: For field to be irrotational ∇⃗⃗ 𝑥 𝐹 = 0 

Using formula for curl 𝐹  𝑖𝑛 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒    
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We get ∇⃗⃗ 𝑥 𝐹 = |
|

𝑎̂𝑟

𝑟
𝑎∅

𝑎̂𝑧

𝑟
𝑑

𝑑𝑟

𝑑

𝑑∅

𝑑

𝑑𝑧
150

𝑟2
10𝑟 0

|
| (formula for curl in cartesian co-ordinates) 

= 
𝑎̂𝑟
𝑟
(0 −

𝑑

𝑑𝑧
(10𝑟)) + 𝑎̂∅ [

𝑑

𝑑𝑧
(
150

𝑟2
)] +

𝑎̂𝑧
𝑟
[
𝑑

𝑑𝑟
(10𝑟)] −

𝑑

𝑑∅
(
150

𝑟2
) 

= 0      𝑝𝑟𝑜𝑣𝑒𝑑  

For field to be solenoidal ∇.𝐹 = 0 

⇒              ∇.𝐹 =
1

𝑟
 
𝑑

𝑑𝑟
 (𝑟
150

𝑟2
) +

1

𝑟
 
𝑑

𝑑∅
(10) =

150

𝑟3
≠ 0 

So, non-solenoidal.  

Example 1.19: If 𝑟 = 𝑥𝑎̂𝑥 + 𝑦𝑎̂𝑦 + 𝑧𝑎̂𝑧 show that  

i) ∇⃗⃗ ∙ 𝑟 = 3 

Solution: (i) ∇⃗⃗ ∙ 𝑟 = [𝑎̂𝑥
𝑑

𝑑𝑥
+ 𝑎̂𝑦

𝑑

𝑑𝑦
+ 𝑎̂𝑧

𝑑

𝑑𝑧
] ∙ [𝑎̂𝑥𝑥 + 𝑎̂𝑦𝑦 + 𝑎̂𝑧𝑧] 

 

=
𝑑(𝑥)

𝑑𝑥
+
𝑑(𝑦)

𝑑𝑦
+
𝑑(𝑧)

𝑑𝑧
 

∇⃗⃗ ∙ 𝑟 = 1 + 1 + 1 = 3 𝒑𝒓𝒐𝒗𝒆𝒅 

ii)  ∇⃗⃗ ∙ 𝑟 = [𝑎̂𝑥
𝑑

𝑑𝑥
+ 𝑎̂𝑦

𝑑

𝑑𝑦
+ 𝑎̂𝑧

𝑑

𝑑𝑧
] . [𝑎̂𝑥𝑥 + 𝑎̂𝑦𝑦 + 𝑎̂𝑧𝑧] 

                          ∇⃗⃗ ∙ 𝑟 = 𝑎̂𝑥 [
𝑑𝑧

𝑑𝑦
−
𝑑𝑦

𝑑𝑧
] + 𝑎̂𝑦 [

𝑑𝑥

𝑑𝑧
−
𝑑𝑧

𝑑𝑥
] + 𝑎̂𝑧 [

𝑑𝑦

𝑑𝑥
−
𝑑𝑥

𝑑𝑦
]= 0                  𝑃𝑟𝑜𝑣𝑒𝑑 

Example 1.20: For a vector field 𝐴  in cylindrical coordinates 

 𝐴 (r,𝜃, 𝑧) = 𝑟3 sin 𝜃 𝑟̂ + 𝑟𝑐𝑜𝑠2𝜃 ∅̂ + 𝑧 𝑡𝑎𝑛 𝜃𝑧̂  determine (i)∇.𝐴  𝑎𝑛𝑑 ∇ × 𝐴 ̇  
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Solution: (i)  
1

𝑟
 
𝑑

𝑑𝑟
( 𝐴𝑟) +

1

𝑟
 
𝑑𝐴𝑧

𝑑𝜃
+
𝑑𝐴𝑧

𝑑𝑧
= ∇.𝐴  

Where   𝐴𝑟 = 𝑟
2𝑠𝑖𝑛𝜃 

   𝐴𝜃 = 𝑟 𝑐𝑜𝑠
2𝜃 

   𝐴𝑧 = 𝑧 𝑡𝑎𝑛𝜃 

⇒  ∇.𝐴 =
1

𝑟

𝑑

𝑑𝑟
(𝑟3 𝑠𝑖𝑛𝜃) +

1

𝑟

𝑑𝑟𝑐𝑜𝑠2𝜃

𝑑𝜃
+

𝑑

𝑑𝑧
(𝑧 𝑡𝑎𝑛𝜃) 

   =
1

𝑟
 3𝑟2𝑠𝑖𝑛𝜃 +

𝑑

𝑑𝜃
 (𝑐𝑜𝑠2𝜃) + 𝑡𝑎𝑛𝜃 

   = 3𝑟 𝑠𝑖𝑛𝜃 + 2𝑐𝑜𝑠𝜃(−𝑠𝑖𝑛𝜃) + 𝑡𝑎𝑛𝜃 

∇.𝐴 = 3𝑟 𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛2𝜃 + 𝑡𝑎𝑛𝜃 

(ii)    ∇ ×𝐴 = ||

𝑟̂

𝑟
𝜃

𝑧̂

𝑟
𝑑

𝑑𝑟

𝑑

𝑑𝜃

𝑑

𝑑𝑧

𝐴𝑟 𝑟𝐴0 𝐴𝑧

|| 

   𝛁.𝐴 =
𝒓̂

𝒓
 [
𝒅

𝒅𝜽
(𝑧𝑡𝑎𝑛𝜃) −

𝑑

𝑑𝑧
(𝑟2𝑐𝑜𝑠2𝜃) 

−𝜃 [
𝑑

𝑑𝑟
(𝑧 𝑡𝑎𝑛∅) −

𝑑

𝑑𝑧
(𝑟2 sin 𝜃) ] 

+ 
𝑧̂

𝑟
[
𝑑

𝑑𝑟
(𝑟2𝑐𝑜𝑠2) −

𝑑

𝑑𝜃
(𝑟2 sin 𝜃) ] 

= [
𝑟̂

𝑟
(𝑧 𝑠𝑒𝑐2∅) − 0̂[0] +

𝑧̂

𝑟
(2𝑟𝑐𝑜𝑠2𝜃 − 𝑦2 𝑐𝑜𝑠𝜃] 

∇.𝐴 =
1

𝑟
[𝑧𝑠𝑒𝑐2𝜃𝑟̂ + (2𝑟 𝑐𝑜𝑠2𝜃 − 𝑟2 cos 𝜃)𝑧̂] 

Two null identities  

(a) ∇. ∇𝑉 = 0 

The curl of gradient of any scalar field is identically zero.  
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Proof: from strokes theorem we can write.  

∫ (∇ × ∇𝑉) ∙𝑑𝑠⃗⃗⃗⃗ = ∮(∇𝑉) ∙𝑑𝑙⃗⃗  ⃗ 

 i.e surface integral of ∇𝑥∇𝑉  over any surface gives line integral of ∇𝑉 around 

closed path bounding that surface.  

Also    ∮ (∇ × ∇𝑉) ∙𝑑𝑙⃗⃗  ⃗= ∮(d𝑉) (which is zero) 

⇒  ∮(∇ × ∇𝑉) ∙ 𝑑𝑠⃗⃗⃗⃗ = 0 

Or   ∇ × ∇𝑉 = 0 

Converse statement is: if a vector field is curl, free then it can be expressed as the 

gradient of scalar field. 

 Suppose 𝐸⃗⃗  is vector field then if ∇𝑥 𝐸⃗ = 0 we can say that 𝐸⃗ = −∇𝑉. 

𝐴𝑛 𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 (𝑜𝑟 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒)𝑣𝑒𝑐𝑡𝑜𝑟  𝑓𝑖𝑒𝑙𝑑 𝑐𝑎𝑛 𝑎𝑙𝑤𝑎𝑦𝑠 𝑏𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑒𝑑 𝑎𝑠 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑖𝑒𝑙𝑑 

 B ∇ × (∇ ×𝐴 ) = 0 

The divergence of curl of any vector field is zero  

Proof: from divergence theorem 

∮ ∇. (∇ ×𝐴 ) 𝑑𝑣 = ∮(∇𝑥 𝐴 ) ∙ 𝑑𝑠⃗⃗⃗⃗ 
𝑠𝑣

 

Here we have taken arbitrary volume V and split it in two open surface S1 and S2 

connected by a common boundary that has been drawn twice as C1 and C2 

∴     ∮(∇ ×𝐴 ) ∙ 𝑑𝑠⃗⃗⃗⃗ = ∮(∇𝑥𝐴 ). 𝑛̂2𝑑𝑠
𝑠𝑠

 

= ∮ 𝐴 ∙𝑑𝑙⃗⃗  ⃗ + ∮ 𝐴 ∙𝑑𝑙⃗⃗  ⃗
𝐶2𝐶1
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Here, the two-line integrals on R.H.S of above equation follow same path but in 

opposite directions thus sum is zero, hence we can say that 

∮(∇ ×𝐴 ) ∙ 𝑑𝑠⃗⃗⃗⃗ = 0
𝑠

 

Or   ∇ × (∇ ×𝐴 ) = 0 

                                                                                               
Figure 1.7 Proof of vector B 

Converse statement is: if a vector field is divergenceless, then it can be expressed 

as curl of another vector field is if B is vector field an ∇. 𝐵 = 0, 

 hence.  

𝐵⃗ = ∇ ×𝐴  

1.11 Divergence Theorem 

 “The volume integral to the divergence of vector field 𝐴 , taken over any volume V 

is equal to surface integral of 𝐴  taken over the closed surface (total outward flux of 

vector through surface) that bounds the volume V” is definition of Divergence Theorem 

 

∮ (∇ ∙𝐴 ) ∙ 𝑑𝑉 = ∮𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 
𝑠𝑣

      1.23 

Example 1.21:  Show that (a)  ∮𝐹 ∙𝑑𝑠⃗⃗⃗⃗ = 6𝑉
𝑠

 where s is a closed surface, enclosing a 

volume V and 𝐹 = 2𝑥𝑎̂𝑥 + 3𝑦𝑎̂𝑦 + 𝑧𝑎̂𝑧. 

(b) Use divergence theorem to evaluate ∫ 𝐹 ∙𝑑𝑠⃗⃗⃗⃗ 
𝑆

 when 𝐹 = 𝑥3𝑎𝑥 + 𝑦
3𝑎𝑦 + 𝑧

3𝑎𝑧 and 

S is surface of sphere 𝑥2 + 𝑦2 + 𝑧2. 
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Solution: from divergence theorem  

(a) ∫𝐹 ∙𝑑𝑠⃗⃗⃗⃗ 
𝑠

∫ ∇⃗⃗ ∙𝐹 𝑑𝑉 =
𝑣

∫ (
𝑑

𝑑𝑥
(2𝑥) +

𝑑

𝑑𝑦
(3𝑦) +

𝑑

𝑑𝑧
(𝑧)) 𝑑𝑉

𝑣
 

∫(2 + 3 + 1)𝑑𝑉 = 6 ∫𝑑𝑉

𝑣
𝑣

 

= 6 V 

(b) Divergence theorem ∫𝐹 ∙𝑑𝑠⃗⃗⃗⃗ 
𝑠

= ∫ ∇⃗⃗ ∙ 𝐹 𝑑𝑉
𝑣

  

    R. H. S =
𝑑(𝑥3)

𝑑𝑥
 +
𝑑(𝑦3)

𝑑𝑦
+
𝑑(𝑧3)

𝑑𝑧
= ∫(3𝑥2 +

𝑣

3𝑦2 + 3𝑧2) 𝑑𝑉 

= 3∫(𝑥2 + 𝑦2 + 𝑧2)𝑑𝑉 = 3𝑎2∫𝑑𝑉⃗⃗⃗⃗  ⃗

𝑣𝑣

 

= 3𝑎2 x Volume of sphere 

= 3𝑎2 ×
4

3
𝜋𝑎3 = 4𝜋𝑎5 

EXAMPLE 1.22: Given that 𝐸⃗ (𝑦, 𝜃, 𝑠) =
1

𝑟4
𝑠𝑖𝑛2𝜃 𝑟̂, evaluate (i) ∫ 𝐸⃗ ∙𝑑𝑠⃗⃗⃗⃗ 

𝑠
(ii) ∭(∇.𝐸⃗ ) 𝑑𝑣 

over the region between spherical surfaces 𝑟 = 2 and 𝑟 = 4. What is the inference 

drawn from results obtained in (i) and (ii)? 

Solution: (i) ∫ 𝐸⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ 
𝑠

 (you need to refer spherical coordinate system text). 

⇒     ∫ 𝐸⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ = ∫ ∫
1

4
. sin2 𝜃 𝑟

2𝜋

∅=0

𝜋

𝜃=0𝑠

sin 𝜃 𝑑∅ 𝑟𝑑𝜃 

=
1

𝑟2
 ∫ 𝑠𝑖𝑛2𝜃 𝑑𝜃 ∫ sin 𝜃 𝑑𝜃 =

1

𝑟2
[
1 − cos 2𝜃

2
 ]
0

2𝜋

[−𝑐𝑜𝑠𝜃]0
𝜋

𝜋

𝜃=0

2𝜋

∅−=0

 

=
1

𝑟2
× [(

1 − 1

2
) − (

1 − 1

2
)] [−(−1 − 1)] 
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∫ 𝐸⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ = 0

𝑠

 

(ii) ∇ ∙ 𝐸⃗ =
1

𝑟2
𝑑

𝑑𝑟
 (𝑟2 𝐸𝑟) =

1

𝑟2
𝑑

𝑑𝑟 
(𝑟2.

1

𝑟4
𝑠𝑖𝑛2𝜃) 

=
1

𝑟2
𝑑

𝑑𝑟
(𝑠𝑖𝑛2𝜃. 𝑟−2) =

𝑠𝑖𝑛2𝜃

𝑟2
× [−

1

𝑟
] 

∇ ∙ 𝐸⃗ =
−𝑠𝑖𝑛2𝜃

𝑟3
 

∫ ∇ ∙𝐸⃗ 𝑑𝑣 = ∫ ∫
−sin2 𝜃 𝑟

𝑟3
𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝑟 𝑑𝜃

2𝜋

∅=0

4

𝑟=2
𝑣

 

= [∫
1

𝑟
𝑑𝑟

4

2

] [∫ 𝑠𝑖𝑛2𝜃 𝑑𝜃

2𝜋

0

] [∫ sin 𝜃 𝑑𝜃

𝜋

0

] = ln (
4

2
) × 0 × 2 

∫∇ ∙ 𝐸⃗ 𝑑𝑉 = 0
𝑣

 

We see that result obtained from (i) and (ii) are equal and this is because they satisfy 

divergence theorem i.e. 

∫∇ ∙ 𝐸⃗ 𝑑𝑉 = ∫𝐸⃗ 𝑑𝑠

𝑠𝑣

 

1.12 Stoke’s Theorem  

The surface integral of curl of a vector field A over an open surface equals line integral of 

vector field over the closed curve bounding the surface area “is definition of Stokes’ 

theorem”. 

                             ∫(∇⃗⃗ 𝑥 𝐴 ) ∙𝑑𝑠⃗⃗⃗⃗ = ∮𝐴 ∙𝑑𝑙⃗⃗  ⃗
𝑐

𝑠

                                           1.24 
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Example 1.23: Evaluate both sides of stokes theorem for field 𝐻 = 6𝑥𝑦 𝑎̂𝑥 –  3𝑦
2𝑎̂𝑦 A/m 

and rectangular path around region,  2 ≤ 𝑥 ≤ 5,−1 ≤ 𝑦 ≤ 1, 𝑧 = 0. Let the positive 

direction of ds be 𝑎̂𝑧. 

Solution: Stokes theorem is ∫ 𝐻⃗⃗ ∙ 𝑑𝑙⃗⃗  ⃗ = ∫ (∇⃗⃗ × 𝐻⃗⃗ ) 𝑑𝑆⃗⃗⃗⃗ 
𝑠𝐶

 

𝑅.𝐻. 𝑆.    ∇⃗⃗  × 𝐻⃗⃗ = |

𝑎̂𝑥 𝑎̂𝑦 𝑎̂𝑧
𝑑

𝑑𝑥

𝑑

𝑑𝑦

𝑑

𝑑𝑧

6𝑥𝑦 −3𝑦2 0

| 

⟹                          ∇⃗⃗ x𝐻⃗⃗ = 𝑥̂(0) − 𝑦̂(0) + 𝑧̂  [
𝑑

𝑑𝑥
(3𝑦2) −

𝑑

𝑑𝑦
(6𝑥𝑦)] 

∇⃗⃗ × 𝐻⃗⃗ =  −6𝑥𝑧̂ 

𝑅.𝐻. 𝑆. = ∫ ∇⃗⃗ 

𝑆

 𝑥𝐻⃗⃗ 𝑑𝑆⃗⃗⃗⃗  

∫−6𝑥𝑧̂. (𝑧̂. 𝑑𝑥 𝑑𝑦) = − ∫6𝑥 𝑑𝑥 𝑑𝑦 𝑧̂

𝑆𝑆

 

= − ∫ ∫ 6𝑥 𝑑𝑥 𝑑𝑦 𝑧̂

5

𝑥=2

1

𝑦=−1

 

= −6 [
𝑥2

2
]
2

5

[𝑑𝑦]−1
1  𝑧̂ = −6 ×

1

2
× (25 − 4)(2)𝑧̂ 

= −6 × 21 𝑧̂ 

−126 𝑧̂ 

𝐿. 𝐻. 𝑆   ∮ 𝐻⃗⃗ ∙𝑑𝑙⃗⃗  ⃗ = ∮ (6𝑥𝑦 𝑎̂𝑥 − 3𝑦
2 𝑎̂𝑦). (𝑑𝑥 𝑎̂𝑥 + 𝑑𝑦𝑎̂𝑦 + 𝑑𝑧𝑎̂𝑧)𝐶𝐶

 

= ∮(6𝑥𝑦 𝑑𝑥 − 3𝑦2𝑑𝑦)

𝐶

 

For this we need to find out equation of line integral. 
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∮𝐻⃗⃗ ∙ 𝑑𝑙⃗⃗  ⃗ = ∫ ∫6𝑥𝑦 𝑑𝑥 + ∫ ∫6𝑥𝑦 𝑑𝑥

5

𝑥=2𝑦=−1

2

𝑥=5,𝑦=1𝐶

 

=
6𝑥2

2
(1)|

5

2

+
6𝑥2

2
(−1)|

2

5

= −126 

Example 1.24:  Given 𝐸⃗ = 2𝑟 cos ∅𝑟̂ + 𝑟∅̂ in cylindrical coordinates verify Stokes 

theorem for the contour in Fig. 1.8 which lies in x-y plane completely.  

                                                                                                                                                   
Figure 1.8 

Solution: according to Stokes theorem  

∫∇ ×𝐸⃗ ∙ 𝑑𝑠 = ∮ 𝐸⃗ ∙ 𝑑𝑙
𝑆

 

R.H.S. we have to evaluate line integral over the given curve as we see that we have 4 

defined contours as shown:  

∮ 𝐸⃗ ∙ 𝑑𝑙= ∫ 2𝑟 cos ∅ 𝑑𝑟 + ∫ 𝑟. 𝑟𝑑∅

𝜋

𝑟=3 ∅=0

3

𝑟=2

+ ∫ 2𝑟 cos ∅ 𝑑𝑟 + ∫ 𝑟. 𝑟𝑑∅

0

𝑟=2 ∅=𝜋

2

𝑟=3

 

= 2 cos ∅ [
𝑟2

2
]
2

3

+ 9[∅]0
𝜋 + 2 cos∅ [

𝑟2

2
]
3

2

+ 4[∅]𝜋
0  

= 9[𝜋 − 0] + 4[0 − 𝜋] = 9𝜋 − 4𝜋 

∫ 𝐸⃗ ∙𝑑𝑙⃗⃗  ⃗= 5𝜋 
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L.H.S   ∇ ×𝐸⃗ =  |

𝑟̂

𝑟
∅̂

𝑧̂

𝑟
𝑑

𝑑𝑟

𝑑

𝑑∅

𝑑

𝑑𝑧

𝐸𝑟 𝑟𝐸∅ 𝐸𝑧

|=   ||

𝑟̂

𝑟
∅̂

𝑧̂

𝑟
𝑑

𝑑𝑟

𝑑

𝑑∅

𝑑

𝑑𝑧

2𝑟 cos ∅ 𝑟2 0

|| 

= 
𝑟̂

𝑟
 [0] − ∅[0] +

𝑧̂

𝑟
 [2𝑟 + 2𝑟 sin∅]  

= (2 + 2 sin∅) 𝑧̂ 

So, ∫ ∇ ×𝐸⃗ . 𝑑𝑠 = ∫ (2 + 2 sin ∅) (𝑟𝑑∅ 𝑑𝑟)
𝑠𝑠

 

= ∫(2𝑟 𝑑𝑠 𝑑𝑟 + 2𝑟 sin ∅ 𝑑 𝑑𝑟)

𝑆

 

= 2∫𝑟 𝑑𝑟 ∫ 𝑑∅ + 2 ∫𝑟 𝑑𝑟 ∫ sin∅ 𝑑∅

𝜋

∅=0

3

2

𝜋

∅=0

3

2

 

= 2 [
𝑟2

2
]
2

3

[∅]0
𝜋 + 2 [

𝑟2

2
]
2

3

[cos ∅]0
𝜋 = 2𝜋 [

9 − 4

2
] + 2 [

9 − 4

2
] [0] 

∫∇𝑥
𝐸
→ . 𝑑𝑠 = 5𝜋

𝑆

 

Thus, Stokes theorem is verified  

1.13 Line Integral of a Vector Field  

Consider path OMN between two points O and N and let ‘dl’ be an element of length at a 

point on a smooth curve ON drawn in a vector field and 𝐴 , a continuous vector point 

function inclined at an angle ‘𝜃′ to ‘𝑑𝑙’ as shown in Fig 1.9 (a) such that it continuously 

varies in magnitude as well as direction as we proceed along the curve. Then, the 

integral.  
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𝜃 

𝐴  

N

M

o

                                                                                                          
Figure 1.9 (a) Line Integral 

∫
𝐴
→ .

𝑑𝑙
→ = ∫ 𝐴 cos 𝜃 𝑑𝑙

𝑁

𝑂

𝑁

𝑂
This is referred as the line integral of vector 𝐴  along curve ON. 

Note: if ∮ 𝐴 ∙𝑑𝑙⃗⃗  ⃗ = 0, then the field is called a conservative field or lamellar field.  

In terms of components of 𝐴  along the three Cartesian coordinate, we have  

∫ 𝐴 ∙𝑑𝑙⃗⃗  ⃗ = ∫ (𝐴𝑥𝑑𝑥 + 𝐴𝑦𝑑𝑦 + 𝐴𝑧𝑑𝑧)
𝑁

𝑂

𝑁

𝑂
   1.25 

Where ‘dl’ represents differential length  

But (𝑑𝑙⃗⃗  ⃗ =𝑑𝑙⃗⃗  ⃗𝑥̂ +𝑑𝑙⃗⃗  ⃗𝑦̂ +𝑑𝑙⃗⃗  ⃗𝑧̂ ) 

 Differential length vector: the differential length vector dl is the vector drawn 

from point p (x, y, z) to a neighboring point 𝑄(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧) obtained by 

incrementing the coordinates of P by infinitesimal amounts. Thus, it is the vector sum of 

the three differential length elements, as shown. 

                                                                                                      
Figure 1.9 (b) Differential Length 
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Figure 1.9 (c) Finding unit vector Normal to Surface 

𝑑𝑙⃗⃗  ⃗ = 𝑑𝑥 𝑥̂ + 𝑑𝑦 𝑦̂ + 𝑑𝑧 𝑧̂ 

 The differential lengths dx, dy and dz are, however, not independent of each 

other since in evaluation of line integrals, the integration is performed along a specific 

path. 

 Differential length vectors are useful for finding the unit vector normal to a 

surface at a point on that surface. This is done by considering two differential length 

vectors at that point under consideration and tangential to two curves on surface,  

𝑖𝑁 =
𝑑𝑙⃗⃗  ⃗1 × 𝑑𝑙⃗⃗  ⃗2

𝑑𝑙⃗⃗  ⃗1× 𝑑𝑙⃗⃗ ⃗⃗ 2
 

1.14 Surface Integral of Vector Field  

Let 𝐴  be a continuously varying vector point function (or vector) at a point B in a small 

elements dS1 of the surface S1 as shown in Fig. 1.10. (a)  

𝜃 
𝐴  

𝑎̂𝑛  

B

S1

                                                                                                                  
Figure 1.10 (a) Surface Integral 

𝐴  vector is at angle 𝜃 with normal to surface, at that point (drawn outwards) if the 

surface be closed and always towards the same side otherwise). Then the surface 
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integral of vector field 𝐴  is defined as the sum of product of normal components of A and 

surface elements covering the whole surface. 

 If 𝑛̂ is unit vector normal to surface elements dS1 then normal component of field 

𝐴  is (𝐴 ∙ 𝑎𝑛̂). 

Hence surface integral of vector 𝐴  over the surface is given as  

∫∫(𝐴 ∙ 𝑎̂𝑛)𝑑𝑆1
𝑆1

 𝑜𝑟 ∮(𝐴 ∙ 𝑎̂𝑛)𝑑𝑆1
𝑆1

 

In terms of Cartesian coordinates of 𝐴  we have  

∫∫𝐴  𝑑𝑆1 = ∫∫(𝐴𝑥𝑑𝑆𝑥 + 𝐴𝑦𝑑𝑆𝑦 + 𝐴𝑧𝑑𝑆𝑧)

𝑆1𝑆1

                            1.26 

If ∮ ∫(𝐴 . 𝑑𝑆1) = 0,𝑆1
 then vector field is said to be solenoidal vector field.  

Where ‘ds’ represents differential area  

𝑑𝑠⃗⃗⃗⃗ = 𝑑𝑠⃗⃗⃗⃗ 𝑥̂ + 𝑑𝑠⃗⃗⃗⃗ 𝑦̂ + 𝑑𝑠⃗⃗⃗⃗ 𝑧̂ 

i N

𝑑𝑙⃗⃗  ⃗2 

𝑑𝑙⃗⃗  ⃗1 

ds 

𝜃 

                                                        

 Figure 1.10 (b) Differential Surface Vector Concept 

Differential surface vector: two differential length vectors 𝑑𝑙⃗⃗  ⃗1  𝑎𝑛𝑑 𝑑𝑙⃗⃗  ⃗2originating at a 

point define a differential surface whose area ‘ds’ is that of a parallelogram having  

𝑑𝑙⃗⃗  ⃗1  𝑎𝑛𝑑 𝑑𝑙⃗⃗  ⃗2 as two of its adjacent sides.  

𝑑𝑠 =   𝑑𝑙1𝑑𝑙2 sin 𝛼 =𝑑𝑙⃗⃗  ⃗1× 𝑑𝑙⃗⃗  ⃗2 
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± 𝑑𝑦 𝑦̂  ×  𝑑𝑧 𝑧̂ =  ±𝑑𝑦 𝑑𝑧 𝑥̂
± 𝑑𝑧 𝑧̂  × 𝑑𝑥 𝑥̂ = ±𝑑𝑧 𝑑𝑥 𝑦̂
± 𝑑𝑥 𝑥̂  × 𝑑𝑦 𝑦̂ = ±𝑑𝑥 𝑑𝑦 𝑧̂

 

Associated with planes x=constant, y =constant, z= constant. Respectively  

                                                                                           
Figure 1.10 (c) Differential Surface Vectors in cartesian coordinate system 

1.15 Volume Integral  

 Let 𝐴  be a vector field and V be the volume enclosed by surface, at a point in 

small element Dv of the region. Then the integral ∫ ∬ 𝑜𝑟 ∫ 𝐴 . 𝑑𝑉
𝑉

 covering the entire 

region, is called volume integral of a vector 𝐴  over the surface. The differential or 

elemental volumes are  

𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 is Cartesian coordinate 

𝑑𝑉 = 𝑟 𝑑𝜃 𝑑∅ 𝑑𝑧 is cylindrical coordinate  

𝑑𝑉 =  𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅ is spherical coordinate  

 Differential volume: three differential length vectors dl1, dl2 and dl3 originating at 

a point define a differential volume dV which is that of the parallelepiped having 

𝑑𝑙⃗⃗  ⃗1,𝑑𝑙⃗⃗  ⃗2  𝑎𝑛𝑑 𝑑𝑙⃗⃗  ⃗3 as three of its contiguous edges, so dV = area of base of parallelepiped 

x height of parallelepiped.  

= | 𝑑𝑙⃗⃗  ⃗1× 𝑑𝑙⃗⃗  ⃗2|| 𝑑𝑙⃗⃗  ⃗3∙ 𝑖𝑁| = | 𝑑𝑙1 × 𝑑𝑙⃗⃗  ⃗2| 𝑑𝑙⃗⃗  ⃗3∙  
 𝑑𝑙⃗⃗  ⃗1× 𝑑𝑙⃗⃗  ⃗2

 𝑑𝑙⃗⃗  ⃗1× 𝑑𝑙⃗⃗  ⃗2
= | 𝑑𝑙⃗⃗  ⃗3∙𝑑𝑙⃗⃗  ⃗1× 𝑑𝑙⃗⃗  ⃗2| 

𝑜𝑟 𝑑𝑉 =  𝑑𝑙⃗⃗  ⃗1∙𝑑𝑙⃗⃗  ⃗2.𝑑𝑙⃗⃗  ⃗3 
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1.16 Physical Significance of Gauss’s Divergence Theorem  

Gauss’s Divergence theorem is given by  

∫𝐴 ∙ 𝑑𝑆⃗⃗⃗⃗ = ∫∇ ∙𝐴 ∙𝑑𝑉⃗⃗⃗⃗  ⃗

𝑉𝑆

                                1.27 

Let us consider a finite volume of any closed surface S in the region of any vector 

function 𝐴   

The flux diverging from the surface S of volume V is  

∅ = ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 

𝑆

 

 Now lets us divide the volume v into two parts of volume V1 and V2 enclosed by 

surface S1 and S2 respectively.  

 The Flux emerging out of surface S1 = ∫ 𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 1𝑠1
  

 The Flux emerging out of surface S2 =  ∫ 𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 2𝑠2
 

 The flux emerging from shaded surface will cancel each other (because flux 

emerging in and out of it for both the volumes V1 and V2 are equal and in opposite 

direction). Thus, the flux  

∅ = ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ = ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 1 + ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 2
𝑠2𝑠1𝑆

                                        1.28 

In the same way, if we divide the volume V into large number of parts V1, V2, V3………., 

V1…….Vn enclosed by surfaces 1, S2, ………, S1…… Sn respectively, we must have.  

∅ = ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ = ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 1 + ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 2 +⋯+ ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 𝑖 +⋯+ ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 𝑛
𝑠𝑛𝑆𝑖𝑆2𝑆1𝑆
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=∑∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 𝑖
𝑠𝑖

𝑁

𝑖=1

 

Dividing and multiplying by Vi we get  

 ∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ =∑𝑉𝑖 
∫ 𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 
𝑠1

𝑉𝑖
 

𝑁

𝑖=1 𝑆

                                                     1.29 

If N is sufficiently large, then volume Vi becomes infinitely small i.e…, if N tends to infinity 

Vi tends to zero and in the limit we may write.  

lim
𝑉𝑖→0

∫
𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 

𝑉𝑖
= ∇𝐴 

𝑆1

 

And convert the summation into integration writing dV for infinitely small volume Vi i.e  

∑ 𝑉𝑖 = ∫𝑑𝑉

𝑛→∞

𝑖=1

 

So, Equ. (1.32) can be written as  

∫𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ = ∫∇ ∙ 𝐹 ∙ 𝑑𝑉⃗⃗⃗⃗  ⃗

𝑉𝑆

 

𝑵𝒐𝒕𝒆: 𝑇ℎ𝑖𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝐺𝑎𝑢𝑠𝑠′𝑠 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑇ℎ𝑒𝑜𝑟𝑒𝑚.⇒ 𝑡ℎ𝑖𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 
𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑜 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑟𝑜 𝑓𝑖𝑒𝑙𝑑

𝑎𝑛𝑑 𝑣𝑖𝑐𝑒 𝑣𝑒𝑟𝑠𝑎.

 

1.17 Physical Significance of Stokes Theorem  

Stokes’s theorem is given by: 

∫ 𝐴 ∙ 𝑑𝑙⃗⃗  ⃗ = ∫∇ ∙ 𝐴 ∙ 𝑑𝑠⃗⃗⃗⃗ 

𝑆

                                                               1.30 
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Let us consider a surface S with C as its boundary. Let us calculate the line integral 

of vector function 𝐴   around the boundary C of surface S.  

The line integral of 𝐴  around the boundary C of surface S = ∮ 𝐴 ∙ 𝑑𝑙⃗⃗  ⃗
𝐶

 

Now divide the surface S into two parts of surface S1 and S2 having boundaries C1 and C2 

respectively as shown in fig 1.12(b) 

                                  

Figure 1.12 Stokes Theorem significance 

For boundary S1: ∮ 𝐴 ∙ 𝑑𝑙1⃗⃗ ⃗⃗  ⃗𝐶1
 

For boundary S2: ∮ 𝐴 ∙ 𝑑𝑙2⃗⃗ ⃗⃗  ⃗𝐶2
 

MN is the common boundary of both the surface and flux being equal and 

opposite, cancel each other when considered together.  

 The rest of the boundaries C1 and C2 are identical to original boundary C.  

Thus, obviously  

∮ 𝐴 ∙ 𝑑𝑙⃗⃗  ⃗ = ∫ 𝐴 ∙ 𝑑𝑙1⃗⃗⃗⃗⃗⃗ + ∮ 𝐴 ∙ 𝑑𝑙2⃗⃗⃗⃗⃗⃗ 𝐶2𝐶1𝐶
     1.31 

Similarly, if we divide the surface S into a large number of parts S1, S2,……., Si, …… Sn 

having boundaries C1, C2, ……., Ci,……. Cn respectively, as shown in fig 1.13 (c), then  

∮𝐴 ∙ 𝑑𝑙⃗⃗  ⃗ = ∮𝐴 ∙ 𝑑𝑙1⃗⃗⃗⃗⃗⃗ + ∮𝐴 ∙ 𝑑𝑙2⃗⃗⃗⃗⃗⃗ + ⋯+ ∫𝐴 ∙ 𝑑𝑙𝑖⃗⃗⃗⃗  ⃗ + ⋯+ ∫𝐴 ∙ 𝑑𝑙𝑁⃗⃗ ⃗⃗ ⃗⃗  

𝐶𝑁𝐶𝑖𝐶2𝐶1𝐶

 

∑∫𝐴 ∙ 𝑑𝑙𝑖⃗⃗⃗⃗  ⃗

𝐶𝑖

𝑁

𝑖=1
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If N is sufficiently large, then surface area Si becomes infinitely small, i.e if N tends 

to infinity, Si tends to zero and in the limits we may write. 

lim
𝑆𝑖→0

∮
𝐴 ∙ 𝑑𝑙𝑖⃗⃗⃗⃗  ⃗

𝑆𝑖
𝑎̂𝑛 = ∇ × 𝐴 

𝐶𝑖

 

𝑜𝑟 lim
𝑆𝑖→0

∮
𝐴 ∙ 𝑑𝑙𝑖⃗⃗⃗⃗  ⃗

𝑆𝑖
 𝑎̂𝑛 ∙ 𝑎̂𝑛 = 𝑐𝑢𝑟𝑙 𝐴 ∙ 𝑎̂𝑛

𝐶𝑖

 

lim
𝑆𝑖→0

∮
𝐴 ∙ 𝑑𝑙𝑖⃗⃗⃗⃗  ⃗

𝑆𝑖
= 𝑐𝑢𝑟𝑙 𝐴 ∙ 𝑎̂𝑛

𝐶𝑖

 

Convert the summation into integration writing 𝑑𝑆⃗⃗⃗⃗  for infinitely small area 𝑆𝑖. 

⇒                  ∮𝐴 ∙ 𝑑𝑙⃗⃗  ⃗ = ∮∇𝑥𝐴 ∙ 𝑑𝑆⃗⃗⃗⃗ 

𝐶𝐶

                                        ∗ 

Note. This Equ. * is called Stokes theorem 

⟹ this theorem is used to convert the surface integral of the curl of vector field  

𝐴  into the line integral of vector field and vise versa.        

Example 1.25: Closed surface is defined is defined in spherical coordinates by 3< r<5, 𝜋 <

𝜃 <
𝜋

4
< ∅ <

𝜋

6
 Find volume enclosed.  

𝑉 = 𝑟2 sin 𝜃 𝑑𝜃 𝑑𝑟 𝑑∅ = ∫ 𝑟2 𝑑𝑟 ∫ sin 𝑑𝜃 ∫ 𝑑∅

𝜋
6

𝜋
4

𝜋
3

𝜋

5

𝑟=3

 

=  
𝑟3

3
|
3

5

× [− cos 𝜃] 𝜋

𝜋
3 × [

𝜋

6
−
𝜋

4
] 

= (
125 − 27

3
) × [

√3

2
+ (−1)] × (

4𝜋 − 6𝜋

24
) 

= −(
125 − 27

3
) (
2.372

2
) (
−2𝜋

24
) =

2𝜋 × (125 − 27)(3.732

144
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=
2296.82

144
= 15.95  

1.18 Cartesian Coordinates  

P(x,y)

y

x

y-axis

x-axis                                                                                                                         
Figure 1.13 (a) Cartesian Coordinate 

 You are probably familiar with Cartesian Coordinates. In two dimensions, we can 

specify a point on a plane using two scalar values, generally called x and y as in Fig. 1.13 

(a)  

We can extend this to three dimensions, by adding a third scalar value z as in Fig. 1.13 (b) 

P(x,y,z)

x = 0 planey = 0 plane

z = 0 plane

x-axis

y-axis

z-axis

                                                                                                                
Figure 1.13 (b) Point in Cartesian Coordinate System 

Note the coordinate values in the Cartesian system effectively represent the distance 

from a plane intersecting the origin. For example, 𝑥 = 3 means that the point is 3 units 

from the 𝑦 − 𝑧 plane (i.e, the 𝑥 = 0 plane).  

 Likewise, the y coordinate provides the distance from the 𝑥 − 𝑧 (𝑦 = 0) plane, 

and the z coordinate provides the distance from the 𝑥 − 𝑦 (𝑧 = 0) plane.  
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P(2,3,2.5)

x

z

(x=2, y=3)

23

2.5

P(0,0,0)

y

z

                                                                                    
Figure 1.14 P(2,3,2.5) in cartesian coordinate 

 Once all three distances are specified, the position of a point is uniquely identified 

as shown in Fig. 1.14 

1.18.1 Terms  

(a) 𝑑𝑙⃗⃗  ⃗ = 𝑑𝑥 𝑎̂𝑥 + 𝑑𝑦 𝑎̂𝑦 + 𝑑𝑧 𝑎̂𝑧    differential length          (1.32) 

|𝑑𝑙| =  √|𝑑𝑥|2 + |𝑑𝑦|2 + |𝑑𝑧|2 

(b) 𝑑𝑣 = 𝑑𝑥 𝑑𝑦 𝑑𝑧         differential volume  

(c) 𝑑𝑠⃗⃗⃗⃗ = ±𝑑𝑦 𝑑𝑧 𝑎̂𝑥, ±𝑑𝑧 𝑑𝑥 𝑎̂𝑦, ±𝑑𝑥 𝑑𝑦 𝑎̂𝑧      differential area 

 The three displacements (increments) 𝑑𝑥 𝑥 ̂, 𝑑𝑦 𝑦 ̂, 𝑑𝑧 𝑧 ̂ also define three surfaces 

of infinitesimal areas in three planes intersecting at point P. 

1.18.2  Cartesian Base Vectors  

x

z

y

P(x,y,z)

𝐴  

𝑎̂1 

𝑎̂𝑥  

𝑎̂𝑦  

r

                                                                                                                         
Figure 1.15 Position Vector 



                                                                                                     Electromagnetic Field Theory 

42 
 

As the name implies, the Cartesian Base Vectors are related to the Cartesian coordinates. 

Specifically, the unit vector 𝑎̂𝑥 points in the direction of increasing x. in other words, it 

points away from the 𝑦 − 𝑧 (𝑥 = 0) plane. Similarly, 𝑎̂𝑦𝑎𝑛𝑑 𝑎̂𝑧 point in the direction of 

increasing y and z, respectively as in Fig. 1.15.  

A vector drawn from origin to an arbitrary point 𝑃(𝑥, 𝑦, 𝑧) is called position vector.  

𝑟̂ = 𝑥𝑎̂𝑥 + 𝑦𝑎̂𝑦 + 𝑧𝑎̂𝑧 

Example 1.26: Try and plot the following points in Cartesian coordinate system  

(a) (2, -3, 5) (b) (1, 4, -6) (c) (-1, 2, 3)  

Solution  

z z z

yyy

x x x

(a)

(b)

(c)

 

1.19 Circular Cylindrical Coordinate System 

 Although the rectangular coordinate system does appear easier to work with, it 

nevertheless often presents more work in order to break a given problem down to a 

more palatable and “digestible” form. So, initial drawn effort needs to be made here to 

convert rectangular to cylindrical and/or spherical coordinate systems, and vice versa. 

Therefore, need-life problems than become easier to tackle.   

 For circular cylindrical coordinates (or cylindrical coordinates), the three 

“coordinates” are 𝜌, defining the radial distance from the origin, ∅, which is the angle the 

vector makes with “X” axis” anticlockwise, and Z, the distance perpendicularly from x – y 

plane up the z axis. So, any vector located from an imaginary origin ends up at a point 

which is the meeting point of three planes of: 𝜌 constant (cylindrical radius); ∅ constant, 

(angle with 𝑥 axis, and z that is the same as the z of the rectangular coordinates.  
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(𝜌
1 ,∅

1 ,𝑧
1 ) 𝑎 ∅ 

𝑎 𝜌  
P

𝜌1 

∅1 

𝑎 𝑍 

Z1

z

y

x                                                                            
Figure 1.16 Rectangular Vector at point 𝑃(𝜌1, ∅1, 𝑧1) 

In the diagram above, a vector located at 𝑃(𝜌, ∅, 𝑧, )has the corresponding unit vectors 

𝑎̂𝑒 , 𝑎̂∅, 𝑎̂𝑧 initially perpendicular. Unlike in rectangular coordinates system, whereas 𝑎̂𝑧 is 

also independent of changes along z axis in the cylindrical system, the unit vectors 𝑎 𝜌and 

𝑎 ∅ do vary with changes in 𝜌 and ∅ respectively. Their lengths remain unity, but their 

directions constantly vary with varying 𝑒 and ∅. Since direction is an integral part of the 

definition of a vector, these two can no longer be treated as constants in differentiations 

and integrations! The sketch below vividly shows the above: 

∅+ 𝑑∅ 

∅ 

𝑑𝜌  

𝑑𝑧  

𝜌𝑑∅ 

x

y

z+dz

z

z

𝜌 + 𝑑𝜌  

𝜌 

                                                            
Figure 1.17 Differential Volume of a Cube 

Shown above is a differential volume whose sides are the respective increments in 

𝜌, ∅ 𝑎𝑛𝑑 𝑧. Note, however, that the increment counterclockwise, is not just ∅,  but rather 
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𝜌𝑑∅, as a quick mental work would readily discern. The incremental volume is 

𝑑𝜌 (𝜌𝑑∅)𝑑𝑧 = 𝜌𝑑𝜌𝑑∅ 𝑑𝑧. The areas of the differential volume are:  

Frontal= 𝜌𝑑∅𝑑𝑧; left (“elevation”) = 𝑑𝜌 𝑑𝑧; right (“elevation”) =left =𝑑𝜌 𝑑𝑧; projection 

downward=projection upward=(𝑑𝜌)𝜌𝑑∅ = 𝜌𝑑𝜌𝑑∅ 

1.19.1 Relating Cylindrical and Rectangular Coordinate Systems 

z

y

x

 

𝜌 sin∅ 
𝜌 cos∅ 

∅ 

z

P
𝜌 

                                                                           
Figure 1.18 (a) Relating Rectangular and Cylindrical coordinate systems 

In the Fig. 1.18 above relating rectangular and cylindrical coordinate systems,  

𝑥 = 𝜌 cos∅,   𝑦 = 𝜌 sin∅, 𝑧 = 𝑧 

From the above,  𝑥2 + 𝑦2 = (𝜌 cos ∅)2 + (𝜌 sin ∅)2 

𝑥2 + 𝑦2 = 𝜌2(𝑐𝑜𝑠2∅ + 𝑠𝑖𝑛2∅) = 𝜌2(1) = 𝜌2 

⟹   𝜌 = √𝑥2 + 𝑦2     (𝜌 ≥ 0)  (𝜌 𝑖𝑠 𝑛𝑒𝑣𝑒𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

tan∅ =
𝜌 sin∅

𝜌 cos ∅
=
𝑥

𝑦
⟹ ∅ = 𝑡𝑎𝑛−1 (

𝑥

𝑦
)   𝑎𝑛𝑑 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑠𝑖𝑔𝑛𝑠 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦  𝑧 = 𝑧 

So, transformations of scalar functions are easily accomplished using the above 

relationships, from one to the other. However, transformations of vector functions are a 

bit more demanding, as those require two steps to be taken as opposed to the scalar 

transformations.  

Given a rectangular vector 𝐴 = 𝐴𝑥𝑎̂𝑥 + 𝐴𝑦𝑎̂𝑦 + 𝐴𝑧𝑎̂𝑧 to transform to a vector in 

cylindrical coordinates  
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𝐴 = 𝐴𝜌𝑎̂𝜌 + 𝐴∅𝑎̂∅ + 𝐴𝑧𝑎̂𝑧 

 We know that 𝐴 . 𝑎̂𝜌 = |𝐴 ||𝑎̂𝜌| cos 𝜃 = 𝐴𝜌 × 1 × cos 0 

So, projection of 𝐴  in 𝑎̂𝜌 direction= 𝐴𝜌  

Likewise,  𝐴 . 𝑎̂𝜌 = 𝐴∅, 𝐴 . 𝑎̂𝑧 = 𝐴𝑧 

𝐴𝜌 = 𝐴 . 𝑎̂𝜌 = (𝐴𝑥𝑎̂𝑥 + 𝐴𝑦𝑎̂𝑦 + 𝐴𝑧𝑎̂𝑧). 𝑎̂𝜌 = 𝐴𝑥𝑎̂𝑥. 𝑎̂𝜌 + 𝐴𝑦𝑎̂𝑦. 𝑎̂𝜌 

𝐴∅ = 𝐴 . 𝑎̂∅ = (𝐴𝑥𝑎̂𝑥 + 𝐴𝑦𝑎̂𝑦 + 𝐴𝑧𝑎̂𝑧). 𝑎̂∅ = 𝐴𝑥𝑎̂𝑥. 𝑎̂∅ + 𝐴𝑦𝑎̂𝑦. 𝑎̂∅ 

𝐴𝑧 = 𝐴 . 𝑎̂𝑧 = (𝐴𝑥𝑎̂𝑥 + 𝐴𝑦𝑎̂𝑦 + 𝐴𝑧𝑎̂𝑧). 𝑎̂𝑧 = 𝐴𝑧𝑎̂𝑧. 𝑎̂𝑧 = 𝐴𝑧 

[Recall that dot product of mutually perpendicular vectors is zero (cos 900 = 0), hence 

the “disappeared” terms].  

From the Fig 1.18 

𝑎̂𝑥. 𝑎̂𝜌 = (1)(1) cos∅ = cos ∅ 

𝑎̂𝑦. 𝑎̂𝜌 = (1)(1) cos(90
𝑜 − ∅) = sin ∅ 

𝑎̂𝑧 . 𝑎̂∅ = (1)(1) cos(90
𝑜) = 0 

90𝑜 − ∅ ∅ 

∅ 𝑎 𝜌  

𝑎 ∅ 

𝑎 𝑥  𝑎 ∅ 
90𝑜 − ∅ 

                                                                                 
Figure 1.18 (b) 

Recall that a vector is completely identified by its magnitude and direction, and 

not by its actual placement at a point, line, area or space. This thus informs the “sliding” 

of the unit vector above to join tail-to-tail with the unit vector 𝑎̂𝑥, straddling each other 

with an angle of 1800 − (900 − ∅) = 900 + ∅ 
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So, 𝑎̂𝑥 − 𝑎̂∅ = cos(90
0 + ∅) = cos 900 cos ∅ − sin 90 sin∅, 

By trigonometric identity = −sin∅ 

𝑎̂𝑥. 𝑎̂∅ = −sin∅ 

𝑎̂𝑦. 𝑎̂∅ = cos ∅ 

Angle between 𝑎̂𝑥 and 𝑎̂∅ is 90𝑜 + ∅, since 𝑎̂𝑥 𝑎𝑛𝑑 𝑎̂𝑦 are mutually perpendicular, angle 

between 𝑎̂𝑦 and 𝑎̂∅ is (90𝑜 + ∅) − 90𝑜 = ∅⟹ 𝑎̂. 𝑎̂∅ = cos ∅ 

Obviously, 𝑎̂𝑧 . 𝑎̂𝜌 = 𝑎̂𝑧 . 𝑎̂∅ = cos 90
𝑜 = 0 

SUMMARY 

 𝑎̂𝜌 𝑎̂∅ 𝑎̂𝑧 

𝑎̂𝑥 cos ∅ −sin∅ 0 

𝑎̂𝑦 sin ∅ cos ∅ 0 

𝑎̂𝑧 0 0 1 

 

From the above, then 

𝐴𝜌 = 𝐴𝑥𝑎̂𝑥. 𝑎̂𝜌 + 𝐴𝑦𝑎̂𝑦. 𝑎̂𝜌 = 𝐴𝑥 cos ∅ + 𝐴𝑦 sin ∅ 

𝐴∅ = 𝐴𝑥𝑎̂𝑥. 𝑎̂∅ + 𝐴𝑦𝑎̂𝑦. 𝑎̂∅ = −𝐴𝑥 sin ∅ + 𝐴𝑦 cos ∅ 

𝐴𝑧=……..=𝐴𝑧 

Example 1.27: To transform the “rectangular” vector  𝐴 = 𝑧𝑎̂𝑥 + 𝑥𝑎̂𝑦 − 𝑦𝑎̂𝑧 into 

cylindrical coordinates  

Solution 

𝐴𝜌 = 𝐴 ∙ 𝑎̂𝜌 = (𝑧𝑎̂𝑥 + 𝑥𝑎̂𝑦 − 𝑦𝑎𝑧)𝑎̂𝜌 
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= 𝑧𝑎̂𝑥 ∙ 𝑎̂𝜌 + 𝑥𝑎̂𝑦 ∙ 𝑎̂𝜌 − 𝑦𝑎̂𝑧 ∙ 𝑎̂𝜌 

= 𝑧 cos ∅ + 𝑥 sin∅ − 𝑦 × 0 = 𝑧 cos ∅ + 𝜌 cos ∅ sin ∅ 

𝐴∅ = 𝐴 ∙ 𝑎̂∅ = 𝑧𝑎̂𝑥 ∙ 𝑎̂∅ + 𝑥𝑎̂𝑦 ∙ 𝑎̂∅ − 𝑦𝑎̂𝑧 ∙ 𝑎̂∅ 

= −𝑧 sin∅ + 𝑥 cos∅ = −𝑧 sin ∅ + 𝜌𝑐𝑜𝑠2∅ 

Note that 𝑥 = 𝜌 cos ∅ 

𝐴𝑧 = 𝐴 ∙ 𝑎̂𝑧 = −𝑦 = −𝜌 sin ∅ 

Finally,  𝐴 = (𝑧 cos ∅ + 𝜌 cos ∅ sin∅) 𝑎̂𝜌 + (𝜌 cos
2 ∅ − 𝑧 sin∅) 𝑎̂∅ − 𝜌 sin∅𝑎̂𝑧 

 

1.20 Spherical Coordinates  

• Geographer specify a location on the earth’s surface using three scalar value: 

longitude, latitude and altitude.  

• Both longitude and latitude are angular measure, while altitude is a measure of 

distance  

• Latitude, longitude and altitude are similar so spherical coordinates.  

• Spherical coordinates consist of one scalar value (r), with unit of distance, while 

the other two scalar values (𝜃, ∅) have angular units (degree or radians), shown in 

Fig. 1.19  



                  

 Figure 1.19 Spherical Coordinate System 
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1. For spherical coordinates, 𝑟(0 ≤ 𝑟 < ∞) expresses the distance of the point from 

the origin (I.e similar to altitude).  

2. Angle 𝜃 (0 ≤ 𝜃 ≤ 𝜋)represents the angle formed with the z-axis (i.e similar to 

latitude). Angle 𝜃 (0 ≤ ∅ ≤ 2𝜋) represents the rotation angle around the z-axis, 

precisely the same as the cylindrical to longitude) in Fig. 1.20.  

                                                                                                                             
Figure 1.20 𝑃(3, 45𝑜 , 60𝑜) in Spherical Coordinate System 

 Thus, using spherical coordinates a point in space can be unambiguously defined 

by one distance and two angles.  

1.20.1 Spherical Base Vector  

 Spherical base vectors are the “natural” base vectors of a sphere in Fig. 1.21 

1. 𝑎̂𝑟 points in the direction of increasing r. in other words 𝑎̂𝑟 points away from the 

origin. This is analogous to the direction we call up  

2. 𝑎̂0 points in the direction of increasing 𝜃. This analogous to the direction we call 

south   

Fig. 1.21 (a) spherical base vectors (b) transformation diagram  

                                                         
Figure 1.21 (a) Spherical Base Vector (b) Transformation Diagram 
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3. 𝑎̂∅ points in the direction of increasing ∅. This is analogous to the direction we 

call east.  

From 1.21 (b) we get  

𝑥 = 𝑟 sin 𝜃 cos ∅, 𝑦 = 𝑟 sin 𝜃𝑠𝑖𝑛∅, 𝑧 = 𝑟 sin 𝜃 

 Finally, we can write cylindrical base vectors in terms of spherical base vectors, or 

vice versa, using the following relationships.  

𝑎̂𝜌, ∙ 𝑎̂𝑟 = sin 𝜃 𝑎̂∅ ∙ 𝑎̂𝑟 = 0 𝑎̂𝑧 ∙ 𝑎̂𝑥 = cos 𝜃 

𝑎̂𝜌 ∙ 𝑎̂𝜃 = cos 𝜃 𝑎̂∅ ∙ 𝑎̂𝜃 = 0 𝑎̂𝑧 . 𝑎̂𝜃 = −sin 𝜃 

𝑎̂𝜌, 𝑎̂∅ = 0 𝑎̂∅ ∙ 𝑎̂∅ = 1 𝑎̂𝑧 ∙ 𝑎̂∅ = 0 

𝑎̂𝜌 = (𝑎̂𝜌 ∙ 𝑎̂𝑟)𝑎̂𝑟 + (𝑎̂𝜌 ∙ 𝑎̂𝜃)𝑎̂𝜃 + (𝑎̂𝜌 ∙ 𝑎̂∅) 𝑎̂∅ 

= sin 𝜃 𝑎̂𝑟 − cos ∅ 𝑎̂𝜃 

𝑎̂𝜃 = (𝑎̂𝜃 ∙ 𝑎̂𝜌)𝑎̂𝜌 + (𝑎̂𝜃 ∙ 𝑎̂∅)𝑎̂∅ + (𝑎̂𝜃 ∙ 𝑎̂𝑧) 𝑎̂𝑧 

= cos 𝜃 𝑎̂𝜌 − sin 𝜃 𝑎𝑧 

𝑥 = 𝜌 cos; 𝑦 = 𝜌 sin; 𝑧 = 𝑧 

1.20.2 Spherical Coordinate System Summary 

Here, the variables are 𝑟 (radius); 𝜃 (angle of a cone z axis; ∅ (angle as in the foregoing 

cylindrical coordinate system.  
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𝜌 𝜃 

∅ 

r

z

y

x

z

y

x

𝜃 

∅ 
r
𝑎̂∅ 

𝑎̂𝜃  
𝑎̂𝑟  

(a) (b)

 

Figure 1.22  (a) Spherical coordinate 𝒓, 𝜽, ∅ (b) Unit vectors: 𝒂̂𝒓, 𝒂̂𝜽, 𝒂̂∅ 

(1) Surface 𝑟 = constant = a sphere  

(2) Surface 𝜃= constant = a cone  

(3) Surface ∅ = constant= a plane passing through the z axis (𝜃 = 0), same angle as ∅ 

in the cylindrical coordinate system.  

Any point in spherical system is thus an intersection of a sphere, a cone and a plane 

where are mutually perpendicular (to one another).  

 The unit vector 𝑎̂𝑟 , 𝑎̂𝜃, 𝑎̂∅ are mutually perpendicular, where:  

(1)  𝑎̂𝑟 radiates outward towards increasing r, and normal to the sphere r = constant, 

lying in the cone 𝜃 =constant and the plane ∅ =constant. 

(2) Unit vector 𝑎̂𝜃 lies normal to the surface of the cone, lies in the plane ∅ = 

constant, and is tangential to the sphere r = constant.  

(3) Unit vector 𝑎̂∅ is identical to that in the cylindrical, normal o the plane 

∅ =constant, and tangential to the cone 𝜃 =constant and to the sphere r = 

constant.  

For the transformation of scalars from the rectangular to the spherical coordinate 

system.  

𝑥 = 𝑟 sin 𝜃 cos ∅ ,   𝑦 = 𝑟 sin 𝜃 sin∅,   𝑧 = 𝑟 cos 𝜃 

In the reverse, 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2∅ + 𝑟2𝑠𝑖𝑛2𝜃 𝑠𝑖𝑛2∅ + 𝑟2𝑐𝑜𝑠2𝜃 

= 𝑟2[𝑠𝑖𝑛2𝜃(𝑐𝑜𝑠2∅ + 𝑠𝑖𝑛2∅) + 𝑐𝑜𝑠2𝜃] 
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𝑟2(𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃) = 𝑟2 = 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, 𝑟 ≥ 0 

𝜃 = 𝑐𝑜𝑠−1
𝑧

√𝑥2 + 𝑦2 + 𝑧2
 (0𝑜 ≤ 𝜃 ≤ 1800) 

∅ = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) 

Note that: 

𝑎𝑧 . 𝑎𝑟 = cos 𝜃 , 𝑎𝑧 . 𝑎𝜃 = −sin 𝜃 , 𝑎𝑧 . 𝑎∅ = 0 

The dot product of 𝑎̂𝑥, 𝑎̂𝑦 , 𝑎̂𝑧 “against” 𝑎̂𝑟 of the three equations above relating 𝑥, 𝑦, 𝑧 to 

their spherical equivalents, namely, sin 𝜃 cos 𝜃, sin 𝜃 sin∅ , cos ∅, respectively. The dot 

products of 𝑎̂𝑥, 𝑎̂𝑦, 𝑎̂𝑧 and both 𝑎̂𝜃 of the spherical can be worked out by borrowing a leaf 

from the previously performed cylindrical system. Without going through the whole 

rigmarole, here’s the       

    

 

𝑎̂𝑟 𝑎̂𝜃 𝑎̂∅ 

𝑎̂𝑥 sin 𝜃 cos ∅ cos 𝜃 cos∅ −sin∅ 

𝑎̂𝑦 sin 𝜃 sin∅ cos 𝜃 sin ∅ cos ∅ 

𝑎̂𝑧 

 

cos 𝜃 −sin 𝜃 0 

 

Example 1.28: Transform the vector field 𝐺 = (
𝑥𝑧

𝑦
) 𝑎̂𝑥 into spherical coordinates  

Solution: we find the three spherical components by dotting G with appropriate unit 

vectors and we change variables during the procedure:  

𝐺𝑟 =𝐺 ∙ 𝑎 𝑟 =
𝑥𝑧

𝑦
𝑎̂𝑥 ∙ 𝑎̂𝑟 =

𝑥𝑧

𝑦
sin 𝜃 cos∅ 

= 𝑟 sin 𝜃 cos 𝜃
cos2 ∅

sin∅
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𝐺𝜃 =𝐺 ∙ 𝑎 𝜃 =
𝑥𝑧

𝑦
𝑎̂𝑥 ∙ 𝑎̂𝜃 =

𝑥𝑧

𝑦
cos 𝜃 cos∅ = 𝑟 𝑐𝑜𝑠2𝜃 

cos 2∅

sin∅
 

𝐺∅ =𝐺 ∙ 𝑎 𝜃 =
𝑥𝑧

𝑦
𝑎̂𝑥 ∙ 𝑎̂∅ =

𝑥𝑧

𝑦
(− sin∅) = −𝑟 cos 𝜃 cos ∅ 

Combining the results  

𝐺 = 𝑟 cos 𝜃 cos∅ cot ∅ 𝑎̂𝑟 +𝑟 𝑐𝑜𝑠
2𝜃 𝑐𝑜𝑠∅ 𝑐𝑜𝑡∅ 𝑎̂𝜃 − 𝑟 cos 𝜃 cos∅ 𝑎̂∅ 

Example 1.29: Given two points, C (-3, 2, 1) and D (𝑟 = 5, 𝜃 = 20𝑜 , ∅ = −700) find  

(a) The spherical coordinates of 𝐶  

(b) The rectangular coordinates of 𝐷⃗⃗  

(c) Distance from C to D 

Solution: we know that  

(a)   𝑟 = √𝑥2 + 𝑦2 + 𝑧2 = √9 + 4 + 1 = 3.74 

   ∅ = 𝑡𝑎𝑛−1
𝑦

𝑥
= 𝑡𝑎𝑛−1 (

2

3
) = 146.30 

𝜃 = 𝑐𝑜𝑠−1
𝑧

√𝑥2 + 𝑦2 + 𝑧2
= 𝑐𝑜𝑠−1 (

1

√14
) = 74.50 

𝑇ℎ𝑒 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝐶  𝑎𝑟𝑒 (𝑟, 𝜃, ∅) = (3.74, 74. 50, 146. 3𝑜).  

(b)   𝑥 = 𝑟 sin 𝜃 cos ∅ = 5 sin 200 cos(700) = 0.585 

  𝑦 = 𝑟 sin 𝜃 sin ∅ = 5 sin 200 sin(−700) = −1.607 

  𝑧 = 𝑟 cos 𝜃 = 5 cos(200) = 4.70 

∴                  𝐷(𝑥 = 0.585, 𝑦 = −1.607, 𝑧 = 4.70) 𝐴𝑛𝑠 

(c)  Distance 𝐶𝐷⃗⃗⃗⃗  ⃗ = |𝐷⃗⃗ −𝐶 |  

= |(0.585 + 3)𝑎̂𝑥 + (−1.607 − 2)𝑎̂𝑦 + (4.70 − 1)𝑎̂𝑧| 
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= |3.585𝑎̂𝑥 − 3.607𝑎̂𝑦 + 3.70𝑎̂𝑧| 

= √3.5852 + (−3.607)2 + 3.72 

    = 6.28 𝑨𝒏𝒔 

Example 1.30:  Transform the vector field 𝑉⃗ = (
𝑦𝑧

𝑥
)𝑎̂𝑥 into its spherical components and 

variables  

Proc: 𝑉𝑟 = 𝑉⃗ ∙ 𝑎̂𝑟 = (
𝑦𝑧

𝑥
) 𝑎̂𝑥 ∙ 𝑎̂𝑟 = (

𝑦𝑧

𝑥
) sin 𝜃 cos ∅ 

= (
𝑦𝑧

𝑥
) sin 𝜃 cos ∅ = (sin∅) (𝑟 cos 𝜃) sin 𝜃 cos ∅ 

= 𝑟 cos 𝜃 sin 𝜃 sin ∅ 

𝑉𝜃 = 𝑉⃗ ∙ 𝑎̂𝜃 =
cos 𝜃

cos ∅
 

𝑟 𝑐𝑜𝑠 2𝜃 sin∅ 

𝑉∅ = 𝑉⃗ ∙ 𝑎̂∅ =
(𝑟 cos 𝜃) 

cos ∅
(− sin ∅) 

= −
𝑟 cos 𝜃 𝑠𝑖𝑛2∅

cos ∅
= (−𝑟 cos 𝜃 sin∅ tan∅)  

⟹      𝑉⃗ = (𝑟 cos 𝜃 sin 𝜃 sin∅) 𝑎̂𝑟 + (𝑟 𝑐𝑜𝑠
2𝜃 sin ∅) 𝑎̂𝜃 −

(𝑟 cos 𝜃 𝑠𝑖𝑛2∅)

cos ∅
𝑎̂∅ 

= 𝑟 cos 𝜃 sin∅ (sin 𝜃 𝑎̂𝑟 + cos 𝜃 𝑎̂𝜃 − tan∅ 𝑎̂∅)  

1.21 Applications  

The geographic coordinates system applies the two angles of the spherical coordinate 

system to express locations on earth, calling them latitude and longitude. Just as the two-

dimensional Cartesian coordinates system is useful to the plane, a two-dimensional 

spherical coordinate system is useful on the surface of a sphere. In this system, the 

sphere is taken as a unit sphere, so the radius is unity and can generally be ignored. This 
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simplification can also be very useful when dealing with objects such as rotational 

matrices.  

 Spherical coordinates are useful in analyzing systems that are symmetrical about 

a point; a sphere that has the Cartesian equation 𝑥2 + 𝑦2 + 𝑧2 + 𝑐2 has the very simple 

equation 𝜌 = 𝑐 in spherical coordinates. An example is in solving a triple integral with a 

sphere as its domain.  

 Spherical; coordinates are the natural coordinates for describing and analyzing 

physical situations where there is spherical symmetry, such as the potential energy 

surrounding a sphere (or point) with mass or charge. Two important partial differential 

equations, Laplace’s equation and the Helmholtz equation, allow a separation of 

variables in spherical coordinates. The angular portions of the solutions to such 

equations take the form of spherical harmonics.     

 Another application is ergonomic design, where 𝜌 is the arm length of a 

stationary person and the angles described the direction of the arm as it reaches out.  

1.22 Converting Vectors Between Cartesian and Spherical Polar Bases 

 Let 𝑎 = 𝑎𝑅𝜌̂𝑅 + 𝑎̂𝜃𝜌̂𝜃 + 𝑎∅𝜌̂∅ be a vector. Find the formula for the components 

of a in the basis {I, j, k}, i.e, find 𝑎𝑥, 𝑎𝑦, 𝑎𝑧such that 𝑎 = 𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘. 

 It is easier to do the transformation by expressing each basis vector {𝜌𝑅 , 𝜌𝜃, 𝜌∅} as 

component in {I, j, k) and then substituting. To do this recall that 𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂  

𝜃 

P

∅ 

𝑒𝑅  

𝑒∅ 

𝑒𝜃  

i

j

k

R

∅ 

𝜃 

𝑅𝑠 sin𝜃 

zRs

Rc x

y

x

z

y

                                                                                               
Fig 1.26 conversion between Cartesian and spherical coordinates 
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𝑥 = 𝑅 sin 𝜃 cos ∅                              ⇒ 𝑅 = √𝑥2 + 𝑦2 + 𝑧2  1.33 

𝑦 = 𝑅 sin 𝜃 sin ∅                             ⇒ 𝑅 = 𝜃 = 𝑐𝑜𝑠−1 (
𝑧

√𝑥2+𝑦2+𝑧2
)       1.34 

  𝑧 = 𝑅 cos θ                                       ⇒ ∅ = 𝑡𝑎𝑛−1 (
𝑦

𝑥
)     1.35 

And finally recall that by definition  

                      𝜌𝑅 =
1

|
𝜕𝑟
𝜕𝑅
|

𝜕𝑟

𝜕𝑅
            𝜌𝜃 =

1

|
𝜕𝑟
𝜕𝜃
|

𝜕𝑟

𝜕𝜃
          𝜌∅ =

1

|
𝜕𝑟
𝜕∅
|

𝜕𝑟

𝜕∅
                       1.36 

Hence, substituting for x, y, z and differentiating  

𝑟 = 𝑅 sin 𝜃 cos ∅𝑖 + 𝑅 sin 𝜃 sin ∅𝑗 + 𝑅 cos 𝜃𝑘 

⇒             
𝜕𝑟

𝜕𝑅
= sin 𝜃 cos ∅𝑖 + sin 𝜃 𝑠𝑖𝑛∅𝑗 + cos 𝜃𝑘 

Conveniently we find 
𝜕𝑟

𝜕𝑅
= 1 (check this for yourself, recalling the trig simplification (sin2 

A +cos2 A=1) 

Therefore   𝜌𝑅 = sin 𝜃 cos ∅𝑖 + sin 𝜃 𝑠𝑖𝑛∅𝑗 + cos 𝜃𝑘 

Similarly,   
𝜕𝑟

𝜕𝑅
= 𝑅 cos 𝜃 cos ∅𝑖 + 𝑅 cos 𝜃 𝑠𝑖𝑛∅𝑗 − 𝑅 sin 𝜃𝑘 

And    |
𝜕𝑟

𝜕𝑅
| = 𝑅, 𝑠𝑜 𝑡ℎ𝑎𝑡 

The third basis vector follows as,  

𝜕𝑟

𝜕𝑅
= −𝑅𝑠𝑖𝑛 𝜃 sin ∅𝑖 + 𝑅 sin 𝜃 cos ∅𝑗 

𝑎𝑛𝑑 |
𝜕𝑟

𝜕𝑅
| = 𝑅 sin 𝜃, 𝑠𝑜 𝑡ℎ𝑎𝑡  

𝜌∅ = −sin∅𝑖 + 𝑐𝑜𝑠𝜃𝑗 

Finally, substituting  
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𝑎 = 𝑎𝑅[𝑠𝑖𝑛 𝜃 cos ∅𝑖 + sin 𝜃 sin ∅j + cos ∅𝑘]  

+𝑎𝜃[𝑐𝑜𝑠 𝜃 cos ∅𝑖 + cos 𝜃 sin ∅ − sin 𝜃 𝑘] + 𝑎∅[−𝑠𝑖𝑛∅𝑖 + 𝑐𝑜𝑠∅𝑗]  

Collecting terms in I, j, and k we see that 

𝑎𝑥 = 𝑠𝑖𝑛 𝜃 cos ∅ 𝑎𝑅 + cos 𝜃 cos ∅ 𝑎∅ − sin∅𝑎∅     1.37 

𝑎𝑦 = 𝑠𝑖𝑛 𝜃 sin ∅ 𝑎𝑅 + cos 𝜃 sin ∅ 𝑎∅ + cos ∅𝑎∅     1.38 

𝑎𝑧 = cos 𝜃 𝑎𝑅−sin∅𝑎∅        1.39 

If you like matrices, this transformation can be expressed as  

[

𝑎𝑥
𝑎𝑦
𝑎𝑧
] = [

sin 𝜃 𝑐𝑜𝑠∅ cos 𝜃 cos∅ − sin∅
sin 𝜃 sin∅ cos 𝜃 sin ∅ cos ∅
cos 𝜃 − sin 𝜃 0

] [

𝑎𝑅
𝑎𝜃
𝑎∅
] 

Conversely, let 𝑎 = 𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘. Find components  

𝑎 = 𝑎𝑅 𝜌𝑅 + 𝑎𝜃 𝜌𝜃 + 𝑎∅𝜌∅ 

This time, we can use the formal approach present in section 2. We have  

𝑎 = 𝑎𝑅𝜌𝑅 + 𝑎𝜃𝜌𝜃 + 𝑎∅𝜌∅ = 𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘 

⇒         𝑎. 𝜌𝑅 = 𝑎𝑅 = 𝑎𝑥𝑖. 𝜌𝑦𝑗. 𝜌𝑅 + 𝑎𝑅 + 𝑎2𝑘. 𝑎𝑅 

(Where we have 𝜌𝜃. 𝜌∅ = 𝜌∅. 𝜌𝜃 = 0). Recall that  

𝜌𝑅 = sin 𝜃 cos ∅𝑖 + sin 𝜃 sin 𝜃𝑗 + cos 𝜃𝑘 

⇒       𝑖. 𝜌𝑅 = 𝑠𝑖𝑛𝜃 cos ∅ 𝑗. 𝜌𝑅 = sin 𝜃 sin∅ 𝑘. 𝜌𝑅 = cos 𝜃 

Substituting, we get  

𝑎𝑅 = sin 𝜃 cos ∅𝑎𝑥 + sin 𝜃 sin ∅𝑎𝑦 + cos ∅𝑎𝑧   1.40 

Proceeding in exactly the same way for the other two components  

𝑎∅ = cos 𝜃 cos ∅ 𝑎𝑥 + cos 𝜃 sin ∅𝑎𝑦 − sin∅𝑎𝑧   1.41 
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𝑎∅ = −sin∅𝑎𝑥 + cos ∅𝑎𝑦      1.42 

In matrix from  

[

𝑎𝑅
𝑎𝜃
𝑎∅
] = [

sin 𝜃 𝑐𝑜𝑠∅ sin 𝜃 sin ∅ cos 𝜃
cos 𝜃 cos ∅ cos 𝜃 sin∅ − sin 𝜃
−sin∅ cos ∅ 0

] [

𝑎𝑥
𝑎𝑦
𝑎𝑧
] 

 (Comparing this result to the transformation from spherical to rectangular 

coordinates, we notice that the matrices involved in the transformation have a neat 

property-for each matrix, its inverse is equal to its transpose). 

                                                                                                                                            
Figure 1.24 

Example 1.31: Use spherical coordinate system to find area of strip 𝑎 ≤ 𝜃 ≤ 𝛽 on the 

spherical shell of radius “a” in Fig. 2.24. What will be the result when 𝑎 = 0 𝑎𝑛𝑑 𝛽 = 𝜋? 

Solution: the differential surface element is  

𝑑𝑠⃗⃗⃗⃗ = 𝑟2 sin 𝜃 𝑑𝜃 𝑑∅ 

𝑡ℎ𝑒𝑛 𝐴 = ∫ ∫𝛼2 sin 𝜃 𝑑𝜃 𝑑∅

𝛽

𝛼

2𝜋

0

 

= 𝑎2[− cos 𝜃] 0 
𝛽 [∅]0

2𝜋 

= 𝑎2[cos 𝛼 − 𝑐𝑜𝑠𝛽] ×  2𝜋 

𝐴 = 2𝜋𝛼2(cos 𝛼 − cos𝛽)  
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 Also, when 𝛼 = 0 𝑎𝑛𝑑 𝛽 = 𝜋 𝑤𝑒 𝑔𝑒𝑡 𝐴 = 4𝜋𝑎2 which is surface area of entire 

sphere.  

Example 1.32:  Obtain the expression for the volume of a sphere of radius ‘a’ from the 

differential volumes. 

Solution: Differential volume element  

𝑑𝑣 = 𝑟2 sin 𝜃 𝑑𝜃 𝑑∅ 

Thus, 

                             𝑣 = ∫ ∫ ∫ 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑∅ = [
𝑟2

3
]
0

𝑎

[−𝑐𝑜𝑠𝜃]0
𝜋[∅]0

2𝜋
𝑎

0

𝜋

0

2𝜋

0

 

=
𝑎3

3
× 2 × 2𝜋 =

4

3
 𝜋𝛼3 

Example 1.33: Transform vector 𝐴 = 𝑟𝑟̂ + 2 sin∅ 𝜃 + 2 cos 𝜃 ∅̂ in spherical coordinate 

system to Cartesian coordination system.  

Solution: relation between spherical and Cartesian coordinate is given by Equ. (1.40).  

 𝐹𝑟𝑜𝑚       ∅ = 𝑡𝑎𝑛 −1 (
𝑦

𝑥
)  𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠−1 (

𝑧

𝑟
) ⟹ 𝑐𝑜𝑠−1  (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
) 

We can represent it on right angled triangle as:  

𝜃 ∅ 

O

M Nz x

yand

√𝑥2 + 𝑦2 + 𝑧2 √𝑥2 + 𝑦2 
√𝑥2 + 𝑦2 

 

sin 𝜃 =
√𝑥2 + 𝑦2

√𝑥2 + 𝑦2 + 𝑧2
; sin ∅ =

𝑦

√𝑥2 + 𝑧2
; cos ∅ =

𝑥

√𝑥2 + 𝑦2
 ;  cos 𝜃 =

𝑧

√𝑥2 + 𝑦2 + 𝑧2
 

𝐴𝑥 =𝐴 ∙ 𝑎 𝑥 = (𝑟𝑟̂ ∙ 𝑎̂𝑥 + 2 sin∅ 𝜃 ∙ 𝑎̂𝑥 + 2 cos 𝜃 ∅̂ ∙ 𝑎̂𝑥)  
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= 𝑟 sin 𝜃 cos ∅ + 2 cos 𝜃 sin ∅ cos ∅ − 2 cos 𝜃 sin∅ 

= (𝑥 +
2𝑧

√𝑥2 + 𝑦2 + 𝑧2
×

𝑦

√𝑥2 + 𝑦2
×

𝑥

√𝑥2 + 𝑦2
−

2𝑧

√𝑥2 + 𝑦2 + 𝑧2
×

𝑦

√𝑥2 + 𝑦2
) 

= 𝑥 +
2𝑥𝑦𝑧

(𝑥2 + 𝑦2)√𝑥2 + 𝑦2 + 𝑧2
−

2𝑦𝑧

√(𝑥2 + 𝑦2) √𝑥2 + 𝑦2 + 𝑧2
 

Similarly, 𝐴𝑦 =𝐴 ∙𝑎 𝑦 = 𝑟𝑟̂. 𝑎̂𝑦 + 2 sin∅ 𝜃. 𝑎̂𝑦 + 2 cos 𝜃 ∅̂. 𝑎̂𝑦 

= 𝑟 sin 𝜃 sin∅ + 2 cos 𝜃 sin2 ∅ + 2 cos 𝜃 cos ∅ 

= 𝑦 +
2 × 𝑧

√𝑥2 + 𝑦2 + 𝑧2
× (

𝑦

√𝑥2 + 𝑦2
)

2

+
2 × 𝑧

√𝑥2 + 𝑦2 + 𝑧2
×

𝑥

√𝑥2 + 𝑦2
 

= 𝑦 +
2𝑧𝑦2

(𝑥2 + 𝑦2) √𝑥2 + 𝑦2 + 𝑧2
+

2𝑥𝑧

√(𝑥2 + 𝑦2 + 𝑧2)(𝑥2 + 𝑦2)
 

And   𝐴𝑧 =𝐴 .𝑎̂𝑧 = 𝑟𝑟̂. 𝑎̂𝑧 + 2 sin∅ 𝜃. 𝑎̂𝑧 + 2 cos 𝜃 ∅̂. 𝑎̂𝑧 

= 𝑟 cos 𝜃 − 2 sin 𝜃 sin ∅ 

= 𝑧 −
2𝑦

√𝑥2 + 𝑦2 + 𝑧2
 

∴     𝐴 = [𝑥 +
2𝑥𝑦𝑧

(𝑥2 + 𝑦2) √𝑥2 + 𝑦2 + 𝑧2
−

2𝑦𝑧

√(𝑥2 + 𝑦2 + 𝑧2)(𝑥2 + 𝑦2)
] 𝑎̂𝑥 

+[𝑦 +
2𝑦2𝑧

(𝑥2 + 𝑦2) √𝑥2 + 𝑦2 + 𝑧2
+

2𝑥𝑧

√(𝑥2 + 𝑦2 + 𝑧2)(𝑥2 + 𝑦2)
] 𝑎̂𝑦 

+ [𝑧 −
2𝑦

√𝑥2 + 𝑦2 + 𝑧2
] 𝑎̂𝑧  𝑨𝒏𝒔 

1.22.1 Converting Between Cylindrical and Rectangular Cartesian Coordinates  

 The formulas below convert from Cartesian (x, y, z) coordinates to cylindrical 

polar 𝑟, ∅, 𝑧 coordinates and back again.  
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𝑥 = 𝑟 cos∅                   𝑟 = √𝑥2 + 𝑦2 

𝑦 = 𝑟 sin∅                   ∅ = 𝑡𝑎𝑛−1 (
𝑦
𝑥⁄ ) 

𝑧 = 𝑧              𝑧 = 𝑧 

1.22.2 Cylindrical-Spherical Representation of Vectors  

 𝑟̂𝑠 𝜃 ∅̂ 

𝑟̂𝑐 

∅̂ 

𝑧̂ 

sin 𝜃 

0 

cos 𝜃 

cos 𝜃 

0 

−sin 𝜃 

0 

1 

0 

Refers to Fig. 1.25, when using cylindrical-polar coordinates, all vectors are expressed as 

components in the basis (𝑒𝑟 , 𝑒∅, 𝑒𝑧) shown. In words. 

𝑒𝑧  k

∅ 

𝑒∅ 

𝑒𝑟  z

O

j

i

r

                                                                                         
Figure 1.25 Conversion between Base Vectors 

𝑒𝑟 is a unit vector normal to the cylinder at P  

𝑒∅ is a unit vector circumferential to the cylinder at P, chosen to make  (𝑒𝑟 , 𝑒∅, 𝑒𝑧) a right-

handed trail. 

𝑒𝑧 is parallel to the k vector  

 You will see that the position vector of point P would be expressed as  
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𝑟 = 𝑟𝑒𝑟 + 𝑧𝑒𝑧 = 𝑟 cos ∅𝑖 + 𝑟 sin∅𝑗 + 𝑧𝑘 

Note also that the basis vectors are intentionally chosen to satisfy  

𝑒𝑟 =
1

|
𝜕𝑟

𝜕𝑟
|

𝜕𝑟

𝜕𝑟
 𝑒∅ =

1

|
𝜕𝑟

𝜕∅
|

𝜕𝑟

𝜕∅
 𝑒𝑧 =

1

|
𝜕𝑟

𝜕𝑧
|

𝜕𝑟

𝜕𝑧
       1.43 

And there is therefore the natural basis for the coordinate system  

1.22.3 Converting Vectors Between Cylindrical and Cartesian Bases  

Let 𝑎 = 𝑎𝑟𝑒𝑟 + 𝑎∅𝑒∅ + 𝑎𝑧𝑒𝑧 be a vector, expressed as components in (𝑒𝑟 , +𝑒∅ + 𝑒𝑧). It is 

straight forward to show that the component of a in (I, j, k) (a=𝑎𝑥𝑖 + 𝑎𝑦𝑗, +𝑎𝑧𝑘) are (as 

in Fig. 1.25). 

 𝑎𝑥 = 𝑎𝑟 cos ∅ − 𝑎∅ sin ∅       1.44 

 𝑎𝑦 = 𝑎𝑟 sin ∅ − 𝑎∅ cos ∅       1.45 

 𝑎𝑧 = 𝑎𝑧         1.46 

As a matrix  

[

𝑎𝑥
𝑎𝑦
𝑎𝑧
] = [

cos ∅ − sin ∅ 0
sin∅ cos ∅ 0
0 0 1

] [

𝑎𝑟
𝑎∅
𝑎𝑧
] 

The reverse of this transformation is  

𝑎𝑟 = 𝑎𝑥 cos ∅ + 𝑎𝑦 sin ∅ 

𝑎∅ = −𝑎𝑥 sin ∅ + 𝑎𝑦 cos ∅ 

𝑎𝑧 = 𝑎𝑧 

   In matrix from  

[

𝑎𝑟
𝑎∅
𝑎𝑧
] = [

cos ∅ sin∅ 0
−sin∅ cos ∅ 0
0 0 1

] [

𝑎𝑟
𝑎𝑦
𝑎𝑧
] 
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Note: remember the cube (wherever solving numerical) on surface of object under 

consideration in spherical coordinates.  

 Similarly, we extend point 𝑃(𝑟, 𝜃, ∅) 𝑡𝑜 𝑄(𝑟 + 𝑑𝑟, 𝜃 + 𝑑𝜃) in spherical 

coordinates as let us first plot P at distance of angles ‘𝜃′𝑎𝑛𝑑 ∅′𝑤𝑖𝑡ℎ ′𝑟′ as length extend 

the same by incrementing in all directions. Finally, we obtain cuboid which we generally 

assume as cube an any objects surface under questions.   

Fig. 1.27 

Terms:  

𝑑𝑙⃗⃗  ⃗ = 𝑑𝑟⃗⃗⃗⃗ 𝑟̂ + 𝑟 𝑑𝜃 𝜃 + 𝑟 sin 𝜃 𝑑∅ ∅̂    (Differential length)  1.47 

𝑑𝑣 = (𝑑𝑣)(𝑟 sin 𝜃 𝑑∅) (𝑟 𝑑𝜃     (Differential volume)  1.48  

𝑑𝑠⃗⃗⃗⃗ = ±(𝑟 𝑑𝜃)𝜃𝑥 𝑟 sin 𝜃 𝑑∅ ∅̂ = ± 𝑟2 sin 𝜃 𝑑∅ 𝑟̂   (Differential area)  

= ±(𝑟 sin 𝜃 𝑑∅ ∅̂) 𝑥 𝑑𝑟 𝑟̂ = ±𝑟 sin 𝜃 𝑑𝑟 𝑑∅ 𝜃 − 2.32 

= ±(𝑑𝑟)𝑟̂ 𝑥 (𝑟 𝑑𝜃)𝜃 = ±𝑟 𝑑𝑟 𝑑𝜃 ∅̂       1.49 

Example 1.34: Express vector 𝐴 = cos ∅ 𝑎̂𝑟 − 2𝑟 𝑎̂∅ + 𝑎̂𝑧 in Cartesian coordinates.  

Solution: Using the matrix relation  

[

𝐴𝑥
𝐴𝑦
𝐴𝑧

] = [
cos ∅ − sin∅ 0
sin∅ cos∅ 0
0 0 1

] [

𝐴𝑟
𝐴∅
𝐴𝑧

] = [
cos ∅ − sin∅ 0
sin ∅ cos ∅ 0
0 0 1

] [
cos ∅
−2𝑟
1
] 

This can be written as  

𝐴 = (𝑐𝑜𝑠 2∅ + 2𝑟 sin∅) 𝑎̂𝑥 + (cos∅ sin ∅ − 2𝑟 cos∅) 𝑎̂𝑦 + 𝑎̂𝑧 

From cylindrical to Cartesian coordinates, we have  

cos ∅ =
𝑥

𝑦
=

𝑥

√𝑥2 + 𝑦2
 𝑎𝑛𝑑 sin ∅ =

𝑦

𝑟
=

𝑦

√𝑥2 + 𝑦2
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∴       𝐴 = (
𝑥2

𝑥2 + 𝑦2
+ 2𝑦) 𝑎̂𝑦 + 𝑎̂𝑧.   𝐴𝑛𝑠 

Example 1.35:  Find component of vector 𝐴 = −2𝑧 𝑎̂𝑦 + 5𝑦 𝑎̂𝑧 at point (0, -2, 3) which is 

directed towards the point 𝑄(√3,−300, 1). 

Solution:  𝑥 = 𝑟 cos 𝜃 = √3 cos(−300) = √3 ×
√3

2
=
3

2
= 1.5 

𝑦 = 𝑟 sin 𝜃 = √3 sin(−300) = −√3 ×
1

2
= −0.866 

𝑄 = (1.5, −0.866,1) 

𝑟𝑃𝑄 = (1.5 − 0)𝑎̂𝑥 + (−0.866 + 2)𝑎̂𝑦 + (1 − 3)𝑎̂𝑧 

𝑟𝑃𝑄 = 1.5𝑎̂𝑥 + 1.13𝑎̂𝑦 − 2𝑎̂𝑧 

Unit vector is now: 

𝑎𝑃𝑄 =
1.5𝑎̂𝑥 + 1.13𝑎̂𝑦 − 2𝑎̂𝑧

√(1.5)2 + (1.13)2 + (2)2
 

Component of vector 𝐴  at point P(0,-2,3) towards point Q  

𝐴 ∙𝑎 𝑃𝑄 = (−2)(3) 𝑎̂𝑦 + (2)(−2)𝑎̂𝑧 ∙𝑎𝑄𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

= (−6𝑎̂𝑦 − 4𝑎̂𝑧)
(1.5𝑎̂𝑥 + 1.13𝑎̂𝑦 − 2𝑎̂𝑧)

2.74
=
−6.78 + 8

2.74
= 0.445  

Example 1.36:  Use cylindrical coordinate system to find the area of curved surface of a 

right circular cylinder where r=3m, h=4m and 30𝑜 ≤ ∅ ≤ 120𝑜 

Solution: the different surface element is  

𝑑𝑠 = 𝑟 𝑑∅ 𝑑𝑧 

𝐴 = ∫ ∫ 𝑑∅𝑑𝑧 = 4 × (
2𝜋

3
−
𝜋

6
) = 4 × [

4𝜋 − 𝜋

6
] = 4 ×

3𝜋

6

2𝜋
3

𝜋
6

4

0

 



                                                                                                     Electromagnetic Field Theory 

64 
 

𝐴 = 2𝜋𝑚2 𝐴𝑛𝑠 

Table 1.1 Dot product of unit vectors in three coordinate systems  

R
ec

ta
ng

u
la

r 
C

yl
in

d
ri

ca
l 

Sp
h

e
ri

ca
l 

 

Note that the unit vectors 𝑟̂ in the cylindrical and spherical systems are not the same. For 

example  

Spherical   cylindrical   Rectangular 

𝑟̂ ∙ 𝑥̂ = sin 𝜃 cos ∅  𝑟̂ ∙ 𝑥̂ = cos ∅  𝑥 = rsin 𝜃 cos ∅ 

 𝑟̂ ∙ 𝑦̂ = sin 𝜃 sin∅  𝑟̂ ∙ 𝑦̂ = sin ∅  𝑦 = rsin 𝜃 sin ∅  

𝑟̂ ∙ 𝑧̂ = cos 𝜃   𝑟̂ ∙ 𝑧̂ = 0  𝑧 = rcos 𝜃  

FORMULAS 

∇𝑉 =
𝜕𝑣

𝜕𝑥
𝑥̂ +

𝜕𝑣

𝜕𝑦
 𝑦̂ +

𝜕𝑣

𝜕𝑧
 𝑧̂       Cartesian 

coordinates  

=
𝜕𝑣

𝜕𝑟
𝑟̂ +

1

𝑟

𝜕𝑣

𝜕∅
 ∅̂ +

𝜕𝑣

𝜕𝑧
 𝑧̂       

 Cylindrical coordinates  

=
𝜕𝑣

𝜕𝑟
𝑟̂ +

1

𝑟

𝜕𝑣

𝜕𝜃
 𝜃 +

1

𝑟 sin𝜃

𝜕𝑣

𝜕∅
 ∅̂       Spherical 

coordinates  
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∇. 𝐽 =
𝜕𝐽𝑥

𝜕𝑥
+
𝜕𝐽𝑦

𝜕𝑦
 +

𝜕𝐽𝑧

𝜕𝑧
        

 Cartesian coordinates 

=
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐽𝑟) +

1

𝑟

𝜕𝐽∅

𝜕∅
 +

𝜕𝐽𝑧

𝜕𝑧
       Cylindrical 

coordinates  

=
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝐽𝑟)

1

𝑟 sin𝜃

𝜕𝑣

𝜕𝜃
 (sin 𝜃) 𝐽𝜃 +

1

𝑟 sin𝜃
+

1

𝑟 sin𝜃

𝜕𝐽∅

𝜕∅
   

 Spherical coordinates  

∇ ×𝐵⃗ = |

𝑥̂ 𝑦̂ 𝑧̂
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

|       

 Cartesian coordinates  

= ||

𝑟

𝑟

̂ ∅̂
𝑧

𝑟

̂

𝜕

𝜕𝑟

𝜕

𝜕∅

𝜕

𝜕𝑧

𝐵𝑟 𝑟𝐵∅ 𝐵𝑧

||        Cylindrical 

coordinates  

= ||

𝑟̂

𝑟2 sin∅

∅̂

𝑟 sin∅

∅̂

𝑟

𝜕

𝜕𝑟

𝜕

𝜕𝜃

𝜕

𝜕∅

𝐵𝑟 𝑟𝐵𝑟 𝑟 sin 𝜃 𝐵𝜃

||      

 Spherical coordinates  

 

1.23 Exercise   

1.  Given three vectors  

𝐴 = 2𝑥̂ + 2𝑦̂ − 𝑧̂ 

𝐵⃗ = 𝑥̂ − 3𝑦̂ − 4𝑧̂ 

𝐶 = 𝑥̂ − 𝑦̂ + 𝑧̂ 
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Find: (a) 𝐴 − 𝐵⃗ + 2𝐶   (b) The unit vector along 𝐴 − 2𝐶  (c) 𝐵⃗ . 𝐶  (d) 𝐴 × 𝐵⃗   (e) 𝐴 × 𝐵⃗ . 𝐶  

2. Three points P1, P2 and P3 are given by (2, 3-2), (5,8,3) and (7,6,2) respectively 

obtain.  

 (a) Vector drawn from P1, to P2 

 (b) Unit vector along the line from P1, to P3 

3. A vector field is given by 𝐸⃗ = 𝑦𝑥̂ − 2.5𝑥𝑦̂ + 3𝑧̂ at a point P(4, 5, 2). Calculate:  

a. The field 𝐸⃗  at point P  

b. A scalar component of 𝐸⃗  in 𝑑𝑖𝑟𝑛 of vector 𝐴 =
1

3
(2𝑥̂ + 𝑦̂ + 2𝑧̂) at point P 

c. The angle between 𝐸⃗ 𝑎𝑛𝑑 𝐴  𝑎𝑡 𝑃. 

4. Given the points 𝑃(𝑟 = 5, ∅ = 60𝑜 , 𝑧 = 2)𝑎𝑛𝑑 𝑄(𝑟 = 2, ∅ = 110𝑜 , 𝑧 = −1): 

a. Find distance from P to Q 

b. Find unit vector towards the direction P to Q 

5. Two points are given as P(2, -1, -3) and Q(1,3,4). Give the vector that extends 

from P to Q in  

a. Cartesian  

b. Cylindrical  

c. Spherical  

6. An electric field intensity is given as  

𝐸⃗ = (
100cos𝜃

𝑟3
) 𝑟̂ + (

50 sin𝜃

𝑟3
) 𝜃. Calculate |𝐸⃗ | and a unit vector in Cartesian 

coordinates in direction of 𝐸⃗  at point (r=2, 𝜃 = 60𝑜 , ∅ = 20𝑜). 

7. Give that 𝐴 = (
5𝑟3

4
) 𝑟̂ 𝑐/𝑚2 in spherical coordinates, evaluate both sides of 

divergence theorem for volume enclosed by r=1m, r=2m.  

8. Find the rate at which the scalar function 𝑣 = 𝑟2 sin 2∅, in cylindrical coordinates, 

increases in the direction of vector 𝐴 = 𝑟̂ + ∅̂ at the point (2,
𝜋

4
, 0).  

9. 𝐴 = 2𝑟 cos ∅𝑟̂ + 𝑟∅̂.  Verify Stokes theorem, in cylindrical coordinates in 

region between closed curves C1 and C2 

10. A scalar function is given by V(X,Y,Z)= xy. Find a unit vector normal to constant V 

surface of value 2 at point (2,1,0) 

11. For a vector field 𝐹 = 𝑥𝑦2𝑥̂ + 𝑦𝑧2𝑦̂ + 2𝑥𝑧𝑧̂; calculate the line integral ∫𝐹 𝑑𝑙,
𝑐

 

where c is a straight line between points (0,0,0) and (1, 2, 3). 

12. In cylindrical coordinates (4<r<6), (30 <∅ < 60), (2 < 𝑧 < 5). Find  

a. Volume defined by these parameters   
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b. Length of longest straight line that lies entirely with in volume  

c. Total surface area  

13. given 𝐴 = 𝑟2𝑟̂ + 𝑟 sin 𝜃 𝜃 in spherical coordinates: Evaluate ∮𝐴 . 𝑑𝑠
𝑠

 over the 

following:  

a. the surface of that part of spherical volume of radius unity lying in the first 

octant. 

b. The surface of solid spherical shell lying between r=a and r=b where a>b.  

14. Given: 

𝐴 = 𝑟 sin 𝜃 cos ∅ 𝑟̂ − cos 2𝜃 sin∅ 𝜃 + tan
𝜃

2
 𝑖𝑛 𝑟 ∅̂  𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑝 (2,

𝜋

2
,
3𝜋

2
), 

determines the vector component of 𝐴  that is  

a. Parallel to 𝑧̂ 

b. Normal to surface ∅ =
3𝜋

2
 

c. Tangent to surface at r=2 

d. Parallel to line y=-2, z=0 

15. (a)  Show that point transformation between cylindrical and spherical coordinates 

is given by  

(i)  r=f(𝜌, 𝑧); (ii) 𝜃 = 𝑡𝑎𝑛−1𝑓(𝜌, 𝑧); (iii) ∅ = 𝑓(∅); (iv) 𝜌 = 𝑓(𝑟, 𝜃); (v) 𝑧 = 𝑓(𝑟, 𝜃); 

(vi)∅ = 𝑓(∅)  

(b) (i) Given /𝐴/= 𝑥𝑧 − 𝑥𝑦 + 𝑦𝑧, express /A/ in cylindrical coordinates.  

(ii) Given /B/=x2-2y2+3z2, express /B/ in spherical coordinates.  

FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM 

 

16. (a) Convert point A (0,-4,3) from Cartesian to cylindrical and spherical 

coordinates.  

(b) Describe the intersection of the following surface: (i)x=1, y=2 (ii) x=3, y=-2, z=5 

(iii) r=10, 𝜃=300 (iv) 𝑝 = 10, ∅ = 500 (v) ∅ = 400, 𝑧 = 8 (vi) r=4, ∅ = 300  

FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM 
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CHAPTER 2 

INTEGRAL THEOREMS 

2.0  Stokes Theorem  

Consider a vector field 𝐵(𝑟̅) ; where:  

𝐵(𝑟̅)̅̅ ̅̅ ̅̅ = ∇⃗⃗  × 𝐴(𝑟̅)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Say we wish to integrate this vector field over an open surface S:  

∬𝐵(𝑟̅)̅̅ ̅̅ ̅̅

𝑆

. 𝑑𝑠̅̅ ̅ = ∬𝐵(𝑟̅)̅̅ ̅̅ ̅̅ .

𝑆

ds⃗⃗⃗⃗ = ∬∇̅ ×

𝑆

 𝐴(𝑟̅)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑑𝑠̅̅ ̅ 

We can likewise evaluate this integral using Stokes theorem.   

 In this case, the contour C is a closed contour that surrounds surface S. the 

direction of C is defined by 𝑑𝑠̅̅ ̅ and the right-hand rule. In other words, C rotates 

counterclockwise around 𝑑𝑠̅̅ ̅, as in Fig 2.1 

                                                                                                                            
Figure 2.1 Surface with Contour C 

               ∬∇ ×  𝐴(𝑟̅). 𝑑𝑠̅̅ ̅

𝑆

= ∮𝐴(𝑟̅). 𝑑𝑙̅

𝐶

                                        2.1 

(𝑑𝑠⃗⃗⃗⃗ ) = (𝑛̂𝑑𝑠) 

(𝑑𝑙̅) = (𝑧̂𝑑𝑙) 
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• Stokes’s theorem allows us to evaluate the surface integral of a curl as simply a 

contour integral! 
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Fig 2.2 Vector field 

• Stokes’s theorem state that the summation (i.e. integration) of the circulation at 

every point on a surface is simply the total “circulation” around the closed 

contour surrounding the surface.  

In other words, if the vector field is rotating counterclockwise around some point in the 

volume, it must simultaneously be rotating clockwise around adjacent points within the 

volume-the net effect is therefore zero! As in Fig. 2.2. 

 Thus, the only values that make any difference in the surface integral is the 

rotation of the vector field around points that lie on the surrounding contour (i.e. the 

very edge of the surface S). these vectors are likewise rotating in the opposite direction 

around adjacent points- but these points do not lie on the surface, (thus, they are not 

included in the integration). The net effect is therefore non-zero! 

 Note that if S is a closed surface, then there is contour C that exists! In other 

words. 

∯ ∇
𝑆
 × 𝐴(𝑟̅). 𝑑𝑠̅̅ ̅ = ∮ 𝐴(𝑟̅). 𝑑𝑙̅ = 0

𝑜
     2.2 
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 Therefore, integrating the curl of any vector field over a closed surface always 

equals zero.  

Example 2.1: A numerical example may help you to illustrate the geometry involved in 

Stokes theorem. Consider the portion of a sphere shown in Fig. 2.1. the surface is 

specified by 𝑟 = 4, 0 ≤ 𝜃 ≤ 0. 1𝜋, 0 ≤  ∅ ≤ 0.3𝜋, and the closed path forming its 

perimeter is composed of three circular arcs. We are given the field 𝐻⃗⃗ = 6𝑟 sin ∅ 𝑎̂𝑟 +

18𝑟 sin 𝜃 cos ∅ 𝑎̂∅ and hence evaluate each side of Stokes theorem.  

Solution: the first path segment is described in spherical coordinates by 𝑟 = 4, 0 ≤ 𝜃 ≤

0.1𝜋, ∅ = 0; the second one by 𝑟 = 4, 𝜃 = 0.1𝜋, 0 ≤  ∅ ≤ 0.3𝜋; and the third by 𝑟 =

4, 0 ≤ 𝜃 ≤ 0.1𝜋, ∅ = 0.3𝜋. 

The differential path element 𝑑𝑙̅ is.  

𝑑𝑙̅ = 𝑑𝑟 𝑎̂𝑟 + 𝑟𝑑𝜃 𝑎̂𝜃 + 𝑟 sin 𝜃 𝑑∅ 𝑎̂∅ 

   I=0 on all three segments as 𝑟 = 4 𝑎𝑛𝑑 𝑑𝑟 = 0 

   II=0 on segment 2 since 𝜃 =constant  

   III=0 on segment 1 and 3 

∮ 𝐻⃗⃗ . 𝑑𝑙̅ = ∫𝐻𝜃 𝑟𝑑𝜃 + ∫𝐻∅ 𝑟 sin 𝜃 𝑑∅ + ∫𝐻𝜃 𝑟𝑑𝜃
321

    

Since, 𝐻𝜃 = 0, we have to evaluate only second  

∮ 𝐻⃗⃗ . 𝑑𝑙⃗⃗  ⃗ = ∫ [18(4) sin(𝜃. 1𝜋) cos∅] 4 sin(0.1𝜋)𝑑∅
3𝜋

0

 

= 288 𝑠𝑖𝑛20.1𝜋 sin 0.3𝜋 = 22.2𝐴 

Next, evaluate surface integral  

∇⃗⃗  × 𝐻⃗⃗ =
1

𝑟 sin 𝜃
 (
𝑑𝐻∅ sin 𝜃

𝑑𝜃
−
𝑑𝐻𝜃
𝑑∅
) 𝑎̂𝑟 +

1

𝑟
 (
1

sin 𝜃

𝑑𝐻𝑟
𝑑∅

−
𝑑(𝑟𝐻∅)

𝑑𝑟
) 𝑎̂𝜃

+
1

𝑟
(
𝑑(𝑟𝐻𝜃)

𝑑𝑟
−
𝑑𝐻𝑟
𝑑𝜃
) 𝑎̂∅ 
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=
1

𝑟 sin 𝜃
(36𝑟 sin 𝜃 cos 𝜃 cos ∅) 𝑎̂𝑟 +

1

𝑟
(
1

sin 𝜃
 6𝑟 cos ∅ − 36𝑟 sin 𝜃 cos ∅) 𝑎̂𝜃 

𝑑𝑆 = 𝑟2 sin 𝜃 𝑑𝜃 𝑑∅ 𝑎̂𝑟 , 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑖𝑠   

∫(∇⃗⃗  × 𝐻⃗⃗  . 𝑑𝑠⃗⃗⃗⃗ ) = ∫ ∫ (36 cos 𝜃 cos ∅) (16 sin 𝜃) 𝑑𝜃 𝑑∅
0.1𝜋

0

0.3𝜋

0𝑆

 

= ∫ 576 (
1

2
𝑠𝑖𝑛2𝜃) |0

0.1𝜋 cos ∅ 𝑑∅
0.3𝜋

0

 

= 288 𝑠𝑖𝑛2 0.1𝜋 0.3𝜋 = 22.2 𝐴 

Thus, the results check Stokes Theorem and we note in passing that a current of 22.2A is 

flowing upwards through this section of a spherical cap.  

Example 2.2:  A vector 𝐴  is represented in X-Y plane as 𝐴 = −𝑦 𝑎̂𝑥 + 𝑎̂𝑦. 

 Calculate curl 𝐴  and line integral ∮𝐴 . 𝑑𝑙⃗⃗  ⃗ for the closed curve 𝑥2 + 𝑦2 = 𝑟2, 𝑧 = 0. 

Hence verify Stokes theorem.  

Solution:   ∇⃗⃗  ×  𝐴 = |

𝑎̂𝑥 𝑎̂𝑦 𝑎̂𝑧
𝑑

𝑑𝑥

𝑑

𝑑𝑦

𝑑

𝑑𝑧

−𝑦 𝑥 0

| 

= 𝑎̂𝑥 [0 −
𝑑

𝑑𝑧
 (𝑥)] + 𝑎̂𝑦 [

𝑑

𝑑𝑧
(−𝑦) − 0] + 𝑎̂𝑧 [

𝑑(𝑥)

𝑑𝑥
−
𝑑

𝑑𝑦
(−𝑦)] 

= ∇⃗⃗  × 𝐴 = 2𝑎̂𝑧  

As,  𝐴 = −𝑦𝑎̂𝑥 + 𝑥𝑎̂𝑦 

|𝐴| = √𝑥2 + 𝑦2 = 𝑟 

∮𝐴 . 𝑑𝑙⃗⃗  ⃗ = ∮ 𝑟 . 𝑑𝑙⃗⃗  ⃗ = 𝑟∮𝑑𝑙 = 𝑟. 2𝜋𝑟 =2𝜋𝑟2 

In X-Y plane, normal to surface will be along Y-axis, so that 𝑑𝑠⃗⃗⃗⃗ = 𝑎̂𝑧 . 𝑑𝑠 
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∫𝛁⃗⃗ × 𝑨.⃗⃗  ⃗ 𝒅𝒔⃗⃗ ⃗⃗  
𝑺

= ∮ 2𝑎̂𝑧. 𝑎̂𝑧𝑑𝑠 = 2∮𝑑𝑠 = 2. 𝜋𝑟
2

𝑆𝑆

 

Comparing Equs (i) and (ii) Stokes theorem is verified.  

Example 2.3:  Evaluate ∬𝐹 . 𝑛̂ 𝑑𝑠⃗⃗⃗⃗ 
𝑠

 where 𝐹 = 𝑥2𝑎̂𝑥 + 𝑦
2𝑎̂𝑦 + 𝑧

2𝑎̂𝑧 and S is surface of 

cube bounded by 𝑥 = 0, 𝑥 = 5, 𝑦 = 0, 𝑦 = 5, 𝑧 = 0, 𝑧 = 5 as shown in the Fig. 2.2 

D

C

E

B

A

FG

y

z

x
dy

dx

dz

o

                                                                                                                                 
Figure 2.2 

Solution: for face DEFG 

𝑥̂ = 𝑎̂𝑥 

𝑥 = 5 

𝑑𝑥 = 0 

𝑑𝑠 = 𝑑𝑦𝑑𝑧 

And  

∬ 𝐹 

𝐷𝐸𝐹𝐺

∙ 𝑛̂ 𝑑𝑠 = ∫ ∫ (𝑥2𝑎̂𝑥 + 𝑦
2𝑎̂𝑦 + 𝑧

2𝑎̂𝑧). 𝑎̂𝑥 𝑑𝑦𝑑𝑧 = ∫ ∫ 𝑑𝑦𝑑𝑧 = 25
5

0

5

0

5

0

5

0

 

For face OABC; 𝑥 = 0 𝑑𝑥 = 0 𝑛̂ = −𝑎̂𝑥  𝑎𝑛𝑑  𝑑𝑠 = 𝑑𝑦𝑑𝑧 

∬ 𝐹 

𝑂𝐴𝐵𝐶

∙ 𝑛̂ 𝑑𝑠 = ∫ ∫ (𝑦2𝑎̂𝑦 + 𝑧̂𝑎̂𝑧) (−𝑎̂𝑥𝑑𝑦𝑑𝑧) = 0
5

0

5

0
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For ABEF, 𝑦 = 1, 𝑑𝑦 = 0, 𝑛̂ = 𝑎𝑦  𝑎𝑛𝑑 𝑑𝑠 = 𝑑𝑥𝑑𝑧 

∬ 𝐹 

𝐴𝐷𝐸𝐹

∙ 𝑛̂ 𝑑𝑠 = ∫ ∫ (𝑥2𝑎̂𝑥 + 𝑦
2𝑎̂𝑦 + 𝑧

2𝑎̂𝑧). 𝑎̂𝑦 𝑑𝑧𝑑𝑥 = ∫ ∫ 𝑑𝑦𝑑𝑧 = 25
5

0

5

0

5

0

5

0

 

For face OCDG, 𝑦 = 0, 𝑑𝑦 = 0, 𝑛̂ = −𝑎̂𝑦   𝑎𝑛𝑑 𝑑𝑠 = 𝑑𝑥𝑑𝑧 

∬ 𝐹 

𝑂𝐶𝐷𝐺

∙ 𝑛̂ 𝑑𝑠 = ∫ ∫ (𝑥2𝑎̂𝑥 + 𝑧
2𝑎̂𝑧)(−𝑎̂𝑦) 𝑑𝑥𝑑𝑧 = 0

5

0

5

0

 

For face EBCD, 𝑧 = 1 𝑑𝑧 = 0, 𝑛̂ = 𝑎̂𝑧   𝑎𝑛𝑑 𝑑𝑠 = 𝑑𝑥𝑑𝑦 

∬ 𝐹 

𝐸𝐵𝐶𝐷

. 𝑛̂ 𝑑𝑠 = ∫ ∫ (𝑥2𝑎̂𝑥 + 𝑦
2𝑎̂𝑦 + 𝑧

2𝑎̂𝑧) ∙  𝑎̂𝑥 𝑑𝑥𝑑𝑧 = ∫ ∫ 𝑑𝑥 𝑑𝑧 = 25
5

0

5

0

5

0

5

0

 

For face 𝑂𝐴𝐹𝐺, 𝑍 = 0, 𝑑𝑧 = 0 𝑛̂ = 𝑎̂𝑧   𝑎𝑛𝑑 𝑑𝑠 = 𝑑𝑥𝑑𝑦 

∬ 𝐹 

𝑂𝐴𝐹𝐺

∙ 𝑛̂ 𝑑𝑠 = ∫ ∫ (𝑥2𝑎̂𝑥 + 𝑦
2𝑎̂𝑦) (−𝑎̂𝑧) 𝑑𝑥𝑑𝑦 = 0

5

0

5

0

 

 The total surface integral about surface S of cube will be obtained on adding 

equations. 

∬𝐹 

𝑆

∙ 𝑛̂ 𝑑𝑠 = 25 + 0 + 25 + 0 + 25 + 0 = 75 

2.1 Divergence Theorem  

Recall the studied volume integrals of the form: 

∭𝑔(𝑟̅)𝑑𝑣

𝑉

 

 It turns out that any and every scalar field can be written as the divergence of 

some vector field, i.e. 

𝑔(𝑟̅) = ∇ ∙ 𝐴 (𝑟̅) 
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Therefore, we can equivalently write any volume integrals as: 

∭∇ ∙ 𝐴(𝑟̅)𝑑𝑣

𝑉

 

The divergence theorem states that these integrals is equal to:  

   ∭ ∇ ∙ 𝐴(𝑟̅)𝑑𝑣 = ∯ 𝐴(𝑟̅)𝑑𝑠
𝑆𝑉

     2.3 

Where S is the closed surface that completely surrounds volume V and vector 𝑑𝑠̅̅ ̅ points 

outward from the closed surface. For example, if volume V is a sphere, then S is the 

surface of that sphere.  

 The divergence theorem states that the volume integrals of a scalar field can be 

likewise evaluated as a surface integral of a vector field! 

 What the divergence theorem indicates is that the total “divergence” of a vector 

field through the surface of any volume is equal to the sum (i.e integration) of the 

divergence at all points within the volume.  

 In other words, if the vector field is diverging from some point in the volume, if 

must simultaneously be converging to another adjacent point within the volume the net 

effect is therefore zero as in Fig. 2.3 

                                                                                                                                  
Figure 2.3 Vector Field 

 Thus, the only values that make any difference in the volume integral are the 

divergence and convergence of the vector field across the surface surrounding the 

volume vectors that will be converging or diverging to adjacent points outside the 
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volume (across the surface) from points inside the volume. Since these points just 

outside the volume are not included in the integration. Their net effect is non-zero!  

2.2 Proof of Divergence Theorem 

Fig. 2.4 shows a closed surface enclosing a volume V that contains charges (or a charge 

density) that produce an electric flux density D. 

z

y

s

da

x1 x2

x
                                                                                        

Figure 2.4 Proof of Divergence Theorem 

Divergence  

∇⃗⃗   .  𝐷⃗⃗ =
𝜕𝐷𝑥

𝜕𝑥
+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧

𝜕𝑧
 

 So, that    ∫ ∇⃗⃗  ∙ 𝐷⃗⃗ 𝑑𝑉 =∭ (
𝜕𝐷𝑥

𝜕𝑥
+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧

𝑉

                                   2.4 

Let 𝐷𝑥1 and 𝐷𝑥2 respectively be 𝑥 component of electric flux entering LHS and leaving 

RHS of rectangular volume.  

 The total flux emerging is the algebraic difference of these two.  

𝐷𝑥2 − 𝐷𝑥1 = ∫
𝜕𝐷𝑥

𝜕𝑥
 𝑑𝑥

𝑥2

𝑥1

 

                        𝑜𝑟   ∭
𝜕𝐷𝑥

𝜕𝑥
 𝑑𝑥𝑑𝑦𝑑𝑧 = ∬ (𝐷𝑥2 − 𝐷𝑥1)𝑑𝑦𝑑𝑧                                2.5 

𝑑𝑦𝑑𝑧 is 𝑥 component of surface elements 𝑑𝑎⃗⃗ ⃗⃗   



                                                                                                     Electromagnetic Field Theory 

76 
 

∴  Its integration of product of 𝐷𝑥 times 𝑑𝑎⃗⃗ ⃗⃗   

Putting (2.5) in (2.4), RHS is  

∫ ∇⃗⃗   .  𝐷⃗⃗  𝑑𝑉 = ∮(𝐷𝑎𝑑𝑎𝑥 + 𝐷𝑦𝑑𝑎𝑦 + 𝐷𝑧𝑑𝑎𝑧) = ∮𝐷 ∙ 𝑑𝑎⃗⃗ ⃗⃗  
𝑠𝑆𝑉

 

HENCE DIVERGENCE THEOREM IS PROVED 

2.3 Integral Definition of Divergence Theorem 

∫ ∇⃗⃗   .  𝐷⃗⃗  𝑑𝑉 = ∮𝐷⃗⃗ .  𝑑𝑎⃗⃗ ⃗⃗   (from divergenc theorem)
𝑆𝑉

 

  ∇ ∙ 𝐷 = lim
𝑠→0

∫ 𝐷⃗⃗ ∙𝑑𝑎⃗⃗⃗⃗  ⃗𝑠

𝑉
  Net outward flux per unit volume  2.5 

RHS net outward electric flux through the closed surfaces S.  

LHS average divergence of D multiplied by volume V that is enclosed S.  

 Thus, the average divergence of a vector is the net outward flux of vector through 

a closed surface S divided by volume V enclosed.  

 He limits of the average divergence as S is allowed to shrink to zero about a point 

is divergence of vector at that point. 

Example 2.4: The volume charge density of a spherical body of radius “a” centered at 

origin is given by 𝜌𝑣(𝑟, 𝜃, ∅) =
𝜌0

𝑟
 𝐶/𝑚3 where 𝜌0 is constant, calculate the total charge 

in sphere.  

Solution: 𝑑𝑣 = 𝑟2 𝑠𝑖𝑛 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅ 

𝜌𝑣 =
𝜌0
𝑟

 

𝑄 = ∫𝜌𝑣  𝑑𝑣
𝑣

 



                                                                                                     Electromagnetic Field Theory 

77 
 

⟹       𝑄 = ∫
𝜌0
𝑟
 𝑥 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑∅ = ∫ 𝜌0 𝑟 𝑑𝑟 ∫ sin 𝜃 𝑑𝜃 ∫ 𝑑∅

2𝜋

0

𝜋

0

𝑎

0𝑣

 

𝑄 = 2𝜌0 𝑎
2 𝐶 

Example 2.5:  Given that 𝐷 = (
10𝑟3

4
) 𝑎̂𝑟

𝐶

𝑚2
 in cylindrical coordinates, evaluate both 

sides of divergence theorem for volume enclosed by 𝑟 = 1𝑚, 𝑟 = 2𝑚, 𝑧 = 0 𝑎𝑛𝑑 𝑧 =

10𝑚. 

D

z

D

ds

y

x

ds

                                                                

 Figure 2.5 

Solution: ∮ 𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ = ∫ ∇⃗⃗ . 𝐷⃗⃗  𝑑𝑣 

 Since D has no Z component, 𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗  is zero for top and bottom. On the inner 

cylindrical surface ds is in the direction 𝑎̂𝑟  

∮𝐷. 𝑑𝑠 = ∫ ∫
10

4
(1)3 𝑎𝑟 (1)𝑑∅ 𝑑𝑧 (−𝑎𝑟)

2𝜋

0

10

0

 

+∫ ∫
10

4
(2)3 𝑎𝑟 (2)𝑑∅ 𝑑𝑧 𝑎𝑟

2𝜋

0

10

0

 

=
−200𝜋

4
+
16 𝑥 200𝜋

4
= 750𝜋 𝐶 
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From R.H.S of divergence theorem  

∇ ∙  𝐷 =
1

𝑟

𝑑

𝑑𝑟
(
10𝑟4

4
) = 10𝑟2 

∫ ∇ ∙ 𝐷 ∙ 𝑑𝑉 = ∫ ∫ ∫ (10𝑟2)𝑟 𝑑𝑟𝑑∅𝑑𝑧 = 750𝜋 C 𝑝𝑟𝑜𝑣𝑒𝑑 
2

1

2𝜋

0

10

0𝑣

 

 

Example 2.6:  Given that 𝐷 = (
5𝑟2

4
) 𝑎̂𝑟  

𝐶

𝑚2
 in spherical coordinates evaluates both sides 

of divergence theorem for volume enclosed by 𝑟 = 4  𝑎𝑛𝑑 𝜃 =
𝜋

4
. 

Solution:   ∫ 𝐷⃗⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ = ∫ ∇ ∙ 𝐷 𝑑𝑣
𝑣𝑆

 

 Since D has only a radical component, 𝐷⃗⃗ ∙ 𝑑𝑠⃗⃗⃗⃗  has non-zero value only on surface r 

= 4m.  

∮ 𝐷⃗⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ =∫ ∫
5(4)2

4

𝜋
4

0

𝑎𝑟(4) sin 𝜃 𝑑𝜃 𝑑∅ 𝑎𝑟

2𝜋

0

 

= 589.1 C 

4 m

ds

D
ds

z

45o
D

                                                                                                                         
Figure 2.6 

For R.H.S of divergence theorem  
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𝑉𝐷 =
1

𝑟2
𝑑

𝑑𝑟
 (
5𝑟4

4
) = 5𝑟 

∫ ∇ ∙ 𝐷 𝑑𝑣 = ∫ ∫ ∫ (5𝑟)(𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑∅)
4

0

𝜋/4

0

2𝜋

0𝑣

 

= 589.1 C 𝐻𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑣𝑒𝑑  

2.4  Magnetostatics 

We have just dealt with the study of electrostatics: fields due to static charges, 

𝐸(𝐸𝑥, 𝐸𝑦, 𝐸𝑧). We shall now deal with the concept of magnetostatics: field due to moving 

charges (or steady current) 𝐻(𝐻𝑥, 𝐻𝑦, 𝐻𝑧)  

The interaction of electrostatic and magnetostatic fields gives rise to electromagnetic 

field 

(𝐸𝑥, 𝐸𝑦, 𝐸𝑧) and (𝐻𝑥, 𝐻𝑦, 𝐻𝑧) ⟹ 𝐸𝑀 field 

Sources of steady magnetic field are: 

i. Permanent magnet 

ii. Charging electric field 

iii. Direct current 

We shall go straight to the basic laws that govern magneto-static fields which include 

Biot-savart law and Ampere's circuital law. 

2.5  Biot-Savart Law 

The law states that at any point P the magnitude of the magnetic field intensity 𝑑𝐻 

produced by a differential current element 𝐼𝑑𝑙 at rl is proportional to the product of the 

current, the magnitude of the differential length and the sine of the angle lying between 

the filament and a line connecting the filament to the point P at which the field is to be 

determined. Also, this magnetic field Intensity is inversely proportional to the surface of 

the distance from the differential element to the point, P. 

                                                       𝑑𝐻 =
𝐼 𝑑𝑙

4𝜋𝑅2
𝑎𝑅                                           2.6 
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=
𝐼 𝑑𝑙 × 𝑅

4𝜋𝑅3
  A m⁄  

Where    𝑅 = 𝑟 − 𝑟′ 

                                           𝑑𝐻 =
𝐼 𝑑𝑙 × (𝑟 − 𝑟′)

4𝜋|𝑟 − 𝑟′|3
                                             2.7 

For surface or volume current distribution, we simply replace 𝐼 𝑑𝑙 in Eq. 2.6 with 𝐾 𝑑𝑠 or 

𝐽 𝑑𝑣 respectively, i.e. 

                                          𝐼 𝑑𝑙 = 𝐾 𝑑𝑠 = 𝐽 𝑑𝑣                                                    2.8   

Hence, 

𝐻 = ∮
𝐼 𝑑𝑙 × 𝑎𝑅
4𝜋𝑅2𝐿

 

𝐻 = ∫
𝐾 𝑑𝑠 × 𝑎𝑅
4𝜋 𝑅2

𝑆

 

                                                    = ∫
𝐽 𝑑𝑣 × 𝑎𝑅
4𝜋𝑅2

𝑉

                                             2.9 

Example 2.7: Find the incremental contribution 𝑑𝐻 to the magnetic field intensity at the 

origin caused by a differential current element in free space 𝐼 𝑑𝑙 equal to 

(a) 3𝜋𝑎𝑧  𝜇A.m Located at (3, −4, 0) and  

(b) 𝜋(𝑎𝑥 − 2𝑎𝑦 + 2𝑎𝑧) μA.m located at (5,0,0) 

Solution  

a) Given 𝐼 𝑑𝑙 = 3𝜋𝑎𝑧 × 10
−6 Am 

𝑟 = (0, 0, 0) 

𝑟 = (3,−4, 0) 

Now,  𝑟 − 𝑟′ = (−3, 4, 0) 

|𝑟 − 𝑟′| = √32 + 42 = 5 

|𝑅| = |𝑟 − 𝑟′| = 5 

𝑎𝑅 =
𝑅

|𝑅|
=
𝑟 − 𝑟′

|𝑟 − 𝑟′|
=
−3𝑎𝑥 + 4𝑎𝑦

5
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𝑑𝐻 =
𝐼𝑑𝑙 ×  𝑎𝑅
4𝜋𝑅2

 

=
3𝜋 × 10−6 𝐴.𝑚𝑎𝑧 × (−3𝑎𝑥 + 4𝑎𝑦)

4 × 𝜋 × 25 × 5
 

 

= 9.4 × 10−6 𝐴. 𝑚 𝑎𝑧  ×  (−3𝑎𝑥 + 4𝑎𝑦) 

 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧

0 0 9.4 × 10−6

−3 4 0

| 

 

𝑑𝐻 = (0 − 3.769 × 10−5)𝑎𝑥 − (0 + 2.827 × 10
−5) 𝑎𝑦 + 0 

 

= −3.769 × 10−5 𝑎𝑥 − 2.827 × 10
−5 𝑎𝑦 A/m 

𝑑𝐻 = −38 𝑎𝑥 − 28 𝑎𝑦 𝜇A/m   𝑨𝒏𝒔 

 

(b) 𝐼𝑑𝑙 = 𝜋(𝑎𝑥 − 2𝑎𝑦 + 2𝑎𝑧) 𝜇A.m  

𝑟 = (0,0,0) 

𝑟′ = (5,0,0) 

𝑟 − 𝑟′ = (−5, 0,0) 

𝑑𝐻 =
𝐼 𝑑𝑙 × 𝑎𝑅
4𝜋𝑅2

 

 

=
𝜋(𝑎𝑥 − 2𝑎𝑦 + 2𝑎𝑧) × −5𝑎𝑥

4𝜋 × 52 × 5
 𝜇A.m 

 

=
𝜋(𝑎𝑥 − 2𝑎𝑦 + 2𝑎𝑧) × −5𝑎𝑥

4𝜋 × 25 × 5
 𝜇A.m 

 

=
𝑎𝑥 − 2𝑎𝑦 + 2𝑎𝑧 × −5𝑎𝑥

500
 𝜇A.m 

 

= (𝑎𝑥 − 2𝑎𝑦 + 2𝑎𝑧)(−0.01𝑎𝑥) 𝜇A.m 

 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧
−0.01 0 0
1 −2 2

| × 10−6 
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= [−(−0.02 − 0)𝑎𝑦 + (0.02 − 0)𝑎𝑧] × 10
−6  A m⁄  

𝑑𝐻 = 20𝑎𝑦 + 20𝑎𝑧 nA/m   

 

 

2.6  Ampere's Circuit Law 

The law states that the circulation by the magnetic field intensity, H around a closed path 

is equal to the current enclosed by the path, i.e. 

                                                 ∮𝐻 • dl = I                                      2.10 

 This law is similar to Gauss's law which we have earlier treated; ∮ 𝐷𝑠 • ds = Q
𝑆

. 

Ampere's circuital law can be explained using the Fig. 2.7; 

a

b

c

 
Figure 2.7 

 

The conductor has a total current 𝐼. The fine integral of the magnetic field intensity, 𝐻 

around the paths a and b is just equal to the total current 𝐼. The line integral of 𝐻 around 

the path 𝐶 is obviously less than 𝐼 because the entire current is not enclosed by the path. 

 

Example 2.8: Each of the three coordinate axes carries a filamentary current of 2 A in the 

𝑎𝑥, 𝑎𝑦, or 𝑎𝑧, direction. Find the magnetic field intensity 𝐻 at the point (2,3,4). 

 

Solution:  

𝐼 = ∮𝐻 •𝑑𝑙 
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Now ∫𝑑𝑙, is simply the circumference of the path enclosing the current. Hence 

∫𝑑𝑙 = 2𝜋𝑟 

𝐼 = 𝐻 • 2𝜋𝑟 

𝐻 =
𝐼

2𝜋𝑅
𝑎̂𝑟 

𝐼 is the 𝑎𝑥, 𝑎𝑦, 𝑎𝑧, directions. We therefore calculate 𝐻in the 3 directions 

𝐻 = 𝐻𝑎𝑥 + 𝐻𝑎𝑦 + 𝐻𝑎𝑧 

In the 𝑎𝑥direction, we have:  

𝐼𝑑𝑙 = 2 × 𝑎𝑥 = 2𝑎𝑥 

𝑃2 = (2,3,4) = (2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧) 

𝑃1 = (0,0,0) 

𝑟12 = 𝑟2 − 𝑟1 = (2,3,4) − (0,0,0) = (2,3,4) 

|𝑟2 − 𝑟1|𝑎̂𝑥 = √3
2 + 42 = 5 

𝐻𝑎𝑥 =
2𝑎𝑥
2𝜋(5)

×
(2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧)

5
 

𝐻𝑎𝑥 = 12.7 × 10
−3𝑎𝑥 × (2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧) 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧

12.7 × 10−3 0 0
2 3 4

| 

= −(4 × 12.7 × 10−3)𝑎𝑦 + (3 × 12.7 × 10
−3)𝑎𝑧 

𝐻𝑎𝑥 = −0.0509𝑎𝑦 + 0.0382𝑎𝑧 

In the 𝑎𝑦 direction, we have: 

 

𝐼𝑑𝑙 = 2 × 𝑎𝑦 = 2𝑎𝑦 

𝑃2 = (2,3,4) = (2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧) 

𝑃1 = (0,0,0) 

𝑟12 = 𝑟2 − 𝑟1 = (2,3,4) − (0,0,0) = (2,3,4) 

|𝑟2 − 𝑟1|𝑎̂𝑦 = √2
2 + 42 = 4.47 

𝐻𝑎𝑦 =
2𝑎𝑦

2𝜋(4.47)
×
(2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧)

4.47
 

𝐻𝑎𝑦 = 15.9 × 10
−3𝑎𝑦 × (2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧) 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧

0 15.9 × 10−3 0
2 3 4

| 

= (4 × 15.9 × 10−3)𝑎𝑥 − (2 × 15.9 × 10
−3)𝑎𝑧 

𝐻𝑎𝑦 = 0.0637𝑎𝑥 − 0.0318𝑎𝑧 
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In the 𝑎𝑧 direction; 

𝐼𝑑𝑙 = 2 × 𝑎𝑧 = 2𝑎𝑧 

𝑃2 = (2,3,4) = (2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧) 

𝑃1 = (0,0,0) 

𝑟12 = 𝑟2 − 𝑟1 = (2,3,4) − (0,0,0) = (2,3,4) 

|𝑟2 − 𝑟1|𝑎̂𝑧 = √2
2 + 32 = 3.605 

𝐻𝑎𝑧 =
2𝑎𝑧

2𝜋(3.605)
×
(2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧)

3.605
 

𝐻𝑎𝑧 = 24.5 × 10
−3𝑎𝑧 × (2𝑎𝑥 + 3𝑎𝑦 + 4𝑎𝑧) 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧

0 0 24.5 × 10−3

2 3 4

| 

= −(3 × 24.5 × 10−3)𝑎𝑥 − (−2 × 24.5 × 10
−3)𝑎𝑦 

𝐻𝑎𝑧 = −0.0735𝑎𝑥 + 0.049𝑎𝑦 

Hence 𝐻 in all 𝑎𝑥𝑎𝑦𝑎𝑧, directions are: 

𝐻 = −0.0509𝑎𝑦 + 0.0382𝑎𝑧 + .0637𝑎𝑥 − 0.0318𝑎𝑧 − 0.0735𝑎𝑥 + 0.049𝑎𝑦 

𝐻 = −9.8𝑎𝑥 − 1.9𝑎𝑦 + 6.4𝑎𝑧  
A
m   ⁄ 𝑨𝒏𝒔 

 

2.7  Forces Due to Magnetic Fields 

There are at least three ways in which forces due to magnetic field can be experienced: 

a. Force on a moving charge particle in a magnetic field. 

b. Force on a differential current element in an external magnetic field. 

c. Force between two differential current elements. 

2.7.1  Force on a Moving Charge Particle 

We know that the electric force 𝐹𝑒 on a stationary or moving electric charge 𝑄 in an 

electric field 𝐸 is given by Coulombs law and is related to the electric field intensity as 

𝐹𝑒 = 𝑄𝐸    (𝑁) 

If 𝑄 is positive, then 𝐹𝑒 and 𝐸 arc in the same Irection. A magnetic field, 𝐵 can equally 

exert force on a charge particle only if the particle is in motion. The magnetic force 𝐹𝑚 
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experienced by a charge 𝑄 moving with a velocity, 𝑉, In a uniform magnetic field B is 

given by; 

                                                       𝐹𝑚 = 𝑄(𝑉 × 𝐵)                                                      2.11 

Note: 𝐸, 𝑉, 𝐵 are all vectors 

𝐹𝑚 is perpendicular to both V and B. Observe that 𝐹𝑒 is independent of velocity while 𝐹𝑚 

is dependent on it. For a moving charge 𝑄 in the presence of both electric and magnetic 

fields, the total force on the charge is given by Lorentz force equation; 

                                                               𝐹 = 𝐹𝑒 + 𝐹𝑚                                      2.11𝑎 

= 𝑄𝐸 + 𝑄(𝑉 × 𝐵) 

= 𝑄(𝐸 + 𝑉 × 𝐵) 

which relates mechanical force to electric force. If the mass of the charge particle moving 

in both electric and magnetic fields is 𝑚(𝑘𝑔) then by Newton's second law of motion; 

                                 𝐹 = 𝑚
𝑑𝑢

𝑑𝑡
= 𝑚𝑎 = 𝑄(𝐸 + 𝑉 × 𝐵)                   2.11𝑏 

The solution of the above Equ. (2.11) is very crucial in finding the motion of charged 

particles in electric and magnetic fields. We should bear in mind that in such fields, the 

bulk of the energy transfer is due to the electric field. 

Examples 2.9:  A point charge of −1.8 C has a velocity of 4𝑎𝑥 + 3𝑎𝑦 − 2𝑎𝑧 m/s. Find the 

magnitude of the force exerted on it by the field; (a) 𝐸 = 9𝑎𝑥 + 4𝑎𝑦 − 6𝑎𝑧 V/m  (b) 𝐵 =

−4𝑎𝑥 + 4𝑎𝑦 + 3𝑎𝑧 Wb/m
2 (c) both 𝐸 and 𝐵 

Solution  

(a) 𝐹𝑒 = 𝑄𝐸 

= −1.8(9𝑎𝑥 + 4𝑎𝑦 − 6𝑎𝑧) 

= −16.2𝑎𝑥 − 7.2𝑎𝑦 + 10.8𝑎𝑧 

|𝐹𝑒| = √16.22 + 7.22 + 10.82 

|𝐹𝑒| = 20.76 N 𝑨𝒏𝒔 
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(b) 𝐹𝑚 = 𝑄(𝑉 × 𝐵) = −1.8 |

𝑎𝑥 𝑎𝑦 𝑎𝑧
4 3 −2
−2 −2 1

| 

    −1.8[(3 − 4)𝑎𝑥 − (4 − 4)𝑎𝑦 + (−8 + 6)𝑎𝑧] 

= −1.8 (−𝑎𝑥 − 2𝑎𝑧) 

= 1.8𝑎𝑥 + 3.6𝑎𝑧 

|𝐹𝑚| = √1.82 + 3.62 

|𝐹𝑚| = 4.02 N  𝑨𝒏𝒔. 

(c) 𝐹 = 𝑄(𝐸 + 𝑉 × 𝐵) 

= −1.8((9𝑎𝑥 + 4𝑎𝑦 − 6𝑎𝑧) + |

𝑎𝑥 𝑎𝑦 𝑎𝑧
4 3 −2
−2 −2 1

|)  

= −1.8 (9𝑎𝑥 + 4𝑎𝑦 − 6𝑎𝑧 + −𝑎𝑥 − 2𝑎𝑧) 

= −1.8(8𝑎𝑥 + 4𝑎𝑦 − 8𝑎𝑧) 

𝐹 = −14.4𝑎𝑥 − 7.2𝑎𝑦 + 14.4𝑎𝑧 

|𝐹| = √14.42 + 7.22 + 14.42 

|𝐹| = 21.6 N   

Example 2.10: A charge particle of mass 4 kg and charge 2.5 C starts from point (−1,2,0) 

with velocity 2𝑎𝑥 + 3𝑎𝑧 m/s , in an electric field 6𝑎𝑥 + 5𝑎𝑦 V/m. At time 1 s. Determine 

(a) the acceleration of the particle. (b) the velocity. (c) the kinetic energy. (d) its position. 

Solution  

(a)  𝐹 = 𝑚𝑎 = 𝑄𝐸 ⟹ 𝑎 =
𝑄𝐸

𝑚
 

𝑎 =
2.5

4
(2𝑎𝑥 + 3𝑎𝑧) 

1.25𝑎𝑥 + 1.875𝑎𝑦 m/s
2    

(b) acceleration = rate of change of velocity 
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i.e. 

𝑎 =
𝑑𝑢

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑈𝑥, 𝑈𝑦, 𝑈𝑧) = 1.25𝑎𝑥 + 1.875𝑎𝑦 m/s

2 

Equating components to find U at time t 

𝑑

𝑑𝑡
𝑈𝑥 = 2.5 ⟹ 𝑈𝑥 = ∫1.25𝑑𝑡 = 1.25𝑡 + 𝐿 

𝑑

𝑑𝑡
𝑈𝑦 = 3.75 ⟹ 𝑈𝑦 = ∫1.875𝑑𝑡 = 1.875𝑡 + 𝑀 

𝑑

𝑑𝑡
𝑈𝑧 = 0 ⟹ 𝑈𝑧 = ∫0𝑑𝑡 = 0 + 𝑁 

We now solve for the constants 𝐿,𝑀,𝑁 as follows: at t=0,  

𝑈 = 2𝑎𝑥 + 3𝑎𝑧 m/s which shows that  

𝑈𝑥|𝑡=0 = 2 = 1.25(0) + 𝐿 ⟹ 𝐿 = 2 

𝑈𝑦|𝑡=0 = 0 = 1.875
(0) + 𝑀 ⟹ 𝑀 = 0 

𝑈𝑧|𝑡=0 = 3 = 0 + 𝑁 ⟹ 𝑁 = 3 

𝑈(𝑡) = (𝑈𝑥, 𝑈𝑦, 𝑈𝑧) 

𝑈(𝑡) = (1.25𝑡 + 2, 1.875𝑡, 3 ) 

Which can be expressed as,    

𝑼(𝑡) = (1.25𝑡 + 2)𝑎𝑥 + (1.875𝑡)𝑎𝑦 + 3𝑎𝑧 

Then the velocity at 𝑡 = 1 s is thus, 

𝑼(1) = (1.25 + 2)𝑎𝑥 + (1.875)𝑎𝑦 + 3𝑎𝑧 

= 3.25𝑎𝑥 + 1.875𝑎𝑦 + 3𝑎𝑧  m/s    

(c)         𝐾. 𝐸 =
1

2
𝑚𝑢2 

=
1

2
× 4 × (3.252 + 1.8752 + 32) 
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= 46.2J  

(d) 𝑈 =
𝑑𝑙

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑥, 𝑦, 𝑧) 

= (1.25𝑡 + 2, 1.875𝑡, 3) 

Equating coefficients of components gives  

𝑑𝑈𝑥(𝑡)

𝑑𝑡
= 1.25𝑡 + 2 ⟹ 𝑈𝑥(𝑡) = ∫(1.25𝑡 + 2)𝑑𝑡 = 0.65𝑡

2 + 2𝑡 + 𝐿1 

𝑑𝑈𝑦(𝑡)

𝑑𝑡
= 1.875𝑡 ⟹ 𝑈𝑦(𝑡) = ∫(1.875𝑡)𝑑𝑡 = 0.9375𝑡

2 +𝑀1 

 

𝑑𝑈𝑧(𝑡)

𝑑𝑡
= 3 ⟹ 𝑈𝑧(𝑡) = ∫(3)𝑑𝑡 = 3𝑡 + 𝑁1 

At  𝑡 = 0, (𝑥, 𝑦, 𝑧) = (−1,−2,0) 

From where  

        𝑈𝑥(0) = 0.65(0)
2 + 2(0) + 𝐿1⟹ 𝐿1 = −1 

𝑈𝑦(0) = 0.9375(0)
2 +𝑀1⟹𝑀1 = −2 

                                             𝑈𝑧(0) = 3𝑡 + 𝑁1⟹𝑁1 = 0 

Substituting,  

(𝑈𝑥(𝑡), 𝑈𝑦(𝑡), 𝑈𝑧(𝑡)) = (0.65𝑡
2 + 2𝑡 − 1, 0.9375𝑡2 − 2,3𝑡) = 𝑙(𝑡) 

∴  at 𝑡 = 1  𝑙(𝑡) = (1.65,−1.0625,3) 

∴  the position is 1.65𝑎𝑥 − 1.0625𝑎𝑦 + 3𝑎𝑧 𝑨𝒏𝒔. 

Example 2.11: A charged particle of mass 4 kg and charge 2 C starts at the origin with 

velocity 6𝑎𝑦 and travels in a region of uniform magnetic field 𝐵 = 20𝑎𝑧  
Wb

m2⁄ . At 

𝑡𝑖𝑚𝑒 = 6 s, calculate, (a) the velocity and acceleration of the particle. (b) the magnitude 

force on it. (c) its kinetic energy and location. (d) the particle's trajectory. Show that the 

kinetic energy is constant. 

Solution: 
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(a) 𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑢

𝑑𝑡
= 𝑄 (𝑈 × 𝐵) 

⟹  𝑎 =
𝑑𝑢

𝑑𝑡
=
𝑄

𝑚
(𝑈 × 𝐵) 

∴  
𝑑

𝑑𝑡
(𝑈𝑥𝑎𝑥 + 𝑈𝑦𝑎𝑦 + 𝑈𝑧𝑎𝑧) =

1

2
|

𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑈𝑥 𝑈𝑦 𝑈𝑧
0 0 20

| 

=
1

2
(20𝑈𝑦𝑎𝑥 − 20𝑈𝑥𝑎𝑦 + 0𝑎𝑧) 

= 10𝑈𝑦𝑎𝑥 − 10𝑈𝑥𝑎𝑦 

Equating components,  

𝑑𝑈𝑥
𝑑𝑡

= 10𝑈𝑦 

𝑑𝑈𝑦

𝑑𝑡
= −10𝑈𝑥 

𝑑𝑈𝑧
𝑑𝑡

= 0 ⟹ 𝑈𝑧 = 𝐶0 

𝑑2𝑈𝑥
𝑑𝑡2

= 10
𝑑𝑈𝑦

𝑑𝑡
= 10 × (−10𝑈𝑥) 

i.e   
𝑑2𝑈𝑥

𝑑𝑡2
= −100𝑈𝑥 

⟹   
𝑑2𝑈𝑥

𝑑𝑡2
+ 100𝑈𝑥 = 0 

The solution is of the form, 

𝑈𝑥 = 𝐶1 cos 10𝑡 − 𝐶2 sin 10𝑡 

But,  10𝑈𝑦 =
𝑑𝑈𝑥

𝑑𝑡
= −10𝐶1 sin 10𝑡 + 10𝐶2 cos 10𝑡 

i.e,  𝑈𝑦 =
𝑑𝑈𝑥

𝑑𝑡
= −𝐶1 sin 10𝑡 + 𝐶2 cos 10𝑡 

initial conditions at 𝑡 = 0 and 𝑈 = 6𝑎𝑦, from  

where, 

𝑈𝑥 = 0 = −𝐶1 cos 10(0) + 𝐶2 sin 10 (0) 
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0 = 𝐶1 + 0 

∴   𝐶1 = 0 

𝑈𝑦 = 6 = −𝐶1 cos 10(0) + 𝐶2 cos 10 (0) 

= 6 = 0 + 𝐶2 

∴   𝐶2 = 0 

𝑈𝑧 = 0 = 𝐶0 

∴  𝑈 = (𝑈𝑥, 𝑈𝑦, 𝑈𝑧) = (6 sin 10𝑡,  6 cos 10𝑡, 0) 

𝑈𝑡=6 𝑠 = (6 sin 60,  6 cos 60,0) 

    Required velocity = −1.8289𝑎𝑥 − 5.7145𝑎𝑦
𝑚
𝑠⁄        

The acceleration therefore, is  

𝑎 =
𝑑𝑢

𝑑𝑡
= (60 sin 10𝑡,  60 cos 10𝑡, 0) 

𝑎𝑡=6 𝑠 = (60 cos 60, − 60 sin 60,0) 

= −57.1448𝑎𝑥 + 18.2886𝑎𝑦 + 0𝑎𝑧  
𝑚
𝑠2⁄  

(b)  𝐹𝑚 = 𝑄(𝑈 × 𝐵) 

But,  𝐹 = 𝑚𝑎 

= 4(60 cos 60, − 60 sin 60,0)𝑁 

= −228.58𝑎𝑥 + 73.15𝑎𝑦 𝑁 

𝐹 = 2(−1.8289𝑎𝑥 − 5.7145𝑎𝑦) × 20𝑎𝑧 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧
−1.8289 −5.7145 0

0 0 20
| 

𝐹 = 2(−114.29 − 0)𝑎𝑥 − 2(−36.578 − 0)𝑎𝑦 + 0 

= −228.58𝑎𝑥 + 73.15𝑎𝑦 𝑁 

(c)  𝐾. 𝐸 =
1

2
𝑚|𝑢|2 
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= 𝑎𝑥 − 𝑎𝑦 

=
1

2
× 4(−1.8289)2 + (−5.7145)2 + 02) 

= 72 J 

To find the location, 

𝑈 = (𝑈𝑥, 𝑈𝑦, 𝑈𝑦) 

= (6 sin 10𝑡 , 3 cos 10𝑡 , 0) 

𝑈𝑥 =
𝑑𝑥

𝑑𝑡
= 6 sin 10𝑡 ⟹ 𝑥 =

−6

10
cos 10𝑡 + 𝑏1 

𝑈𝑦 =
𝑑𝑦

𝑑𝑡
= 6 cos 10𝑡 ⟹ 𝑦 =

−6

10
sin 10𝑡 + 𝑏2 

𝑈𝑧 =
𝑑𝑧

𝑑𝑡
= 0 ⟹ 𝑧 = 𝑏3 

At  𝑡 = 0, (𝑥, 𝑦, 𝑧) = (0,0,0) 

𝑋𝑡=0 = 0 =
−6

10
cos 10 (0) + 𝑏1⟹ 𝑏1 =

6

10
 

  

𝑌𝑡=0 = 0 =
6

10
cos 10 (0) + 𝑏2⟹ 𝑏2 = 0 

𝑍𝑡=0 = 0 = 𝑏3 

(𝑥, 𝑦, 𝑧)𝑡 = (
−6

10
cos 10𝑡 +

6

10
,
6

10
sin 10𝑡 , 0) 

At 𝑡 = 4 s 

(𝑥, 𝑦, 𝑧) = (0.6 − 0.6 cos 60 , 0.6 sin 60,0) 

𝑥 = 0.6 − 0.6 cos 5𝑡 

∴   cos 10𝑡 =
−0.6−𝑥

0.6
 

𝑦 = 0.6 sin 10𝑡 

∴   sin 10𝑡 =
𝑦

0.6
 



                                                                                                     Electromagnetic Field Theory 

92 
 

cos2 10𝑡 + sin2 10𝑡 = 1 = (
0.6 − 𝑥

0.6
)
2

+ (
𝑦

0.6
)
2

 

⟹  0.62 = (0.6 − 𝑥)2 + 𝑦2 

0.62 = (𝑥 − 0.6)2 + (𝑦 − 0)2 

This is the form 𝑥2 + 𝑦2 = 𝑟2, the equation of a circle with radius = 0.6 

𝐾. 𝐸 =
1

2
𝑚 |𝑢|2 

Where   𝑚 = 4, at 𝑡 = 0, 𝑢 = 6𝑎𝑦 

|𝑈| = (02 + 62 + 02)1/2 

= (62)1/2 

= 6 

𝑈2 = 𝑎 

∴  𝐾. 𝐸 =
1

2
× 4 × 36 = 72 J 

Example 2.12: An electron has a velocity of 106  m s⁄  in the 𝑎𝑥 direction in a magnetic 

field 𝐵 = 0.2𝑎𝑥 − 0.3𝑎𝑦 + 0.5𝑎𝑧  
Wb

m2⁄ , 

(a) What electric field is present if no not force is being applied to the electron? 

(b) If 𝐸 = 𝐸0(𝑎𝑥 + 𝑎𝑦 + 𝑎𝑧), Where 𝐸0 > 0, determine 𝐸0 so that the not force on 

the electron is 0.2 𝑝N. 

Solution  

𝑉 = 106  m s⁄  

𝐵 = 0.2𝑎𝑥 − 0.3𝑎𝑦 + 0.5𝑎𝑧 

If no not force,  𝐹𝑒 + 𝐹𝑚 = 0 

𝐹𝑒 = −𝐹𝑚 

i.e  𝑄𝐸 = −𝑄(𝑉 × 𝐵) 

or 𝐸 = −(𝑉 × 𝐵) 
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= 106𝑎𝑥(0.2𝑎𝑥 − 0.3𝑎𝑦 + 0.5𝑎𝑧) 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧

106 0 0
0.2 −0.3 0.5

| 

𝐸 = −[0𝑎𝑥 − (0.5 × 10
6 − 0)𝑎𝑦 + (−0.3 × 10

6 − 0)𝑎𝑧] 

= −(−500𝑎𝑦 − 300𝑎𝑧) 

= 500𝑎𝑦 + 300𝑎𝑧 𝑘V/m 

(b)  𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒 = 0.2 × 10−12 N 

= 𝑄(𝐸 + 𝑉 + 𝐵) 

Where 𝑄 =electron charge = 1.6 × 10−19 C 

(𝐸 + 𝑉 × 𝐵) =
0.2 × 10−12

1.6 × 10−19
= 1.25 × 106 

[𝐸 + (𝑉 × 𝐵)] = 1.25 × 106 

Substituting  

𝐸 = 𝐸0(𝑎𝑥 + 𝑎𝑦 + 𝑎𝑧) 

= 𝐸0𝑎𝑥 + 𝐸0𝑎𝑦 + 𝐸0𝑎𝑧 

So, 

𝐸0𝑎𝑥 + 𝐸0𝑎𝑦 + 𝐸0𝑎𝑧 + (𝑉 × 𝐵) = 1.25 × 10
6 

But,  𝑉 × 𝐵 = (−500𝑎𝑦 − 300𝑎𝑧) 𝑘V/m 

Hence, 

𝐸0𝑎𝑥 + 𝐸0𝑎𝑦 + 𝐸0𝑎𝑧 + (−500𝑎𝑦 − 300𝑎𝑧) = 1250000 

Select like terms  

𝐸 = 𝐸0𝑎𝑥 + (𝐸0 − 500000)𝑎𝑦 + (𝐸0 − 300000)𝑎𝑧 = 1250000 

|𝐸| = [𝐸0
2 + (𝐸0 − 500000)

2 + (𝐸0 − 300000)
2]
1
2 = 1250000 

𝐸0
2 + (𝐸0 − 500000)

2 + (𝐸0 − 300000)
2 = 1.562 × 102 
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Expanding  

𝐸0
2 + 𝐸0

2 + 𝐸0
2 + 25 × 1010 + 9 × 1010 − 16 × 105𝐸0 = 1.562 × 10

12 

3𝐸0
2 + 34 × 1010 − 16 × 105𝐸0 = 1.562 × 10

12 

3𝐸0
2 − 16 × 105𝐸0 − 1.222 × 10

12 = 0 

Apply the quadratic function  

𝐸0 =
− 𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Where 𝑏 = −16 × 105, 𝑎 = 3, 𝑎 = 1.222 × 1012, and bearing in mind that 𝑏2 − 4𝑎𝑐 

must be positive 

𝐸0 =
16 × 105 + 4150180

6
 

= 957, 888 𝑉𝑜𝑙𝑡𝑠 

= 957 𝑘V 

2.8  Force on a Differential Current Element 

To determine the force on a current element 𝐼𝑑𝑙 of a current carrying conductor due to 

magnetic field B, using the field that for connection current; 

                        𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐽 = 𝑝𝑣𝑢                                     2.12  

Also, recall that the current element, 𝐼, 𝑑𝑙 = 𝐾 𝑑𝑠 = 𝐽𝑑𝑉, so that combining the 

equations, we have, 

                                             𝐼𝑑𝑙 = 𝜌𝑣𝑢𝑑𝑢 = 𝑑𝑄𝑢                                    2.12𝑎 

Alternatively, 

                                          𝐼𝑑𝑙 =
𝑑𝑄

𝑑𝑡
𝑑𝑙 = 𝑑𝑄

𝑑𝑙

𝑑𝑡
= 𝑑𝑄𝑢                     2.12𝑏    

Hence  𝐼𝑑𝑙 = 𝑑𝑄𝑢 

Equ. (2.12b) shows that a charge 𝑑𝑄 moving with velocity u, (thereby producing 

connection current element 𝑑𝑄𝑢,) is equivalent to a conduction current element 𝐼𝑑𝑙. 
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Thus, the force on a current element 𝐼𝑑𝑙, in a B-field is found from Equ 2.11 by simply 

replacing 𝑄𝑢 by 𝐼𝑑𝑙 i.e 

𝑑𝐹 = 𝐼𝑑𝑙 × 𝐵 

If the current I is through a closed path L or circuit, the force on the circuit is given by, 

                                             𝐹 = ∮ 𝐼𝑑𝑙

𝐿

× 𝐵                                           2.13 

In using the last two Equ. 2.13 we should bear in mind that the magnetic field producing 

by the current element 𝐼𝑑𝑙, does not exert force on the element itself just as a point 

charge does not exert force on itself. The magnetic field that exerts force on 𝐼𝑑𝑙, must be 

due to another element. In other words, the magnetic field B in the equations is external 

to the current element 𝐼𝑑𝑙. If instead of the line current element 𝐼𝑑𝑙, we have surface 

current 𝐾 𝑑𝑠, or volume current element 𝐽 𝑑𝑉, we simply write; 

𝑑𝐹 = 𝐾 𝑑𝑠 × 𝐵 𝑜𝑟 𝑑𝐹 = 𝐽 𝑑𝑉 × 𝐵 

So that,  

                                                     𝐹 = ∫𝐾 𝑑𝑠 × 𝐵

𝑠

                                   2.14 

                                                      = ∫ 𝐽 𝑑𝑉 × 𝐵

𝑣

                                       2.15 

2.9  Force between Two Current Elements 

Let us now consider the force between two differentials current elements 𝐼1𝑑𝐿1 and 

𝐼2𝑑𝐿2. According to Biot-Savart law, both current elements produce magnetic fields. So, 

we may find the force 𝑑(𝑑𝐹1), on an element 𝐼1𝑑𝐿1, due to the field produced by 

element 𝐼2𝑑𝐿2, as shown below. 

1

I1dL1

2

I2dL2

d(dF2)

d(dF1)
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Figure: 5.2. Two differential current elements 

                                                 𝑑(𝑑𝐹1) = 𝐼1𝑑𝐿1 × 𝐵2                                      2.16  

From Biot-Savart law, 

𝑑𝐵2 =
𝜇0𝐼2𝑑𝐿2

4𝜋𝑅2𝑙
2  𝑎𝑅21  

Therefore, 

                                            𝑑(𝑑𝐹1) =
𝜇0𝐼1𝑑𝐿1 × 𝐼2𝑑𝐿2

4𝜋𝑅2𝑙
2                     2.17 

Equ 2.17 is essentially the law of force between two differential current elements and its 

analogous to Coulomb's law which expresses the force between two stationary point 

charges. From the above Equ 2.17, we obtain the total force Fl on current loop I due to 

loop 2. The force 𝐹2 on loop 2 due to the field from loop I is obtained from the same Equ 

2.17 by simply Interchanging subscripts I and 2. The total force between two is obtained 

by integrating Equ 2.17 twice.  

                                     𝐹1 =
𝜇0𝐼1𝐿2
4𝜋

 ∯
𝑑𝐿1 × 𝑑𝐿2

𝑅2𝑙
2 𝑎𝑅21                     2.18 

Example 2.13: A filamentary conductor of infinite length on the z axis of 2 A in the 𝑎𝑧 

direction. Find the magnitude of the force on a 2.5 cm length of the conductor in the 

magnetic field 𝐵 = 0.1𝑎𝑥 − 0.2𝑎𝑧  
Wb

m⁄ . 

Solution  

𝐹 = 𝑄(𝑉 × 𝐵) 

= 𝑙𝑡 (𝑉 × 𝐵) 

= 𝑙𝑡 (
𝑙

𝑡
× 𝐵) 

= 𝐼 (𝐿 × 𝐵) 

= 𝐵𝐼𝐿 

= (0.1𝑎𝑥 − 0.2𝑎𝑧) × 2.5 × 10
−2𝑎𝑧 × 2 

= (0.1𝑎𝑥 − 0.2𝑎𝑧) × 5 × 10
−2𝑎𝑧 
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= |

𝑎𝑥 𝑎𝑦 𝑎𝑧
0.1 0 −0.2
0 0 5 × 10−2

| 

= −5 × 10−3𝑎𝑦 

|𝐹| = √25 × 10−3 = 5 𝑚N 

Example 2.14: A current filament passing through 𝑃1(0,0,0) carries a current of 6 A in 

the 𝑎𝑥 direction, and a second filament goes through 𝑃2(4,8,2), also carrying 6 A, but in 

the 𝑎𝑦 direction. (a) Find the vector force exerted on an incremented length 𝑑𝐿2 of the 

second filament located at 𝑃2, by an incremented length 𝑑𝐿1 of the first conductor at 𝑃1 

(b) Find the force on 𝑑𝐿1 at 𝑃1 caused by 𝑑𝐿2 at 𝑃2 

Solution  

Given  𝑃 = (0,0,0) 

𝐼1 = 6 A 

𝑃2 = (4,8,2) 

𝐼2 = 6 A 

𝜇0 = 4𝜋 × 10
−7 

𝑑𝐹2 =
𝜇0𝐼1𝐼2𝑑𝐿1𝑑𝐿2

4𝜋𝑅2
𝑎𝑅 

𝑎𝑅 =
(4,8,2) − (0,0,0)

(42 + 82 + 22)1/2
 

𝑑𝐹2 =
𝜇0𝐼1𝐼2𝑑𝐿1𝑑𝐿2

4𝜋𝑅3
(4𝑎𝑥 + 8𝑎𝑦+2𝑎𝑧) 

=
4𝜋 × 109(6𝑎𝑥 × 6𝑎𝑦) × 𝑑𝐿1𝑑𝐿2(4𝑎𝑥 + 8𝑎𝑦 + 2𝑎𝑧)

4𝜋(42 + 82 + 22)3/2
 

=
10−9(6𝑎𝑥 × 6𝑎𝑦) × 𝑑𝐿1 𝑑𝐿2(4𝑎𝑥 + 8𝑎𝑦 + 2𝑎𝑧)

769.87
 

We resolve 6 𝐴 𝑎𝑥 and 6 𝐴 𝑎𝑦 

= |

𝑎𝑥 𝑎𝑦 𝑎𝑧
6 0 0
0 6 0

| = 36𝑎𝑧 
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𝑑𝐹2 =
36𝑎𝑧 ×  𝑑𝐿1𝑑𝐿2(4𝑎𝑥 + 8𝑎𝑦 + 2𝑎𝑧) × 10

−7

769.87
 

𝑛𝑜𝑤,   = |

𝑎𝑥 𝑎𝑦 𝑎𝑧
4 8 2
0 0 36

| 

= −144𝑎𝑦 + 288𝑎𝑥 

𝑑𝐹2 =
(288𝑎𝑥 − 144𝑎𝑦)𝑑𝐿1𝑑𝐿2 × 10

−7

769.87
 

= 0.374𝑎𝑥 − 0.187𝑎𝑦𝑑𝐿1𝑑𝐿2 × 10
−7 

= 37.4𝑎𝑥 𝑑𝐿1𝑑𝐿2 𝑛N 

𝑑𝐹1 = 18.7𝑎𝑦𝑑𝐿1 𝑑𝐿2 𝑛N 

 

State of particles  Electric field  Magnetic field Combined field  

Stationary  𝐹 = 𝑄𝐸 𝐹 = 0 𝐹 = 𝑄𝐸 

Moving  𝐹 = 𝑄𝐸 𝐹 = 𝑄(𝑉 × 𝐵) 𝐹 = 𝑄(𝐸 + 𝑉 × 𝐵) 

 

2.10 Exercise  

1. Given a vector function 𝐴 = (2𝑥 + 𝐶1 𝑧)𝑧̂ + (𝐶2𝑥 − 3𝑧)𝑦̂ + (2𝑥 + 𝐶3𝑦 + 𝐶4𝑧)𝑧̂ 

a. Calculate the value of constants 𝐶1,𝐶2,𝐶3 𝑖𝑓 𝐴  is irrotational.  

b. Determine constant 𝐶4 𝑖𝑓 𝐴  is solenoidal.  

c. Determine scalar potential function V, whose negative gradient equals 𝐴  

2. A vector field 𝐴  (𝑟, ∅, 𝑧) = 30𝑒−𝑟𝑟̂ − 2𝑧𝑧̂. Verify divergence theorem for the 

volume enclosed by 𝑟 = 2, 𝑧 = 0, 𝑧 = 5. 

3. Given 𝐴 = 𝑟 cos ∅ 𝑟̂ − 𝑟 sin∅ ∅̂ in cylindrical coordinates. evaluate ∮𝐴 . 𝑑𝑠 over 

the surface of the box bounded by planes 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 1, ∅ = 0  𝑎𝑛𝑑 ∅ = 𝜋/2 

and cylinder r = a.  
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y
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x

1m

1m

s

                                                                     
Figure 2.7                

4. Integrate vector 𝐷⃗⃗ = 𝑥2𝑦3𝑧4𝑧̂ over the plane square surface bounded by the 

points (𝑥, 𝑦, 𝑧) = (1,1,2); (5, 1, 2); (1, 5, 2); (5,5,2). 

5. Express the vector 𝐴 = 𝑥𝑦2𝑧 𝑎 𝑥̂ + 𝑥2𝑦𝑧 𝑎𝑦̂ + 𝑥𝑦𝑧2 𝑎̂𝑧 in cylindrical and 

spherical polar coordinate. 

6. Given that =
10𝑥3

3
 𝑎𝑥𝐶/𝑚

2, evaluate both sides of the divergence theorem for 

volume of a cube, 2m on an edge, centered at origin and with edges parallel to 

axes.  

7.  

8.  Given a vector field: 𝐹 (𝑥, 𝑦, 𝑧) = 5 5 𝑥 𝑦𝑧 𝑥̂ + 𝑦2𝑦̂ + 𝑦𝑧𝑧̂ verify Stokes theorem 

by evaluating suitable line and surface integrals over the open surface defined to 

five sides of a cube measuring 1m on a side and about the closed contour 

boundary S as shown in Fig. 2.7 

9. (a)  State the Divergence theorem.  

(b) Given A(r)=10e-2z (𝑝𝑎𝜌 + 𝑎𝑧,  (i) determine the flux of A over the closed 

surface of the cylinder 0≤ 𝑧 ≤ 1, 𝜌 = 1.  

(ii) Verify the divergence theorem for same.  

FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM 

 

10. Describe Stokes theorem  

11. Conclude irrotational field. With mathematical proof  

12. Conclude solenoidal field, with mathematical proof 

13. Describe divergence theorem  

14. How to treat discrete sources? Discuss  

15. Discuss properties of Dirac-Delta function 
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16. Where can you use matrices? 

17.   Explain solving simultaneous equations using matrices  

18. Find out inverse of matrix 

19. Give physical significant of divergence and Stokes theorem.  

20. An infinitely long filament on the x-axis carries a current of 10 𝑚A in the 𝑎𝑥 

direction. Find the magnetic field intensity 𝐻 and its magnitude at 𝑃(3,2,1). 

Ans: −0.31𝑎𝑦 + 0.637𝑎𝑦 = 0.712 𝑚
A
m⁄  

a) A current filament of 3𝑎𝑥𝐴 lies along the x-axis. Fine the magnetic field intensity 

𝐻 at 𝑃(−1, 3, 2) 

b) A current sheet 𝐾 = 8𝑎𝑥
A
m⁄  flows in the region −2 < 𝑦 < 2 meters in the plane 

𝑧 = 0.calculate H at 𝑃(0,0,3) 

c) A current filament on the z-axis carries a current of 7 𝑚A in the 𝑎𝑧 direction, and 

current sheets of 0.5𝑎𝑧 A/m and −0.2𝑎𝑧 A/m are located at 𝑃 = 1 cm and 𝑃 =

0.5𝑐𝑚 respectively. Calculate 𝐻 at 𝑃 = (a) 0.5 cm (b) 1.5 cm (c) 4 cm (d) what 

current sheet should be located at 𝑃 = 4 cm so that 𝐻 = 0 for all 𝑝 > 4 cm 

d) Express the value of 𝐻 in cartesian components at 𝑃(0,0,2) in the field of a 

current filament 2.5 A in the 𝑎𝑧 direction at 𝑥 = 0.1, 𝑦 = 0.3. 

21. A 4 coulomb point charge is moving through a uniform electric field 𝐸 = 3𝑈𝑥
𝑉
𝑚⁄  

at 𝑡 = 0, the point charge is located at the origin and has a velocity of 5𝑎𝑧 𝑚/𝑠 , 

Assuming a mass 1kg, use the force equation and Newton's laws to obtain the 

appropriate differential equations. Calculate at 𝑡 = 2sec 

(a) The position of the charge 𝑃(𝑥, 𝑦, 𝑧), (b) its velocity (c) its kinetic energy  

Ans. (a) (24𝑎𝑥 + 10𝑎𝑧) meters, (b) (24𝑎𝑥 + 5𝑎𝑧)𝑚/𝑠, (c) (300.5 𝐽𝑜𝑢𝑙𝑒𝑠) 

22. A point charge 𝑄 = 18𝑛𝐶 has a velocity of 5 × 105  𝑚 𝑠⁄  in the direction, 𝑎𝑣 =

0.6𝑎𝑥 + 0.75𝑎𝑦 + 0.30𝑎𝑧 . Calculate the magnitude of the force exerted on the charge by 

the field 

(a) 𝐵 = −3𝑎𝑥 + 4𝑎𝑦 + 6𝑎𝑧𝑚𝑇 (b) 𝐸 = −3𝑎𝑥 + 4𝑎𝑦 + 6𝑎𝑧
𝑘𝑉

𝑚⁄  (c) both E and B acting  

Ans. 660 × 10−6𝑁, 140 × 10−6𝑁, 670 × 10−6𝑁   

23. A point charge 𝑄 = −0.3𝜇𝐶 and 𝑚 = 3 × 10−16𝑘𝑔, is moving through the field 

𝐸 = 30𝑎𝑧
𝑉
𝑚⁄ , Develop the appropriate differential equations and solve them, subject 

to the initial conditions at 𝑡 = 0; 𝑉 = 3 × 105𝑎𝑥
𝑚
𝑠⁄ , at the origin. At 𝑡 = 3𝜇𝑠 find (a) 
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the position 𝑃(𝑥, 𝑦, 𝑧) of the charge. (b) The velocity, V. (c) the kinetic energy of the 

charge. 

24. If the charge stated in equation 3 above is moving through the magnetic field 𝐵 =

30𝑎𝑧𝑚𝑇 solve as in 3a, b, c above given the same data. 

25. A point charge for which 𝑄 = 2 × 10−16𝐶 and 𝑚 = 5 × 10−26 𝑘𝑔 Moving in the 

combined fields 𝐸 = 100𝑎𝑥 − 200𝑎𝑦 + 300𝑎𝑧  
𝑉
𝑚⁄

 and 𝐵 = −3𝑎𝑥 + 2𝑎𝑦 − 𝑎𝑧 𝑚𝑇. If 

the charge velocity at 𝑡 = 0 is 𝑉(0) = 2𝑎𝑥 − 3𝑎𝑦 − 4𝑎𝑧
𝑚
𝑠⁄  (a) give the unit vectors 

showing the direction in which the charge is accelerating at 𝑡 = 0. (b) find the kinetic 

energy of the charge at 𝑡 = 0 

26. Two differential current elements  

𝐼1𝑑𝐿1 = 3 × 10
−6𝐴.𝑚 𝑎𝑡 𝑃1(1,0,0) 

And 𝐼2𝑑𝐿2 = 3 × 10
−6(−0.5𝑎𝑧 + 0.4𝑎𝑦 + 0.3𝑎𝑧)𝐴.𝑚 𝑎𝑡 𝑃2(2,2,2) are located in free 

space. Find the vector force exerted on  

(a) 𝐼2𝑑𝐿2 by 𝐼1𝑑𝐿1 (b) 𝐼1𝑑𝐿1 by 𝐼2𝑑𝐿2 

Ans  (a) (−1333𝑎𝑥 + 0.333𝑎𝑦 − 2.67𝑎𝑧) × 10
−20𝑁 

 (b) (4.67𝑎𝑥 + 0.667𝑎𝑧) × 10
−20𝑁 
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CHAPTER 3 

ELECTROSTATICS 

3.0 Coulomb’s Law and Electric Field Intensity  

Coulomb’s law: the force between two very small objects separated in a vacuum or free 

space by a distance, which is large compare to their size, is proportional to the charge on 

each and inversely proportional to the square of the distance between them.  

                                                         𝐹 = 𝑘 
𝑄1𝑄2
𝑅2

                                                                    3.1 

And Q1 Q2 can be positive or negative charge quantities, R is the distance separation and 

K is constant of proportional. R is in meters, and F in newton for SI system.  

𝑘 =
1

4𝜋𝜖0
, Where 𝜖0 is called the permittivity of free space; 

𝜖𝑜 = 8.854 × 10
−12 =

1

36𝜋
10−9𝐹/𝑚 (𝐶2/𝑁.𝑚2) 

 ⟹                                                  𝐹 =
𝑄1𝑄2
4𝜋𝜖0𝑅2

                                                                      3.2 

He said force acts on the line joining the two charges: Like charges repulse, while unlike 

charges attract each other.  

Q1
O

R12

𝐹 2 

𝑟 2 

𝑟 1 

𝑟 12 

Q2

                                                                                                            
Figure 3.1 Two Like Charge  𝑄1 𝑎𝑛𝑑 𝑄2 at a Point Source 
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In Fig. 3.1 𝑄1 𝑎𝑛𝑑 𝑄2 charges are like, hence the direction of the arrow depicting 

𝐹 2. The vector 𝑟 1 locates 𝑄1 𝑎𝑛𝑑 𝑟2locates 𝑄2. 𝑟 2 − 𝑟 1 = 𝑅⃗ 12 is the directed line segment 

from 𝑄1 𝑡𝑜 𝑄2. 

                                      𝐹 2 =
𝑄1𝑄2
4𝜋𝜖0𝑅2

𝑎̂12                                                          3.3      

And  𝑎̂12 =
𝑅⃗ 12

|𝑅12|
=
𝑅⃗ 12

𝑅⃗ 12
=

𝑟2−𝑟1

|𝑟 2−𝑟 1|
 is the unit vector in 𝑅⃗ 12 direction.  

Example 3.1: Locate a charge of 𝑄1 = 2 × 10
−4 C at 𝐴 (1, 2, 3) and a charge of 𝑄2 =

−10−4 at 𝐵(2, 0, 5) in a vacuum. Determine the force exerted on 𝑄2 𝑏𝑦 𝑄1 

Proc: 𝑅⃗ 12 = 𝑟 2 − 𝑟 1 = (2 − 1)𝑎̂𝑥 + (0 − 2)𝑎̂𝑦 + (5 − 3)𝑎̂𝑧 

= 𝑎̂𝑥 − 2𝑎̂𝑦 + 2𝑎̂𝑧⟹ |𝑅⃗ 12| = √12 + 22 + 22 = 3 

⟹    𝑎̂12 =
𝑎̂𝑥 − 2𝑎̂𝑦 + 2𝑎̂𝑧

3
 

⟹    𝐹 2 =
(2 × 10−4) × 10−4

4𝜋(1 36⁄ 𝜋)10−9 × 32
(
𝑎̂𝑥 − 2𝑎̂𝑦 + 2𝑎̂𝑧

3
) 

= −20 (
𝑎̂𝑥 − 2𝑎̂𝑦 + 2𝑎̂𝑧

3
)𝑁,  

Where 20N is the modulus (magnitude) of the force.  

𝐹 2 = −
20

3
𝑎̂𝑥 −

40

3
𝑎̂𝑦 +

40

3
𝑎̂𝑧  

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 −
20

3
𝑁,
−40

3
𝑁 𝑎𝑛𝑑 

40

3
𝑁  

In x, y, z directions respectively.  

Similarly, since the charge repulse,  

𝐹 1 = −𝐹 2 = −
𝑄1𝑄2
4𝜋𝜖0𝑅2

𝑎̂12 =
𝑄1𝑄2
4𝜋𝜖0𝑅2

𝑎̂21 
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Increasing Q1, results in increasing F2 by the same proportion because coulomb’s law 

obeys the law of linearity. So, also when several charges act on a charge, the result is the 

sum of the different, charges acting individually.  

Example 3.2:  Three-point charges, 𝑞1 = −4𝑛𝐶, 𝑞2 = 5𝑛𝐶, 𝑞3 = 3𝑛𝐶  are faced as 

shown  

If 𝑟1 = 0.5𝑚  𝑎𝑛𝑑 𝑟3 = 0.8𝑚, find force on q2 due to other two charges.  

Solution: we first find force on q2 due to q1 

𝐹1 = 𝑘 ×
𝑞1 × 𝑞2

𝑟1
2 =

9 × 109 × 4 × 109 × 5 × 10−9

(0.5)2
= 7.2 × 10−7𝑁 

Which is directed to left. The force on q2 due to q3 is found as: 

𝐹3 =
𝑘𝑞2 𝑞3

𝑟3
2 =

9 × 109 × 3 × 109 × 5 × 10−9

(0.8)2
= 2.11 × 10−7𝑁 

Which is also directed to left. Thus, the total force on q2 is given by  

7.2 × 10−7 + 2.11 × 10−7 = 9.31 × 10−7𝑁 

Thus, the total force q2 is 9.31 × 10−7𝑁 directed to left. 

 

Example 3.3:  A charge 𝑄1 = 3 × 10
−4 is located at 𝐴(1, 2, 3) and a charge 𝑄2 =

−2 × 10−4 is located at 𝐵(2, 0, 5) in vacuum. Determine the vector force exerted on Q2 

by Q1.  

Solution: Given 𝐴(1, 2, 3) and 𝐵(2, 0, 5). 

𝑅⃗ 12 = 𝑟 2 − 𝑟 1 = (2 − 1)𝑎̂𝑥 + (0 − 2)𝑎̂𝑦 + (5 − 3)𝑎̂𝑧 

= 𝑎̂𝑥 + 2𝑎̂𝑧 − 2𝑎̂𝑦 

|𝑅̂12| = √12 + 22 + (−2)2 = √9 = 3 
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The unit vector   𝑎̂12 =
𝑅⃗ 12

|𝑅⃗ 12|
=
𝑎̂𝑥−2𝑎̂𝑦+2𝑎̂𝑧

3
 

∴  𝐹21 =
3×10−4×(−2×10−4)

4𝜋×
1

36𝜋
×10−9×32

× (
𝑎̂𝑥−2𝑎̂𝑦+2𝑎̂𝑧

3
) 

= −60 (
𝑎̂𝑥 − 2𝑎̂𝑦 + 2𝑎̂𝑧

3
)𝑁 

⟹    𝐹 21 = (−20𝑎̂𝑥 + 40𝑎̂𝑦 − 40𝑎̂𝑧) 𝑁 

 The force expressed by Coulomb’s law is a mutual force, for each of the two 

charges experiences a force of same magnitude, although of opposite direction, we can 

write. 

                          𝐹 1 = −𝐹 2 =
𝑄1𝑄2
4𝜋𝜀0𝑅12

 𝑎̂21 = 
𝑄1𝑄2
4𝜋𝜀0𝑅12

 𝑎̂12                                 3.4 

Example 3.4(a): What happens when one of the charges is negative?  

Solution: Look at coulomb’s Law! If one charge is positive and other is negative, then the 

product 𝑄1 𝑄2 is negative. The resulting force vectors are therefore negative they point 

in the opposite direction of the previous (i.e., both positive) case in Fig. 3.2  

+

-

-+

+

+

F1

F1

F1

F2

F2

F2

                                                                                                        
Figure 3.2 Coulombs Law 

Example 3.4(b): The charges 0f 0.25𝜇𝐶 are placed at vertices of an equilateral triangle 

whose side is 100mm. determine the magnitude and direction of result force on one 

charge due to other charges.  

Solution:  
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60
o

60
o

100mm

30
o 30

o

F
FBA

FCA

𝜃 

0.25𝜇𝐶 0.25𝜇𝐶 
B C

A

                                                                                                                       
Figure 3.3 

𝐹𝐵𝐴 =
𝑄1𝑄2
4𝜋𝜀0𝑅12

=
9 × 109 × (0.25)2 × (10−12)

(100)2 × 10−6
 

= 56.25 × 10−3𝑁 

=
5.625 × 10−4 × 106

(100)2
=
5.625 × 100

100 × 100
 

= 5.625 × 10−2𝑁 

𝐹𝐶𝐴 = 5.625 × 10
−2𝑁 

𝐹 = 𝐹 𝐵𝐴 + 𝐹 𝐶𝐴 

= 2 × 5.625 × 10−2 cos 30𝑜 = 2 × 5.625 × 10−2 ×
√3

2
 

𝐹 = 9.7425 × 10−2𝑁  𝑖𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝐵𝐶  

3.1 Electric Field Intensity 

For a text charge 𝑄1, there exist a force field associated with charge 𝑄1,  and a force on 

the test charge given by  

                                         𝐹 𝑡 =
𝑄1𝑄2
4𝜋𝜖0𝑅2

𝑎̂𝑖𝑡                                                                  3.5 

On per unit charge basis, this force delivers electric field intensity given by  
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                                𝐸⃗ 1 =
𝐹 𝑡
𝑄𝑡
=
𝑄1𝑄2
4𝜋𝜖0𝑅2

𝑎̂𝑖𝑡                                                 3.6 

Called the vector force arising from charge Q1 acting on a unit positive test charge. For 

the general defining expression:  

𝐸⃗ =
𝐹 𝑡

𝑄𝑡

𝑁

𝐶
 the vector 𝐸⃗  is the electric field intensity evaluated at the test charge location 

arising from all other charges in the vicinity-with the exception of the test charge itself. 

The unit of 𝐸⃗ , Newton per coulomb, can be converted to a more practical expression 

involving the volt (Newton-meters per coulomb), by diving by the meter:  

N/C = (N-m /C)/m = volts/meters (V/m) 

For a Q1 arbitrary located at the counter (origin) of a spherical coordinate system, the 

unit vector then becomes coincidental with radial unit vector 𝑎̂𝑟 , 𝑅 becomes r, giving rise 

to 𝐸⃗ =
𝑄1

4𝜋𝜖0𝑟2
𝑎̂𝑟as a general expression.  

O

𝑄(𝑥′ ,𝑦′ , 𝑧′) 

𝑃(𝑥,𝑦, 𝑧)) 

𝐸⃗  

𝑅⃗ = 𝑟 − 𝑟′⃗⃗  

𝑟′⃗⃗  

𝑟  

                                                                                                              
Figure 3.4  

For a general charge not at the origin, no spherical symmetry comes to the rescue and 

we are forced to resort to rectangular system. Q is located at (x, y, z), that is,  

𝐸⃗ (𝑟̅) =
𝑄

4𝜋𝜖0|𝑅⃗ |2
 
𝑅⃗ 

|𝑅⃗ |
=

𝑄(𝑟̂ − 𝑟′̂)

4𝜋𝜖0|𝑟 − 𝑟′|3
 

=
𝑄[(𝑥 − 𝑥′)𝑎̂𝑥 + (𝑦 − 𝑦′)𝑎̂𝑦 + (𝑧 − 𝑧′)𝑎̂𝑧]

4𝜋𝜖0[𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2]
3
2
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Linearity principle, again, holds with respect to electric field intensity:  

P

z

y

x

𝑟 − 𝑟 1 

𝑟 − 𝑟 2 

𝑟 1 

𝑟 2 

𝑟  

𝑎 2 

𝐸⃗ 2 𝐸⃗ (𝑟 ) 

𝐸⃗ 1 
𝑎 1 

Q2

Q1

                                                                                           
Figure 3.5 Rectangular Coordinate System 

For the diagram on the proceeding page, charges Q1 and Q2 are located 𝑟̂1  𝑎𝑛𝑑 𝑟̂2 from 

the rectangular origin respectively originating from the point P at with the electric field 

intensity is to be evaluated.  

𝑟̂ − 𝑟̂1 − "𝑅1", 𝑟̂ − 𝑟̂2 = "𝑅2" 

Total electric field intensity resulting from the two-point charges Q1 and Q2 is the sum of 

the charge acting individually:  

                       𝐸⃗ (𝑟̅) =
𝑄1

4𝜋𝜖0|𝑟̂ − 𝑟̂1|2
𝑎̂1 +

𝑄2
4𝜋𝜖0|𝑟̂ − 𝑟̂2|2

𝑎̂2                           3.7 

                    

For n, point charges 

𝐸⃗ (𝑟̅) = ∑
𝑄𝑚

4𝜋𝜖0|𝑟̂ − 𝑟̂𝑚|2
𝑎̂𝑚

𝑛

𝑚=1

 

Example 3.4:  Determine 𝐸⃗  𝑎𝑡 𝑃(1, 1, 1) caused by 4 identical 2-nC charges located at P1 

(1, 1, 0), P2 (-1, 1, 0), P3(-1, -1, 0), P4 (1, -1, 0) see Fig. 3.6  
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x

y

z

P2(-1,1,0)

P1(1,1,0)

P(1,1,1)

𝑟 − 𝑟 4 

𝑟 − 𝑟 2 𝑟 − 𝑟 3 

𝑟 − 𝑟 1 

 

Figure 3.6 

(This is a rough “Pyramid” Egyptian or not 1 cannot tell! However, it lacks symmetry as P 

does not lie on z-axis)  

𝑟 = 𝑎̂𝑥 + 𝑎̂𝑦 + 𝑎̂𝑧 , 𝑟̂1 = 𝑎̂𝑥 + 𝑎̂𝑦 , 𝑟̂2 = −𝑎̂𝑥 + 𝑎̂𝑦 

𝑟3⃗⃗  ⃗ = −𝑎̂𝑥 − 𝑎̂𝑦, 𝑟̂4 = 𝑎̂𝑥 − 𝑎̂𝑦 

|𝑟 − 𝑟 1| = |𝑎̂𝑧| = |; |𝑟̂ − 𝑟̂2| = |2𝑎̂𝑥 + 𝑎̂𝑧| = √5  

|𝑟 − 𝑟 3| = |2𝑎̂𝑥 + 2𝑎̂𝑦 + 𝑎̂𝑧| = 3; |𝑟̂ − 𝑟̂4| = |2𝑎̂𝑦 + 𝑎̂𝑧| = √5 

𝑄

4𝜋𝜖0
=
2 × 10−9

4𝜋 × 10−12
= 17.97 V.m  

⟹   𝐸⃗ = 17.97 [
𝑎̂𝑧
1

1

12
+
2𝑎̂𝑥 + 𝑎̂𝑧

√5

1

√52
+
2𝑎̂𝑥 + 𝑎̂𝑦 + 𝑎̂𝑧

3

1

32
+
2𝑎̂𝑦 + 𝑎̂𝑧

√5

1

√52
]

= 4.55𝑎̂𝑥 + 4.55𝑎̂𝑦 + 21.87𝑎̂𝑧  V/m 

3.1.1 Field from a Continuous Volume Charge Distribution 

 For a continuous distribution of charges, disregarding irregularities or ripples in 

the field owing to electron-to-electron idiosyncrasies, we take a macroscopic view of 

things and ignore the internal, microscopic phenomena.  



                                                                                                     Electromagnetic Field Theory 

110 
 

 For volume charge distribution 𝜌𝑟,with the units of coulombs per cubic meter 

(𝐶/𝑚3), for a small amount of charge.  

∆𝑄 = 𝑃𝑣∇𝑣, where ∆𝑁 stands for a small volume.  

Mathematically defined,  

𝜌𝑟 = lim
∆𝑁→0

∆𝑄

∆𝑁
 

Total charge within a finite volume  

𝑄 = ∫𝜌𝑣 𝑑𝑁. 𝑉𝑜𝑙          

𝑉𝑜𝑙

 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑎 Triple integration.  

 

Example 3.5: Determine the total charge contained in a 4.cm length of an electron in Fig. 

3.7.  

𝜌𝑣 = −5𝑒
−10𝑧𝜌 𝐶

𝑚3⁄   

𝜌 = 1𝑐𝑚 

z= 6cm

z= 2cm

z

x

y

                                                                                     
Figure 3.7 

Charge density is given as ⟹ 𝜌𝑣 = −5𝑒
−10𝑧𝜌𝜇 C m3⁄ = −5 × 10−6 𝑒−10𝑧𝜌 C m3⁄  

𝑄 = ∫ ∫ ∫ −5 × 10−6𝑒−10𝑧𝜌𝜌𝑑𝜌𝑑∅𝑑𝑧

0.01

0

2𝜋

0

0.06

0.02

 



                                                                                                     Electromagnetic Field Theory 

111 
 

With respect to ∅, 

(𝑤. 𝑟. 𝑡. 𝑧)   𝑄 = ∫ ∫ −10−5𝜋𝑒−10𝑒𝑧 𝜌𝑑𝜌𝑑𝑧

0.01

0.5

0.06

0.02

 

𝑄 = ∫
−10−5𝜋𝑒−10

−105𝑒
 𝜌𝑑𝜌|

0.01

0 𝑧=0.02

𝑧=0.06

               

𝐍𝐨𝐭𝐞 𝐭𝐡𝐚𝐭 𝐲𝐨𝐮 𝐡𝐚𝐯𝐞 𝐭𝐨 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲 𝐭𝐡𝐞 𝐚𝐛𝐨𝐯𝐞 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝐛𝐲 
𝟏

𝝆
 

∫ −10−10𝜋

0.01

0

(𝑒−2000𝜌 − 𝑒−6000𝜌)𝑑𝜌 

(𝑤. 𝑟. 𝑡. 𝑒)    ∶ 𝑄 = −10−10𝜋 (
𝑒−2000𝜌

−2000
−
𝑒−6000𝜌

−6000
)
0

0.01

 

= −10−10𝜋 (
1

2000
−

1

6000
) 

= −10−10𝜋 (
2

6000
) 

= −10−12 (
𝜋

30
) = −0.105 𝑝C (𝑝𝑖𝑐𝑜𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠) 

For an incremental charge ∆𝑄 𝑎𝑡 𝑟 , the incremental contribution to the electric field 

intensity produced is:  

∆𝐸⃗ (𝑟̅) =
∆𝑄

4𝜋𝜖0|𝑟̂ − 𝑟̂1|2
𝑟 − 𝑟 

|𝑟 − 𝑟 |
 

=
𝑒𝑉∆𝑣

4𝜋𝜖0|𝑟̂ − 𝑟̂1|2
𝑟 − 𝑟 

|𝑟 − 𝑟 |
 

In the limiting edge,  
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                                      𝐸⃗ (𝑟̅) = ∫
𝑒𝑉(𝑟̅)𝑑𝑣

4𝜋𝜖0|𝑟̂ − 𝑟̂1|2
𝑟 − 𝑟 

|𝑟 − 𝑟 |𝑣𝑜𝑙

                                        3.8 

Which is a triple integral, with vector 𝑟̅ from the origin locating the field point where 𝐸⃗  is 

being determined, while vector 𝑟̅, extends from the origin to the source point where 

𝑒𝑣(𝑟̅)𝑑𝑣 is located. (𝑟̅ − 𝑟̅)/|𝑟̅ − 𝑟̅| is a unit vector. In the direction from source point to 

field point, with the variables of integration being “X” Y, Z of rectangular coordinates.  

Example 3.6: Calculate electric field E at a point N (3, -4, 2) in free space caused by  

(a) A charge 𝑄1 = 2𝜇𝐶 𝑎𝑡 𝑃1 (0, 0, 0) 

(b) A charge 𝑄2 = 3𝜇𝐶 𝑎𝑡 𝑃2 (−1, 2, 3) 

(c) Both charges 𝑄1 𝑎𝑛𝑑 𝑄2 

Solution: the vector from point 𝑃1 to point N is  

𝑟 1 = (3 − 0)𝑎̂𝑥 + (−4 − 0)𝑎̂𝑦 + (2 − 0)𝑎̂𝑦 = 3𝑎̂𝑥 − 4𝑎̂𝑦 + 2𝑎̂𝑥 

|𝑟 1| = √29 

Unit vector from 𝑃1 to 𝑁 

𝑎̂𝑟1 =
3𝑎̂𝑥 − 4𝑎̂𝑦 + 2𝑎̂𝑧

√29
 

Field at N due to charge at 𝑃1  

𝐸⃗ 𝑁1 =
𝑄1

4𝜋𝜀0|𝑟 1|
2
𝑎̂𝑟1 =

9 × 109 × 2 × 10−6

29
×
3𝑎̂𝑥 − 4𝑎̂𝑦 + 2𝑎̂𝑧

√29
 

= 345𝑎̂𝑥 + 460𝑎̂𝑦 + 230𝑎̂𝑧  𝑉/𝑚 

(b) the vector from point 𝑃2 𝑡𝑜 𝑁 is  

𝑟 2 = (3 + 1)𝑎̂𝑥 + (−4 − 2)𝑎̂𝑦 + (2 − 3)𝑎̂𝑧 = 4𝑎̂𝑥 − 6𝑎̂𝑦 − 𝑎̂𝑧 

|𝑟 2| = √53 
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𝑎̂𝑟2 =
4𝑎̂𝑥 − 6𝑎̂𝑦 − 𝑎̂𝑧

√53
 

Field at 𝑁 due to charge at 𝑃2 

𝐸⃗ 𝑁2 =
𝑄2

4𝜋𝜀0 |𝑟 2|2
𝑎̂𝑟2 =

9 × 109 × 3 × 10−6

53
∙
4𝑎̂𝑥 − 6𝑎̂𝑦 + 𝑎̂𝑧

√53
 

= 280𝑎̂𝑥 − 419𝑎̂𝑦 − 69.9𝑎̂𝑧  𝑉/𝑚 

(c) the total field at point N 

𝐸⃗ 𝑁 = 𝐸⃗ 𝑁1 + 𝐸⃗ 𝑁2 

= (345𝑎̂𝑥 − 460𝑎̂𝑦 + 230𝑎̂𝑧) + (280𝑎̂𝑥 − 419𝑎̂𝑦 − 69.9𝑎̂𝑧) 

625𝑎̂𝑥 − 879𝑎̂𝑦 + 160.11𝑎̂𝑧  V/m 

3.2 Field of a Line Charge 

For a cylindrical charged conductor of very small radius, it is convenient to treat the 

charge as a live charge with charge density 𝑒𝐿𝐶/𝑚. 

 Assuming a straight-line charge extending along the z-axis in a cylindrical 

coordinate system (an obvious choice) from −∞ 𝑡𝑜 ∞, we desire the electric field 

intensity 𝐸⃗  at any and every point resulting from a uniform line charge density  𝑒𝐿 see 

Fig. 3.8 

𝑅⃗ = 𝑟 − 𝑟 ′ 

𝑟 ′ 

𝑟  

𝑎 𝑅  
𝜃 

𝑑𝑄 = 𝑒𝑣𝑑𝑧′ (0,0,z)

𝑑𝐸𝑒  

𝑑𝐸𝑧  𝑑𝐸⃗  

𝑒𝑙  

𝑑𝐸⃗ = 𝑑𝐸𝑒𝑎 𝑒 + 𝑑𝐸𝑧𝑎 𝑧  

x

y

z

                                           
Figure 3.8  
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Keeping e and z constant, and varying ∅, the line charge does not change, indicating 

arithmethal symmetry. Also, axial symmetry allows the line charge to not charge with 

charges in z. as 𝑒 charges (increases), however, the line charge also charges (becomes 

weaker) so the field is only a function of 𝑒 elements of charges produce no 𝐸∅ 

components (above and below), leaving only 𝐸𝑒 that depends on 𝑒. For a point 𝑃(0, 𝑦, 0) 

(on the y axis same direction as 𝑒,) to find the incremental field due to the incremental 

charge 𝑑𝑄 = 𝑒𝐿 𝑑𝑧, 

𝑑𝐸⃗ =
𝑒𝐿 𝑑𝑧

4𝜋𝜖0|𝑟̂ − 𝑟̂1|2
𝑟 − 𝑟 

|𝑟 − 𝑟 |
 

With    𝑟̂ = 𝑦𝑎̂𝑦 = 𝑒𝑎̂𝑒 

𝑟 = 𝑧𝑎̂𝑧 = 𝑟̂ − 𝑟̂ = 𝑒𝑎̂𝑒 − 𝑧𝑎̂𝑧 

⟹     𝑑𝐸⃗ =
𝑒𝐿 𝑑𝑧(𝑝𝑎̂𝑒 − 𝑧𝑎̂𝑧)

4𝜋𝜖0(𝑒2𝑧2)
3
2⁄
⟹

𝑒𝐿𝑒 𝑑𝑧

4𝜋𝜖0(𝑒2𝑧2)
3
2⁄
= 𝐸𝑒 

As only the 𝐸⃗ 𝑒 component is present  

⟹            𝐸⃗ =
𝑒𝐿

2𝜋𝜖0𝑝
𝑎̂𝑒                                                                     3.9 

So, for a line charge, the intensity varies only inversely with the distance, as opposed to a 

point charge where it varies inversely with the square of the distance. 

 Discarding symmetry, however, let’s look at a case where an infinite line charge is 

parallel to z axis at x = y, y = 6.  

z

x

y

(0,6,0)

(x,y,0)

P(x,y,z)

(4,6,z)

(4,6,0)
(4,0,0)

𝑅⃗  

𝑅⃗  

x=4

y=6

                                                        

Figure 3.9 
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To find 𝐸⃗  at the general field point 𝑃(𝑥, 𝑦, 𝑧), 𝑒 ⟹radial distance between the line 

charge and point,  

𝑃, 𝑅 = √(𝑥 − 4)2 + (𝑦 − 6)2𝑎̂𝑒 = 𝑎̂𝑅 

⟹   𝐸⃗ =
𝑒𝐿

2𝜋𝜖0√(𝑥 − 4)2 + (𝑦 − 6)2
𝑎̂𝑟 

𝑎̂𝑅 =
𝑅⃗ 

|𝑅|
=
(𝑥 − 4)𝑎̂𝑥 + (𝑦 − 6)𝑎̂𝑦

√(𝑥 − 4)2 + (𝑦 − 6)2
 

⟹    𝐸⃗ =
𝑒𝐿

𝑒𝜋𝜖0
−
(𝑥 − 4)𝑎̂𝑥 + (𝑦 − 6)𝑎̂𝑦

√(𝑥 − 4)2 + (𝑦 − 6)2
  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑧 

3.3 Field of a Sheet of Charge 

 For an infinite sheet of charge with a uniform density of 𝑒𝑠
𝑐
𝑚2⁄  (s indicating 

surface), such a charge distribution may often be used to approximate that found on the 

conductors of a strip transmission line or a parallel plate capacitor (static charges exist on 

the surfaces of conductor and not in the interiors. 

𝑒𝑠 

𝑦′ 

d𝑦′ 

𝑅 = √𝑥2 + 𝑦2 

𝜃 

z

y

x

P(x,0,0)

                                                                        
Figure 3.10 

In Fig. 3.10, a sheet of charge is placed in the y-z plane. The field is independent of 

changes in y and/or z, and the y and z components from differential elements of charge 

symmetrically located with respect to the point at which the field is evaluated will cancel. 

So, the only component present is Ex and this depends on x along.  
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𝐹𝑟𝑜𝑚 𝐸⃗ =
𝑒𝐿

2𝜋𝜀0 𝑒
𝑎̂𝑒 , Used in made of the field of infinite line charge by dividing the 

infinite sheet into differential width strips. Shown at the end of the proceeding page. The 

density of the line charge (charge per unit length) is 𝑒𝐿 = 𝑒𝑠𝑑𝑦′, and the distance from 

this line charge to a general point P on the x axis is 𝑅 = √𝑥2 + 𝑦2. From the diferential 

width strip the contribution to Ex is:  

𝑑𝐸𝑥 =
𝑒𝑠𝑑𝑦

2𝜋𝜖0√𝑥2 + 𝑦2
cos 𝜃 =

𝑒𝑠
2𝜋𝜖0

 
𝑥𝑑𝑦

𝑥2 + 𝑦2
 

For the entire range of strips,  

𝐸𝑥 =
𝑒𝑠

2𝜋𝑒
 ∫ [

𝑥𝑑𝑦

𝑥2 + 𝑦2
=

𝑒𝑠
2𝜋𝜖0

 𝑡𝑎𝑛−1
𝑦

𝑥
]

∞

−∞ −∞

∞

=
𝑒𝑠
𝑧𝑒0

 

And for point P on the negative x axis, 𝐸𝑥 = −
𝑒𝑠

2𝜖0
 because the field is always directed 

away from the positive charge. 

 For a unit vector 𝑎̂𝑁,normal to the theet and directed outward (away) from it,  

                                                 𝐸⃗ =
𝑒𝑠
2𝜖𝑜

𝑎̂𝑁                                                                  3.10 

This shows that the field is constant in magnitude and direction, that is a constant vector! 

For a second infinite sheet of charge with a negative charge density 𝑒𝑠 located in the 

plane 𝑥 = 𝑎 

 The total field is found by adding the contribution of each sheet. In the region 𝑥 > 𝑎. 

𝐸⃗ 1 =
𝑒𝑠
2𝜖0

𝑎̂𝑥, 𝐸 = −
𝑒𝑠
2𝜖0

𝑎̂𝑥⟹ 𝐸⃗ = 𝐸⃗ 1 + 𝐸⃗ = 0 

For 𝑥 < 0,  𝐸⃗ 1 =
𝑒𝑠

2𝜖0
𝑎̂𝑥, 𝐸 = −

𝑒𝑠

2𝜖0
𝑎̂𝑥⟹ 𝐸⃗ = 𝐸⃗ 1 + 𝐸⃗ = 0 

For 0 < 𝑥 < 𝑎,  

𝐸⃗ =
𝑃𝑠
2𝜖0

𝑎̂𝑥, 𝐸⃗ =
𝑒𝑥
2𝜖0

𝑎̂𝑥 
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3.4 Streamlines and Sketches of Fields 

Field about a line charge, 𝐸⃗ =
𝑒𝐿

2𝜋𝜖0𝑒
𝑎̂𝑒 

𝐸⃗        𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒  

𝑙𝑒𝑛𝑔𝑡ℎ   ′𝑙′  

𝑚𝑜𝑟𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦   

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑜 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑙𝑖𝑛𝑒  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  𝑙𝑖𝑛𝑒𝑠, 𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑡𝑜 𝐸⃗ . 

⇒ 𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑙 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦  

𝑆𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠 𝑎𝑟𝑟𝑜𝑤𝑠 

𝑠ℎ𝑜𝑤 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠  

Figure 3.11 

For streamline sketch, the magnitude of the field is inversely proportional to the 

spacing of the streamlines for special cases. Therefore, the closer together the 

streamlines, the stronger is the field. Bet it noted that for a point charge, the field does 

also vary into and away from this book, and so sketching is limited to two dimensional 

fields. 

For Ez = 0, the streamlines are limited to lanes for which z is constant, and the sketch is 

the same for any such plane.  

For the several streamlines indicated below.  
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𝐸𝑦  

∆𝑥 

∆𝑦 
𝐸𝑥  

𝐸⃗  

y

x

                                                                                                                                                                   
Figure 3.12 

With Ex and Ey indicated at a general point 
𝐸𝑦

𝐸𝑥
=
𝑑𝑦

𝑑𝑥
, solved by a form of the functions Ex 

and Ey. 

Example 3.6: For the field of a uniform lime charge with 𝑒𝐿 = 2𝜋𝜖𝑜,  𝐸⃗ =
1

𝑒
𝑎̂𝑒 

In rectangular coordinates,  

𝐸⃗ =
𝑥

𝑥2 + 𝑦2
𝑎̂𝑥 +

𝑦

𝑥2 + 𝑦2
𝑎̂𝑦 

⟹  
𝑑𝑦

𝑑𝑥
=
𝐸𝑦

𝐸𝑥
=
𝑦

𝑥
⟹
𝑑𝑦

𝑦
=
𝑑𝑥

𝑥
 

⟹   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠 𝑦 = 𝐶𝑥                     ∗∗ 

To find the Equ ** of a streamline passing through 𝑃(3,−5, 12), we substitute the 

coordinates of that point into our equation and then evaluate C.  

−5 = 𝐶(3) ⟹ 𝐶 = −5 3⁄ = −1.667 ⟹ 𝑦 = −1.667𝑥 

For every streamline there’s an associate value of C, and he radial lines of the last 

diagram on the top right corner of the proceeding page are obtained with 𝐶 =

0, 1, −1 𝑎𝑛𝑑
1

𝑐
= 𝑜, meaning for the last one that C increases without bound, C just being 

the gradient of the straight line passing through the origin in x- y coordinates.  

3.5 Electric Flux Density 

 Electric flux 𝜓(𝑝𝑠𝑖) and the total charge on an inner sphere, enduced by charged 

outer sphere, is given in Faraday’s experiment by 𝜓 = 𝑄coulombs  
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+Q
-Q

r=a

r=b

Metal conductor 

sheres

Insulating 

dielectric metal 

                                                                 
Figure 3.12 

On the diagram of the preceding, an inner sphere has a radius of a, and the outer 

sphere has a radius of b, will charge of +Q and –Q respectively. Electric flux 𝜓 extend 

from the inner sphere to the outer sphere and the paths are indicated by the 

symmetrically distributed streamlines drawn radially from the inner sphere to the outer 

sphere.  

 The inner sphere has surface area of 4𝜋𝑎2𝑚2, and charge of 𝑄 = 𝜓𝑐 is 

distributed uniformly over it, giving rise to flux density of 
𝜓

4𝜋𝑎2
=

𝑄

4𝜋𝑎2
𝑐
𝑚3⁄ = 𝐷, a vector 

field. 𝐷⃗⃗  has a direction at a point which is the same as that of the flux lines, at that point 

and the magnitude is given by the number of flux lines crossing a surface normal to the 

lines divided by the surface area. In the Fig. 3.12, 𝐷⃗⃗  is in the radial direction, with a value 

of  

𝐷⃗⃗ |𝑟=𝑎 =
𝑄

4𝜋𝑎2
𝑎̂𝑟  𝑓𝑜𝑟 𝑖𝑛𝑛𝑒𝑟 𝑠𝑝ℎ𝑒𝑟𝑒  

𝐷⃗⃗ |𝑟=𝑏 =
𝑄

4𝜋𝑏2
𝑎̂𝑟  𝑓𝑜𝑟 𝑜𝑢𝑡𝑒𝑟 𝑠𝑝ℎ𝑒𝑟𝑒  

In the limit as the inner sphere becomes smaller and smaller while retaining the charge 

of Q, it results in a point charge y but the electric flux density at a point r meter from the 

point charge is still  

𝐷⃗⃗ |𝑟=𝑎 =
𝑄

4𝜋𝑟2
𝑎̂𝑟 
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Became Q lines of flux are symmetrically directed outward from that point and pass 

through an imaginary spherical surface of area 4𝜋𝑟2.  

From 𝐸⃗ =
𝑄

4𝜋𝜖𝑝𝑎2
𝑎̂𝑟, derived earlier then 

𝐷⃗⃗ 

𝜖0
= 𝐸⃗ ⟹ 𝐷⃗⃗ = 𝜖0𝐸⃗  for only free space. For a 

general charge distribution in free space,  

𝐸⃗ = ∫
𝑒𝑣𝑑𝑣

4𝜋𝜖0𝑅2
𝑎̂𝑅 , 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒.

𝑣𝑜𝑙

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝐷⃗⃗ = ∫
𝑒𝑣𝑑𝑣

4𝜋𝑅2
𝑎̂𝑅 ,

𝑣𝑜𝑙

 

Be it noted that, for a point charge embedded in an infinite ideal dielectric medium, the 

equation (expression at the bottom of the proceeding page still holds, and therefore the 

volume integral expression for 𝐷⃗⃗  above still holds also. The expression before it relating 

𝐸⃗  is only however, for free space. In free space, 𝐷⃗⃗  is directly proportional to 𝐸⃗ , with the 

constant of proportionality being the permittivity of free space 𝜖𝑜. 

3.6 The Electric Force  

 Say a charge Q is locate at some point in space, a point denoted by position 

vector, r. Likewise, there exists everywhere in space an electric field (we neither know 

nor care how this electric field was created). 

𝐸𝑟̂  

Q

o

z

y

x

𝑟̂ 

(Charge)

                                              

Figure 3.13 Vector at point r 



                                                                                                     Electromagnetic Field Theory 

121 
 

 The value (both magnitude and direction) of the electric field vector at point r is 

𝐸(𝑟̅) as in Fig. 3.13. 

Example 3.7(a): Our “Field theory” of electromagnetic says that the electric field will 

apply a force on the charge. Precisely what is this force (i.e, its magnitude and direction)? 

Solution: fortunately, the answer is rather simple! The force Fe on charge Q is the 

product of the charge (a scalar) and the value of the electric field (a vector) at point 

where the charge is located:  

          𝐹𝑒 = 𝑄𝐸(𝑟̅)  [𝑁]      3.11 

+

-

𝐸𝑟  

𝐸𝑟  

𝐹𝑒  

𝐹𝑒  (Fe when charge q 

is positive)

(Fe when charge q 

is negative)

Figure 3.13 

Note therefore, that the force vector will be parallel (or antiparallel) to the electric field! 

Q > O (charge is negative) so 𝐹𝑒 points in the opposite direction as the electric field as in 

Fig. 3.14  

Note the magnitude of the electric force will increase proportionally with an increase in 

charge and/or increase in the electric field magnitude. 

Example 3.7(b)  Calculate the force of attraction between 𝑄1 = 3 × 10
−8  and 

𝑄2 = 2 × 10
−5 and spaced by 10cm apart in vacuum. What is force if it is placed in 

kerosene whose 𝜀𝑟 = 2?   

𝐹 =
𝑄1𝑄2
4𝜋𝜀0𝑟2

=
2 × 4 × 10−13

4𝜋 × 8.854 × 10−12 × (10 × 10−2)2
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1

4𝜋𝜀0𝑟2
= 9 × 109 

∴   𝐹 = 0.72 

In kerosene  𝐹 =
0.72

2
= 0.36 N  𝑨𝒏𝒔 

3.7 Coulomb’s Law of Force 

Consider two-point charges, 𝑄1 𝑎𝑛𝑑 𝑄2 located at positions r1 and r2 respectively.  

We will find that each charge has a force F (with magnitude and direction) exerted on it.  

  This force is dependent on both the sign (+ or -) and the magnitude of charges  

𝑄1 𝑎𝑛𝑑 𝑄2 as well as the distance R between the charges.   

 Charles Coulomb determined this relationship in the 18th century! We call his 

result Coulomb’s law:  

𝐹1 =
1

4𝜋𝜀0

𝑄1𝑄2
𝑅2

𝑎̂21[𝑁]                                                                3.12 

 This force F1 is the force exerted on charge 𝑄1. Likewise, the force exerted on 

charge 𝑄2is equal to:  

                            𝐹2 =
1

4𝜋𝜀0
 
𝑄1𝑄2
𝑅2

𝑎̂21 [𝑁]                                                             3.13 

In these formulae, the value 𝜀0 is a constant that describes the permittivity of free space 

(i.e vacuum).  

𝜀0 = 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒 = 8.854 × 10
−12 [

𝐶2

𝑁𝑚2
=
𝑓𝑎𝑟𝑎𝑑𝑠

𝑚
] 

 Note the only difference between the equations for force F1 and F2 are the unit 

vectors 𝑎̂21  𝑎𝑛𝑑 𝑎̂12.  

 Unit vector 𝑎̂12 points from the location of 𝑄2(𝑖. 𝑒. , 𝑟̅2) to the location of charge 

𝑄1(𝑖. 𝑒. , 𝑟̅1). 
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𝐹1 =
1

4𝜋𝜀0

𝑄1𝑄2
𝑅2

𝑎̂21 

 Likewise, unit vector 𝑎̂21 points from the location of 𝑄1(𝑖. 𝑒. , 𝑟̅1) to the location of 

charge 𝑄2(𝑖. 𝑒. , 𝑟̅1). 

= 
1

4𝜋𝜀0
 
𝑄1𝑄2
𝑅2

(𝑎̂21)  

= (
1

4𝜋𝜀0
 
𝑄1𝑄2
𝑅2

𝑎̂21) = −𝐹2                                            3.14 

 Note therefore, that these unit vectors point  

in opposite directions, a result we express  

mathematically as:  

𝑎̂21 = −𝑎̂12 

Q2

Q1

F2

F1

𝑟 2 

𝑟 1 
𝑎̂21 

𝑎̂12 

 

Figure 3.14 𝐹 1 and 𝐹 2 are Equal and opposite  

 Look! For F1 and F2 have equal magnitude, but point in opposite directions!  
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Example 3.8:  what happens when one of the charges is negative?  

Solution: Look at coulomb’s Law! If one charge is positive and other is negative, then the 

product 𝑄1 𝑄2 is negative. The resulting force vectors are therefore negative they point 

in the opposite directions of the previous (i.e., both positive) case in Fig.3.5.  

3.8 Electric Field and Electric Field Strength (Intensity) 𝑬⃗⃗  

Electric field strength is defined as force per unit test charge.  

  ∴                    𝐸⃗ = 𝑅̂
𝑞

4𝜋𝜀0𝑅2
 (𝑉/𝑚) 

Where R is the distance between the charge and the observation point, 𝑅̂ is the radial 

unit vector pointing away from the charge.  

E
^
R

+q

                                                                                              
Figure 3.15 Force per unit Test 

Electric field due to charge distribution: 

 The electric potential of a point at distance R from a point charge ‘Q’ referred to 

that at infinity is given as.  

𝑉 = − ∫
𝑞

4𝜋𝜀0𝑅2
𝑑𝑅

𝑅

∞

 

Which gives 

𝑉 =
𝑞

4𝜋𝜀0𝑅
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 Above is a scalar quantity and depends only on distance R and charge ‘q’. Thus, 

potential difference between any two points 𝑃2 and 𝑃1 at distance 𝑅2 and 𝑅1 respectively 

from ‘q’ is  

P3

R2

P2

P1

q

                                                                                                                                        
Figure 3.16 Path of Integration 

𝑉21 = 𝑉𝑝2 − 𝑉𝑝1 

=
𝑞

4𝜋𝜖0
[
1

𝑅2
−
1

𝑅1
] 

 Surprisingly, shown in Fig.3.16 above results is true even is 𝑃2 and 𝑃1may not lie 

on the same radial line through ‘q’.  

Here    𝑉𝑝2 − 𝑉𝑝1 = 𝑉𝑝1 

You will conclude that choosing path of integration from P1 to P3 and them from P3 to P2 

will give the result. as no work is done in moving a charge on equipotential surface, thus 

from 𝑃1 𝑡𝑜 𝑃3 𝐸⃗ . 𝑑𝑙⃗⃗  ⃗ = 0. 

The electric potential at 𝑅 due to system of 𝑛 distance point charges 𝑞1, 𝑞2… . . 𝑞𝑛 located 

at 𝑅1, 𝑅2… .𝑅𝑛is by superposition, the sum of potential due to individual charges.  

𝑉 =
1

4𝜋𝜀0
 ∑  

𝑞𝑅

|𝑅⃗  𝑅𝑘|

𝑛

𝑅=1

 

Hereby, V is a scalar sum, so 𝐸⃗ = −∇𝑉 than vector sum  
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The electric potential due to continuous distribution of charge confined in a given region 

is obtained by integration the contribution of an element of charge over the charged 

region. 

𝐕𝐎𝐋𝐔𝐌𝐄 𝐂𝐇𝐀𝐑𝐆𝐄 𝐃𝐈𝐒𝐓𝐑𝐈𝐁𝐔𝐓𝐈𝐎𝐍                                     𝑉 =
1

4𝜋𝜀0
∫
𝜌𝑣
𝑅
 𝑑𝑣  (𝑉)

𝑉

 

𝐒𝐔𝐑𝐅𝐀𝐂𝐄 𝐂𝐇𝐀𝐑𝐆𝐄 𝐃𝐈𝐒𝐓𝐑𝐈𝐁𝐔𝐓𝐈𝐎𝐍                             𝑉 =
1

4𝜋𝜀0
∫
𝜌𝑠

𝑅⃗ 
 𝑑𝑠′  (𝑉)

𝑆

 

𝐋𝐈𝐍𝐄 𝐂𝐇𝐀𝐑𝐆𝐄 𝐃𝐈𝐒𝐓𝐑𝐈𝐁𝐔𝐓𝐈𝐎𝐍                                        𝑉 =
1

4𝜋𝜀0
∫
𝜌𝐿
𝑅
 𝑑𝑙′  (𝑉)

𝐿

 

3.8.1 Example: Electric field due to two-point charges in Fig 3.8 

Two points charges 𝑞1 = 2 × 10
−5𝐶 and 𝑞2 = 2 × 10

−5𝐶 are located in free space at (1, 

3, -1) and (3, 1, -2), respectively, in a Cartesian coordinates system.  

𝐸 = 𝐸1 + 𝐸2 =
1

3𝜋 ∙ 𝜀0
[
𝑞1 (𝑅 − 𝑅1)

|𝑅 − 𝑅1|3
+
𝑞2 (𝑅 − 𝑅2)

|𝑅−𝑅2|3
] 

If a small probe charge "∆𝑞" is located at any point near a second fixed charge “q” the 

probe charge experience a force,  

∆𝐹 = 𝑞∆𝑞/4𝜋 𝜀𝑟2 

                      ⟹                         𝐸 =
∆𝐹

∆𝑞
=

𝑞

4𝜋 𝜀𝑟2
                                                   3.15 

 Now, let us calculate 𝐸⃗  for different charge distribution  

3.9 Electric Potential (V) 

In order to bring two charges near each other work must be done. In order to separate 

two opposite charges, work must be done.  

                                                 𝑉 =
𝑊 

𝑞𝑚𝑜𝑣𝑒𝑑
  (𝑉)                                                          3.16 
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Work or energy can be measured in Joules and charge is measured in Coulombs so the 

electrical can be measured in Joules per Coulomb, which has been defined as a volt.  

 The differential electric potential energy dW per unit charge is called the 

differential electric potential (or differential voltage) dV.  

That is:  

𝑑𝑉 =
𝑑𝑊

𝑞
 

 The potential difference between any two points P1, P2 is obtained by integrating.  

𝑉21 = 𝑉2 − 𝑉1 = −∫ 𝐸̅
𝑃2

𝑃1

∙ 𝑑𝑙̅                                                        3.17 

Along any path between them.  

Where 𝑑𝑙 is the vector differential distance.  

Example 3.9:  An electric field is expressed in rectangular coordinates by 𝐸⃗ = 6𝑥2𝑎̂𝑥 +

6𝑦 𝑎̂𝑦 + 4𝑎̂𝑧𝑉/𝑚. Find: 

(a) VMN if points M and N are specified by M (2, 6, -1) and N (-3, -3, 2) 

(b) Vm if V = 0 at Q (4, -2, -35).  

(c) VN if V = 2 at P (1, 2, -4). 

Solution:  

(a) – 139 V 

(b) – 120 V  

(c) 19 V 

Example 3.10:  A nC (point charge is at origin in free space. Calculate V1 if point P1 is 

located at P1 (-2, 3, -1) and (a) V = 0 at (6, 5, 4) 

(b) V = 0 at infinity  

(c) V =5V at (2, 0, 4).  
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Solution:  

(a) 20.67 V 

(b) 36 V 

(c) 10.89 V 

Example 3.11:  An infinite charge sheet with surface charge density 𝜎𝑠𝑐/𝑚
2 has a circular 

hole of radius “a”. the sheet is placed in xy plane with its centre at origin. Using 

Coulomb’s law or otherwise. Find the potential V and electrical field density 𝐸⃗  at any 

point distance ‘z’ away from the origin and along the positive z-direction.  

∞ 

∞ 

∞ 

∞ 

z

x

y

                                                                    
Figure 3.17 

Solution: 

 for cases where we have a hole in conducting sheet having surface charge density 𝜎𝑠 we 

can imagine the hole having surface charge density of −𝜎𝑠 and solve the problem by two 

parts. 
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𝑅 = √𝑟2 + 𝑧2 

𝑃(0,∅, 𝑧) 

𝑑𝐸 

𝑑𝑠 

𝑟 

x

y

𝑑𝑄 = 𝜌𝑠𝑟𝑑𝑟𝑑∅ 
                                                                                

Figure 3.18 

I. Electric field due to infinite conducting sheet with surface charge density +𝜎𝑠 

c/m2. 

II. Electric field due to hole on charge sheet with surface charge density −𝜎𝑠 

c/m2 which can be separately considered as a circular sheet of radius “a” 

centered at origin with charge density −𝜎𝑠 c/m2.  

So, from text,  I. 𝐸1 =
𝜎𝑠

2𝜀0
𝑧̂ 

II.                                      ∫ 𝑑𝐸2 = ∫ ∫
−𝜎𝑠 𝑟 𝑑𝑟 𝑑∅ 𝑧𝑎̂𝑧

4𝜋𝜀0(𝑟2 + 𝑧2)
3
2

𝑎

𝑟=0

2𝜋

𝜃=0

 

𝐸⃗ 2 =
−𝜎𝑠 𝑧

4𝜋𝜀0
∫ ∫

 𝑟 𝑑𝑟 𝑑∅ 

(𝑟2 + 𝑧2)3/2
 𝑎̂𝑧

𝑎

𝑟=0

2𝜋

𝜃=0

 

=
−𝜎𝑠 𝑧

4𝜋𝜀0
 ∫

 𝑟 𝑑𝑟  

(𝑟2 + 𝑧2)
3
2

 [𝜙]0
2𝜋𝑎̂𝑧

𝑎

𝑟=0

 

𝐸⃗ 2 =
−𝜎𝑠 𝑧. 2𝜋

4𝜋𝜀0
∫

 𝑟 𝑑𝑟  

(𝑟2 + 𝑧2)3/2
 𝑎̂𝑧

𝑎

𝑟=0

 

=
−𝜎𝑠 𝑧

2𝜋𝜀0
∫

 𝑟 𝑑𝑟  

(𝑟2 + 𝑧2)
3
2

 𝑎̂𝑧

𝑎

𝑟=0

 

𝐵𝑢𝑡      22 + 𝑧2 = 𝑡2 
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         | 𝑜𝑟 2𝑟 𝑑𝑟 = 2𝑡 𝑑𝑡 

         |𝑜𝑟 𝑟 𝑑𝑟 = 𝑡 𝑑𝑡 

⟹                                                        𝐸⃗ 2 =
−𝜎𝑠 𝑧

2 𝜀0
∫

 𝑡 𝑑𝑡  

(𝑡2)3/2
 𝑎 𝑧=

+𝜎𝑠 𝑧

2 𝜀0
[𝑡−1]𝑟=0

𝑎
𝑎

𝑟=0

𝑎̂𝑧 

=
+𝜎𝑠 𝑧

2 𝜀0
[

1

√𝑟2 + 𝑧2
]
𝑟=0

𝑎

 

⟹                                                                  𝐸⃗ 2  =
+𝜎𝑠  𝑧

2 𝜀0
[

1

√𝑎2 + 𝑧2
−
1

𝑧2
] 𝑎̂𝑧 

𝐸⃗ 2  =
−𝜎𝑠
2 𝜀0

[1 −
𝑧

√𝑎2 + 𝑧2
] 𝑎̂𝑧 V/m 

So, net   𝐸𝑛𝑒𝑡 = 𝐸1 + 𝐸2 

𝐸⃗ =
−𝜎𝑠𝑧

2 𝜀0√𝑎2 + 𝑧2
𝑎𝑧̂  V/m 

𝑉 = −∫ 𝐸⃗ ∙ 𝑑𝑙⃗⃗  ⃗ = −∫
𝜎𝑠𝑧

2 𝜀0√𝑎2 + 𝑧2
𝑑𝑧

𝑧

0

𝑓𝑖𝑛𝑎𝑙

𝑖𝑛𝑖𝑡

 

=
−𝜎𝑠
2 𝜀0

 ∫
𝜎𝑠𝑧

√𝑎2 + 𝑧2
𝑑𝑧

𝑧

0

                                       (𝑙𝑒𝑡 𝑎2 + 𝑧2 = 𝑡2 2𝑧 𝑑𝑧 = 2𝑡 𝑑𝑡) 

=
−𝜎𝑠
2 𝜀0

∫
𝑡 𝑑𝑡

√𝑡2
=
−𝜎𝑠
2 𝜀0

∫ 𝑑𝑡 =
−𝜎𝑠
2 𝜀0

[√𝑎2 + 𝑧2 − 𝑎]
√𝑎2+𝑧2

𝑎

√𝑎2+𝑧2

𝑎

 

𝑉 =
−𝜎𝑠
2 𝜀0

[√𝑎2 + 𝑧2 − 𝑎]   V 

Example 3.12: We wish to find 𝐷⃗⃗  in region about uniform line charge of 4 𝑛C/m lying 

along z-axis in free space.  

Solution: the 𝐸⃗  field   

𝐸⃗ =
𝜌𝐿

2𝜋𝜀0𝜌
𝑎𝜌 =

4 × 10−9

2𝜋 (8.85 × 10−12)𝜌
= 𝑎𝜌 =

71.9

𝜌
𝑎𝜌  𝑉/𝑚 



                                                                                                     Electromagnetic Field Theory 

131 
 

At    𝜌 = 3𝑚, 𝐸⃗ = 23.97𝑎𝜌 V/m 

Associated with E field we find  

𝐷⃗⃗ =
𝜌𝐿
2𝜋𝜌

𝑎𝜌 =
4 × 10−9

2𝜋 𝜌
𝑎𝜌 =

0.6365 × 10−9

𝜌
𝑎𝜌𝐶/𝑚

2 

The value at  𝜌 = 3𝑚 𝑖𝑠 𝐷⃗⃗ = 0.212 𝑎𝑝 𝑛C/m 

 

3.10 Lines of Force  

Lines of force is a curve drawn so that at every point it has direction of electric field  

The number of lines per unit area is made proportional to magnitude of electric field 

strength ‘E’ 

3.11 Lines of Flux  

Lines of flux is a curve drawn so that at every point it has direction of electric flux density 

or displacement density, the number of flux lines per unit area is used to indicate the 

magnitude of displacement density, ‘D’ 

3.12 Gauss Law 

Mr. Gauss was perhaps, history’s, greatest mathematician, inventing the summation 

theory by the age of ten!).  

 The electric flux passing through any imaginary spherical surface lying between 

two conducting spheres in equal to the charge enclosed within that imaginary surface. 

The enclosed charge is either distributed on the surface of the inner sphere, or it might 

be concentrated as a point charge at the center of the imaginary sphere. Because of the 

relationship between electric flux and charge (equality) the actual geometrical 

configuration of the space occupied by the charges, is immaterial since the result is the 

same.  

 Gauss Law: the electric flux passing through any closed surface is equal to the 

total change enclosed by that surface.  



                                                                                                     Electromagnetic Field Theory 

132 
 

Q

∆𝑠 

𝜃 

𝐷⃗⃗ 𝑠 

𝐷𝑠    𝑛𝑜𝑟𝑚𝑎𝑙 

∆𝑠 

                                                     
Figure 3.19 Charge in a Closed Surface of Arbitrary Shape 

In the above diagram, total charge Q is enclosed within a closed surface of arbitrary 

shape. According to Gauss’s law, then Q coulombs of electric flux will pass through then 

closed surface. The electric flux density vector 𝐷⃗⃗  will have some value 𝐷⃗⃗ 𝑠 in general 

varies from point to point on this surface, in magnitude and direction.  

 We have an incremental area ∆𝑆 that approximates a position of a plane surface, 

and is a vector quantity having magnitude and direction pointing normal away from the 

said incremental “plane” a plane tangent to the surface at that “point”. 

 Taking an incremental element of surface ∆𝑆 at any point P, and letting 𝐷⃗⃗ 𝑠make 

an angle 𝜃 𝑤𝑖𝑡ℎ ∆𝑆, the flux crossing ∆𝑆 is then the product of the normal component of 

𝐷⃗⃗ 𝑠 and ∆𝑆, ∆𝜓 = 𝐹𝑙𝑢𝑥 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 ∆𝑆 = 𝐷𝑠, 𝑛𝑜𝑟𝑚 ∆𝑆 = 𝐷𝑠 cos 𝜃 ∆𝑆 = 𝐷⃗⃗ 𝑠. ∆𝑆. 

 Total flux passing through the closed surface, is the sum of all each of which cross 

∆𝑆,   

          𝜓 = ∫𝑑𝜓 = ∮ 𝐷⃗⃗ 𝑠. 𝑑𝑠,
𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

                                          3.18 

Which is a closed surface integral, a double integral being the integral of element 

involving an area which has two dimensions.  

Gauss’s law: 𝑄 = ∮ 𝐷⃗⃗ 𝑠. 𝑑𝑠⃗⃗⃗⃗ =𝑠
 charge enclosed = 𝑄 

𝑄 = ∫ 𝑑𝐿 
𝑒𝐿

𝑓𝑜𝑟 𝑎 𝑙𝑖𝑛𝑒 𝑐ℎ𝑎𝑟𝑔𝑒𝑠, 𝑜𝑟 
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𝑄 = ∫𝑒𝑠 𝑑𝑠 𝑓𝑜𝑟 𝑎 𝑔𝑒𝑒𝑛𝑟𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒, 𝑜𝑟
𝑠

 

𝑄 = ∫ 𝑒𝑣 𝑑𝑣
𝑣𝑒

 𝑓𝑜𝑟 𝑎 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

⟹     𝐺𝑎𝑢𝑠𝑠′𝑠 𝐿𝑎𝑤: ∮ 𝐷⃗⃗ 𝑠. 𝑑𝑠⃗⃗⃗⃗ = ∫ 𝑒𝑣 𝑑𝑣
𝑣𝑜𝑙𝑠

 

𝐷⃗⃗ 𝑠 

𝑑𝑠⃗⃗⃗⃗  

∅ 

𝜃 
𝑄 

𝑟 = 𝑎 

z

x

y

                                              

 Figure 3.20 A Point Charge on a Spherical Coordinate System 

In the preceding page, a point charge is at the origin of a spherical coordinate system and 

by choosing a closed surface of radius a.  

𝐷⃗⃗ =
𝑄

4𝜋𝑟2
𝑎̂𝑟 

At the surface of the sphere,  

𝐷𝑠⃗⃗⃗⃗ =
𝑄

4𝜋𝑎2
𝑎̂𝑟 

𝑑𝑠 = 𝑟2 sin 𝜃 𝑑𝜃 𝑑∅ = 𝑎2 sin 𝜃 𝑑𝜃 𝑑∅ ⟹ 𝑑𝑠⃗⃗⃗⃗ = 𝑎2 sin 𝜃 𝑑𝜃 𝑑∅ 𝑎̂𝑟 

𝐷⃗⃗ 𝑠 . 𝑑𝑠 =
𝑄

4𝜋𝑎2
 𝑎2 sin 𝜃𝑑 𝜃𝑑 ∅𝑎̂𝑟 . 𝑎̂𝑟 =

𝑄

4𝜋
sin 𝜃 𝑑𝜃 𝑑∅  

⟹  ∫ ∫
𝑄

4𝜋
sin 𝜃 𝑑𝜃 𝑑∅

𝜃=𝜋

𝜃=∅

∅=2𝜋

∅=0
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∫
𝑄

4𝜋
(− cos 𝜃)0

𝜋
2𝜋

0

𝑑∅ = ∫
𝑄

2𝜋
 𝑑∅ = 𝑄, 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝐺𝑎𝑢𝑠𝑠′𝑠 𝑙𝑎𝑤

2𝜋

0

 

3.13 Electric Flux Density (𝑫⃗⃗ ) 

In addition to the electric field intensity E, we will often find it convenient to also used a 

related quantity called the electric flux density D, given by  

                                       𝐷̅ = 𝜀𝐸̅  (𝐶/𝑚2)                                                      3.19 

In vacuum 𝐷 = 𝜀0𝐸 

𝐸 = 𝑓(Magnitude, position of charge q and dielectric constant of medium) 

𝐷 ≠ 𝑓 (medium)  

 

3.13.1 “Faraday’s Experiment” (with concentric spheres)  

 Electric displacement from charge on inner sphere through the medium to the 

outer sphere as in Fig. 3.21. 

q q

Hollow sphere filled by 

inner sphere of charge  q 
Outer sphere

grounded

Inner sphere removed and 

Charge on outer sphere 

was measured 

𝑄𝑜𝑢𝑡𝑒𝑟 = −𝑄𝑖𝑛𝑛𝑒𝑟  

 

Figure 3.21. Faraday’s experiment 

The amount of this displacement (Ψ) depends only upon the magnitude of charge 𝑄. 

  ⟹          Ψ = 𝑄       3.20 

For the case of an isolated point charge ‘q’ remote from outer bodies the outer sphere is 

assumed to have infinite radius.  
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The electric displacement per unit area at any point on a spherical surface of radius ‘r’ 

centered at isolated charge q will. 

𝐷 =
Ψ

4𝜋𝑟2
=

𝑞

4𝜋𝑟2
 𝑟̂    

𝐶𝑜𝑢𝑙𝑜𝑚𝑏

𝑠𝑞𝑚
 

Vector Quantity. Its direction being taken as that direction of normal to the surface 

element which makes the displacement through the element of area of maximum. 

Above is true for isotropic media  

For anisotropic dielectric  

[

𝐷𝑥
𝐷𝑦
𝐷𝑧

] = [

𝜀11 𝜀12 𝜀13
𝜀21 𝜀22 𝜀23
𝜀31 𝜀32 𝜀33

] [

𝐸𝑥
𝐸𝑦
𝐸𝑧

]     3.21 

3.14 Alternative Statement of Gauss’s Law 

Gauss’s law: ∮ 𝐷⃗⃗  ∙ 𝑑𝑎⃗⃗ ⃗⃗  = ∫ 𝜌 𝑑𝑉
𝑣𝑆

         

Applying divergence theorem  

                     ∮ ∇ ∙ 𝐷 𝑑𝑣 = ∫ 𝜌 𝑑𝑉
𝑉𝑉

                  3.22 

                          ∇ ∙ 𝐷 = 𝜌𝑣                                                                            3.23     

(As volume considered is reduced to an element volume)     

At every point in a medium the divergence of electric displacement density is equal to 

the charge density 

3.15 The Use of Gauss’s Law  

 For a known charge distribution, given 𝑄 = ∮𝐷𝑠⃗⃗⃗⃗  ⃗. 𝑑𝑠
𝑠

, 𝐷⃗⃗ 𝑠 can be determined even 

though it’s the quantity appearing in the integral! But the, therein lies the advantage that 

the law of Gauss provides. To proceed a closed surface has to be chosen so that:  
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1. 𝐷⃗⃗ 𝑠. 𝑑 𝑠 is everywhere either normal so that it becomes simply Dsds or its tangential 

so that it is zero;  

2. Where 𝐷⃗⃗ 𝑠. 𝑑 𝑠 is not zero, Ds = constant, so that only ds can then vary.  

 

⟹   𝑄 = ∫ 𝐷𝑠 . 𝑑𝑠⃗⃗⃗⃗ = ∮ 𝐷𝑠 𝑑𝑠 = 𝐷𝑠 ∮𝑑𝑠𝑠𝑠𝑠
     3.24 

For normal arousing:  

 For a point charge, spherical coordinates are conveniently chosen so that the two 

conditions above would be satisfied since 𝐷⃗⃗ 𝑠 has the same value throughout the entire 

surface (symmetry is obvious).  

 Going further, therefore from the Eq (3.24) we have that:  

𝑄 = 𝐷𝑠∮𝑑𝑠 = 𝐷𝑠∫ 𝑟2 sin 𝜃 𝑑𝜃 𝑑∅ = 4𝜋𝑟2𝐷𝑠

𝜃=2𝜋

∅=0𝑠

 

And we have “performed” a seemingly intractable integral without breaking a sweat.  

So, 

𝐷𝑠 =
𝑄

4𝜋𝑟2
 

Since 0 ≤ 𝑟 < ∞, and because of the outwardly radial nature of 𝐷⃗⃗ 𝑠 , then: 

         𝐷⃗⃗ =
𝑄

4𝜋𝑟2
𝑎̂𝑟  , 𝐸⃗ =

𝑄

2𝜋𝜖0𝑟2
𝑎̂𝑟                                                   3.25 

As earlier shown. Limitations, however are towards symmetry.  

For a line charge, the only component present is the radial, obviously for uniform line 

charge.  

⟹  𝐷⃗⃗ = 𝐷𝜌 𝑎̂𝜌 = 𝑓(𝜌)𝑎̂𝜌 

Showing that 𝐷𝜌 (a scalar) depends only on 𝜌. 
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L

Line  

charge  

𝜌
𝑙
  𝜌 

                                                                                                                                               
Figure 3.22 A close right circular cylinder of radius ‘𝜌’ from z = 0 to z = L, and closed line 

surfaces normal to z-axis  

 

𝑄 = ∮ 𝐷⃗⃗ 𝑠. 𝑑𝑠⃗⃗⃗⃗ = 𝐷𝑠∫ 𝑑𝑠
𝑠𝑖𝑑𝑒𝑠

+ 0∫ 𝑑𝑠
𝑡𝑜𝑝

+ 0∫ 𝑑𝑠
𝑏𝑜𝑡𝑡𝑜𝑚𝑠

 

= 𝐷𝑠∫ ∫ 𝑒𝑑∅ 𝑑𝑧 = 𝐷𝑠 2𝜋𝜌𝐿
2𝜋

∅=0

𝐿

𝑧=0

 

⟹                𝐷𝜌 = 𝐷𝜌 =
𝑄

2𝜋𝜌𝐿
                                                                                         3.26 

But then, Q is equally 𝜌𝐿 
𝑐𝑜𝑢𝑙𝑜𝑚𝑏

𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔ℎ𝑡 
× 𝑙𝑒𝑛𝑔ℎ𝑡𝑠 

= 𝜌𝐿𝐿 ⟹ 𝐷 =
𝜌𝐿𝐿

2𝜋𝜌𝐿
 

So,   𝐷𝜌 =
𝜌𝐿

2𝜋𝜌
⟹ 𝐸𝑝 =

𝜌𝐿

2𝜋𝜖0𝜌
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L

Conducting 

cylinders

ρ = a
ρ  = b

𝑄 = 2𝜋ρ𝐿𝐷𝑠 

                                                                  
Figure 3.23 

Linear conductor 

𝑄 = ∫ ∫ 𝜌𝑠𝑎 𝑑∅ 𝑑𝑧 = 2𝜋𝑎𝐿𝜌𝑠
2𝜋

∅=0

𝐿

𝑧=0

 

⟹    𝐷𝑠2𝜋𝜌𝐿 = 2𝜋𝑎𝐿𝜌𝑠 = 𝐷𝑠 =
𝑎̂𝜌𝑠

𝑝
= 𝐷⃗⃗ =

𝑎𝜌𝑠

𝜌
𝑎̂𝜌 

For inner conductor, charge per unit length  

𝑄

𝐿
=
2𝜋𝑎𝜌𝑠𝐿

𝐿
= 2𝜋𝑎𝜌𝑠 = 𝜌𝐿 

⟹𝐷𝑠 =
𝑄

2𝜋𝜌𝐿
=
2𝜋𝑎𝐿(𝜌𝑠)

2𝜋𝜌𝐿
=
𝑎

𝜌
(𝜌𝑠) =

𝑎

𝜌
(
𝜌𝐿
2𝜋𝑎

) =
𝜌𝐿
2𝜋𝜌

 

𝐷⃗⃗ =
𝜌𝐿
2𝜋𝜌

𝑎̂𝜌 

3.16 Total Charge on Outer Cylinder  

For a Gaussian surface of cylinder with radius 𝜌 > 𝑏, the total charge would be zero since 

there are opposite and equal charges on the inner and outer conducting cylinders.  

So,  𝐷𝑠2𝜋𝜌𝐿 = 0 = 𝐷𝑠 = 0 𝑓𝑜𝑟 𝜌 > 𝑏 
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Also, for 𝜌 > a, same result, logically, so that charges are enclosed only between the two 

conductors for an infinite length of coaxial cable. Even for a finite length, the result still 

holds as long as the length is many times greater than the radius B, such that the non-

symmetry at the ends do not appreciably affect the result.  

Example 3.12: To determine the charge densities and 𝐸⃗  𝑎𝑛𝑑 𝐷⃗⃗  of the cylinders of a 

coaxial cable with an inner radius of 1mm and outer of 5mm, with the space in between 

assumed to be filled with air. The total charge on the inner conductor is 40nC and the 

length of the cable is 80cm.  

Solution: 

𝜌𝑠  𝑖𝑛𝑛𝑒𝑟 𝑐𝑦𝑙 =
𝑄 𝑖𝑛𝑛𝑒𝑟 𝑐𝑦𝑙

2𝜋𝑎𝐿
=

40 × 10−9

2𝜋(10−3)(0.8)
= 7.96𝜇𝑐/𝑚2 

                         𝜌𝑠 , 𝑜𝑢𝑡𝑒𝑟 𝑐𝑦𝑙 = −  
40×10−9

2𝜋(5×10−3)(0.8)
= −

1.59𝜇𝐶

𝑚2
 

(Internal fields): 

𝐷𝑠 =
𝑎𝜌𝑠

𝜌
=
10−3(7.9 × 106)

𝜌
= 7.96𝜇 𝑐 𝑚2⁄  

⟹     𝐸𝜌 =
𝐷𝜌

∈0
=

7.96 × 10−9

8.854 × 10−12𝜌
=

899
𝜌 𝑉

𝑚
1 < 𝜌 < 5𝑚𝑚 

3.17 Differential Volume Element 

“Special” surface as a cube or a cylinder not having the length appreciably greater than 

the radius (and therefore, the diameter), lack symmetry, and therefore the application of 

the Gaussian principle cannot hold. To circumvent this difficulty, however, a very small 

size of these can be chosen, so that in the limiting case, symmetry is almost achieved. 

Applying Taylor’s-series expansion for 𝐷⃗⃗  using the first two terms a nearly correct result 

is achieved as the volume inside the Gaussian surface decreases.  

 In anticipation of one of Maxwell’s four equations (basic to all electromagnetic 

theory), let’s consider a point P located rectangularly inside a cube (its reluctant to say 

“middle of” since the cubes dimensions ≫≫ 𝑧𝑒𝑟𝑜.  
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∆𝑧 

∆𝑦 

∆𝑥 

z

x

y

𝑃(𝑥,𝑦, 𝑧) 

                                                                                                   
Figure 3.24 A differential sized gaussian of a ‘P’ surface used to determine the space rate 

of change of D in P neighborhood 

For the above differential sized cube, 𝐷⃗⃗  at point 𝑃(𝑥, 𝑦, 𝑧) may be expressed as:  

                                         𝐷⃗⃗ 𝑜 = 𝐷0𝑟  𝑎̂𝑟 + 𝐷𝑜𝑦𝑎̂𝑦 + 𝐷𝑜𝑧𝑎̂𝑧    3.27 

Gauss’s law: ∮ 𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ = 𝑄
𝑆

 

∮ 𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ = ∫ +
𝑓𝑟𝑜𝑛𝑡 

∫ +
𝑏𝑎𝑐𝑘

∫ +∫ +∫ +∫ +
𝑏𝑜𝑡𝑡𝑜𝑚𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑓𝑡 𝑠

 

∫ = 𝐷⃗⃗ 𝑓𝑟𝑜𝑛𝑡∆𝑆𝑓𝑟𝑜𝑛𝑡 =
𝑓𝑟𝑜𝑛𝑡 

𝐷⃗⃗ 𝑓𝑟𝑜𝑛𝑡. ∆𝑦 ∆𝑧 𝑎̂𝑥 = 𝐷⃗⃗ 𝑥 𝑓𝑟𝑜𝑛𝑡∆𝑦 ∆𝑧  

With 𝐷𝑥 approximated at the front face, which lies a distance of 
∆𝑥

2
𝑓𝑟𝑜𝑚𝑃.  

⟹  𝐷𝑥, 𝑓𝑟𝑜𝑛𝑡 = 𝐷𝑥0 +
∆𝑥

2
× 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐷𝑥 𝑤𝑖𝑡ℎ 𝑥 

𝐷𝑥 𝑓𝑟𝑜𝑛𝑡 = 𝐷𝑥0 +
∆𝑥

2
 
𝜕𝐷𝑥
𝜕𝑥

,𝑤𝑖𝑡ℎ 𝐷𝑥𝑜 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐷𝑥  𝑎𝑡 𝑃,  

And partial derivatives are employed twice 𝐷𝑥 also generally varies with y and z. 

⟹        ∫ = (𝐷𝑥0 +
∆𝑥

2

𝜕𝐷𝑥
𝜕𝑥
)∆𝑦 ∆𝑧

𝑓𝑟𝑜𝑛𝑡

 

𝐷⃗⃗ = 𝐷⃗⃗ 0 = 𝐷𝑥0
𝑎 𝑥 + 𝐷𝑦0

𝑎 𝑦 + 𝐷𝑧0
𝑎 𝑧  
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⟹        ∫ = 𝐷𝑏𝑎𝑐𝑘 . ∆𝑆𝑏𝑎𝑐𝑘 = 𝐷𝑏𝑎𝑐𝑘 . (−∆𝑦 ∆𝑧 𝑎̂𝑥)
𝑏𝑎𝑐𝑘

= −𝐷𝑥,𝑏𝑎𝑐𝑘 ∆𝑦 ∆𝑧 

𝐷𝑥𝑏𝑎𝑐𝑘 = 𝐷𝑥0 −
∆𝑥

2
 
𝜕𝐷𝑥
𝜕𝑥

 

= ∫ = (−𝐷𝑥0 +
∆𝑥

2
 
𝜕𝐷𝑥
𝜕𝑥
)∆𝑦 ∆𝑧

𝑏𝑎𝑐𝑘

 

⟹  ∫ +∫ =
𝜕𝐷𝑥
𝜕𝑥
 ∆𝑥 ∆𝑦 ∆𝑧

𝑏𝑎𝑐𝑘𝑓𝑟𝑜𝑛𝑡

 

Similarly,  

∫ +∫ =
𝜕𝐷𝑦

𝜕𝑦𝑙𝑒𝑓𝑡𝑟𝑖𝑔ℎ𝑡

 ∆𝑥 ∆𝑦 ∆𝑧 

   

∫ +∫ =
𝜕𝐷𝑧
𝜕𝑧𝑏𝑜𝑡𝑡𝑜𝑚𝑡𝑜𝑝

 ∆𝑥 ∆𝑦 ∆𝑧 

Collectively,  

∮ 𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ = (
𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧
𝜕𝑧
)∆𝑥 ∆𝑦 ∆𝑧

𝑠

 

                 = 𝑄 = (
𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧
𝜕𝑧
)∆𝑁                                                       3.28 

So, “almighty” result:  

𝑐ℎ𝑎𝑟𝑔𝑒 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 ∆𝑁 = (
𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧
𝜕𝑧
)𝑥 

Example 3.15: To find the total charge enclosed in an incremental volume of 10 𝑚3 

located at the origin of 𝐷⃗⃗ = 𝑒𝑥 sin 𝑦 𝑎̂𝑥 − 𝑒
−𝑥 cos 𝑦 𝑎̂𝑦 + 𝑧𝑎̂𝑧

𝑐
𝑚2⁄  

Proc: 
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𝜕𝐷𝑥
𝜕𝑥

= −2𝑒−2𝑥 sin 𝑦 

𝜕𝐷𝑦

𝜕𝑦
= 𝑒−𝑥 sin 𝑦 

𝜕𝐷𝑧
𝜕𝑧

= 1 

𝐴𝑡 𝑃(0, 0, 0)  (𝑜𝑟𝑖𝑔𝑖𝑛),
𝜕𝐷𝑥
𝜕𝑥

=
𝜕𝐷𝑦

𝜕𝑦
= 0,

𝜕𝐷𝑧
𝜕𝑧

= 1 

⟹     ∮𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ ≈ 1 ∆𝑣 = 1 × 10−8 = 10𝑛𝐶
𝑐

 

3.17.1 Divergence and Maxwell’s First Equation  

In the limit on ∆𝑁 shrinles to zero 

(
𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧
𝜕𝑧
) = lim

∆𝑁→0
∮
𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ 

∆𝑁
= lim

∆𝑁
𝑄 = 𝜌𝑣 (𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

𝑠

            3.29 

For any vector 𝐴  equally,  

(
𝜕𝐴𝑥
𝜕𝑥

+
𝜕𝐴𝑦

𝜕𝑦
+
𝜕𝐴𝑧
𝜕𝑧
) = lim

∆𝑁→0
∮
𝐴 . 𝑑𝑠⃗⃗⃗⃗ 

∆𝑁𝑠

 

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (   "  ) 𝑜𝑓 𝐴 = 𝑑𝑖𝑣 𝐴 = lim
∆𝑁→0

∮
𝐴 . 𝑑𝑠⃗⃗⃗⃗ 

∆𝑁𝑠

                                3.29.1 

To wit, “the divergence of the vector flux density 𝐴  is the outflow of flux from a 

small closed surface per unit volumes the volume shrinks to zero. 

A divergence > 0 (positive) for any vector quantity indicates that, that point is a 

source, whereas a sink is indicated for divergence < 0 (negative).  

𝑑𝑖𝑣 𝐷 = (
𝜕𝐴𝑥
𝜕𝑥

+
𝜕𝐴𝑦

𝜕𝑦
+
𝜕𝐴𝑧
𝜕𝑧
)  𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 
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𝑑𝑖𝑣 𝐷 =
1

𝜌
(𝜌𝐷𝜌) +

1

𝜌

𝜕𝐷∅

𝜕∅
+
𝜕𝐷𝑧

𝜕𝑧
 (𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙) 

𝑑𝑖𝑣 𝐷 =
1  𝜕

𝑟2𝜕𝑟
(𝑟2𝐷𝑟) +

1

𝑟 sin 𝜃 

𝜕

𝜕𝜃
(sin 𝜃 𝐷𝜃) +

1

𝑟 sin 𝜃

𝜕𝐷∅

𝜕∅
 (𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙)       3.29.2 

Be it noted that, despite the appearance of three components in the expression for 

divergence, it is strictly still a scalar and the above three expressions appear without any 

associative, directional unit vectors. It merely tells how much flux is leaving a small 

volume on a per-unit volume basis.  

So, the divergence div 𝐷⃗⃗  of the example in the preceding page is  

𝑑𝑖𝑣 𝐷⃗⃗ =
𝜕𝐷𝑥

𝜕𝑥
+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧

𝜕𝑧
= −2𝑒−𝑥 sin 𝑦 + 𝑒−𝑥 sin 𝑦 + 1 = 1 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 (10𝑛 𝑐 𝑚3⁄ ) 

Maxwell’s first equation: 𝑑𝑖𝑣 𝐷⃗⃗ = 𝜌𝑣 , applicable to electrostatic and steady magnetic 

fields. “Electric flux per unit volume leaving a vanishingly small volume unit is exactly 

equal to the volume charge density there. “Called the “point form of Gauss’s law,” 

relating the flux leaving any closed surface to the enclosed charge, similar to Maxwell’s 

first equation that makes the same statement on a per-unit volume basis for a 

vanishingly small volume or at a point.  

 Maxwell’s (differential equation) = Gauss’s integral for 𝑑𝑖𝑣 𝐷⃗⃗  in the region about 

a point charge Q at the origin.  

𝐷⃗⃗ =
𝑄

4𝜋 𝑟2
 𝑎̂𝑟 

⟹   𝑑𝑖𝑣 𝐷⃗⃗ =
1

𝑟2
𝜕

𝜕𝑟
 (𝑟2𝐷𝑟) +

1

𝑟 sin 𝜃
 
𝜕

𝜕𝜃
 (1 sin 𝜃) +

1

𝑟 sin 𝜃

𝜕𝐷∅

𝜕∅
 

𝐷𝜃 = 𝐷∅ = 0 ⟹ 𝑑𝑖𝑣 𝐷⃗⃗ =
1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑄

4𝜋𝑟2
) = 0, 𝑓𝑜𝑟 𝑟 ≠ 0 

𝑓𝑜𝑟 𝑟 = 0 (𝑜𝑟𝑖𝑔𝑖𝑛), 𝑑𝑖𝑣 𝐷⃗⃗ =
1

𝑟2
𝑑

𝑑𝑟
 (
𝑄

4𝜋
) = ∞,  

The expression how being a full derivative of a constant term (𝑄).  
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The vector operator ∇ and the divergence theorem 

Something. 𝐷⃗⃗ =
𝜕𝐷𝑥

𝜕𝑥
+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧

𝜕𝑧
, to investigate what this “something” is 

 It has to be a dot operation not dot product, leading to an operation involving a 

vector  

∇⃗⃗ =
𝜕

𝜕𝑦
𝑎̂𝑥 +

𝜕

𝜕𝑦
𝑎̂𝑦 +

𝜕

𝜕𝑧
𝑎̂𝑧  Defined as dot operator 

∇⃗⃗ . 𝐷⃗⃗ = (
𝜕

𝜕𝑦
𝑎̂𝑥 +

𝜕

𝜕𝑦
𝑎̂𝑦 +

𝜕

𝜕𝑧
𝑎̂𝑧) . (𝐷𝑥𝑎̂𝑥 + 𝐷𝑦𝑎̂𝑦 + 𝐷𝑧𝑎̂𝑥) 

=
𝜕𝐷𝑥

𝜕𝑥
+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧

𝜕𝑧
= 𝑑𝑖𝑣 (𝐷⃗⃗ ) = ∇⃗⃗ . 𝐷⃗⃗  

Used with (against) any scalar field 𝜇. 

∇𝜇 = (
𝜕

𝜕𝑥
𝑎̂𝑥 +

𝜕

𝜕𝑦
𝑎̂𝑦 +

𝜕

𝜕𝑧
𝑎̂𝑧)𝜇 =

𝜕𝜇

𝜕𝑥
𝑎̂𝑥 +

𝜕𝜇

𝜕𝑦
𝑎̂𝑦 +

𝜕𝜇

𝜕𝑧
𝑎̂𝑧 

And the result is a vector for cylindrical coordinates 

∇⃗⃗ . 𝐷⃗⃗ = (
1

𝜌

𝜕

𝜕𝜌
(𝜌𝐷𝜌) +

1

𝜌

𝜕𝐷∅

𝜕∅
+
𝜕𝐷𝑧

𝜕𝑧
 ) 

∫ d⃗ . 𝑑𝑠⃗⃗⃗⃗ = 𝑄

𝑠

 

𝐵𝑢𝑡                           𝑄 = ∫ 𝑒𝑣𝑑𝑣
𝑣𝑜𝑙

= ∫ ∇.⃗⃗⃗  𝐷⃗⃗  𝑑𝑣
𝑣𝑜𝑙

 

                     ∫ D⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ = ∫ ∇⃗⃗ . 𝐷⃗⃗ 𝑑𝑣
𝑣𝑜𝑙

𝑠

       𝑡ℎ𝑒 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡ℎ𝑒𝑜𝑟𝑒𝑚:                     3.30 

The integral of the normal component of any vector field over a closed surface is equal to 

the integral of the divergence of this vector field throughout the volume enclosed by the 

closed surface.  
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Stated another way, the divergence theorem says,  

The total flux crossing the closed surface is equal to the integral of the divergence of the 

flux density throughout the enclosed volume.  

Closed surface  S 

Volume  V 

 

Figure 3.25 

As can be discerned from the above diagram, a volume 𝑣 shown on cross section for each 

differential-sized volume, the flux that diverge from it enters the adjacent cell, unless the 

cell contains a portion of the outer space, so that the divergence of the flux density 

throughout a volume leads to the same result as determining the net flux crossing the 

enclosed surface.  

Example 3.16:  For the field 𝐷⃗⃗ = 3𝑥𝑦𝑎̂𝑥 + 2𝑥
2 𝑎̂𝑦  

𝑐
𝑚2⁄  and the rectangular 

paralldepiped formed by the planes 𝑥 = 0 𝑎𝑛𝑑 1, 𝑦 = 0 𝑎𝑛𝑑 2, 𝑎𝑛𝑑 𝑧 = 0 𝑎𝑛𝑑 3, show. 

The validity of the divergence theorem (by evaluating both sides of the equation).  

Solution: 

 𝐷⃗⃗  is parallel to the surfaces at 𝑧 = 0  𝑎𝑛𝑑 3 (𝑠𝑖𝑛𝑐𝑒 𝐷⃗⃗  has no solution when plugging into 

it those values of z). ⟹ 𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ = 0 there. For the remaining four surfaces we have 

⟹  ∮𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ 
𝑠

= ∫ ∫ (𝐷⃗⃗ )
𝑥=0

• (−𝑑𝑦 𝑑𝑧 𝑎̂𝑥) + ∫ ∫ (𝐷⃗⃗ )
𝑥=1

• (𝑑𝑦 𝑑𝑧 𝑎̂𝑥)
2

0

3

0

2

0

3

0
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+∫ ∫ (𝐷⃗⃗ )
𝑦=0

• (−𝑑𝑥 𝑑𝑧 𝑎̂𝑦) + ∫ ∫ (𝐷⃗⃗ )
𝑦=2

• (𝑑𝑥 𝑑𝑧 𝑎̂𝑦)
1

0

3

0

1

0

3

0

 

= −∫ ∫ (𝐷)𝑥=0(𝑑𝑦 𝑑𝑧 ) + ∫ ∫ (𝐷)𝑥=1(𝑑𝑦 𝑑𝑧 )
2

0

3

0

2

0

3

0

 

−∫ ∫ (𝐷𝑦)𝑦=0𝑑𝑥 𝑑𝑧 + ∫ ∫ (𝐷𝑦)𝑦=2𝑑𝑥𝑑𝑧
1

0

3

0

1

0

3

0

 

But 

(𝐷𝑥)𝑥=0 = 0, 3𝑥𝑦| = 0, (𝐷𝑦)𝑦=0 = 2𝑥
2|𝑦=0 = (𝐷𝑦)𝑦=2 = 2𝑥

2|𝑦=2 = 2𝑥
2 

𝐷 =
𝜕

𝜕𝑥
(3𝑥𝑦) +

𝜕

𝜕𝑦
(2𝑥) = 3𝑦 𝑎𝑛𝑑 𝑑𝐒 = dydz 

⟹  ∮𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ 
𝑠

= ∫ ∫ (𝐷𝑥)𝑥=1𝑑𝑦 𝑑𝑧 = ∫ ∫ 3𝑦 𝑑𝑦𝑑𝑧
2

0

3

0

2

0

3

0

 

= ∫
3𝑦2

2
|
0

2

𝑑𝑧
3

0

= ∫ 6 𝑑𝑧 = 18
3

0

 

But  

⟹  ∮ ∇⃗⃗ . 𝐷⃗⃗  𝑑𝑣
𝑣𝑜𝑙

= ∮𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ 
𝑠

= ∫ ∫ ∫ [
𝜕

𝜕𝑥
(3𝑥𝑦) +

𝜕

𝜕𝑦
(2𝑥2)]

1

0

𝑑𝑥 𝑑𝑦 𝑑𝑧
2

0

3

0

 

= ∫ ∫ ∫ (3𝑦)
1

0

𝑑𝑥 𝑑𝑦 𝑑𝑧
2

0

3

0

= ∫ ∫ 3𝑦𝑑𝑦𝑑𝑧
2

0

3

0

= 3∫
𝑦2

2
|
0

2

 𝑑𝑧 = 6∫  𝑑𝑧 = 18
3

0

 
3

0

 

3.18 Vector Analysis of Gauss Divergence Theorem  

In vector analysis, of the theorem is,  

                   ∮ 𝐸⃗ ∙ 𝑛̂ 𝑑𝑎 = ∫ ∇ ∙  𝐸⃗  𝑑𝜏

𝑣𝑜𝑙𝑢𝑚𝑒
𝑆

                                                         3.31 

Known as Gauss’s Divergence theorem  
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Now                                             𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = ∮ 𝑝𝑑𝜏

𝑣𝑜𝑙𝑢𝑚𝑒

 

𝜌: charge density and 𝑑𝜏: volume element  

∴                                   ∮ 𝐸⃗ ∙  𝑛̂ 𝑑𝑎 =
𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑
𝜀0

 

Becomes  

∫ ∇ ∙ 𝐸⃗  𝑑𝜏

𝑣𝑜𝑙𝑢𝑚𝑒

=
1

𝜀0
 ∫ 𝑝 𝑑 𝜏

𝑣𝑜𝑙𝑢𝑚𝑒

 

                                ∴                                     ∇ ∙ 𝐸⃗ =
𝜌

𝜀0
                                         3.32 

Or  

𝜀0∮𝐸⃗  𝑛̂ 𝑑𝑎 = ∫ 𝜌𝑣  𝑑𝑣

𝑉𝑜𝑙𝑢𝑚𝑒𝑆

 

⟹                   ∮ 𝜀0𝐸⃗  ∙  𝑛̂ 𝑑𝑎

𝑆

= ∫ 𝜌𝑣 𝑑𝑣

𝑉𝑜𝑙𝑢𝑚𝑒

 

                                 ⟹             ∮𝐷𝑑𝑎 = ∫ 𝜌𝑣 𝑑𝑣

𝑉𝑜𝑙𝑢𝑚𝑒.𝑆

                                         3.33 

The net outward displacement through a closed surface is equal to charge contained in 

the volume enclosed by the surface.  

Example 3.16  Given the field 𝐷⃗⃗ = 2𝑥𝑦 𝑎̂𝑥 + 𝑥
2 𝑎̂𝑦 𝐶/𝑚

2 and the rectangular 

parallelepiped formed by planes x = 0 and 1, y = 0 and 2 and z = 0 and 3. Evaluate left 

hand side of Gauss divergence theorem.  

Solution: we know that 𝐷⃗⃗  ia parallel to surface at z = 0 and z = 0, so 𝐷⃗⃗ . 𝑑𝑠⃗⃗⃗⃗ = 0 there. For 

remaining four surfaces.  

We have 
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However, [𝐷𝑥]𝑥=0 = 0 and [𝐷𝑦]𝑦=0 = [𝐷𝑦]𝑦=2 which leaves only  

∮ 𝐷⃗⃗  . 𝑑𝑆⃗⃗⃗⃗ = ∫ ∫ [𝐷𝑥]𝑥=1𝑑𝑦𝑑𝑧
2

0

3

0

+∫ ∫ 2𝑦 𝑑𝑦𝑑𝑧
2

0

3

0

 

= ∫ 4 𝑑𝑧 =
3

0

12 

∇ • 𝐷 =
𝜕

𝜕𝑥
(2𝑥𝑦) +

𝜕

𝜕𝑥
(𝑥2) = 2𝑦 

The volume integral becomes 

∮ ∇ • 𝐷
𝑣𝑜𝑙

𝑑𝑣 = ∫ ∫ ∫ 2𝑦𝑑𝑥𝑑𝑦𝑑𝑧
1

0

2

0

3

0

= ∫ ∫ 2𝑦 𝑑𝑦𝑑𝑧 = ∫ 4 𝑑𝑧 = 12
3

0

2

0

3

0

 

3.19 Conditions for Applications of Gauss Law  

Gauss law is always true, but it is not always useful only 3 kinds of symmetry work:  

(a) Spherical symmetry: Make your Gaussian surface a concentric sphere  

(b) Cylindrical symmetry: make your Gaussian surface a coaxial cylinder  

(c) Plane symmetry: Use a Gaussian “Pillbox” which straddles the surface 

Example 3.16. Let us select a 100cm length of coaxial cable having an inner radius of 

1mm and an outer radius of 4mm. the space between the conductor is assumed to be 

filled with air. The total charge on the inner conductor is 30 nC. We wish to know charge 

density on each conductor, and the 𝐸⃗  and 𝐷⃗⃗  fields.  

Solution: we begin by finding the surface charge density n inner cylinder,  

𝜌𝑠inner cylinder =
𝑄𝑖𝑛𝑛𝑒𝑟
2𝜋𝑎𝐿

=
30 × 10−9

2𝜋 × 10−3 × 1
= 4.775 𝜇𝐶/𝑚2 

The negative charge density on inner surface of outer cylinder is  

𝜌𝑠 outer cylinder =
𝑄𝑜𝑢𝑡𝑒𝑟
2𝜋𝑏𝐿

=
−30 × 10−9

2𝜋 × (4 × 10−3) × 1
= −1.195 𝜇𝐶/𝑚2 

The internal field may therefore be calculated easily: 
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𝐷𝑝 =
𝑎𝑝𝑠

𝜌
=
10−3 × 4.775 × 10−6

𝜌
=
4.775

𝜌
  𝑛𝐶/𝑚2 

And     

𝐸⃗ 𝑝 =
𝐷𝑝

𝜀0
=
4.775 × 10−9

8.854 × 10−12
=
539.5

𝜌
  V/m 

Both of these expressions apply to region where 1 < 𝜌 < 4mm. for 𝜌 < 1mm or 𝜌 >

4mm. 𝐸⃗  and 𝐷⃗⃗  are zero.  

3.20 Coulomb’s Law for Charge Density 

Consider the case where there are multiple point charges present. What is the resulting 

electrostatic field?  (Fig. 3.26).  

+

+

𝑟 1 

𝑟 2 
𝑟  

𝐸𝑟  

Q1

Q2

z

y

x

                                                                   
Figure 3.26 Coulomb’s Law 

 The electric field produced by the charges is simply the vector sum of the electric 

field produced by each (i.e., superposition)  

              𝐸(𝑟̅) =
𝑄1
4𝜋𝜀0

−
𝑟̅ − 𝑟̅1
|𝑟̅ − 𝑟̅1|3

+
𝑄2
4𝜋𝜀0

−
𝑟̅ − 𝑟̅2
|𝑟̅ − 𝑟̅2|3

                     3.34 

Or more generally, for N point charges. 

 Consider now a volume V that is filled with a “cloud” of charge, described by 

volume charge density 𝜌𝑣 (𝑟̅). (Fig 3.27)  
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𝑟  

𝑟  

𝐸𝑟  

𝑝𝑣  

𝑑𝑣′ 

z

y

x

                          

 Figure 3.27 Cloud of Charge 

 A very small differential volume 𝑑𝑣, located at point 𝑟̅, will thus contain charge 

𝑑𝑄 = 𝜌𝑣 (𝑟̅)𝑑𝑣.  

This differential charge produces an electric field at point 𝑟̅ equal to:  

                                  𝑑𝐸(𝑟̅) =
𝜌𝑣 (𝑟̅) 𝑑𝑣 𝑟̅ − 𝑟̅

′

4𝜋𝜀0 |𝑟̅ − 𝑟̅|3
                                                            3.35 

 The total electric field at 𝑟̅ (i.e., 𝐸 (𝑟̅) is the summation (i.e integration) of all the 

electric field vectors produced by all the little differential charges 𝑑𝑄 that make up the 

charge cloud.  

                             𝐸(𝑟̅) =∭
𝜌𝑣  (𝑟̅)  𝑟̅ − 𝑟̅

′

4𝜋𝜀0 |𝑟̅ − 𝑟̅|3
 

𝑣

𝑑𝑣                                                           3.36 

 Note: The variables of integration are the primed coordinates, representing the 

locations of the charges (i.e sources).  

 Similarly, we can show that for surface charge:  

                           𝐸(𝑟̅) = ∬
𝜌𝑠  (𝑟̅) 𝑑𝑣 𝑟̅ − 𝑟̅

′

4𝜋𝜀0 |𝑟̅ − 𝑟̅|3𝑆

 𝑑𝑠                                                        3.37 

And for line charge: 

                               𝐸(𝑟̅) = ∫
𝜌𝑠   𝑑𝑣 𝑟̅ − 𝑟̅

′

4𝜋𝜀0 |𝑟̅ − 𝑟̅|3𝐶

 𝑑𝑙                                                         3.38 
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Point to remember 

 The potential at a point ‘p’ due to number of charges is obtained as a simple 

algebraic addition or superposition of the potential at a point by each of the charge 

acting above.  

 If 𝑞1, 𝑞2, 𝑞3…𝑞𝑛 are charges located at distance 𝑅1, 𝑅2, 𝑅3… .𝑅𝑛 respectively, 

from point 𝑝, the potential at 𝑝 is given by  

               𝑉 =
1

4𝜋𝜀
 (
𝑞1
𝑅1
+
𝑞2
𝑅2
+⋯

𝑞𝑛
𝑅𝑛
) =

1

4𝜋𝜀
 ∑

𝑞𝑖
𝑅𝑖

𝑛

𝑖=1

                                          3.39 

 If charge is distributed continuously throughout a region, rather than being 

located at a discrete number of points, the region can be divided into elements of 

volume ∆𝑉 each containing charge +∆𝑉 

                                           𝑉 =
1

4𝜋𝜀 
  ∑

𝜌𝑖  ∆𝑉𝑖
𝑅𝑖

𝑛

𝑖=1

                                                     3.40 

Where 𝑅𝑖 is distance to 𝑝 from the 𝑖𝑡ℎ volume element.  

 As the size of volume element chosen is allowed to become small.  

                𝑉 =
1

4𝜋𝜀
 ∫
𝜌𝑑𝑉

𝑅𝑉

                                                             3.41 

Its often written in form  

                 𝑉 = ∫𝜌 𝐺 𝑑𝑉
𝑣

                                                                 3.42 

In which  

𝐺 =
1

4𝜋𝜀𝑅
 

 The function G is the potential of a unit charge and is often referred to as 

electrostatic Green’s function for an unbounded homogeneous region  
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Example 3.17: A Charge configuration in cylindrical coordinates is given by 𝜌 =

15𝑟𝑒−2𝑟 C/m3. Use Gauss’s law to find 𝐷⃗⃗ . 

Solution: since r is not a function of ∅ or z, the flux 𝑄 is completely radial. 

 Using Gauss’s law  

𝑄inc = ∫ 𝐷⃗⃗ ∙ 𝑑𝑠⃗⃗⃗⃗  

∫ ∫ ∫ 15𝑟𝑒−2𝑟
𝑟

0

2𝜋

0

𝐿

0

 𝑟 𝑑𝑟𝑑∅𝑑𝑧 = 𝐷(2𝜋𝑟𝐿) 

⟹         15 𝜋𝐿 [𝑒−2𝑟 (𝑟2 − 𝑟 −
1

2
) +

1

2
] = 𝐷 (2𝜋𝑟𝐿) 

Hence,                       𝐷⃗⃗ =
7.5

𝑟
[
1

2
− 𝑒−2𝑟 (𝑟2 + 𝑟 +

1

2
)] 𝑎̂𝑟    (𝐶/𝑚

2) 

Example 3.18  For 𝐸⃗ =
2𝑥𝑦

𝑧2+1
𝑎̂𝑥 +

3𝑥2

𝑧2+1
𝑎̂𝑦 +

2𝑥2 𝑦𝑧

𝑧2+1
𝑎̂𝑧   𝑚𝑉/𝑚 calculate the total charge 

enclosed in a tiny sphere of radius 1𝜇𝑚 that is centered at a point with coordinates (5, 8, 

1). 

Solution: Given that  

𝐸⃗ =
2𝑥𝑦

𝑧2 + 1
𝑎̂𝑥 +

3𝑥2

𝑧2 + 1
𝑎̂𝑦 +

2𝑥2 𝑦𝑧

𝑧2 + 1
𝑎̂𝑧 

From Gauss’s law we can write as  

𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = ∮ 𝐷⃗⃗ ∙  𝑑𝑠⃗⃗⃗⃗  

Using 𝐷⃗⃗ = 𝜀0 𝐸⃗  (for only free space) 

⟹                                    𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜀0∮ 𝐸⃗  ∙ 𝑑𝑠⃗⃗⃗⃗ = 𝜀0∮𝐸 𝑑𝑠 = 𝜀0𝐸 4𝜋𝑟
2 

(𝑎𝑠∮𝑑𝑠 = 4𝜋𝑟2 ) 
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Taking magnitude of E, substituting (𝑥, 𝑦, 𝑧) = (5, 8,1) 

|𝐸| = √(
2 × 5 × 8

1 + 1
)
2

+ (
3 × 25

1 + 1
)
2

+ (
2 × 25 × 8 × 1

1 + 1
)
2

 

= √1600 + 1406.25 + 40000 = √43006.25 

|𝐸| = 207.38 V/m 

Now putting |E| is 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜀0𝐸 (4𝜋𝑟
2) 

𝑄 = 8.85 × 10−12 × 207.38 × 106 × 4 × 3.14 × (10−6)2 

= 23061.95 × 10−18 

𝑄 = 0.0231. 𝜌𝐶 

Example 3.19 Determine an expression for volume charge density associated with each 

𝐷⃗⃗  field following: 

(a) 𝐷⃗⃗ =
4𝑥𝑦

𝑧
𝑎̂𝑥 +

2𝑥2

𝑧
𝑎̂𝑥 −

𝑥2𝑦

𝑧2
 𝑎̂𝑥 

(b) 𝐷⃗⃗ = 2𝑧 sin∅ 𝑎̂𝜌 + 𝑧 cos𝜙 𝑎̂𝜙 + 𝑟 sin𝜙 𝑎̂𝑧 

(c) 𝐷⃗⃗ = sin 𝜃 sin𝜙 𝑎̂𝜌 + 2 cos 𝜃 sin𝜙 𝑎̂𝜃 + cos𝜙𝑎̂𝜙 

Solution: (a) Gauss divergence theorem ∇. 𝐷⃗⃗ = 𝜌𝑣  

𝑑 (
4𝑥𝑦
𝑧 )

𝑑𝑥
+
𝑑 (
2𝑥2

𝑧
)

𝑑𝑦
+
𝑑 (
−𝑥2𝑦
𝑧2

)

𝑑𝑧
= 𝜌𝑣  

4𝑦

𝑧
+ 0 +

2𝑥2

𝑧3
= 𝜌𝑣 

𝜌𝑣 =
4𝑦

𝑧3
(𝑧2 + 𝑥2) 

(b)  ∇.  𝐷⃗⃗ =
1

𝑟
×

𝑑

𝑑𝑟
(2𝑟 𝑧 sin ∅) +

1

𝑟
×

𝑑

𝑑∅
(𝑧 cos∅) +

𝑑

𝑑𝑧
(𝑟 sin ∅) 
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=
1

𝑟
(2𝑧 sin ∅) −

1

𝑟
(𝑧 sin ∅) + 0 

∇⃗⃗  . 𝐷⃗⃗ = 𝜌𝑣 =
𝑧 sin∅

𝑟
.  𝐴𝑛𝑠 

(c) ∇⃗⃗   . 𝐷⃗⃗ =
1

𝑟2
𝑑

𝑑𝑟
(𝑟2 sin 𝜃 sin∅) +

1

𝑟 sin𝜃

𝑑

𝑑𝜃
(2 sin 𝜃 cos 𝜃 sin∅) +

1

𝑟 sin𝜃

𝑑

𝑑∅
(cos ∅) 

=
1

𝑟2
2𝑟 sin 𝜃 sin∅ +

2

𝑟 sin 𝜃

sin∅

2

𝑑

𝑑𝜃
(sin 2𝜃) 

− sin∅

𝑟 sin 𝜃
 

= 
2 sin 𝜃 sin ∅

𝑟
+
sin∅

2𝑟 sin 𝜃
(2 cos 2𝜃) −

sin ∅

𝑟 sin 𝜃
 

= 
2 sin 𝜃 sin∅

𝑟
+
sin∅

𝑟 sin 𝜃
(−4 𝑐𝑜𝑠2 𝜃 + 2) −

sin∅

𝑟 sin 𝜃
 

= 
2 sin 𝜃 sin∅

𝑟
+
2 sin ∅

𝑟 sin 𝜃
−
sin∅

𝑟 sin 𝜃
−
4 sin 𝜃 sin ∅

𝑟
 

∇⃗⃗   .  𝐷⃗⃗ =
sin∅

𝑟 sin 𝜃
−
2 sin 𝜃 sin ∅

𝑟
= 𝜌𝑣.  𝐴𝑛𝑠 

Example 3.20  A charge distribution with spherical symmetry has volume charge density 

𝜌𝑣 = {𝜌0   0 ≤ 𝑟 ≤ 𝑎 

     {0  𝑟 > 𝑎 

Calculate:  

(a) The electric field intensity at all points  

(b) Potential at all points  

(c) Total energy stored in electrostatic field  

Solution: considering Fig 3.20 and apply Gauss’s law for 𝑟 < 𝑎, we have  

∫𝐷⃗⃗ ∙
𝑆

𝑑𝑠⃗⃗⃗⃗ = ∫𝜌𝑣
𝑉

∙ 𝑑𝑉⃗⃗⃗⃗  ⃗ 
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𝐷 ∙  4𝜋𝑟2 =
4

3
 𝜋𝑟2 𝜌0 

𝐷 =
𝑟𝜌0

3
 

𝐸 =
𝑟𝜌0

3 ∈0
 𝑎̂𝑟   𝑉/𝑚   0 ≤ 𝑟 ≤ 𝑎 

𝑟 ≥ 𝑎, Gauss’s law  

𝐷. 4𝜋𝑟2 =
4

3
 𝜋𝑎3 𝜌0 

a

r

r

^

0

r

                                                                                                                                                      
Figure 3.28 

𝐷 =
𝑎3 𝜌0

3𝑟2
 

𝐸 =
𝜌0 𝑎

3

3 ∈0 𝑟2
𝑎̂𝑟 𝑉/𝑚   𝑟 ≥ 𝑎 

At r = a 

𝐸 =
𝜌0 𝑎

3 ∈0
𝑎̂𝑟         𝑉/𝑚   𝑟 = 𝑎 

(b) The potential at any point can be obtained from  

𝑉 = −∫ 𝐸⃗  . 𝑑𝑙⃗⃗  ⃗ 
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𝑓𝑜𝑟  𝑟 ≥ 𝑎                             𝑉 = ∫
𝜌0 𝑎

3

3 ∈ 𝑟2
𝑑𝑟 = ∫

𝜌0 𝑎
3

3 ∈ 𝑟
+ 𝐴 

At 𝑟 = ∞,    𝐿𝑒𝑡 𝑉 = 0, 𝑆𝑜, 𝐴 = 0 

𝑉 =
𝜌0 𝑎

3

3 ∈ 𝑟2
    𝑎𝑡 𝑟 ≥ 𝑎 

𝐴𝑡  𝑟 = 𝑎       𝑉 =
𝜌0 𝑎

2

3 ∈0
 

𝐹𝑜𝑟       𝑟 ≤ 𝑎              𝑉 = −∫ 𝐸⃗ . 𝑑𝑙⃗⃗  ⃗ = −∫
𝜌0 𝑟

3 ∈0
𝑑𝑟 = −

𝜌0 𝑎
2

6 ∈0
+ 𝐵 

At 𝑟 = 𝑎 

𝑉 =
𝜌0 𝑎

2

3 ∈0
 

𝜌0 𝑎
2

3 ∈0
= −

𝜌0 𝑟
2

6 ∈0
+ 𝐵 

𝑉 =
𝜌0 

6 ∈0
 (3𝑎2 − 𝑟2) 

(c) The energy stored is  

𝑊𝐸 =
1

2
∫∈0
𝑉

 𝐸2𝑑𝑉 

Considering both region E,  

=
𝜌0
2

18 ∈0
∫ ∫ ∫ 𝑟2 ∙ 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅

2𝜋

∅=0

𝜋

𝜃=0

𝑎

𝑟=0

 

+
𝜌0 𝑎

6

18 ∈0
∫ ∫ ∫

1

𝑟4
∙  𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅

2𝜋

∅=0

𝜋

𝜃=0

∞

𝑟=𝑎

 

=
𝜌0 𝑎

5

18 ∈0 5
4𝜋 +

𝜌0
2 𝑎6

18 ∈0
 (−

1

𝑟
)  4𝜋 
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𝑊𝐸 =
4𝜋𝜌0

2𝑎5

15𝜀0
𝐽 

Example 3.21:  A dielectric sphere of radius ‘b’ and permittivity ′ ∈ ′ is situated in 

vacuum. It is charged throughout its volume by a charge density 𝜌𝑉 =
5𝑏

𝑟
, r being the 

distance from the center of sphere. Determine the electrostatic energy of system.  

Solution: For 𝐷⃗⃗  outside sphere  

Using Gauss’s law  

^
r

r

r

b

ru

                                                                                                                                  
Figure 3.28 

∫ 𝐷⃗⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ = ∫𝜌𝑉 ∙  𝑑𝑉 

𝐷. 4𝜋𝑟2 = ∫ ∫ ∫
5𝑏

𝑟

2𝜋

∅=0

𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅
𝜋

𝜃=0

𝑏

𝑟=0

 

= 5𝑏3 × 2𝜋 = 10𝜋𝑏3 

𝐷⃗⃗ =
10𝜋𝑏3

4𝜋𝑟2
=
5

2

𝑏3

𝑟2
𝑎̂𝑟   𝑏 < 𝑟 < ∞ 

𝐷⃗⃗  Inside sphere by Gauss’s law at any radius 𝑟 

𝐷. 4𝜋𝑟2 = ∫ ∫ ∫
5𝑏

𝑟
𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅

2𝜋

∅=0

𝜋

𝜃=0

𝑟

0

 

5𝑏.
𝑟2

2
∙  4𝜋 = 10𝜋 𝑏𝑟2 



                                                                                                     Electromagnetic Field Theory 

158 
 

𝐷⃗⃗ =
5

2
 𝑏𝑎̂𝑟  0 < 𝑟 < 𝑏 

Total energy of system  

𝑊𝐸 = ∫
1

2

𝐷2

∈0
𝑑𝑉

𝑉

 

=
1

3𝜀0
 [∫ ∫ ∫

25 𝑏6

4𝑟4
𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅ 

2𝜋

∅=0

𝜋

𝜃=0

∞

𝑟=𝑏

+∫ ∫ ∫
25

4
𝑏2𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑∅

2𝜋

∅=0

𝜋

𝜃=0

𝑏

0

] 

=
1

3𝜀0
[
−25

4
𝑏6 ∙  4𝜋

1

𝑟
|+
24

4

𝑏2𝑟3

3
|
0

6

4𝜋] =
50 𝜋

3𝜀0
 

𝑊𝐸 = 5.914 × 10
12 𝑏5 𝐽 

3.21 Introduction to Electric Potential (V) 

Recall that a point charge Q, located at the origin (𝑟̅ = 0) produces a static electric field: 

      𝐸(𝑟̅) =
𝑄

4𝜋𝜀0𝑟2
𝑎̂𝑟                                                                                                              3.43 

Now, we know that this field is the gradient of some scalar field: 

   𝐸(𝑟̅) = −∇𝑉(𝑟̅)        3.44 

Example 3.22:  What is the electric potential function 𝑉 (𝑟̅) generated by a point charge 

Q, located at the origin? 

Solution: We find that it is: 

 𝑉 (𝑟̅) =
𝑄

4𝜋𝜀0𝑟
                                                                                                 3.45 

Example 3.23: Where did this come from? How do we know that this is the correct 

solution? 

Solution: We can show it is the correct solution by direct substitution 
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𝐸(𝑟̅) = −∇𝑉(𝑟̅) = −∇(
𝑄

4𝜋𝜀0𝑟
) = −

𝜕

𝜕𝑟
(
𝑄

4𝜋𝜀0 𝑟
) 𝑎̂𝑟 + 0 =

𝑄

4𝜋𝜀0𝑟2
𝑎̂𝑟 

The correct result.  

Example 3.24:  What if the charge is not located at the origin? 

Solution: Substitute 𝑟 with |𝑟̅ − 𝑟̅| and we get: 

             𝑉(𝑟̅) =
𝑄

4𝜋𝜀0|𝑟̅ − 𝑟̅|
                                                               3.46 

Where, as before the position vector 𝑟  denotes the location of the charge Q, and the 

position vector 𝑟̅ denotes the location in space where the electric potential function is 

evaluated.  

Example 3.25:  Given the field 𝐸⃗ = 40 𝑥𝑦 𝑥̂ + 20𝑥2 𝑦̂ + 15𝑧̂, calculate 𝑉𝑃𝑄 given 

(1, −1, 0) and 𝑄(2, 1, 3). 

Solution: Given vector is  

𝐸⃗ = 40 𝑥𝑦𝑥̂ + 20𝑥2𝑦̂ + 15𝑧̂ 

In Cartesian coordinates, we can write 𝑉𝑃𝑄 as  

𝑉𝑃𝑄 = −∫ 𝐸⃗  ∙ 𝑑𝑙⃗⃗  ⃗
𝑃

𝑄

 

𝐸⃗  • 𝑑𝑙⃗⃗  ⃗ = [40 𝑥𝑦 𝑎̂𝑥 + 20𝑥
2 𝑎̂𝑦 + 15𝑎̂𝑧] • [𝑑𝑥 𝑎̂𝑥 + 𝑑𝑦 𝑎̂𝑦 + 𝑑𝑧 𝑎̂𝑧] 

= −[∫ 40 𝑥𝑦 𝑑𝑥
1

2

+∫ 20𝑥2 𝑑𝑦
−1

1

+∫ 15 𝑑𝑧
0

3

] 

= −[40 ×
𝑥2

2
× 𝑦|

𝑥=2

1

+ 20𝑥2𝑦|𝑦=1
−1 + 15(−3)] 

= −[20 𝑥2𝑦|𝑥=2
1 + 20 𝑥2𝑦|𝑦=1

−1 − 45] 

= −[−60𝑦 − 40𝑥2 − 45] 
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𝑓𝑜𝑟      𝑄(2, 1, 3)                       

= −[−60 − 160 − 45] 

𝑉𝑃𝑄 = −[−265]𝑉 

Example 3.26:  If we take the zero reference for potential at infinity, find the potential at 

(0, 0, 2) caused by this charge configuration in free space.  

(a) 12 𝑛𝐶/𝑚 on the line 𝑝 = 2.5𝑚, 𝑧 = 0 

(b) Point charge of 18𝑛𝐶𝑎𝑡 (1, 2, −1) 

(c) 12𝑛 𝐶/𝑚 on line 𝑦 = 2.5, 𝑧 = 0 

Solution  

(a) 529 V 

(b) 43.2 V 

(c) 67.4 V 

3.22 Electric Potential Function for Charge Densities  

Let us look at a review on superposition principles. Recall the total static electric field 

produced by 2 different charges (or charge densities) is just the vector sum of the fields 

produced by each:  

𝐸(𝑟̅) = 𝐸1(𝑟̅) + 𝐸2 (𝑟̅)      3.47 

Since the fields are conservatives, we can write this as:  

𝐸(𝑟̅) = 𝐸1(𝑟̅) + 𝐸2 (𝑟̅) 

−∇𝑉(𝑟̅) = −∇𝑉1(𝑟̅) − ∇𝑉2 (𝑟̅) 

−∇𝑉(𝑟̅) = −∇(𝑉1(𝑟̅) + 𝑉2 (𝑟̅))  

Therefore, we find  

   𝑉(𝑟̅) = 𝑉1(𝑟̅) + 𝑉2 (𝑟̅)     3.48 
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 In other words, superposition also holds for the electric potential function. The 

total electric potential field produced by a collection of charge is simply the sum of the 

electric potential produced by each. 

 

3.22.1. Sign for work done  

 If a body acted upon by force is moved from one point to another, work will be 

done on/by body.  

If there is no mechanism by which energy represented by this work can be dissipated, 

then field is said to be conservative.  

 Energy must be stored in either potential/kinetic form. If some point is taken as a 

reference/zero point, the field of force can be described by the work that must be done 

in moving the body from the reference point up to any point in the field.   

 A reference point that is commonly used is a point at infinity.  

If a small body charge ‘q’ and a second body with small test charge ′∆𝑞′ is moved from 

infinity along a radius line to a point ′𝑝′ at a distance R from the charge ′𝑞′, then work 

done on the system in moving the test charge against the force F will be.  

work = ∫ F𝑟 𝑑𝑟
𝑅

−∞

                                                                            3.49 

Work done on test charge  

=
−𝑞 ∆𝑞

4𝜋𝜀
 ∫

1

𝑟2
 𝑑𝑟 =  

𝑞 ∆𝑞

4𝜋𝜀 𝑅

𝑅

−∞

 

Work done on test charge per unit charge is  

                               V =
q

4πϵR
                                                                                       3.50 

V is potential is only magnitude and on dir’ → Scalar potential  
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3.22.2.  Conversation field  

 When work done in moving from one point to another is independent of path 

then field is called as conservative field (fig 3.22) 

 There is no mechanism for dissipating energy corresponding to positive work 

done and no source from which energy could be absorbed, if work were negative.  

A   𝑑𝑊 = 𝑑𝑉 = −𝐸⃗ ∙ 𝑑𝑠 

Or    (
𝜕𝑉

𝜕𝑥
𝑑𝑥 +

𝜕𝑉

𝜕𝑦
𝑑𝑦 +

𝜕𝑉

𝜕𝑧
𝑑𝑧) = −𝐸⃗ ∙ 𝑑𝑠  

2

1

3
P1

P2

                                         

 Figure 3.29 Conservative Field 

Or    (𝑥̂
𝜕𝑉

𝜕𝑥
+ 𝑦̂

𝜕𝑉

𝜕𝑦
+ 𝑧̂

𝜕𝑉

𝜕𝑧
𝑑𝑧) ∙ (𝑥̂𝑑𝑥 + 𝑦̂𝑑𝑦 + 𝑧̂𝑑𝑧) = −𝐸⃗ ∙ 𝑑𝑠  

Or   ∇𝑉. 𝑑𝑠 = −𝜀 ∙ 𝑑𝑠 

⟹   𝐸⃗ = −∇𝑉                                                                   3.51 

Points to remember are that: 

1. Electric field strength at any point is just the negative of the potential gradient at 

that point.  

2. The direction of electric field is the direction in which the gradient is greatest or in 

which the potential charges most rapidly.  

 Once we find the electric potential function 𝑉 (𝑟̅). We can then determine the 

total electric field by taking the gradient.   

𝐸(𝑟̅) = −∇𝑉(𝑟̅) 
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 Thus, we now have three (!) potential methods for determining the electric field 

produced by some charge distribution 𝜌𝑣  (𝑟̅).  

1. Determine 𝐸(𝑟̅) from coulomb’s law.  

2. If 𝜌𝑣  (𝑟̅) is symmetric, determine 𝐸 (𝑟̅) from Gauss law.  

3. Determine the electric potential function 𝑉 (𝑟̅) and then determine the electric 

field as 𝐸(𝑟̅) = −∇𝑉(𝑟̅).  

Which of the three should be use? 

To a certain extent it does not matter! All three will provide the same result (although 

𝜌𝑠 (𝑟̅) must be symmetric to use method 2!)  

 However, if the charge density is symmetric, we will find that using Gauss’s law 

(method 2) will typically result in much less work! 

 Otherwise (i.e., for non-symmetric 𝜌𝑣  (𝑟̅)), we find that sometime method 1 is 

easiest but in other cases method 3 is a bit less stressful (i.e you decide).  

Example 3.27  Given the potential field, 𝑉 = 2𝑥2𝑦 − 4𝑧 and point 𝑃(−4, 3, 6), we wish 

to find several numerical values at point P, the potential V, the electric field intensity E, 

the direction of E, the electric flux density D, the volume charge density 𝜌𝑣.  

Solution: The potential at 𝑃 (−4, 3, 6) is  

𝑉𝑝 = 2(−4)
2 × 3 − 4 × 6 = 72 V  

We may use gradient operation to obtain the electric field intensity  

𝐸 = −∇ 𝑉 = −4𝑥𝑦 𝑎̂𝑥 − 2𝑥
2 𝑎̂𝑦 + 4𝑎̂𝑧 

The value of E at point P is  

𝐸⃗ 𝑝 = 48𝑎̂𝑥 − 32𝑎̂𝑦 + 4𝑎̂𝑧  V/m 

And      |𝐸𝑝| = √482 + 322 + 42 = 57.83 V/m 

The directions of 𝐸⃗  at 𝑃 is given by unit vector  
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𝑎 𝐸.𝑃 =
48𝑎̂𝑥 − 32𝑎̂𝑦 + 4𝑎̂𝑧

57.83
 

𝑎 𝐸 .𝑃 = 0.83𝑎̂𝑥 − 55𝑎̂𝑦 + 0.069𝑎̂𝑧 

If we assume these fields exist in free space, then  

𝐷⃗⃗ = 𝜀0𝐸⃗ = −35.4𝑥𝑦 𝑎̂𝑥 − 17.71𝑥
2 𝑎̂𝑦 + 44.3𝑎̂𝑧 𝑝𝐶/𝑚

3 

Finally, we may use divergence relationship to find volume charge density that is the 

source of the given potential field.  

𝜌𝑣 = ∇.𝐷 = −35.4 𝑦 𝑝𝐶/𝑚
3 

At      𝜌𝑣 = −106.2 𝑝𝐶/𝑚
3 

Example 3.26 A spherical charge distribution is given by  

𝜌 = 𝜌0  (1 −
𝑟

𝑎
)   𝑊ℎ𝑒𝑛  𝑟 ≤ 𝑎 

𝜌 = 0   𝑟 > 𝑎 

Calculate  

i. The electric field intensity inside and outside the charge distribution  

ii. The value of r for which the field is maximum  

iii. The electrostatic potential at the center  

Solution: The volume density of a spherical charge at a distance 𝑅 < 𝑎 from the center is 

given by  

                              𝜌 = 𝜌0 (1 −
𝑅

𝑎
)                                                              3.52 

i. Consider a spherical shell of radius R and thickness dR inside the charge 

distribution. The electric field strength at a point distant r< a from the center 

due to the small charge dq on shell is given as.  
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                               𝑑𝐸 =
1

4𝜋𝜀0

𝑑𝑞

𝑟2
                                                                     3.53 

And     𝑑𝑞 = (4𝜋 𝑅2 𝑑𝑅)𝜌 

The electric field intensity due to the whole charge distribution at any point inside the 

sphere distant r from the center is obtained by integrating Eq (3.53) 

ii. Between the limit 0 to r. 

𝐸𝑟 =
1

4𝜋𝜀0
∫
𝑑𝑞

𝑟2
=

1

4𝜋𝜀0
∫
(4𝜋 𝑅2 𝑑𝑅)𝜌

𝑟2

𝑟

0

𝑟

0

 

=
1

4𝜋𝜀0

1

𝑟2
∫ (4𝜋𝑅2 𝑑𝑅) ∙  𝜌0 (1 −

𝑅

𝑎
)

𝑟

0

    [𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.52)] 

=
𝜌0
𝜀0𝑟2

∫ (𝑅2 −
𝑅3

𝑎
)

𝑟

0

𝑑𝑅 =
𝜌0
𝜀0𝑟2

[
𝑅3

3
−
𝑅4

4𝑎
]
0

𝑟

 

=
𝜌0
𝜀0𝑟2

[
𝑟3

3
−
𝑟4

4𝑎
] =

𝜌0
𝜀0
 [
𝑟

3
−
𝑟2

4𝑎
] 

The electric field intensity at any point distance R > a from the center of spherical charge 

distribution is given as  

𝐸0 =
1

4𝜋𝜀0
∫
(4𝜋 𝑅2 𝑑𝑅)𝜌

𝑟2

𝑎

0

 

=
1

4𝜋𝜀0
∫
(4𝜋 𝑅2 𝑑𝑅)𝜌 (1 −

𝑅
𝑎)

𝑟2

𝑎

0

      

=
𝜌0
𝑟2𝜀0

∫ (𝑅2 −
𝑅3

𝑎
)

𝑎

0

𝑑𝑅 =
𝜌0
𝜀0𝑟2

[
𝑅3

3
−
𝑅4

4𝑎
]
0

𝑎

 

=
𝜌0
𝑟2𝜀0

(
𝑅2

3
−
𝑎3

4
) =

𝜌0𝑎
3

12𝜀0𝑟2
 

ii. the electric field intensity at any point distant r from the center is  
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𝐸𝑖 =
𝜌0
𝜀0
(
𝑟

3
−
𝑟2

4𝑎
) 

The field will be maximum for the value of 𝑟, for which 
𝑑𝐸

𝑑𝑟
= 0 

𝑑

𝑑𝑟
[
𝜌0
𝜀0
(
𝑟

3
−
𝑟2

4𝑎
)] = 0 

𝜌0
𝜀0
(
1

3
−
2𝑟

4𝑎
) = 0 

Or      𝑟 =
2𝑎

3
 

iii. The electric field intensity at any point distance 𝑟 from the center is 

𝐸𝑖 =
𝜌0
𝜀0
(
𝑟

3
−
𝑟2

4𝑎
) 

The potential V at a point distant r from the center is given by  

𝑉 = −∫ 𝐸⃗ 𝑖 ∙ 𝑑𝑟⃗⃗⃗⃗ = −∫𝐸𝑖𝑑𝑟 = ∫
𝜌0
𝜀0
(
𝑟

3
−
𝑟2

4𝑎
)𝑑𝑟 = −

𝜌0
𝜀0
(
𝑟2

6
−
𝑟3

12𝑎
) 

At the center of the spherical charge 𝑟 = 0 

∴ The potential at the center of the spherical distribution is zero  

Example 3.29  A charge q coulomb is distributed uniformly throughout a non-conducting 

spherical volume of radius R meter. Show that the potential at a distance r from the 

center where 𝑟 < 𝑅, is given by  

𝑉 =
1

4𝜋𝜀0
∙  
𝑞(3𝑅2 − 𝑟2)

2𝑅3
 

Solution: Let a charge q coulomb is distributed uniformly throughout a non-conducting 

sphere of radius R meter. The electric intensity at any point distant 𝑟 < 𝑅 from the 

center of the spherical charge is  
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𝐸⃗ 0 =
1

4𝜋𝜀0
∙  
𝑞

𝑟2
𝑉⃗ 𝑟. 

The electric potential at the surface of spherical charge is 

𝑉𝑠 = −∫ 𝐸⃗ 0 ∙
𝑅

∞

𝑑𝑟⃗⃗⃗⃗ = −∫
1

4𝜋𝜀0

𝑞

𝑟2
𝑣 𝑟 . 𝑑 𝑟

𝑅

∞

 

      = −
1

4𝜋𝜀0
∙  ∫

𝑞

𝑟2
 𝑑𝑟 =

1

4𝜋𝜀0
∙
𝑞

𝑅

𝑅

∞

                                     3.54 

The intensity at any point distant r (CLR) from the center is  

𝐸⃗ 0 =
1

4𝜋𝜀0
∙  
𝑞𝑟

𝑅2
 𝑣 . 

∴ The potential at a point distant 𝑟 (< 𝑅) from the center is  

𝑉 = −∫ 𝐸⃗ 𝑖 𝑑𝑟⃗⃗⃗⃗ = −∫
1

4𝜋𝜀0

𝑞𝑟

𝑅3
𝑣 𝑟 ∙ 𝑑 𝑟 = −

1

4𝜋𝜀0
 ∫
𝑞𝑟

𝑅3
 𝑑𝑟 

 =
1

4𝜋𝜀0

𝑞𝑟2

2𝑅3
+ 𝐶                                            3.55 

Where C is an integration constant.  

But Equ (3.54) given the electric potential at the surface of the sphere. 

∴        
1

4𝜋𝜀0

𝑞

𝑅
= −

1

4𝜋𝜀0
∙  
𝑞

2𝑅
+ 𝐶 

𝐶 =
1

4𝜋𝜀0

3𝑞

2𝑅
 

Putting this value in Equ (3.55), we get  

𝑉 =
1

4𝜋𝜀0

𝑞𝑟2

2𝑅3
+

1

4𝜋𝜀0

3𝑞

2𝑅
=

1

4𝜋𝜀0
[
3𝑞

2𝑅
−
𝑞𝑟2

2𝑅3
] 
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𝑉 =
1

4𝜋𝜀0

𝑞(3𝑅2 − 𝑟2)

2𝑅3
 𝑃𝑟𝑜𝑣𝑒𝑑 

3.23 Electric Field Due to Surface Charge  

Let surface charge density be ′𝜌𝑠′ coulombs per square with enclosed an element of 

surface in a volume of “pillpox” shape with its flat surfaces parallel to the conductor 

surface, depth 𝑑 ≪ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 in as in the case of a conducting pathway of an Electric 

circuit. 

Electric displacement through its edge surface ≪ Electric displacement through its flat 

surface.  

conductor

dielectric

D2

d

                                                                                                                             
Figure 3.30 (a) boundary between conductor and dielectric 

D2

X

X

X

X

X

                                                                                                   
Figure 3.30 (b) conditions at Boundary 

Electric displacement through top and bottom surface gets cancelled as they are equal 

and opposite 

 There can be displacement through the left-hand surface submerged in conductor 

sec in Fig 3.30. 

⟹                                                                  𝐷𝑛 𝑑𝑎 = 𝜌𝑠 𝑑𝑎                                                      3.56 
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⟹                        𝐷𝑛 = 𝜌𝑠or 𝐸𝑛 =
𝜌𝑠
𝜀
                                                          

 The electric displacement density at the surface of conductor is normal to surface 

and equal in magnitude to surface charge density.  

OR 

 The electric field strength is normal to surface and is equal to surface charge 

density divided by dielectric constant. 

3.24 Method of Electrostatic Images 

The method of image involves the conversion of an electrostatic field into another 

equivalent field.  

The applications of above method reflex to following distributions:   

a. Combination of concentrated charges and planes: electrons in space close to 

essentially plane conductors is its known example as seen in Fig 3.30 

b. Replacing the conductor by one or more-point charges: it will be seen that it is 

possible to replace the conductors by one or more-point charges in such a way 

that the conductor surfaces are replaced by equipotential surfaces at the same 

potential. 

c. Combination of several cylindrical conductors: This combination of several 

cylindrical conductors is taken with reference to earth as large conducting plane. 

An open wire transmission line is a very typical example of above.  

Note: Therefore, the application of method of electrostatic images would require a 

knowledge of the surface charge density distribution on large conduction plane.  
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h

h

+Q

Actual 

charge

Q

Infinite 

Conducting 

plane

Electrical 

image
Q

V=0

P

                                                                    
Figure 3.31 Electrical Image Method 

Conclusion: Image methods permits  

1. The determination of the electric field behavior in dielectric without knowing the 

actual charge distribution on the plane.  

2. The determination of electric field behavior in the vicinity of concentrated or line 

charge close to a plane boundary between two different dielectric media. 

3. The determination of relationship involved between two external spheres by an 

extension of this method as a series of images.  

With reference to the above Fig. 3.31, the fictitious charge  −𝑄 shown below the 

conducting plane is usually referred to as electrostatic or electric image similar to optical 

image that is why the name is method of images. 

This method has the following steps.  

1. Firstly, the mirror image of the conductor in ground plane is taken  

2. The image conductor is assumed to carry a negative of the charge  

3. The ground plane is then removed     

Obviously, then the electric field of the two conductors obeys the right boundary 

conditions at the actual conductor and by symmetry has an equipotential surface where 

the ground plane was.  

 Hence, this field is the field in the region between the actual conductors and the 

ground plane.  
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If  −𝑄 charge is placed  "2ℎ" unit below actual charge  +𝑄 the plane  𝑃𝑄 has potential of 

zero. Thus, the upper portions of two fields are identical and equivalent configuration 

can be used to determine all field quantities in the upper half space.  

Q 

+Q

a

b

P                                

0

bb
+Q

a

a

-Qbb

a

a

+Q

-Q

                                                                            
Figure 3.32 (Left) rights angle conducting plane charge system (Right) equivalent image 

configurations 

 With reference to Fig 3.32, let a point charge +𝑄 be brought near a right-angle 

corner between two conducting plane boundaries at zero potential in Fig. 3.33 (a). by 

adding a single image charge directly below the original charge will make the potential of 

plane 𝑂𝑃 zero but will not satisfy zero potential condition in plane 𝑂𝑄. However, a 

system of three image charges in Fig 3.33 (b) will satisfy the condition on both planes 𝑂𝑃 

and 𝑂𝑄.  

Example 3.31. Point charge near an infinite grounded conducting plane. 

d

+Q

                                                                                                                                          
Fig 3.33 (a) point charge near a grounded conducting plane 
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dd

ror

BP

-Q+Q

 

Fig 3.33 (b) the conducting plane replaced image charge −𝑄 

                                                                                                                                                                                           

Solution: Follow the steps as:  

1. The conducting plate is of infinite extent, its potential must be constant at ll 

points on it. Assume this potential to be zero, whatever be the charges induced 

on it.  

2. Earth has a large capacitance of 4𝜋𝜀0 𝑅 ≈ 600𝜇𝐹 and hence addition or 

substraction of even large amounts of charge has a negligible effect in its 

potential.  

3. Remove the rounded conductor and replace it by a charge –𝑄, at a distance ′𝑑′ 

behind the plane, then every point of the plane will be equidistant from +𝑄 and 

from –𝑄 and hence be at zero potential as in Fig 3.33 (b).  

4. The charge –𝑄 is said to be image charge +𝑄 in the plane 

The potential V at point P whose coordinates are 𝑟, 𝑄 is given by 

                    𝑉 =
1

4𝜋𝜀0
(
𝑄

1
−
𝑄

1
)                                                                      3.57 

Where,    

𝑟0
2 = 𝑟2 + (2𝑑)2 + 2 .2 𝑑𝑟 cos 𝜃 

𝑟0 = √𝑟2 + 4𝑑2 + 4 𝑑𝑟 cos 𝜃 

Now, the components of electric field intensity at 𝜌 are component of ∇𝑉 

                   𝐸⃗ 𝑟=
−𝑑𝑉 

𝑑𝑟
𝑎 𝑟                                                                                            3.58 
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                   𝐸𝜃 = −
1

𝑟

𝑑𝑉

𝑑𝜃
𝑎 𝜃                                                                                         3.59 

Solving above Equs (3.58 and 3.59)  

              𝐸𝑟 =
𝑄

4𝜋𝜀0
 [
1

𝑟2
−

(𝑟 + 2𝑑 cos 𝜃)

(𝑟2 + 4𝑑2 + 4𝑑𝑟 cos 𝜃) 
3
2

]                            3.60 

                             𝐸𝜃 = 
2𝑑𝑄 sin 𝜃

4𝜋𝜀0(𝑟2 + 4𝑑2 + 4𝑑𝑟 cos 𝜃) 
3
2

                                            3.61          

Let us draw the lines of force as in Fig 3.34 

dd

ro
r

B

-Q+Q

𝐸𝑟  

𝐸𝑛  

𝐸𝑄  
h

                                                                                                 
Figure 3.34 Lines of Force  

 The electric field intensity 𝐸⃗ 𝑛 at surface of grounded conducting plane is 

calculated from fields of +𝑄 𝑎𝑛𝑑 − 𝑄. 

 𝐸⃗ 𝑛 is vector sum of 𝐸⃗ 𝑟 and 𝐸⃗  is normal to surface 

                               𝐸𝑛 = 𝐸𝑟 cos 𝜃 − 𝐸𝜃 sin 𝜃                                                           3.62 

=
𝑄

4𝜋𝜀0
 [(
1

𝑟2
−
𝑟 + 2𝑑 cos 𝜃

𝑟0
3 ) cos 𝜃 − (

2𝑑 sin 𝜃

𝑟0
3 ) sin 𝜃] 

𝐸𝑛 =
𝑄

4𝜋𝜀0
[
cos 𝜃

𝑟2
−
𝑟 cos 𝜃

𝑟3
−
2𝑑

𝑟3
] =

−𝑄

4𝜋𝜀0
(
2𝑑

𝑟3
) 

Or     
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                                   𝐸𝑛 =
−𝑄𝑑

4𝜋𝜀0𝑟3
                                                                          3.63 

By Gauss’s law  

𝐸𝑛 =
+𝜌𝑠
𝜀0

 

                                    𝜌𝑠 =
−𝑄𝑑

2𝜋𝑟3
                                                                             3.64 

Conclusion: surface charge density varies inversely as cube of distance of the position on 

the plate from charge +𝑄. Hence, amount of charge induced on conducting plane is 

greatest near the foot of perpendicular 𝑂. 

x + dx o

x d
= Q

                                  

Figure 3.35 Annular Ring 

 Assume as in Fig 3.35 ′𝑑𝑠′ area of infinite simally small element of surface which 

may be taken as annular ring between circles of radii ′𝑥′ and ′𝑥 + 𝑑𝑥′ on plane with 𝑂 as 

centre.   

∴   𝑑𝑠 = 𝜋(𝑥 + 𝑑𝑥2) − 𝜋(𝑥)2 

= 2𝜋𝑥 𝑑𝑥          (Neglecting 𝑑𝑥2) 

Thus, total induced charge is  

𝑄 = ∫ 𝜌𝑠 𝑑𝑠 = −∫
𝑄 𝑑

2𝜋𝑟3

∞

0

∞

0

∙ 2𝜋𝑥 𝑑𝑥 
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= 𝑄𝑑∫
𝑥 𝑑𝑥

𝑟3
= −𝑄𝑑∫

𝑑𝑥

(𝑥2 + 𝑑2)
3
2

∞

0

∞

0

 

=
−𝑄𝑑

2
∫

2𝑥 𝑑𝑥

(𝑥2+𝑑2)3/2

∞

0

 

                   𝑄′ = −𝑄                                                                                3.65 

This shows that total charge induced on plane is ′ − 𝑄′.  

 Similarly, there are number of problems which can be solved by image method.  

Example 3.32. Find surface density at 𝑃(2,5,0)on the conducting plane 𝑧 = 0 if there is a 

line charge of 30𝑛𝐶/𝑚 located at 𝑥 = 0, 𝑧 = 3 as shown Fig 3.36. 

z

y

x

P

(2, 5, 0)                                                                                                                            
Figure 3.36 

Solution: Remove the plane and install an image line charge of −30𝑛𝐶/𝑚 at 𝑥 = 0, 𝑧 =

−3, as illustrated in Fig. 3.37 

The field at 𝑃 may now be obtained by superposition of known field of line charge to 𝑃 is 

𝑅+ = 2𝑎̂𝑥 − 3𝑎̂𝑧 while  𝑅_ = 2𝑎̂𝑥 + 3𝑎̂𝑧 

 Thus, the individual fields are  



                                                                                                     Electromagnetic Field Theory 

176 
 

z

y

x

P

- 30nc/m
R

R+

                                                                  

Figure 3.37 

𝐸⃗ + =
𝜌𝐿

2𝜋𝜀0𝑅+
𝑎̂𝑅+ =

30 × 10−9

2𝜋𝜀0√13
×
(2𝑎̂𝑥 − 3𝑎̂𝑧

√13
 

𝐸⃗ − =
30 × 10−9

2𝜋𝜀0√13
×
(2𝑎̂𝑥 − 3𝑎̂𝑧

√13
 

Adding these results, we have  

𝐸⃗ =
−180 × 10−9 𝑎̂𝑧
2𝜋𝜀0(13)

 𝐸⃗ = 248𝑎̂𝑧 𝑉/𝑚 

This then is the field at (or just above) 𝑃 in both configuration  

 𝐷⃗⃗ = 𝜀0𝐸⃗ = −2.20𝑎̂𝑧 𝐶/𝑚
2 (Directed towards the conducting plane) 

𝜌𝑆 = −
2.20𝑛𝐶

𝑚2
  at P 

3.25 Exercise  

1. A point charge 𝑄1 = 300 𝜇𝐶 located at 1,−1, −3) 𝑚 experience a force 𝐹 1 =

8𝑥̂ − 8𝑦̂ + 4𝑧̂ 𝑁 due to a point charge 𝑄2 𝑎𝑡 (3, −3,−2)𝑚. Determine 𝑄2. 

2. A point charge 𝑄1 = 10 𝜇𝐶 is located at a point 𝑃1 (1, 2, 3) in free space while 

𝑄2 = −5𝜇𝐶 as at 𝑃2 (1, 2, 10). Find: (a) Force extended on 𝑄2 𝑏𝑦 𝑄1. (b) the 

coordinates of a point at which a point charge 𝑄3 experiences no force. 

3. Find the force on a point charge ′𝑞′ located at (0, 0, ℎ)𝑚 due to charge of surface 

charge density 𝑝𝑠 𝑐/𝑚
2 uniformly distributed over the circular disc 𝑟 ≤ 𝑎. 𝑧 =

0𝑚. 
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Figure 

4. (a) A circular disc of radius ′𝑎′ is situated in the 𝑥𝑦 plane at 𝑧 = 0, with its center 

at the origin. Charge density on disc is 𝑝𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶/𝑚
2. Calculate the field at 

any point (0, 0, ℎ) in cylindrical coordinates system.   

(b) Extend the result of part (a) for calculating the field at any point due to infinite 

uniform plane sheet of charge density 𝑝1 𝐶/𝑚. 

5. (a) Develop on expression for electric field intensity at a general point 𝑃 due to an 

infinite straight-line charge with charge density 𝑝𝑖 𝐶/𝑚 

(b) Find the field intensity at point if the line is having semi-infinite length.   

6. Consider a line charge distribution with charge density 𝑝𝑖 C/m along the line 

between (0,0, −𝑎) and (0, 0, 𝑎) in cylindrical coordinates. Obtain expression for 

electric field intensity at (𝑟, ∅, 0). 

7. Find the general equation of flux lines which represent the field 

𝐸⃗ =
𝜌

4𝜋𝜀0𝑟3
 (2 cos 𝜃 𝑟̂ + sin 𝜃 𝜃) 

In spherical coordinate system, when ′𝑝′ dipole moment 

Formulas to be used”  

(a) 
𝑑𝑥

𝐸𝑥
=
𝑑𝑦

𝐸𝑦
=
𝑑𝑧

𝐸𝑧
  (b) 

𝑑𝑟

𝐸𝑟
=
𝑟𝑑∅

𝐸∅
=
𝑑𝑧

𝐸𝑧
 (c) 

𝑑𝑟

𝐸𝑟
=
𝑟𝑑𝜃

𝐸𝜃
=
𝑟 sin𝜃 𝑑∅

𝐸∅
 

8. Three coaxial cylindrical sheets of charge are present in free space; 𝜌𝑠 = 5 𝑐/𝑚
2 

at 𝑟 = −2𝑚 𝜌𝑠 = 2𝑐/𝑚
2  at 𝑟 = 4, and 𝜌𝑠 = −3

𝑐

𝑚

3
 𝑎𝑡 𝑟 = 5𝑚. Find the 

displacement flux density 𝐷⃗⃗  at (i) 𝑟 = 1𝑚 (ii) 𝑟 = 3𝑚 (iii) 𝑟 = 4.5𝑚 (iv) 𝑟 = 6𝑚 

9. Determine the charge density due to each of following electric flux densities  

(a) 𝐷⃗⃗ = 6𝑥𝑦 𝑥̂ + 4𝑥2 𝑦̂ (b) 𝐷⃗⃗  𝑟 sin ∅ 𝑟̂ + 2𝑟 cos ∅ ∅̂ + 3𝑧2 𝑧̂ 

10. In a spherical coordinate system, the volume charge density is  

𝜌𝑣 = 𝜌0 (
𝑟

𝑎
)
3/2

𝑐/𝑚3 
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i. How much charge lies in sphere of radius ′𝑎′? 

ii. Find the electric flux density at 𝑟 = 𝑎. 

11. A volume charge distribution is represented as 

𝜌(𝑟1∅1𝑧) = 0; 0 < 𝑟 < 𝑎 

= 𝜌0𝑟; 𝑎 < 𝑟 < 𝑏 

= 0; 𝑏 < 𝑟 < ∞ 

Find electrical field intensity at all points using Gauss’s law in integral form    

12. Calculate the field due a line charge considering it a special Gaussian surface. 

(keep it along z-axis) 

13. A potential field is expressed by 𝑉 = (
50𝑟2 cos∅

𝑧+1
)𝑉. Given a point 𝐴 (4, 30, 2) in 

free space. Calculate:  

a. Potential at A   

b. 𝐸⃗  𝑎𝑡 𝐴 

c. Volume charge density at A 

d. Unit vector in the direction of potential gradient  

14. Given a field 𝐸⃗ = (−
6𝑦

𝑥2
) 𝑥̂ + (

6

𝑥
) 𝑦̂ + 5𝑧̂  

𝑉

𝑚
. Calculate ′𝑉𝐴𝐵

′  given 𝐴 (−5, 2, 1) and 

𝐵 (6, 1, 2). 

15. A circular line charge of density 𝜌0
𝐶

𝑚
 of radius ′𝑎′ is lying in 𝑥𝑦 value with its 

centre at origin, calculate the potential at point (0, 0, ℎ). 

16. Calculate potential at point (0, 0, ℎ) due to circular disc of radius is having a 

surface charge density of 𝑃𝑠 𝐶/𝑚
2 with its centre at origin. Calculate the field at 

point 𝑃 (0, 0, 𝑧). 

17. Find the potential that gives rise to 𝐸⃗ = 2𝑥𝑦 𝑥̂ + 𝑥2𝑦̂ − 𝑧̂.  

18. Given cylindrical electric fields  

𝐸⃗ =
5

𝑟
𝑟̂ 𝑉/𝑚   0 ≤ 𝑟 ≤ 2𝑚 

𝐸⃗ = 2.5 𝑟̂ 𝑉/𝑚  𝑟 ≥ 2𝑚 

Find the potential difference 𝑉𝐴𝐵 𝑓𝑜𝑟 𝐴(1, 0, 0)𝑎𝑛𝑑 𝐵(4, 0, 0) 

19. (a)   State Coulomb’s law. 

(b)  Point charges 1mC and -2mC, are located at (3,2, -1) and (-1, -1, 4) 

respectively (i) compute the electric force on a 10nC charge located at (0,3,1) 

(ii) determine the electric field intensity at that point. 
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FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM 

20.  (a) State Gauss Law  

(b) Given that D=𝑧𝜌𝑐𝑜𝑠2∅𝑎𝑧𝐶/𝑚
2, determine the charge density at 

(1,𝜋/4, 3). 

(c) (i) Use the point form of Gauss law to determine the total charge 

enclosed by the  cylinder of radius 1m with -2 ≤ 𝑧 ≤ 2𝑚.  

 (ii) determine same using integral form of Gauss law (3pts) 

FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM 

21. Discuss coulomb’s law of force with diagrams: 

22. Define electric field strength, how do you define electric force? 

23. Discuss electric potential with reference to various charge distribution  

24. What is electric flux density? 

25. Dow does Faraday’s experiment infer you to result of electric flux density? 

26. Define electric line of flux and lines of flux  

27. Why can’t lines of force and flux cross each other over a single point? 

28. What is green function? 

29. State Gauss’s law   

30. Prove Gauss’s law taking any closed surface in context. 

31. Write the integral form of Gauss’s law  

32. Write Gauss divergence theorem  

33. Give the condition for application of Gauss law 

34. Give coulomb’s law for charge density  

35. Give electric field strength for following charge distributions.  

a. Volume charge  

b. Surface charge  

c. Line charge  

36. What is Green’s function? 

37. Relate Green’s function to electric potential  

38. Define electric potential  

39. Discuss superposition principle with reference to electric potential function  

40.  What do you mean by conservative field? Explain with example  

41. Explain sign used for work done ‘on’ or ‘by’ the body 
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CHAPTER 4 

CAPACITANCE OF CAPACITOR 

4.0 Explanation of Term Capacitance  

Consider two conductors with a potential difference of V volts as in Fig 4.1 

• Since there is a potential difference between the conductor, there must be and 

electric potential field 𝑉 (𝑟̅), and therefore and electric field 𝐸 (𝑟̅) in the region 

between the conductors.  

• Likewise, if there is an electric field, then we can specify an electric flux density 

𝐷 (𝑟̅), which we can use to determine the surface charge density 𝜌𝑠 (𝑟̅) on each 

of the conductors. 

• We find that if the total net charge on one conductor is 𝑄 then the charge on the 

other will be equal to –𝑄.  

V = 0

V0

V = V0

𝐸𝑟  

𝜌𝑠  

𝜌𝑠  

                                                           
Figure 4.1 Capacitor 

In other words, the total net charge on each conductor will be equal but opposite  

 Recall that the total charge on a conductor can be determined by integrating the 

surface charge density 𝜌𝑠 (𝑟̅) across the entire surfaces  𝑆 of a conductor:  

                    𝑄 = ∯𝜌𝑠 + (𝑟̅)

𝑆

𝑑𝑠 =∯𝜌𝑠 − (𝑟̅) 𝑑𝑠

𝑆

                                          4.1 
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But recall also that the surfaces charge density on the surface of a conductor can be 

determined from the electric flux density 𝐷 (𝑟̅). 

                         𝜌𝑠  (𝑟̅) = 𝐷(𝑟̅) ∙ 𝑎̂𝑛                                                                              4.2 

 Where 𝑎̂𝑛 is a unit vector normal to the conductor  

 Note that this does not mean that the surface charge densities on each conductor 

are equal (i.e.,  𝜌𝑠 + (𝑟̅) ≠ 𝜌𝑠 −(𝑟̅)). Rather, it means that: 

        ∯𝜌𝑠 + (𝑟̅)

𝑆

𝑑𝑠 = −∯𝜌𝑠 − (𝑟̅) 𝑑𝑠 = 𝑄

𝑆

                                      4.3 

Where surfaces S, is the surface surrounding the conductor with the positive charge (and 

the higher electric potential), while the surface S surrounds the conductor with the 

negative charge.  

Example 4.1:  How much free charge Q is there on each conductor, and how does this 

charge relate to the voltage V0? 

Solution: We can determine this from the mutual capacitance C of these conductors! 

 The mutual capacitance between two conductors is defined as: 

                       𝐶 =
𝑄

𝑉
[
𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑠

𝑉𝑜𝑙𝑡
= 𝐹𝑎𝑟𝑎𝑑]                                                   4.4 

Where Q is the total charge on each conductor, and V is the potential difference between 

each conductor (for example, V=V0).  

𝑄 =∯𝐷(𝑟̅)

𝑆

𝑎̂𝑛𝑑𝑠 = −∯𝐷(𝑟̅)  ∙  𝑎̂𝑛 𝑑𝑠

𝑆

 

=∯𝐷(𝑟̅)

𝑆

∙ 𝑑𝑠̅̅ ̅ = −∯𝐷(𝑟̅)  ∙  𝑑𝑠̅̅ ̅̅

𝑆

 

Where we remember that 𝑑𝑠̅̅ ̅ = 𝑎̂𝑛 𝑑𝑠. 

 Hey! This is no surprise! We already knew that: 
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                      𝑄 = ∯𝐷(𝑟̅)

𝑆

∙ 𝑑𝑠̅̅ ̅                                                                     4.5 

Note since 𝐷(𝑟̅) = 𝜀𝐸(𝑟̅) we can also say: 

𝑄 =∯𝜀𝐸(𝑟̅)

𝑆

∙ 𝑑𝑠̅̅ ̅                                       

The potential difference V between two conductors can likewise be determined as: 

𝑉 = ∫𝐸(𝑟̅)
𝐶

∙ 𝑑𝑙̅                                          

Where C is any contour that leads from one conductor to the other.  

Example 4.2: why any contour? 

Solution: we can therefore determine the capacitance between two conductors as: 

      𝐶 =
𝑄

𝑉
=
∯ 𝜀𝐸(𝑟̅)
𝑆

∙ 𝑑𝑙̅

∫ 𝐸(𝑟̅)
𝐶

∙ 𝑑𝑙̅
     [𝐹𝑎𝑟𝑎𝑑𝑎𝑦]                                            4.6 

Where the contour C must start at some point on surface S, and end at some point on 

surface S. 

Note this expression can be written as: 

𝑄 = 𝐶𝑉                                         4.7 

 In other words, the charge stored by two conductors is equal to the product of 

their mutual capacitance and the potential difference between them.  

 Therefore, the greater capacitance, the greater the amount of charge that is 

stored. 

By the way, try taking the time derivative of the above Equ 4.7.  
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𝑑𝑄

𝑑𝑡
= 𝐶

𝑑𝑉

𝑑𝑡

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡

                                                                                                   4.8 

Look familiar? 

 By the way, the current I in this Equ 4.8 is displacement current.  

Example 4.3  A 100 𝜇F capacitor is charged to a potential of 100 V and the charging 

battery is then disconnected. this capacitor is then connected in parallel with second 

capacitor. If the potential difference drops to 50 V; calculate the capacitance of second 

capacitor.  

Solution: The charge on first capacitor  

                    𝑄 = 𝐶1𝑉              4.9 

= (100 × 10−6  𝐹)(100 V) 

𝑄 = 10−2 C 

When 𝐶1 is connected is parallel to 𝐶2 the capacitance of combination between 𝐶1 + 𝐶2. 

The total charge is still 𝑄. Therefore, the potential difference across the combination 

would be 
𝑄

𝐶1+𝐶2
 

50 =
𝑄

𝐶1 + 𝐶2
 

⟹    50 =
10−2

(100×10−6)+𝐶2
 

⟹    5 × 10−3 + 50 𝐶2 = 10
−2 

⟹    50𝐶2 =
1

100
−

5

1000
=

5

1000
 

⟹    𝐶2 =
5

1000
×

1

50
 

⟹    𝐶2 =
1

104
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⟹    𝐶2 = 10
−4𝐹  

4.1 Capacitance of Various Distributions  

Consider Capacitance of a Spherical Capacitor. Fig. 4.2 shows a spherical shell capacitor 

formed by two concentric spherical shells A and B of radii ‘a’ and ‘b’ charged with +𝜃 and 

– 𝜃 respectively. Twise charge attract each other, and spread out uniformly on outer 

surface of inner shell and inner surface of outer shell. They produce an electric field 𝐸⃗  

between two shells, radially outwards. Consider a Gaussian surface which is concentric 

spherical surface of radius ‘r’. the electric flux through it is 

∅ = ∫ 𝐸⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ = ∮𝐸 𝑑𝑠 (𝐸 𝑑𝑠 cos 0 = 𝐸 𝑑𝑠)
𝑠

 

∅ = 𝐸∮𝑑𝑠 = 𝐸 ∙  4𝜋𝑟2 

++++
+
+
+

+
+
+

+
+
+

+
+
+

+
+
+
+

B

A

a

b

                                                                                

Figure 4.2 

According to Gauss’s law, the electric flux ∅ must be equal to 
1

𝜀0
 times the charge 

contained within surface. 

∴   ∅ = 𝐸(4𝜋𝑟2) =
𝑄

𝜀0
 

⟹   𝐸 =
𝑄

4𝜋𝜀0 𝑟2
 

𝐸⃗  is radially outward and 𝑑𝑙⃗⃗  ⃗ is inware, therefore 𝐸⃗ . 𝑑𝑙⃗⃗  ⃗ = 𝐸 𝑑𝑙 cos 800 = −𝐸 𝑑𝑙 
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⟹   𝐸⃗ ∙ 𝑑𝑙⃗⃗  ⃗ = 𝐸 𝑑𝑟 

Also,    𝑉 = −∫ 𝐸 𝑑𝑟
𝑎

𝑏
 

𝑉 = −
−𝑄

4𝜋𝜀0
 (
−1

𝑟
)
𝑏

𝑎

=
𝑄

4𝜋𝜀0
(
1

𝑎
−
1

𝑏
) 

𝑉 =
−𝑄

4𝜋𝜀0
 (
−1

𝑟
)
𝑏

𝑎

=
𝑄

4𝜋𝜀0
(
1

𝑎
−
1

𝑏
) 

𝑉 =
𝑄

4𝜋𝜀0
 (
𝑏 − 𝑎

𝑎𝑏
) 

But capacitance  𝐶 =
𝑄

𝑉
 

⟹   𝐶 = 4𝜋𝜀0  
𝑎𝑏

𝑏−𝑎
 

4.1.1 Capacitance of an Isolated Conducting Sphere  

The above expression may be written as 

𝐶 = 4𝜋𝜀0
𝑎𝑏

𝑏 − 𝑎
=

4𝜋𝜀0

(
1
𝑎 −

1
𝑏
)

 

If radius of outer sphere is infinite (𝑖. 𝑒, 𝑏 = ∞), then we have an isolated conducting 

sphere  

Putting 𝑏 = ∞, we can get capacitance of an isolated sphere  

𝐶 =
4𝜋𝜀0

(
1
𝑎 −

1
𝑏
)
= 4𝜋𝜀0 𝑎 

4.1.2 Spherical Capacitor Appreciates to Parallel Plate Capacitor  

Capacitance of a spherical capacitor is given by 

𝐶 = 4𝜋𝜀0
𝑎𝑏

𝑏 − 𝑎
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𝐶 = 4𝜋𝜀0
𝑎2

𝑏 − 𝑎
 

The surface area of sphere is 4𝜋𝑎2 = 𝐴 (say), then 𝐶 =
𝜀0 𝐴

𝑏−𝑎
 

the capacitance of parallel plate capacitor with plate separation (𝑏 − 𝑎). 

4.1.3. Capacitance of a Cylindrical Capacitor  

 Fig. 4.3 shows a cylindrical capacitor formed by two coaxial cylinders A and B of 

radius ‘a’ and ‘b’ respectively and each of length. They are charged with +𝜃 and – 𝜃. 

These charges attract each other and spread out uniformly on outer surface of inner 

cylinder and inner surface of outer cylinder they produce an electric field 𝐸⃗  between two 

shells, which is radially outward. Consider a coaxial. The flux through the plane faces of 

ends of this surface is zero because 𝐸⃗  and 𝑑𝑠⃗⃗⃗⃗  are perpendicular. 

B A

b

a

r

                                                                                     

Figure 4.3 

∅ = ∫ 𝐸⃗ ∙  𝑑𝑠⃗⃗⃗⃗ = 𝐸∮𝑑𝑠 = 𝐸 (2𝜋 𝑟𝐼) 

⟹    𝐸 (2𝜋 𝑟𝑙) =
𝑄

𝜀0
 

⟹    𝐸 =
𝑄

2𝜋𝜀0 𝑟𝑙
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𝑉 = −∫ 𝐸 ∙ 𝑑𝑟 =
−𝑄

2𝜋𝜀0 𝑙
 ∫

𝑑𝑟

𝑟
=
−𝑄

2𝜋𝜀0𝑙

𝑎

𝑏

𝑎

𝑏

 [log𝑒 𝑟]𝑏
𝑎 =

𝑄

2𝜋𝜀0 𝑙
 log𝑒

𝑏

𝑎
 

Capacitance                      𝐶 =
𝑄

𝑉
=
2𝜋𝜀0 𝑙

log𝑒 (
𝑏
𝑎)

 

4.1.4 Parallel Plate Capacitor with Dielectric  

 Fig. 4.4 shows a parallel plate capacitor whose plates are charged with charges 

+𝑄 and –𝑄. Let 𝐸0 be electric field in air between two plates. The weaker field within 

the dielectric is 𝐸⃗ . Consider Gaussian surface  𝑃𝑄𝑅𝑆 with wall 𝑄𝑅 in air. The electric flux 

through 𝑃𝑆 is zero (as field within the conductor is zero). The electric flux through 𝑃𝑄 

and 𝑆𝑅 is zero (𝐸⃗ 0 is ⊥ to area vector of these surfaces).  

Thu, electric flux through the entire Gaussian surface is flux through the surface 𝑄𝑅 only 

P Q

+Q -Q

S R

b

Q 
P 

S R 

𝐸⃗ 0 
𝐸⃗ 0 

d                                                                            

Figure 4.4 

∴   ∅ = ∮ 𝐸⃗ 0 ∙  𝑑𝑠⃗⃗⃗⃗ = 𝐸0𝐴 

Where A is area of plate  

By Gauss’s law   ∅ = 𝐸⃗ 0 ∙ 𝑑𝑠⃗⃗⃗⃗ = 𝐸⃗ 0 ∙ 𝐴 =
𝑄

𝜀0
 

Or    𝐸0 =
𝑄

𝜀0 𝐴
 

Now consider 𝑃′𝑄′𝑅′𝑆′ with wall 𝑄′𝑅′ in dielectric where field 𝐸⃗  is weber.  
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Similarly,  ∮ 𝜀0 𝐸⃗  ∙  𝑑𝑠⃗⃗⃗⃗ =
𝑄

𝜀0
    

⟹   𝜀0𝐸 =
𝑄

𝜀0
 

Or    𝐸 =
𝑄

𝜀𝑟𝜀0 𝐴
 

∴ The potential difference ′𝑉′ between plates is work done in density in carrying a 

unit charge from one plate to other in field to other length (𝑑 − 𝑏) and in field 𝐸.  

Over length 𝑏.  

∴   𝑉 = 𝐸0 (𝑑 − 𝑏) + 𝐸𝑏 

=
𝑄

𝜀0 𝐴
 (𝑑 − 𝑏) +

𝑄

𝜀𝑟𝜀0 𝐴
𝑏 

𝑉 =
𝑄

𝜀0 𝐴
(𝑑 − 𝑏 +

𝑏

𝜀𝑟
) 

=
𝑄

𝑉
=

𝜀0𝐴

𝑑 − 𝑏 +
𝑏
𝜀𝑟

 

𝐶 =
𝜀𝑟𝜀0𝐴

𝜀𝑟 𝑑 − 𝑏 (𝜀𝑟 − 1)
 

Special cases: 

1. If no dielectric (𝑏 = 0 𝑜𝑟 𝑡𝑟 = 1) is present  

𝐶 =
𝜀0𝐴

𝑑
 

2. If dielectric fills ensure space between plates (𝑏 = 𝑑), 

𝐶 =
𝜀𝑟𝜀0𝐴

𝑑
 

3. It is clear from above equations that when plates of electric materials of thickness 

′𝑏′ is placed between the plates of capacitor the thickness of air medium is 

reduced by 𝑏 {1 −
1

𝜀𝑟
}, so capacitance increases.   
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4. Capacitance with copper slab: As electric field inside capacitor is zero, therefore 

for conductor (copper slab of thickness b) between plates of a capacitor with 

plate separation ′𝑑′, effective separation will be only (𝑑 − 𝑏) in air.  

𝐶 =
𝜀0𝐴

𝑑 − 𝑏
 

 

4.1.5 Spherical Capacitor with Two Dielectrics  
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Figure 4.5 

𝑉𝐴 − 𝑉𝐵 =
𝑄

4𝜋𝜀0
[∫

𝑑𝑟

𝜀𝑟1𝑟
2

𝑟

𝑎

+∫
𝑑𝑟

𝜀𝑟2𝑟
2

𝑏

𝑟

] 

=
𝑄

4𝜋𝜀0
[|
−1

𝑟𝜀𝑟1
|
𝑎

𝑟

+ |−
1

𝜀𝑟2𝑟
|
𝑟

𝑏

] 

=
𝑄

4𝜋𝜀0
[
1

𝜀𝑟1
(
1

𝑎
−
1

𝑟
) +

1

𝜀𝑟2
(
1

𝑟
−
1

𝑏
)] 

𝑉𝐴𝐵 =
𝑄

4𝜋𝜀0
[
1

𝑟
(
1

𝜀𝑟2
−
1

𝜀𝑟1
) + (

1

𝜀𝑟1𝑎
−
1

𝜀𝑟2𝑏
)] 

And 𝐶 =
𝑄

𝑉𝐴𝑄
 

⟹          𝐶 = 4𝜋 [
1

𝑟
(
1

𝜀𝑟2
−
1

𝜀𝑟1
) + (

1

𝜀𝑟1𝑎
−
1

𝜀𝑟2𝑏
)]

−1
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4.1.6 Surface Charge Distribution Capacitance Between Two Isolated Conductors  

 Let us first visualize two conductors merged in a homogenous dielectric medium 

with conductor 𝐶1 carrying positive charge (𝑞) and 𝐶2 carrying equal and positive charge 

(−𝑞). This means the total charge of the system is zero and there are no other charges 

present. 

                                                                                                                  
Figure 4.6 Dielectric medium with two oppositely charge conductor 

 Surface charge density is when the charge is carried on the surface. We know that 

electric field inside a conductor is zero and the electric field is normal to the conducting 

surface. Thus, we can say that each conductor acts moreover like an equipotential 

surface. 

 Let’s now evaluate the direction of electric flux. We know that flux is directed 

from positive to negative charge i.e. from 𝐶1 to 𝐶2 as 𝐶1 is at more positive potential. 

Thus, work must be done to carry a positive charge from 𝐶2 to 𝐶1. We say that the 

potential difference between 𝐶1 and 𝐶2 is 𝑉0. Thus, capacitance of a two-conductor 

system is defined as ratio of the magnitude of total charge on either conductor to the 

magnitude of potential difference between conductors.       

𝐶 =
𝑞

𝑉0
 

Or we can determine 𝑞 by surface integral over positive conductor and we find 𝑉0 by 

carrying a unit positive charge from negative to positive surface.  

𝐶 =
∮ ∈  𝐸⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ 
𝑆

−∫ 𝐸⃗ ∙ 𝑑𝑙
+

−
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Where numerator is defined from Gauss’s law and denominator by relation that 𝐸̅ =
𝑉

𝑙
.  

+𝜌𝑠 

−𝜌𝑠 

𝐸⃗  

Conducting surface

Conducting surface

z=0

z=l

                                                                                       
Figure 4.7 Parallel Plate capacitor 

 Thus, from the above equation one con infer that capacitance is sheerly a 

function of physical discussion of the system of conductors and of permittivity of the 

homogenous dielectric. It is independent of potential and total charge, i.e., if charge 

density is increased by some factor, then Gauss’s law indicates that electric field intensity 

also increases by same factor, so does the potential difference.  

Let us apply the above definition of capacitance to a simple two conductor system as 

shown in Fig 4.7. 

 We choose the lower conducting plane at 𝑧 = 0, having uniform sheet of surface 

charge +𝑝𝑠 and upper conducting plane at 𝑧 = 𝑙, having uniform sheet of charge −𝜌𝑠. 

This leads to uniform field.  

𝐸⃗ =
𝜌𝑠
∈
𝑧̂ 

𝐓𝐡𝐢𝐬 𝐢𝐬 𝐟𝐫𝐨𝐦 𝐛𝐨𝐮𝐧𝐝𝐚𝐫𝐲 𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 𝐰𝐡𝐞𝐫𝐞 𝑫⃗⃗ 𝒏 = 𝝆𝒔 𝒏̂ 𝒐𝒓 𝑫 = 𝝆𝒔𝒛̂ 

Where ∈ is permittivity of homogenous dielectric  

∴ on lower plane  

𝐷𝑁 = 𝐷𝑍 = 𝜌𝑠 

(equal to surface charge density is negative of that on lower plane) 

On upper plane  

𝐷𝑁 = −𝐷𝑍 (The surface charge density is negative of that on lower plane) 
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Thus, potential difference between two planes is  

𝑉0 = − ∫ 𝐸⃗  ∙  𝑑𝑙⃗⃗  ⃗ = −∫
𝜌𝑠
∈

𝑜

𝑙

 𝑑𝑧 =
𝜌𝑠
∈
𝑙

𝑙𝑜𝑤𝑒𝑟

𝑢𝑝𝑝𝑒𝑟

 

∴    𝑉0 =
𝜌𝑠

∈
𝑙 

Example 4.3 Calculate capacitance of parallel-plane capacitor having mica dielectric, 

∈𝑟= 6 and plate area 5𝑚2 and separation of 0.02𝑚 

Solution:  𝑆 = 6 × (0.0254)2 = 3.23 × 10−3 𝑚2 

𝑙 = 0.02 × (0.0254) = 5.08 × 10−4 𝑚2 

Where    𝑆 → area of conducting plate  

   𝑙 →seperation  

∴ 𝐶 =
∈ 𝑠

𝑙
=
∈0 ∈𝑟  𝑆

𝑙
=
8.854 × 10−12 × 6 × 3.23 × 10−3

5.08 × 10−4
 

𝐶 = 3.377 × 10−10𝐹 

Or   𝐶 = 0.34 𝑛𝐹.    𝐴𝑛𝑠 

4.2 Energy Storage in Capacitors  

Recall in a parallel plate capacitor, a surface charge distribution 𝜌𝑠+(𝑟̅) is created on one 

conductor, while charge distribution 𝜌𝑠−(𝑟̅) is created on the other, as in fig 4.8  

  

Figure 4.8 Parallel Plate capacitor 
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We learned that the energy stored by a charge distribution is  

𝑊𝑒 =
1

2
∭𝜌𝑉  (𝑟̅)

𝑉

 𝑉 (𝑟̅)𝑑𝑣 

For the parallel plate capacitor, we must integrate over both plates: 

𝑊𝑒 =
1

2
∯𝜌𝑠+ (𝑟̅)𝑉(𝑟̅)𝑑𝑠 +

1

2
𝑆

∯𝜌𝑠− (𝑟̅)𝑉(𝑟̅)𝑑𝑠

𝑆

 

But on the top plate (i.e., S+) we know that: 

𝑉 (𝑧 = −𝑑) = 𝑉0 

While on the bottom (i.e., S-): 

𝑉 (𝑧 = 0) = 0 

Therefore  

𝑊𝑒 =
𝑉0
2
∯𝜌𝑠+
𝑆+

 (𝑟̅)𝑑𝑠 +
0

2
∯𝜌𝑠−
𝑠

 (𝑟̅)𝑑𝑠 =
𝑉0
2
 ∯𝜌𝑠+ (𝑟̅)𝑑𝑠

𝑆

 

But the remaining surface integral we know to be charge 𝑄. 

𝑄 =∯𝜌𝑠− (𝑟̅)𝑑𝑠 

𝑆

 

Therefore, we find,  

𝑊𝑒 =
1

2
𝑉0 𝑄 

But recall that:  

𝑄 = 𝐶𝑉 

Where 𝑉 is the potential difference between the two conductors (i.e., 𝑉 = 𝑉0).  

 Combining these two equations, we find: 
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𝑊𝑒 =
1

2
 𝑉0 𝑄 =

1

2
 𝑉0 (𝐶𝑉) =

1

2
 𝐶𝑉2 

 The above equation shows that the energy stored within a capacitor is 

proportional to the product of its capacitance and the squared value of the voltage 

across the capacitor. 

 Recall that we also can determine the stored energy from the fields within the 

dielectric: 

𝑊𝑒 =
1

2
∭𝐷

𝑉

 (𝑟̅) ∙  𝐸 (𝑟̅)𝑑𝑣 𝐼𝐼 

Since, the fields within the capacitor are approximately:  

𝐸(𝑟̅) =
𝑉

𝑑
𝑎̂𝑧 𝐷(𝑟̅) =

𝜀𝑉

𝑑
𝑎̂𝑧 

We find: 

𝑊𝑒 =
1

2
∭𝐷(𝑟̅)

𝑉

 𝐸(𝑟̅)𝑑𝑣 =
1

2
𝑊𝑒 =

1

2
∭

𝜀𝑉2

𝑑2𝑉

 𝑑𝑣 

=
1

2

𝜀𝑉2

𝑑2
∭𝑑𝑣 =

1

2

𝜀𝑉2

𝑑2
  (𝑉𝑜𝑙𝑢𝑚𝑒)

𝑉

 

Where the volume of the dielectric is simply the plate surface area S time the dielectric 

thickness 𝑑: 

Volume = sd 

Resulting in the expression:  

𝑊𝑒 =
1

2

𝜀𝑉2

𝑑2
(𝑆𝑑) =

1

2

𝜀𝑆

𝑑
 𝑉2 

Recall, however, that the capacitance of a parallel plate capacitor is:  

𝐶 =
𝜀𝑆

𝑑
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Therefore:                    𝑊𝑒 =
1

2

𝜀𝑆

𝑑
𝑉2 =

1

2
𝐶𝑉2                              

The same result as before! 

Workdone = Vdq =
𝑞

𝐶
𝑑𝑞        4.10 

∫
𝑞

𝑐
 𝑑𝑞 =

1

2

𝑄2

𝑐
=
1

2
 𝑉. 𝑄 =

1

2
𝐶𝑉2

𝑄

0

 

Work done in charging a capacitor to 𝑄 coulomb/total energy stored charged capacitor.  

Example. 4.4  Calculate the energy stored in capacitor of capacitance 20 𝜇𝐹 charged to 

potential of 90 volts.  

Solution: the energy stored in capacitor is given by  

𝑈 =
1

2
 𝐶𝑉2 

=
1

2
× 20 × 10−6 × (90)2 = 81000 × 10−6 

𝜀 = 8.1 × 10−2 𝐽 

Example 4.5  A parallel plate air capacitor of 2F capacity having a plate separation of 1 

mm. Can this capacitor would have been constructed in laboratory? 

Solution: Capacitance of a parallel plate capacitor is  

𝐶 =
𝜀0𝐴

𝑑
 

𝐶 = 2𝐹, 𝑑 = 1𝑚𝑚 = 10−3𝑚 

𝐴 =
𝐶𝑑

𝜀0
=

2 × 10−3

8.854 × 10−12
= 2 × 108 𝑚2 

In laboratory, it is not possible to construct a parallel plate capacitor of such a large plate 

area.  
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4.3 Electrostatic Energy 

Energy necessary to establish a given charge distribution surface is called electrostatic 

energy.  

Suppose that all of space is initially field free and N point charges are brought in form 

infinity and located at specific point as in Fig 4.9 

                                                                            

 Figure 4.9 System of Charges 

 The energy expanded in locating the ith charge at point 𝑟𝑖, 

𝑊𝑖 = 𝑞𝑖𝑣𝑖 =
𝑞𝑖
4𝜋𝜀

∑
𝑞𝑗

𝑅𝑖𝑗

𝑖=1

𝑗=1

 

𝑅𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|       4.11 

No energy is used up is locating the first charge  

Total energy = W =∑𝑊𝑖

𝑁

𝑖=2

=
1

4𝜋𝜀
 ∑∑

𝑞𝑖𝑞𝐽
𝑅𝑖𝑗

𝑖−1

J=1

𝑁

𝑖=2

 

                              2𝑊 =
1

4𝜋𝜀
∑∑

𝑞𝑖𝑞𝐽
𝑅𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 𝑖 ≠ 𝑓                                                            4.12 

Or   𝑊 =
1

8𝜋𝜀
 ∫ ∫

𝜌(𝑟)𝑑𝑉∙ 𝜌(𝑟)′𝑑𝑉′

𝑅𝑖
    

𝑉′𝑉
                                      (𝑅 = |𝑟 − 𝑟′|) 

Or    𝑊 =
1

2
∫ [

1

4𝜋𝜀
∫ [

𝜌(𝑟′) 𝜌(𝑟)×𝑑𝑉 𝑑𝑉′

𝑅𝑖
]

𝑉
]

𝑉
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As     𝑉 (𝑟) =
1

4𝜋𝜀
∫

𝜌(𝑟′)𝑑𝑉′

𝑅𝑖𝑉′
    4.13 

Identity    𝛁. (𝑽𝑫) = 𝑽𝑫 ∙  𝑫 + 𝑫 ∙ 𝛁𝑽 

Or  

𝑊 =
1

2
∫𝜌𝑉 𝑑𝑉 ⟹

1

2
∫𝑉 (∇ ∙ 𝐷)𝑑𝑉

𝑉𝑉

 

=
1

2
∫[∇. (𝑉𝐷) − 𝐷.∙ ∇𝑉]𝑑𝑉

𝑉

 

=
1

2
∫𝑉𝐷 ∙  𝑑𝑎⃗⃗ ⃗⃗  +

1

2
∫𝐷. 𝐸⃗  𝑑𝑉

𝑉𝑆

 

𝑂′′ (𝑖𝑓 𝑆 → ∞,∫
1

𝑟3
→ 0) 

⟹                                       𝑊 =
1

2
∫ 𝜀𝐸2 𝑑𝑉
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

     4.14 

From these Equs (4.13 and 4.14), electrostatic, electrostatic energy is said to be  

1. “Associated with electric charge” 

2. “Associated with the electric field” 

Example 4.6  A parallel plate capacitor has internal separation ‘d’ between plates. A 

dielectric slab with 𝜀𝑟 of thickness ′𝑎′ is placed on the lower plates of capacitor. Show 

that electric intensity in dielectric is  

a. 𝐸1 =
∅

𝜀𝑟 𝑑−𝑎 (𝜀𝑟−1)
 where ∅ = potential difference between the plates 

b. Electric field intensity in the air space is 𝜀0 = 𝜀𝑟 𝜀1 

c. Capacitance of capacitor is  
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Figure 4.10 

𝐶𝑇 =
𝜀0
𝑑
[

𝜀𝑟

(1 −
𝑎
𝑑
) 𝜀𝑟 + (

𝑎
𝑑
)
]𝐹 

 

Solution: As the normal component of flu density is continuous. That is  

𝜀0𝐸0 = 𝜀𝑟 𝐸1 

𝐸0 =
𝜀𝑟 𝐸1
𝜀0

= 𝜀𝑟𝐸1  (𝜀𝑟 =
𝜀1
𝜀0
) 

𝐸 =
𝑉

𝑑
 

∅′ = 𝜀1𝑎  𝑎𝑛𝑑 ∅0 = 𝐸0 (𝑑 − 𝑎) 

𝑉 = 𝑉0 + 𝑉1 = 𝐸0 (𝑑 − 𝑎) + 𝐸1𝑎 = 𝜀𝑟𝐸1(𝑑 − 𝑎) + 𝐸1𝑎 

= 𝜀𝑟𝜀1 𝑑 − 𝜀𝑟𝐸1𝑎 + 𝐸1𝑎 

⟹                                          𝐸1 =
𝑉

𝜀𝑟(𝑑 − 𝑎) + 𝑎
 

Hence     𝐸1 =
𝑉

𝜀𝑟𝑑−𝑎 (𝜀𝑟+1)
 

Total capacitance  

𝐶𝑇 = 𝐶0 in series with 𝐶1 

𝐶𝑇 =
𝐶0𝐶1
𝐶0 + 𝐶1
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𝐶0 =
𝜀0𝐴

𝑑 − 𝑎
           and       𝐶1 =

𝜀1𝐴

𝑎
 

𝐶𝑇 =
𝜀0𝜀1 𝐴

2  (𝜀0
𝐴

𝑑 − 𝑎
) × (

𝜀1𝐴
𝑑
)

𝜀1𝐴
𝑑 − 𝑎

+
𝜀1𝐴
𝑎

=

𝜀0𝜀1 𝐴
2

(𝑑 − 𝑎)𝑎
𝜀0 𝐴𝑎 + 𝜀1  𝐴𝑑 − 𝜀1  𝐴𝑑

(𝑑 − 𝑎)𝑎

 

=
𝜀0𝜀1 𝐴

𝑎(𝜀0 − 𝜀1) + 𝜀1𝑑
=

𝜀0𝜀1 𝐴

𝜀0𝑎 + 𝜀1 (𝑑 − 𝑎)
 

𝐶𝑇 =
𝜀0 𝐴

𝑑
 (

𝜀1
𝜀0𝑎
𝑑
+ 𝜀1  (1 −

𝑎
𝑑
)
) =

𝜀0 𝐴

𝑑
 

(

 
 𝜀1

𝜀0  (
𝑎
𝑑
+
𝜀1
𝜀0
(1 −

𝑎
𝑑
))
)

 
 

 

𝐶𝑇 =
𝜀0 𝐴

𝑑
[

𝜀𝜌

𝜀𝑟  (1 −
𝑎
𝑑
) +

𝑎
𝑑

] .  𝐴𝑛𝑠 

4.4 Charge on Conducting Surface 

Equation of work done relating charge on conducting surface is given by: 

𝑊 =
1

2
 𝑉 ∫ 𝜌𝑠 𝑑𝑠𝑉

      4.15 

As charge is assembled on surface of conductor  

⟹                                     𝑊 =
1

2
𝑄𝑉       4.16 

Total charge on it potential of surface  

4.5 Force on a Charged Conductor 

Equation of work done relating force on a charged conductor is given by: 

∆𝑊 = 𝑊∆𝑠 ∆𝑙       4.17 
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 (if an elemental area ∆𝑆 on a charged conductor is depressed at distance ∆𝑙, the 

increase in stored energy is denoted by ∆𝑊) 

 If depression must be carried out against force 𝐹, then, 

∆𝑊 = 𝐹∆𝑙 = 𝑓∆𝑆 ∆𝑙      4.18 

Where F is force per unit area = 𝑊 (energy density) 

⟹                                 𝐹 =
1

2
𝜀𝐸2 =

1

2𝜀
 𝐷2 =

1

2𝜀
 𝜌𝑠
2 

+𝜌𝑠 

−𝜌𝑠 
−𝜌𝑠 

+𝜌𝑠 

𝐸 =
𝜌𝑠
𝜀

 

 

𝐸 =
𝜌𝑠
𝑡

 

 

E = 0
E = 0

                                      
Figure 4.11 

𝐹 =
1

2 
𝜀𝐸2 =

1

2
𝜀 × (

𝜌𝑠
𝜀
)
2

=
1

2𝜀
 𝜌𝑠
2 

 

Example 4.7  We are given the non-uniform field  𝐸 = 𝑦𝑎̂𝑥 + 𝑥𝑎̂𝑦 + 2𝑎̂𝑧. And we are 

asked to determine the work expended in carrying 2C from B (1, 0, 1) to A (0.8, 0.6, 1) 

along shorter arc circle.  

𝑥2 + 𝑦2 = 1; 𝑧 = 1 

Solution. We use 𝑊 = 𝑄𝐴 ∫ 𝐸⃗ ∙ 𝑑𝑙⃗⃗  ⃗, where 𝐸⃗ 
𝐵

 is not necessarily constant. Working in 

rectangular coordinates, the differential path 𝑑𝑙⃗⃗  ⃗ is 𝑑𝑥𝑎̂𝑥 + 𝑑𝑦𝑎̂𝑦 + 𝑑𝑧𝑎̂𝑧 and the integral 

becomes.  

𝑊 = −𝑄𝐴∫𝐸⃗ ∙  𝑑𝑙⃗⃗  ⃗
𝐵
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= −2∫  (𝑦𝑎̂𝑥 + 𝑥𝑎̂𝑦 + 2𝑎̂𝑧) ∙ (𝑑𝑥𝑎̂𝑥 + 𝑑𝑦𝑎̂𝑦 + 𝑑𝑧𝑎̂𝑧)
𝐴

𝐵

 

= −2∫ y dx − 2 ∫ x dy − 4∫ dz
1

1

0.6

0

0.8

1

 

Where the limits on the integrals have been chosen to agree with the initial and final 

values of the appropriate variables of integration. Using the equation of circular path 

(and selecting the sign of the radical which is correct for quadrant involved), we have  

𝑊 = −2∫ √1 − 𝑥2
0.8

1

 𝑑𝑥 − 2∫ √1 − 𝑦2
0.6

0

 𝑑𝑦 − 0 

= − [𝑥√1 − 𝑥2 + sin−1 𝑥]
1

0.8

− [𝑦√1 − 𝑦2 + sin−1 𝑦]
0

0.6

 

= −(0.48 + 0.927 − 0 − 1.571) − (0.48 + 0.644 − 0 − 0) 

= −0.96 J 

Example 4.8  Again, find the work required to carry 2C from B to A in the same field, 

but this time use the straight-line path from B to A.  

Solution. We start by determining the equations of straight line. Any two of the following 

three equations for planes passing through the line are sufficient to define.  

𝑦 − 𝑦𝐵 =
𝑦𝐴 − 𝑦𝐵
𝑥𝐴 − 𝑥𝐵

 (𝑥 − 𝑥𝐵) 

𝑧 − 𝑧𝐵 =
𝑧𝐴 − 𝑧𝐵
𝑦𝐴 − 𝑦𝐵

 (𝑦 − 𝑦𝐵) 

𝑥 − 𝑥𝐵 =
𝑥𝐴 − 𝑥𝐵
𝑧𝐴 − 𝑧𝐵

 (𝑧 − 𝑧𝐵) 

For first equation, we have  

𝑦 = −3(𝑥 − 1) 

And from the second equation we obtain, z=1 
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Thus, 

𝑊 = −2∫ 𝑦 𝑑𝑥 − 2∫  𝑥 𝑑𝑦 − 4 ∫  𝑑𝑧
1

1

0.6

0

0.8

1

 

= 6∫ (𝑥 − 1) 𝑑𝑥 − 2∫ (1 −
𝑦

3
) 𝑑𝑦

0.6

0

0.8

1

 

𝑊 = −0.96 J 

Example 4.9 Calculate the work done in moving a 4C charge from B (1, 0, 0) to A (0, 2, 

0) along the path 𝑦 = 2 − 2𝑥, 𝑍 = 0 is field E = 

a. 5𝑎̂𝑥    𝑉/𝑚 

b. 5𝑥𝑎̂𝑥 + 5𝑦𝑎̂𝑦       𝑉/𝑚    

c. 5𝑥𝑎̂𝑥    
𝑉

𝑚
 

Solution: 

a. 20  J 

b. 10 J 

c. −30 J 

4.6 Poisson’s and Laplace’s Equation  

 We know that for the case of static fields, Maxwell’s equations reduce to the 

electrostatic equation: 

∇ × 𝐸(𝑟̅) = 0  and   ∇ ∙ 𝐸(𝑟̅) =
𝜌𝑣 (𝑟̅)

𝜀0
    4.19 

We can alternatively write these Equ 4.19 in terms of the electric potential field, using 

the relationship 

𝐸(𝑟̅) = −∇𝑉(𝑟̅): 1 

−∇ × ∇𝑉(𝑟̅) = 0   𝑎𝑛𝑑 − ∇ ∙ ∇𝑉(𝑟̅) =
𝜌𝑣  (𝑟̅)

𝜀0
 

Recall that this operation (second equation) is called the scalar Laplacian: 
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∇ ∙  ∇= ∇2      4.20 

Therefore, we can write the relationship between charge density and the electric 

potential field in terms of one in Equ 4.22a.  

∇2 𝑉(𝑟̅) = −
𝜌𝑣(𝑟̅)

𝜀0
                                                                        4.22a 

Equ 4.22a is known as Poisson’s equation and is essentially the “Maxwell’s equation” of 

the electric potential field. 

Note that for points where no charge exists, Poisson’s equation becomes: 

∇2𝑉(𝑟̅) = 0       4.22b 

Equ 4.22b is known as Laplace’s equation    

𝑎̂ Although it looks very simply, most scalar functions will not satisfy Laplace’s 

Equation. Only a special class of scalar fields, called analytic functions will satisfy 

Laplace’s equation.  

Laplace equation expanded in Cartesian coordinates  

                            ∇2𝑉 =
𝜕2𝑉

𝜕𝑥2
+
𝜕2𝑉

𝜕𝑦2
+
𝜕2𝑉

𝜕𝑧2
= 0                                         4.23 

 This is a second order partial differential equations relating the rate of change of 

potential in the three component directions. 

4.6.1 Procedure for solving Poisson’s and Laplace’s equation  

 Both the equations are subjected to “UNIQUENESS THEOREM” i.e, if a function 𝑉 

is found which is a solution of ∇2𝑉 =
−𝜌

∈0
 (or special case ∆2𝑉 = 0) and if solutions also 

satisfy the boundary conditions, then it is the only solution.  

• Solutions of Laplace’s equation are known as harmonic functions. The several 

procedures of solving Laplace’s equation is to construct a linear combination of 

harmonic functions so as to satisfy the boundary conditions of given procedures.  
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• For Poisson’s equation, once we have any solution of the equation, then other 

solutions (including the one which obeys boundary conditions) can be obtain by 

adding to it solution to the corresponding Laplace’s equation. The procedure for 

finding the correct solution to Poisson’s equation is thus to obtain an initial 

solution to the equation which will most likely not satisfy boundary conditions. 

Next one adds to the solution corresponding Laplace equation until the final 

result does satisfy the boundary conditions. It will be clearer when you solve 

some numerical. Following steps should be performed, i.e., 

1. From given condition, interpret whether you have to use Laplace’s or Poisson’s 

equation.  

2. From equation, find out the general solution of ′𝑉′ (potential) for given 

coordinate system. 

3. Make this several solutions of ′𝑉′ particular by using boundary conditions. Thus, 

determine the final expression for ′𝑉′.  

4. Calculate 𝐸⃗  from 𝐸⃗ = −∇𝑉, if 𝑉 is known   

5. Calculate 𝐷⃗⃗  from 𝐷⃗⃗ = 𝜀𝐸⃗  

6. Calculate 𝐷⃗⃗  at either capacitor plates, depends on geometry given since 𝐷⃗⃗ =

𝐷⃗⃗ 𝑠 = 𝐷⃗⃗ 𝑛 𝑖̂𝑛 

7. Recall 𝜌𝑠 = 𝐷𝑛 

8. Calculate 𝑄 by surface integration over capacitor plates 𝑄 = ∫𝜌𝑠 𝑑𝑠 

9. Finally, 𝐶 =
𝑄

𝑣
 

∇ . 𝐸⃗ = 0   [as 𝐸⃗ = −∇𝑉]  4.24 

In a homogenous charge free region, the number of lines of electric field strength 

emerging from a unit volume is zero (or in such a region). Lines of electric field strength 

are continuous. 

 Hence, we can generalize the procedure in following steps: 

(1) Solve Laplace ′∅ (𝑖𝑓 𝜌𝑣 = 0) or poission ′∅ (𝑖𝑓 𝜌𝑣 ≠ 0) equation either using 

direct integration (when V is a function of one variables) or separation of 

variables (if V is function of more than one variable) the solution is expressed at 

this point in terms of unknown integration constants and is not unique  

(2) Hereby we find the unique solution for V by applying boundary condition  
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(3) After obtaining V, find 𝐸⃗  as 𝐸⃗ = −∇ 𝑉, 𝐷⃗⃗ =∈ 𝐸⃗  and 𝐽  from 𝐽 =∈  𝐸⃗ . 

(4) If required, find charge ′𝜃′ unduced on conductor using 𝜃 = 𝜌𝑠 𝑑𝑠, where 𝜌𝑠 =

𝐷⃗⃗ 𝑛 𝑎𝑛𝑑 𝐷⃗⃗ 𝑛 is normal to conductor also we can find 𝐶 = 𝜃/𝑣, i.e., capacitance and 

𝑅 = 𝑉/𝐼 where 𝐼 = ∫ 𝐽 ∙ 𝑑𝑠⃗⃗⃗⃗  i.e., resistance. 

4.6.2. Separation of variables  

 Determine the potential function for region inside the rectangular trough of 

infinite length whose cross-section is as shown in Fig 4.12. 

0

a

V = V0

Gap

V = 0

Gap

V = 0

b

y

x
                                                                                                  

Figure 4.12 V(x,y) 

Here the potential depends on 𝑥 and 𝑦 thus Laplace’s equation becomes  

∇2𝑉 =
𝑑2𝑉

𝑑𝑥2
+
𝑑2𝑉

𝑑𝑦2
= 0 

Subjected to boundary conditions  

𝑉 (𝑥 = 0, 0 < 𝑦 < 𝑎) = 0 

𝑉 (𝑥 = 𝑏, 0 < 𝑦 < 𝑎) = 0 

𝑉 (0 < 𝑥 < 𝑏, 𝑦 = 0) = 0 

𝑉 (0 < 𝑥 < 𝑏, 𝑦 = 𝑎) = 𝑉0 

We will seek a product solution of V by assuming  

𝑉(𝑥, 𝑦) = 𝑋(𝑥)𝑌 (𝑦) 

So, Laplace’s equation becomes  
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𝑑2(𝑋𝑌)

𝑑𝑥2
+
𝑑2(𝑋𝑌)

𝑑𝑦2
= 0 

𝑌
𝑑2𝑥

𝑑𝑥2
+
𝑋𝑑2𝑥

𝑑𝑦2
= 0 

Dividing throughout by 𝑋𝑌, we get  

1

𝑋

𝑑2𝑋

𝑑𝑥2
+
1

𝑌

𝑑2𝑌

𝑑𝑦2
= 0 

⇓ 

+
𝐴2

−𝐵2
   (𝑖𝑓 𝐵2 > 0 & − 𝐴2 <

0 

∴            
1

𝑋

𝑑2𝑋

𝑑𝑥2
= 𝐴2 

⟹    
𝑑2𝑋

𝑑𝑥2
− 𝐴2𝑋 = 0 

⟹    𝑋 = 𝐴1𝑒
2𝑥 + 𝐴2𝑒

−𝛼𝑥 

Or     cos ℎ 𝛼𝑥 =
𝑒𝑎𝑥+𝑒−𝑎𝑥

2
 

sin ℎ  𝑎𝑥 =
𝑒𝑎𝑥 − 𝑒−𝑎𝑥

2
 

⟹    𝑒𝑎𝑥 = cos ℎ  𝑎𝑥 + sin ℎ  𝑎𝑥  

𝑒−𝑎𝑥 = cos ℎ 𝑎𝑥 − sin ℎ 𝑎𝑥 

∴     𝑋 (𝑥) = 𝛽, cos ℎ  𝑎𝑥 + 𝛽2 sin ℎ 𝑎𝑥 

Where     𝛽1 = 𝐴1 + 𝐴2 

𝛽2 = 𝐴1 − 𝐴2 

∴    Apply B. C 
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We get     𝐵1 = 0 

And     𝑋(𝑥 = 𝑏) = 𝛽2 sin ℎ 𝑎𝑏 = 0 

⟹    𝐵2 = 0 𝑎𝑠 𝛼 ≠ 0 & 𝑏 ≠ 0 

∴    𝑋 = 0 

Is a trivial solution we conclude that −𝐴2 can’t be less than zero  

1

𝑋
 
𝑑2𝑋

𝑑𝑥2
= −𝐵2 

𝑑2𝑋

𝑑𝑥2
+ 𝐵2𝑋 = 0 

𝑋 = 𝐶0𝑒
𝛼𝛽𝑥 + 𝐺𝑒−𝛼𝛽𝑥 

y𝑒𝛼𝛽𝑥 = cos 𝛽𝑥 + 𝑗 sin 𝛽𝑥 

𝑒−𝛼𝛽𝑥 = cos𝛽𝑥 − 𝑗𝑠𝑖𝑛 𝛽𝑥 

⟹   𝑋 = 𝑔0 cos 𝛽𝑥 +𝑔1 sin 𝛽𝑥 

Where   𝑔0 = 𝐶0 + 𝐶1 

  𝑔1 = 𝐶0 − 𝛼𝐶1 

∴  Apply B .C we get 

  𝑔0 = 0 

𝑋 (𝑥 = 𝑏) = 0 = 𝑔1 sin 𝛽 𝑏 

⟹  𝛽 =
𝑛𝜋

𝑏
 

Where 𝑛 = 1, 2, 3 

Note: Unlike sin ℎ𝑥 which is zero only at 𝑥 = 0, sin 𝑥 = 0 at infinite number of points  

1

𝑌
 
𝑑2𝑌

𝑑𝑦2
= 𝑀2𝑌   ⟹ 𝑋𝑛(𝑥) = 𝑔𝑛 sin

𝑛𝜋𝑥

𝑏
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Which is similar to solution obtained (in case 1 of X)  

i.e.    𝑌(𝑦) = 𝑚0 cos ℎ 𝑀𝑦 +𝑚1 sin ℎ𝑀𝑦 

apply B.C 

𝑌(𝑦 = 0) = 0 ⟹ 𝑚0 = 0 

Hence,    𝑦𝑛(𝑦) = 𝑚𝑛 sin ℎ 
𝑛𝜋𝑦

𝑏
 

Combining both we get  

𝑉𝑛(𝑥, 𝑦) = 𝑔𝑛 𝑚𝑛 sin
𝑛𝜋𝑦

𝑏
sin ℎ 

𝑛𝜋𝑦

𝑏
 

This shows that there are many possible solutions V1, V2, V3, V4 and so or for 𝑛 =

1, 2, 3, 4…. 

4.7 Field Inside Parallel Plate Capacitor  

 Field inside a parallel plate capacitor can be calculated using Laplace’s equation.  

ln1 − D ⟹ ∇2𝑉 =
𝜕2𝑉

dx2
= 0 

Solution    ⟹     𝑉 = 𝐴𝑥 + 𝐵 

   (𝐴 𝑎𝑛𝑑 𝐵 𝑐𝑜𝑛𝑠𝑡. 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛) 

When x = 0,  V = 0 ⟹ 0 = 0 + B ⟹ B = 0 

When x = d, 𝑉 = 𝑉0 

⟹   𝑉0 = 𝐴𝑑 + 0 ⟹ 𝐴 =
𝑉0

𝑑
 

So,    𝑉 =
𝑉0

𝑑
𝑥   0 < 𝑥 < 𝑑      4.25 

• Electric field 𝐸⃗ = −∇𝑉 =
−𝜕𝑉

𝜕𝑥
𝑥̂ =

−𝑉0

𝑑
 𝑥̂ 0 < 𝑥 < 𝑑    4.26 

• Surface charge density  
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[𝑝𝑠]𝑥=𝑑 = [𝐷]𝑥=0 ∙ 𝑥̂ =
−𝜀0 𝑉0

𝑑
 𝑥̂ ∙ 𝑥̂ =

−𝜀0 𝑉0

𝑑
    4.27 

[𝑝𝑠]𝑥=𝑑 = [𝐷]𝑥=0 ∙  (−𝑥̂) = (
−6𝑉0

𝑑
 𝑥̂) ∙  (−𝑥̂) =

−𝜀0 𝑉0

𝑑
   4.28 

 

Figure 4.14 Fringing Effect 

Example 4.10  Find the potential and electric field intensity for region between two 

concentric right circular cylinders. Where 𝑉 = 0 𝑎 𝑟𝑎 = 1𝑚𝑚 and 𝑉 = 100 𝑉 at 𝑟𝑏 =

20𝑚𝑚. Neglect fringing.  

Solution: 𝑉 = 𝑓(𝑟) i.e., potential in a function of radius  

𝑆𝑜,           
1

𝑟

𝑑

𝜕𝑟
(𝑟

𝑑𝑉

𝑑𝑟
) = 0  (From Laplace equations)  

  

Integrating once, 𝑟
𝑑𝑉

𝑑𝑟
= 𝐴 

Integrating again,  𝑉 = 𝐴𝑙𝑛𝑟 + 𝐵 

Boundary again,  𝑉 = 0 at 𝑟𝑏 = 20𝑚𝑚 𝑎𝑛𝑑 

   𝑉 = 100 𝑉 at 𝑟𝑏 = 20𝑚𝑚 

Conditions   0 = 𝐴 ln 0.001 + B 

   100 = 𝐴 ln 0.020 + 𝐵 

⟹   𝐴 = 33.36; B = 230.49 

   𝑉 = 33.36 𝑙𝑛 𝑟 + 230.49 
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Figure 4.15 

   𝐸⃗ = −∇𝑉 =
−𝑑𝑉

𝑑𝑟
 𝑟̂ 

⟹   𝐸⃗ = −
33.36

𝑟
 𝑟̂ 𝑉/𝑚     4.29   

Example 4.11  For the configuration of Fig. 4.15, find V and E for 𝜃 < ∅ < 𝛼 using 

Laplace’s equation. Hence, find capacitance of system. 

 

Figure 4.15 

Solution: Since the potential is constant w.r.t. ‘r’ and ‘z’. Laplace’s equation is  

1

𝑟2
×
𝜕2𝑉

𝜕∅2
= 0 

Integrating twice,  

𝑉 = 𝐴∅ + 𝐵 

B.C   𝑉 = 0 𝑎𝑡 ∅ = 0   ⟹   𝐵 = 0 
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𝑉 = 𝑉0 𝑎𝑡 ∅ = 𝛼 ⟹   𝐴 =
𝑉0
𝛼

 

So,   𝑉 = 𝑉0 ∅/𝛼       4.30 

 

Taking the gradient, 

𝐸 = −∇𝑉 = −
1

𝑟

𝜕

𝜕∅
 (𝑉0  

∅

𝛼
) ∅̂ =

𝑎𝑉0
𝛼𝑟
 ∅̂ 

⟹   𝐷𝑠 = −
𝜀 𝑉0

𝑎𝑟
 𝛼̂       4.31 

Find average density on plates  

𝜌𝑠 = 𝐷𝑛 = −𝐷∅ =
𝜀𝑉0
𝑟𝑎

 

Total charge on plates for ⟹ 0 𝑡𝑜 ℎ 𝑎𝑛𝑑 𝑟 = 𝑟1 + 𝑟2 in (b) 

𝑄 = ∫𝜌𝑠  𝑑𝑠 =∫ ∫
𝜀𝑉0
𝑟𝛼
 𝑑𝑟 𝑑𝑧 =

𝜀 𝑉0 ℎ 

𝛼

𝑟2

𝑟1

ℎ

0

𝑙n 
𝑟2
𝑟1
   

 𝐶 =
𝑄

𝑉0
=
𝜀h

𝛼
𝑙n 

𝑟2

𝑟1
      4.32 

Example 4.12  Since no new problem are solved by choosing fields which very only with 

𝑦 or with 𝑧 in rectangular coordinates. We pass on to cylindrical coordinates variations 

with respect to Z are again nothing new, we next assume variation with respect to 𝜌 only.   

Solution: Laplace’s equation becomes 

1

𝜌

𝑑

𝑑𝜌
(𝜌
𝑑𝑉

𝑑𝜌
) = 0 

Nothing the 𝜌 in denominator, we exclude 𝜌 = 0 from our solution and then multiply by 

𝜌 and integrate  
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𝜌
𝑑𝑉

𝑑𝜌
= 𝐴 

Rearrange and integrate again  

𝑉 = 𝐴 𝑙𝑛 𝜌 + 𝐵 

The equipotential surfaces are given by 𝜌 = constant and are cylinders and the problem 

is that of the coaxial capacitor or coaxial transmission line. We choose a potential 

difference of 𝑉0 by letting 𝑉 = 𝑉0 at 𝜌 = 𝛼, 𝑉 = 0 at 𝜌 = 𝑏, 𝑏 > 𝛼 and obtain.  

𝑉 = 𝑉0  
𝑙n(b/𝜌)

𝑙n(b/a)
 

From which   𝐸 =
𝑉0

𝜌
 

1

1𝑛 (
𝑏

𝑎
)
 𝑎𝑝 

𝐷𝑁(𝑝=𝑎) =
𝜀 𝑉0

𝑎 𝑙𝑛 (
𝑏
𝑎)

 

𝑄 =
𝜀𝑉0 2𝜋𝑎𝐿

𝑎 𝑙𝑛 (
𝑏
𝑎)

 

𝐶 =
2𝜋𝜀𝐿

𝑙𝑛 (
𝑏
𝑎)

 

Example 4.13  Solve the above example 4.12 in cylindrical coordinates  

Solution: let us assume that 𝑉 is function only of ∅ in cylindrical coordinates. See that 

equipotential surfaces are given by  ∅ = constant. These are radial planes. Boundary 

conditions might be 𝑉 = 0 at ∅ = 0, 𝑉 = 𝑉0 at ∅ = 𝛼, Laplace’s equation is now.  

1

𝜌2
 
𝑑2𝑉

𝑑∅2
= 0 

We exclude 𝜌 = 0 and have  
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𝑑2𝑉

𝑑∅2
= 0 

⟹    𝑉 = 𝐴∅ + 𝐵 is solution  

The boundary conditions determine A and B and  

𝑉 =
𝑉0 ∅

𝛼
 

Taking gradient of above produces electric field intensity  

𝐸 =
−𝑉0 𝑎̂∅
𝛼𝜌

 

It is interesting to note that 𝐸⃗  is a function of 𝜌 and not of ∅ 

Example 4.14  Solve example 4.12 using spherical coordinates.  

Solution: Turn to spherical coordinates, dispose immediately of variations with respect to 

∅ only as having just been solved, and treat first 𝑉 = 𝑉(𝑟).  

 The potential field is  

𝑉 =
𝑉0  (

1
𝑟 −

1
𝑏
)

(
1
𝑎 −

1
𝑏
)

 

So, capacitance                                   =
4𝜋𝜀

1
𝑎 −

1
𝑏

                                                     

However, when we restrict potential function to 𝑉 = 𝑉(𝜃), we get  

1

𝑟2 sin 𝜃 𝑑𝜃

𝑑

𝑑𝜃
 (sin 𝜃

𝑑𝑉

𝑑𝜃
) = 0 

We exclude 𝑟 = 0 or 𝜋 and have  

sin 𝜃 
𝑑𝑉

𝑑𝜃
= 𝐴 
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The second integral is then  

𝑉 = ∫
𝐴 𝑑𝜃

sin 𝜃
+ 𝐵 

Which is not as obvious as previous ones. 

𝑉 = 𝐴𝑙n (tan
𝜃

2
) + 𝐵 

4.8 Dirac Delta Representation for an Infinitesimal Dipole 

Potential due to infinitesimal dipole found by evaluating the far field of finite dipole as: 

𝜌(𝑟) = 2 𝛿(𝑥) 𝛿(𝑦) [𝛿 (𝑧 −
1

2
) − 𝛿 (𝑧 +

𝑙

2
)]    4.33 

“Find a representation so that for field approximations become unnecessary?” 

 Such a distribution may be derived by writing an expression for charge density 

with finite spacing and then letting the spacing approach zero.  

𝜌(𝑟) = lim
𝑙→0
{𝑞𝛿(𝑥)𝛿(𝑦) [𝛿 (𝑧 −

1

2
) − 𝛿 (𝑧 +

1

2
)]} 

= lim
𝑙→0
{𝑞𝑙𝛿(𝑥)𝛿(𝑦)

[𝛿 (𝑧 −
1
2) − 𝛿 (𝑧 +

1
2)]

𝑙
} 

=
𝛿 (𝑧 +

1
2) − 𝛿 (𝑧 −

1
2)

I
      𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝐷𝑖𝑟𝑎𝑐 − 𝐷𝑒𝑙𝑡𝑎 

If dipole moment ′𝑝′ is defined as   𝑝 = lim
𝑙→0
𝑞𝑙 

Then the charge density of an infinitesimal dipole is  

𝝆(𝒓) = −𝝆𝜹(𝒙)𝜹(𝒚)𝜹′(𝒛)      4.34 

 Frequently the dipole moment of 𝑝 is expressed as a vector 𝑝  by assigning to it 

the direction of a line drawn from the negative point to the positive point charge.  
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⟹    𝑝 = 𝑧̂𝑝       4.35 

 

FORMULAS TO BE USED 

∇2𝑉 =
𝜕2𝑉

𝜕𝑥2
+
𝜕2𝑉

𝜕𝑦2
+
𝜕2𝑉

𝜕𝑧2
                                 𝐜𝐚𝐫𝐭𝐞𝐬𝐢𝐚𝐧 𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞𝐬 

=
1

𝑟
 
𝜕

𝜕𝑟
 (𝑟 

𝜕𝑉

𝜕𝑟
) +

1

𝑟2
 
𝜕2𝑉

𝜕∅2
+
𝜕2𝑉

𝜕𝑧2
                                   𝐜𝐲𝐥𝐢𝐧𝐝𝐫𝐢𝐜𝐚𝐥 𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞𝐬 

=
1

𝑟2
𝜕

𝜕𝑟
 (𝑟 

𝜕𝑉

𝜕𝑟
) +

1

𝑟2 sin 𝜃
 
𝜕

𝜕𝜃
 (sin 𝜃

𝜕𝑉

𝜕𝜃
)

+
1

𝑟2
 (𝑠𝑖𝑛2𝜃)2

𝜕2𝑉

𝜕∅2
             𝐒𝐩𝐡𝐞𝐫𝐢𝐜𝐚𝐥 𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞𝐬 

 

4.9 Exercise  

1. Calculate the capacitance between concentric metal spheres of radius 𝑟1 and 𝑟2 

with charge 𝑄 placed or the outer surface of inner shell.  

2. The potential field at any point in a space containing a dielectric material of 

relative permittivity 2.1 is given by 𝑉 = 5𝑥2𝑦 + 3𝑦𝑧2 + 6𝑥𝑧 𝑉,  where 𝑥, 𝑦, 𝑧,  are 

in meters. Calculate the volume charge density at point 𝑃(2, 5, 3)𝑚. 

3. Three-point charges 3, 4 𝑎𝑛𝑑 5 coulombs are situated in fill space at 3 corners of 

an equilateral triangle with sides 5cm. find the energy density due to electric 

fields in the triangle.  

4. (a) consider a parallel plate capacitor occupying planes 𝑥 = 0 and 𝑥 = 𝑑 and is 

kept at potential 𝑣 = 𝑧𝑒𝑟𝑜 and 𝑉 = 𝑉0 respectively. The medium consists of two 

dielectrics: 𝜀1 for 0 < 𝑥 < 𝑡 and 𝜀2 and for 𝑡 < 𝑥 < 𝑑. Find the potential and 

electric field intensities in two regions using Laplace’s equation.  

(b) Take 𝑑 = 4𝑐𝑚: 𝜀𝑟1 = 2, 0 < 𝑥 < 2; 𝜀𝑟2 = 4, 2 < 𝑥 < 4, 𝑣0 = 100𝑉. Find 

voltage and field intensities in two regions. Calculate capacitance per unit surface 

area of system.  
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Fig 4.25       Fig 4.26 

5. A boundary exists at 𝑧 = 0 between two dielectrics, 𝜀𝑟1 = 2.5 region =< 0, and 

𝜀𝑟2 = 4 region 𝑧 > 0. The field in region 𝜀𝑟1 𝑖𝑠 𝐸⃗ 1 = −30 𝑥̂ 50𝑦̂ = 70𝑧̂ 𝑉/𝑚. Find  

a. Normal component of 𝐸⃗ 1 

b. Tangential component of 𝐸⃗ 1 

c. The angle 𝑎1  ≤ 90
0 between 𝐸⃗ 1 and normal to surface  

d. Normal component of 𝑂2 

e. Tangential component of 𝐷2 

f. 𝐷2 

g. Polarization in 𝜀𝑟2 material  

h. Angle 𝑎2 between 𝐸2 and normal of surface.  

6. The potential distribution at mouth of slot is given by:  

 

Figure 4.27 

 𝑉 = 𝑉 = 𝑉1 sin
𝜋𝑦

𝑏
+ 𝑉2 sin

3𝜋𝑦

𝑏
 𝑓𝑜𝑟 𝑥 = 𝑎, 0 < 𝑦 < 𝑏 

Where 𝑉1 𝑎𝑛𝑑 𝑉2 are constants. Find the solution for potential distribution in slot.  

7. Explain the term capacitance 

8. Relate charge and potential by an expression  
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9. Derive expression for energy stored in capacitor  

10. Give alternative expressions for energy stored in capacitor  

11. Derive expression foe electrostatic energy in system charges  

12. Find force on charged conductor  

13. Explain charge and discharge of capacitor  

14. Define Poisson’s equation  

15. Define Laplace’s equation  

16. Prove Poisson’s equation  

17. Prove Laplace’s equation  

18. Relate Laplace equation to Maxwell’s equation  

19. Conclude from Laplace’s equation that “Lines of electric field strength are 

continuous  

20. Derive expression for field inside parallel plate capacitor   

21. What do you understand by boundary conditions? 

22. Explain “perfect metals are equipotential”. 

23. Discuss conditions for metals. 

24. Derive following boundary conditions:  

a. Dielectric-dielectric  

b. Conductor-dielectric  

c. Conductor-conductor    

25. Conclude boundary relations from Gauss’s law and Faraday’s law  

26. What do you mean by Dirac-Delta representation of point charge? 

27. Relate Dirac-Delta representation with impulse function  

28. Derive Dirac-Delta representation for volume charge density and surface charge 

density 

29. Relate Green’s function and Dirac-Delta distribution  

30. What do you mean by Dirac-Delta representation for an infinitesimal dipole?  

31. Discuss properties of Dirac-Delta distribution  
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CHAPTER 5 

ELECTROMAGNETIC INDUCTION 

5.0 Faraday’s Law of Electromagnetic Induction  

Faraday’s law of electromagnetic induction state that “The induction e.m.f. (e volts) is 

equal to the negative rate of change of flux” 

𝑒 = −
𝑑∅

𝑑𝑡
        5.1 

Note: the negative sign was introduced by Lenz. The sign indicates the direction of e.m.f 

induced  

Faraday’s law can be put in the differential equation for as  

                                          

 Figure 5.1 Coil in an increasing Magnetic Field 

 

𝑒 = ∮ 𝐸⃗ ∙ 𝑑𝑙⃗⃗  ⃗ = ∫ (∇ × 𝐸⃗ ) ∙ 𝑛̂ 𝑑𝑎
𝑆𝑆

     

 5.2 

(here ‘e’ is denoting potential)  

And  

𝑑∅

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝐵⃗  

𝑆

∙ 𝑛̂ 𝑑𝑎 = ∫
𝜕𝐵⃗ 

𝜕𝑡
𝑆

∙ 𝑛̂ 𝑑𝑎 
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𝑒 = −
𝑑∅

𝑑𝑡
 

∫∇ × 𝐸⃗ ∙  𝑛̂ 𝑑𝑎

𝑆

= ∫
𝜕𝐵⃗ 

𝜕𝑡
𝑆

∙  𝑛̂ 𝑑𝑎 

∇ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
                                                        5.3 

Whenever there is a change in the number of magnetic field lines passing through a loop 

of wire a voltage (or emf) is generated (or induced) in the loop of wire. This is how an 

electric generator works. The phenomenon is known as electromagnetic induction and is 

explained by Faraday’s law of induction:  

𝑉 = −𝑑∅/𝑑𝑡     5.4 

Where ∅ is the magnetic flux given by the closed integral of the dot product 𝐵. 𝑑𝐴. 

 

Figure 5.2 

𝐼𝑔 =
𝑉induced
𝑅

 

⟹ R is total resistance in galvanometer circuit  

 According to Faraday’s law, if there is no change (with time) in the number of 

lines of B field, or magnetic flux, through a closed loop(s) there will be no induced, or 

generated, voltage set up in the loop(s).  

Note: When flux is increased in the +ve direction”, the induced voltage is –ve  
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⟹             𝜃 = ∫ 𝐼𝑔 𝑑𝑡 =
1

𝑅
 ∫ 𝑉
1

0
 𝑑𝑡

1

0
       5.5 

 According to Faraday’s law as the strength of a magnetic field (B) passing through 

a loop of wire increases, there will be an increase in the number of magnetic field line, 

and therefore an induced voltage, or emf set up in the wire loop. If the strength 

decreases there will be also an induced emf set up in the loop but with the opposite 

polarity. Lenz law indicates the polarity of the induced emf.  

Example 5.1.  Calculate the inductance of co-axial capacitor  

𝐵⃗ =
𝜇0 𝑖 

2𝜋𝑟
 𝑎̂∅ 

Solution: Consider the space between r = a and r = b is free space. If 𝑙 is length of cable, 

then 

∅𝑚 = ∮𝐵 ∙ 𝑑𝑠 = ∫ ∫
𝜇0 𝑖 

2𝜋𝑟
𝑑𝑟 𝑑𝑙 =

𝜇0 𝑖𝑙 

2𝜋𝑟
ln(𝑟)𝑎

𝑏 =
𝜇0 𝑖𝑙 

2𝜋𝑟
ln (
𝑏

𝑎
)

𝑏

𝑎

1

0

 

∅𝑚
𝑖
= 𝐿 =

𝜇0 𝑙 

2𝜋
ln (
𝑏

𝑎
) 

𝐿

𝐼
=
𝜇0  

2𝜋
ln (
𝑏

𝑎
) 

5.1 Magnetic Flux Density  

Another important vector is magnetic flux density B. it is related to H via:  

                                                                                    
Figure 5.3 

𝐵⃗ = 𝜇0𝐻        5.6 
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The flux associated with a magnetic field is therefore a measure of the number of 

magnetic field lines penetrating some surface. 

• The above pictures show the spherical case of a plane area S and a uniform flux 

density B. the normal to the field is at an angle with the field. In this case, the 

flux is given by 

Φ𝑚 = 𝐵𝑆 cos 𝜃       5.7  

 If B is the value of the flux density  

                                                                                               

 Figure 5.4 Φ = f (orientation of loop; its area ⇒ 𝐵 ⇒ VECTOR 

• Generally, if an element of area Ds on an arbitrarily shaped surface, has a 

magnetic field running through it, the magnetic flux through this area is BdS, if B 

is the value of the field at this element. The total magnetic flux is:  

Φ𝑚 = ∫ 𝐵⃗ ∙ 𝑛⃗ 𝑆
𝑑𝑆      5.8 

• Magnetic field lines are continuous and form loops. This is illustrated in the 

solenoid in the Fig. 5.5.  

 

Figure 5.5 Electromagnetic Field Lines 
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• For any closed surface the number of lines entering that surface is equal to the 

number leaving it, as shown above in red. That means that the net flux is zero. 

This is called Gauss’s law it is expressed thus: 

∮ 𝐵⃗ ∙  𝑛⃗  𝑑𝑆 = 0 

• Therefore, at any point: 

∇ ∙ 𝐵⃗ = 0       5.9 

Example 5.2: Calculate flux density at center of square loop of 10 turns, 2m on side 

carrying 10amp. The loop is in air media.  

Solutions:  𝜇𝑟 = 1, 𝜇 = 𝜇0𝜇𝑟 = 4𝜋 × 10
−7 H/m 

𝐼 = 10amp;N = 10; a = 2m  

𝐵 =
𝜇𝐼𝑁 2√2

𝜋𝛼
=
4𝜋 × 10−7 × 10 × 10 × 2√2

𝜋 × 2
= 4√2 × 10−5𝑇 

= 5.656 × 10−5 𝑇 or Wb/m2 𝐴𝑛𝑠 

Example 5.3. Calculate the magnetic flux density at center of a current carrying loop 

when radius of loop is 2cm, loop current is 1mA and loop is placed in air.  

Solution:  
𝝁 𝑰

𝟐𝝅𝒓
=
𝟒𝝅×10−7×1×10−3

𝟐𝝅×2×10−2
=× 10−10 × 102 =× 108 T 

𝐵⃗ 𝑐𝑒𝑛𝑡𝑒𝑟 =
𝜇 𝐼

2𝑎
=
4𝜋 × 10−7 × 10−3

2 × 10−2
= 2𝜋 × 10−8 

= 6.28 × 10−8 T 

5.2 Definition of the Telsa and the Weber  

The Telsa is defined as the density of a magnetic field such that a conductor carrying one 

ampere at right angles to the field has a force of one Newton per meter acting on it.   

The Weber can be defined in two ways:  
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1. The amount of flux, when cut at a uniform rate by a conductor in one second, 

generates an emf of one volt. 

2. The magnetic flux linking one turn induces in it as emf of one volt when the flux is 

reduced to zero at a uniform rate in one second.  

The flux and Flux density are related by the following formula.  

(phi) = B × 𝐴 

Where  

(phi) is the flux in Webers. Wb. 

B is the flux density in Teslas, T 

A is the cross-sectional area, meters squared the induced voltage in a coil therefore 

depends on the total flux, the number of turns, and the time for the field to be reversed.  

conversion of neper into decibel

10 𝑙𝑜𝑔10  (
𝑃0
𝑃
) =

10

2.3026
𝑙𝑛 
𝑃0
𝑃
=

20

2.3026
  (𝛼𝑧)

= 8.686 (𝛼𝑧)
1𝑁𝑝 = 8.686 𝑑𝐵

 

5.3 Magnetic Field Strength  

The magnetic field strength, H is the magnetomotive force per unit length in a magnetic 

circuit. It is given by:  

H = mmf /I 

Where, 𝐻 = magnetic field strength, 𝑨/𝒎  

 𝐦𝐦𝐟 = magnetomotive force, 𝑨 

 𝐈 =length of magnetic current 𝒍 
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10A

10A

z

y

x                                                                                                  
Figure 5.6 

Example 5.4: A filamentary current of 10 A is directed in from infinity origin on the 

positive x-axis and then back out to infinity along the y-axis. Use the Biot-Savart law to 

find 𝑯⃗⃗⃗  at 𝝆(𝟎, 𝟎, 𝟏). 

Solution: we show that the current 10A is directed from infinity to origin on positive x-

axis and then back out to infinity positive Y-axis in Fig 4.1. We consider current which lies 

on x-axis and we write the expression.  

𝑑𝐻⃗⃗ =
𝐼 𝑑𝑙⃗⃗  ⃗ × 𝑎̂12
4𝜋𝑑2

 

𝑑𝐻 =
𝐼𝑑𝑙𝑅

4𝜋𝑅3
 

 

𝑑𝑙⃗⃗  ⃗ = 𝑑𝑥𝑎̂𝑥, point − 2(0, 0, 1)𝑎𝑛𝑑  

Point 1 (𝑥, 0, 0) 

𝑅12 = −𝑥𝑎̂𝑥 + 𝑎̂𝑧 

𝑑 = |𝑅⃗ 12| = √𝑥2 + 1 

𝑑 𝐻 =
10 𝑑𝑥 𝑎̂𝑥
4𝜋

× [
−𝑥 𝑎̂𝑥 + 𝑎̂𝑧
(𝑥2 + 1)3/2

] 

𝑑 𝐻 =
−10 𝑑𝑥 𝑎̂𝑦

4𝜋 (𝑥2 + 1)3/2
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On integrating, we obtain the firm as  

𝐻 =
−10

4𝜋
∫

𝑑𝑥𝑎̂𝑦

(𝑥2 + 1)
3
2

0

∞

=
−10

4𝜋
[

𝑥

√𝑥2 + 1
]
∞

0

𝑎̂𝑦 

𝐻⃗⃗ =
−10

4𝜋
 [0 − 1]𝑎̂𝑦 = 0.796 𝑎̂𝑦 

Similarly, for current which lied on Y-axis then we write the expression as   

𝑑𝐻⃗⃗⃗⃗  ⃗ =
10 𝑑𝑦 𝑎̂𝑦

(4𝜋√𝑦2 + 1) 2
 × (

−𝑦 𝑎̂𝑦 + 𝑎̂𝑧

√𝑦2 + 1
) 

𝑑𝐻⃗⃗⃗⃗  ⃗ =
10 𝑑𝑦 𝑎̂𝑥
4𝜋(𝑦2 + 1)2

  

Integrating we obtain the form as  

𝐻⃗⃗ =
10

4𝜋
 ∫

𝑑𝑦 𝑎̂𝑦

(𝑦2 + 1)
3
2 

∞

0

=
10

4𝜋
[

𝑦

√𝑥2 + 1
]
0

∞

𝑎̂𝑥 

𝐻⃗⃗ =
10

4𝜋
 [1 − 0]𝑎̂𝑥 

𝐻⃗⃗ = 0.796 𝑎̂𝑥 

𝐻⃗⃗ total = 0.796𝑎̂𝑥 + 0.796𝑎̂𝑦 A/m 

5.4 Magnetomotive Force  

A magnetic circuit consisting of a coil wound on either a magnetic or non-magnetic 

former can be compared with the electric circuit. In the electric circuit:  

Current = emf/resistance 

Or 

I = E/R 

In the magnetic circuit:  
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Flux = mmf/Reluctance 

Or  

(phi) = F/Rm 

 Magnetomotive force is measured in amperes, A and is produced by the current 

in the magnetizing current where 

mmf = NI 

where  

mmf is the magnetomotive force in amperes A 

N is the number of turns  

I is the magnetizing current in amperes A 

 

5.5 Points to Note  

Note  

Experiment shows that for homogeneous medium 𝐵⃗  is related to current  I,  

𝐵 =
𝜇𝐼

𝑟
   𝑟 distance from wire 

𝜇 → permeability of medium    ⟹   𝜇 = 𝜇𝑟𝜇0 

𝜇0 = absolute permeability of vacuum   ⟹ 4𝜋 × 10−7 H/m  

𝜇𝑟 = relative permeability  

Proportionality factor =
1

2𝜋
 

𝐵 =
1

2𝜋
 ×
1

𝑟
× 𝜇 
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Where  

𝜇 =
1

2𝜋𝑟
 

𝐵⃗ = 𝜇𝐻⃗⃗  

Note 2 

 Magnetic field strength 𝐻 is thus defined in terms of current which produces it 

and the geometry of system.  

 It’s a vector quantity, having same dirn as 𝐵⃗  (in isotopic media). 

∗   𝐻 ≠ 𝑓(𝜇)   𝐵 = 𝑓(𝜇) 

⟹   𝐻 ≡ 𝐸    𝑎𝑛𝑑 𝐵 ≡ 𝐷 

Note 3 

Magnetomotive force  

f = ∫ H ∙ ds
b−1

a
= ∮

1

2πr
 ds = 1     5.10 

This result will be obtained for any closed path about the current  

⟹ called Ampere’s work Law/Ampere’s Circuital law.  

Note 4 

𝐼. For any closed path C around the core inside the winding, the MMF 

                                                              

Figure 5.7 Toroidal Coil 
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⟹   f = nI 

n ⟶ no. of turns  

∴  The no. of times the path links with the current  𝐼  

H⃗⃗ =
f

2πR
=

nI

2πR
=
nI

I
   A turns/m    (𝐷 ≪ 𝑅)     5.11 

𝑙 → length of coil  

Note 5 

 Magnetic field strength is nearly uniform throughout the cross-section of the core 

and is equal to the ampere turns per unit lengths.  

                                                                                                                
Figure 5.8 Parallel Plane Conductors 

II. Two closed spaced parallel planes carrying equal and oppositely directed currents.  

 Magnetic Field: 𝑓 (confined to region between places UNIFORM (except area 

edges)).  

≠ 𝑓(distance apart of planes) 

• Current is assumed to be flowing in the positive ′𝑥′ dir (upper plate outwards)  

J𝑠𝑥 current per meter width  
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CHAPTER 6 

ELECTROMAGNETIC EQUATIONS 

6.0 Maxwell’s Equations 

The electromagnetic equations are called Maxwell’s equations. 

 Each differential equation has its integral counterpart; one from, may be derived 

from other with help of Stokes Theorem/Divergence Theorem (dot superscript indicating 

partial derivatives w.r.t. time).  

1. 𝛻 × 𝐻 = 𝐷0 + 𝐽 → ∮𝐻 ∙ 𝑑𝑠 = ∫(𝐷𝑜 + 𝐽) ∙ 𝑑𝑎 →   𝐀𝐦𝐩𝐞𝐫𝐞′𝐬 𝐜𝐢𝐫𝐜𝐮𝐢𝐭𝐚𝐥 𝐥𝐚𝐰    6.1 

2. 𝛻 × 𝜀 = −𝐵0   ∮ 𝐸 ∙ 𝑑𝑠 = −∫𝐵0 ∙  𝑑𝑎 → 𝑭𝒂𝒓𝒂𝒅𝒂𝒚′𝒔 𝐥𝐚𝐰             6.2 

3. 𝛻 × 𝐷 = 𝜌    → ∮𝐷 ∙ 𝑑𝑎 = ∫ 𝑑𝑉
𝜌

→   𝐆𝐚𝐮𝐬𝐬′𝐬 𝐥𝐚𝐰     6.3 

4. 𝛻 × 𝐵 = 𝑂   → ∮𝐵 ∙ 𝑑𝑎 = 𝑂 →

  𝐍𝐨 𝐢𝐬𝐨𝐥𝐚𝐭𝐞𝐝 𝐦𝐚𝐠𝐧𝐞𝐭𝐢𝐜 𝐜𝐡𝐚𝐫𝐠𝐞 𝐨𝐫 𝐦𝐨𝐧𝐨𝐩𝐨𝐥𝐞     6.4 

Contained in the above is the Equ 6.4 of continuity.  

∇ ∙  𝐽 = −𝜌𝑜     ∮ 𝐽 ∙ 𝑗𝑎 = −∫𝜌𝑜  𝑑𝑉     6.5 

Statement of Laws used in Deriving Maxwell’s Equation  

 (1) Ampere’s Circuital Law: This law states that the circulation of magnetic 

field intensity around any closed path is equal to the sum of free current and 

displacement current flowing through the surface bounded by path.  

The term 
𝑑𝐷

𝑑𝑡
 is displacement current density: 

 Maxwell’s Equation-Modified Ampere’s law  

 From Faraday’s experiment,   ∇ × 𝐸 = −
𝑑𝐵

𝑑𝑡
 

 Ampere’s circuital law applied to steady magnetic fields gives  
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∇ × 𝐻 = 𝐽 

 Taking divergence on both sides  

∇ ∙ (∇ × 𝐻) = ∇ . 𝐽 

 But ∇ × 𝐻 = 0 for static  

∇. 𝐽 =
−𝑑𝜌𝑣

𝑑𝑡
   (from equation of continuity)   6.6 

Let us take an arbitrary ′𝐺′ quantity for solving above unrealistic limitation of  
−𝑑𝜌𝑣

𝑑𝑡
= 0 

∴  ∇ × 𝐻 = 𝐽 + 𝐺 

Taking divergence  

∇ ∙ (∇ × 𝐻) = ∇ ∙  𝐽 + ∇ ∙ 𝐺 

⟹   ∇ ∙ 𝐺 = −∇ ∙  𝐽 =
𝑑𝜌𝑣

𝑑𝑡
 

We know that ∇ . 𝐷 = 𝜌𝑣  (Gauss’s law) 

⟹   ∇ ∙ 𝐺 =
𝑑

𝑑𝑡
(∇ ∙ 𝐷) = ∇ ∙

𝑑𝐷

𝑑𝑡
 

We get    𝐺 =
𝑑𝐷

𝑑𝑡
 

Thus, Ampere’s law becomes  

∇ × 𝐻 = 𝐽 +
𝑑𝐷

𝑑𝑡
 

It also agrees with continuity equation  

(2) Faraday’s law of electromagnetic induction:  

This law states that an emf is nearly a voltage that arises from conductors moving in a 

magnetic field or from changing magnetic fields. (Fig 6.1 a, b) 
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emf = 𝑉𝑒 = −
d∅

dt
 

 

Figure 6.1 (a) Emf induced in an open circuited loop (b) Current induced in Loop 

 The emf induced in loop (𝑉𝑒) is equal to emf producing field 𝐸⃗  (associated with 

induced current) integrated around the loop.  

𝑉𝑒 = ∮𝐸 ∙ 𝑑𝑙 

 The total flux through the circuit is equal to integral of normal component of flux 

density B over the surface bounded by circuit.  

∅ = ∫𝐵 ∙ 𝑑𝑠
𝑠

 

Thus,  𝑉𝑒 = ∮𝐸 ∙ 𝑑𝑙 = −
𝑑

𝑑𝑡
 ∫𝐵 ∙ 𝑑𝑠 
𝑠

(transformer induction equation) 

Faraday’s law in integral form: 

∮𝐸 ∙ 𝑑𝑙 = −∫
𝑑𝐵

𝑑𝑡
∙ 𝑑𝑠

𝑠

 

By Stokes’s theorem we get differential form of Faraday’s law:  

∇ × 𝐸 = −
𝑑𝐵

𝑑𝑡
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(3) Gauss’s law states that the total outward electric flux over any closed surface is 

equal to the total free charge enclosed in the volume surrounded by surface.  

(4) It is postulate of magnetostatics which states that there are no magnetic flux 

sources, and magnet flux lines always close upon themselves. It is the law of 

conservation of magnetic flux (no monopole) 

Word statement of the field equations:  

1. The magnetomotive force around a closed path is equal to the conduction current 

plus the time derivative of electric displacement through any surface bounded by 

path.  

2. The electromotive force around a closed path is equal to time derivatives of the 

magnetic displacement through any surface bounded by path.  

3. The total electric displacement through surface enclosing a volume is equal to 

total charge within volume.  

4. The net magnetic flux emerging through any closed surface is zero.  

Analogies:  

1. Electric current = both conduction and displacement currents      

2. Time derivative of electric displacement = electric current  

3. Time derivative of magnetic displacement =magnetic current  

4. Electromotive force = electric voltage  

5. Magnetomotive force = magnetic voltage  

Restatement: 

1. The magnetic voltage around a closed path is equal to electric current through 

the path.  

2. The electric voltage around a closed path is equal to magnetic current through 

the path.  
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Maxwell’s equation for fields varying harmonically with time when the fields are 

harmonically varying with time, we write  

𝐸 = 𝐸𝑜 cos(cos+∅)  

Or     𝐸 = 𝐸𝑜 𝑒
𝑗(cos+∅)      (as phasor) 

Differentiating w.r.t time 

𝑑𝐸

𝑑𝑡
= 𝑗𝜔 𝐸𝑜𝑒

𝑗(𝜔𝑡+∅) = 𝑗𝜔𝐸 

𝑑

𝑑𝑡
= 𝑗𝜔 

Rewriting Maxwell’s equations using Stokes’s and Divergence theorem we get,  

Differential form        Integral Form! 

(1) ∇ × 𝐸⃗ = −𝑗𝜔𝐵⃗    ∮ 𝐸⃗ 
𝐶
 𝑑𝑙 = −𝑗𝜔 ∫ 𝐵 ∙ 𝑑𝑠

𝑆
  (6.7) 

(2)  ∇ × 𝐻⃗⃗ = 𝑗 + 𝑗𝜔𝐷   ∮ 𝐻⃗⃗ 
𝐶
 𝑑𝑙 = (𝜎 + 𝑗𝜔𝐸) ∫ 𝐸 ∙ 𝑑𝑠

𝑆
 (6.8) 

(3) ∇ ∙ 𝐷 = 𝜌𝑣      ∮ 𝐷
𝐶
𝑑𝑠 = ∫ 𝜌𝑣𝑉

𝑑𝑉  (6.9) 

(4) ∇ ∙ 𝐵 = 0     ∮ 𝐵 ∙ 𝑑𝑠 = 0
𝑆

   (6.10) 

Example 6.1: A coaxial capacitor has parameters 𝑎 = 10𝑚𝑚, 𝑏 = 15𝑚𝑚  

𝑙 =  20𝑐𝑚, 𝜀𝑟 = 8, 𝜎 = 10
−6𝛺/𝑚. If J𝑐 =

2

𝑟
sin 106𝑡 𝑎̂𝑟 A/m

2 then find out  

i. The maximum instantaneous value of displacement current density.  

j. Total displacement current  

Solution. (i) The conduction current density is expressed as  

J 𝐶 = 𝜎𝐸⃗ ;  𝐸⃗ =
J 𝐶
𝜎
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∴ We can write as 

𝐷⃗⃗ = 𝜀0𝜀𝑟 𝐸⃗ = 𝜀0𝜀𝑟  
J 𝐶
𝜎

 

𝐽 𝑝 =
𝑑𝐷⃗⃗⃗⃗  ⃗

𝑑𝑡
= (
𝜀0𝜀𝑟
𝜎
) (
𝑑 𝐽 𝐶
𝑑𝑡
) 

=
8 × 8.854 × 10−12

10−6
×
2

𝑟
× 106 × cos 106𝑡 𝑎̂𝑟 

𝐽 𝑝 =
141.664

𝑟
cos(106𝑡)𝑎̂𝑟  𝐴/𝑚

2 

At   𝑟 = 10𝑚𝑚 = 0.1𝑚 the (𝐽𝑝)𝑚𝑎𝑥 is obtained as 

(𝐸⃗ 0)𝑚𝑎𝑥 =
14.1664

𝑟
cos(106𝑡)𝑎̂𝑟 

(J 𝐷)𝑚𝑎𝑥 = 14166.4 cos
(106𝑡)  𝑎̂𝑟 

(ii) the total displacement current in terms of displacement current density 

expressed as  

𝐼𝐷 = J ∙ 𝑑𝑠⃗⃗⃗⃗  

= ∫ (
14.1664

𝑟
cos(106𝑡)𝑎̂𝑟)

2𝜋

∙ (𝑟 𝑑∅ 𝑑𝑧)𝑎̂𝑟 

= ∫ ∫ 141.664 
0.2

0

2𝜋

0

 cos(106𝑡) 𝑑∅ 𝑑𝑧 

= 141.664 cos(106𝑡)  [∅]0
2𝜋 [𝑧]0

0.2 

= 178.02 cos(106𝑡)  
A

m

2

      𝐴𝑛𝑠𝑤𝑒𝑟 

Example 6.2  Calculate the value of K so that each of the following pairs of fields 

satisfies Maxwell’s equations in a region at 𝜎 = 0 and 𝜌𝑣 = 0. 
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i. 𝐸 = (𝑘𝑥 − 100 𝑡)𝑎̂𝑦 𝑉/𝑚,   𝐻 = (𝑥 + 20𝑡)𝑎̂𝑧  𝐴/𝑚, if μ = 0.25μ/m and 𝜀 =

0.01𝐹/𝑚 

ii. 𝐷 = 5x 𝑎̂𝑥 − 2𝑦 𝑎̂𝑦 + 𝐾𝑧 𝑎̂𝑧 𝜇𝐶/𝑚
2, 𝐵 = 2𝑎𝑦 mT, μ = 𝜇0 and 𝜀 = 𝜀0 

iii. 𝐸 = 60 sin 106  𝑡 sin 0.01 𝑧 𝑎̂𝑥  𝑉/𝑚, 𝐻 = 0.6 cos 106  𝑡 cos 0.01 𝑧 𝑎̂𝑦  𝜇 =

𝑘 and ε 

solution. The differential form of Faraday’s law is expressed in form as  

∇⃗⃗  ×  𝐸⃗ = −
𝑑𝐵⃗ 

𝑑𝑡
 

On taking the left-hand side of the Equ (i) 

          ∇⃗⃗  ×  𝐸⃗ = −
𝑑

𝑑𝑧
 (𝑘𝑧 − 100 𝑡) 𝑎̂𝑥 +

𝑑

𝑑𝑥
(𝑘𝑥 − 100)𝑎̂𝑧 = 𝑘𝑎̂𝑧                                 𝑖 

From the right side of Equ (i), we can write as  

                                                 
𝑑𝐵⃗ 

𝑑𝑡
= 𝜇 

𝑑𝐻⃗⃗ 

𝑑𝑡
= 0.25 (20)𝑎̂𝑧 = 5𝑎̂𝑧                              𝑖𝑖 

On substituting these values in Equ (i), we obtain as  

𝑘𝑎̂𝑧 = −5𝑎̂𝑧 

𝑘 = −5V/m2 

(ii), Now we write differential form of Gauss’s law for electric field as  

∇ ∙ 𝐷 = 𝜌𝑣 = 0 

=
𝑑𝐷𝑥
𝑑𝑥

+
𝑑𝐷𝑦

𝑑𝑦
+
𝑑𝐷𝑧
𝑑𝑧

= 0 

= (5 − 2 + 𝐾)(10−6) 

= 0 

𝐾 = −3 × 10−6 C/m3 
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𝐾 = −3𝜇
C

m

3

 

(iii) Again, from the differential form of Faraday’s law we can write as  

                                           ∇⃗⃗ × 𝐸⃗ = −
𝑑𝐵⃗ 

𝑑𝑡
                                               𝑖𝑖𝑖 

First take left hand side of Equ (iii) then we obtain as  

∇⃗⃗ × 𝐸⃗ =
𝑑

𝑑𝑧
 (60 sin(106 𝑡) sin(0.01 𝑧)𝑎̂𝑦 − (60 sin(10

6𝑡) sin(0.01 𝑧)𝑎̂𝑧 

= 0.6 sin(106 𝑡) cos(0.01𝑧) 𝑎̂𝑦 

Now we take R. H. S. of Equ (iii) 

𝑑𝐵⃗ 

𝑑𝑡
= 𝜇

𝑑𝐻⃗⃗ 

𝑑𝑡
= 𝐾 (0.6)(−106) × sin(106 𝑡) cos(0.01 𝑧)𝑎̂𝑦 

= −𝐾 × 6 × 105 sin(−106 𝑡) cos(0.01𝑧)𝑎̂𝑦 

On substituting these values in Equ (iii), we obtain  

= 0.6 sin(106 𝑡) cos(0.01𝑧)𝑎̂𝑦 

= 𝐾 × 6 × 105 × sin(106 𝑡) cos(0.01𝑧)𝑎̂𝑦 

0.6 = 𝐾 × 6 × 105 

𝐾 = 10−6  H/m 

Example 6.3  Given the field 𝐸⃗ = 𝐸𝑚 sin(wt − βz)𝑎̂𝑦 in free space. Find out 𝐷⃗⃗ ,
𝑑𝐵⃗ 

𝑑𝑡
, 𝐻⃗⃗  

Solution. First write the expression for 𝐷⃗⃗  interms of E as,  

𝐷⃗⃗ = 𝜀0 𝐸⃗  

𝐷⃗⃗ = 𝜀0  𝐸𝑚 (𝜔𝑡 − 𝛽𝑧)𝑎̂𝑦 
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The Maxwell equation is also expressed as,  

||

𝑎̂𝑥 𝑎̂𝑦 𝑎̂𝑧
𝜕

𝜕𝑥
 

𝜕

𝜕𝑦

𝜕

𝜕𝑧

0 𝐸𝑚 sin(𝜔𝑡 − 𝛽𝑧) 0

|| = −
𝜕𝐵⃗ 

𝜕𝑡
 

−
𝜕𝐵⃗ 

𝜕𝑡
= 𝛽E𝑚 cos(𝜔𝑡 − 𝛽𝑧)𝑎̂𝑥 

On taking integral of the above expression to obtain the value of 𝐵⃗  as,  

𝐵⃗ = −
𝛽 𝐸⃗ 𝑚
𝜔

sin(𝜔𝑡 − 𝛽𝑧)𝑎̂𝑥 

Now, we obtain the value of 𝐻⃗⃗  by the relation as,  

𝐵⃗ = 𝜇0𝐻⃗⃗  

𝐻⃗⃗ =
𝐵⃗ 

𝜇0
 

Therefore, we obtain the value of 𝐻⃗⃗  in the form as,  

𝐻⃗⃗ = −
𝐵⃗ 𝐸⃗ 𝑚
𝜔𝜇0

sin(𝜔𝑡 − 𝛽𝑧)𝑎̂𝑥 

We note that 𝐸⃗   and 𝐻⃗⃗  are mutually perpendicular  

6.1 Derivation Conditions at Boundary Surface  

Maxwell’s equation which exits within a continuous medium are represented by 

differential equations.  

 Maxwell’s equation used to determine what happen at the boundary surface 

between different media are represented by Integral equations.  

 At surface of Discontinuity (Fig. 6.2) 
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(a) Tangential component of ′𝐸⃗ ′ is continuous at surface  

(b) Tangential components of ′𝐻⃗⃗ ′ is continuous across a surface except at the surface 

of a “perfect conductor”. At surface of perfect conductor, the tangential 

component of ′𝐻⃗⃗ ′ is discontinuous by amount equal to surface current per unit 

width.  

(c) Normal components of ′𝐵⃗ ′ is continuous at surface discontinuity  

(d) Normal component of ′𝐷⃗⃗ ′ is continuous if there is no surface charge density.  

                                                                

Figure 6.2 Surface of Discontinuity  

Otherwise 𝐷⃗⃗  is discontinuous by an amount equal to surface charge density.  

Suppose: Surface of discontinuity is plane 𝑥 = 0 

Consider: Rectangle width ∆𝑥, 𝑙𝑒𝑛𝑔ℎ𝑡 ∆𝑦  

Two media (1) and (2)  

∮ 𝐸⃗ ∙ 𝑑𝑠 = −∫ 𝐵𝑜 ∙ 𝑑𝑎
𝑆

     6.11 

Applying above for elemental rectangle: 

𝐸𝑦2 ∆𝑦 − 𝐸𝑦2  
∆𝑥

2
− 𝐸𝑦1

∆𝑥

2
− 𝐸𝑦1  ∆𝑦 + 𝐸𝑦3

∆𝑥

2
+ 𝐸𝑦4

∆𝑥

2
= −𝐵𝑜 ∆𝑥 ∆𝑦   
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Where "𝐵𝑧"  is average magnetic flux density through rectangle ∆𝑥 × ∆𝑦.  

Conditions: 1. Area of rectangle is made of approach zero by reducing width ′∆𝑥′ of 

rectangle, always keeping the surface of discontinuity between the sides of rectangle.  

2. it is assumed that 𝐵⃗  is always finite, then RHS = 0  

3. (
∆𝑥

2
) terms of LHS = 0 

⟹   𝐸𝑦1  ∆𝑦 − 𝐸𝑦1 ∆𝑦 = 0 

∴   𝐸𝑦2 = 𝐸𝑦1 

Tangential component of 𝐸⃗  is continuous  

Similarly,   ∮ 𝐻⃗⃗ ∙ 𝑑𝑠 = ∫ (𝐷𝑜 + 𝐽)
𝑆

∙ 𝑑𝑎      6.12 

𝐻𝑦2 ∆𝑦 − 𝐻𝑦2
∆𝑥

2
−
𝐻𝑥1∆𝑥

2
𝐻𝑦1 ∆𝑦 + 4𝑥3

∆𝑥

2
+ 𝐻𝑥4

∆𝑥

2
 

= (𝐷𝑜𝑧 + 𝐽𝑧)∆𝑥 ∆𝑦 

(A) Consider. (1) Rate of charge of electric displacement 𝐷𝑜 and current density 𝐽 are 

both considered to be finite. 

⟹    𝐻𝑦2  ∆𝑦 = 𝐻𝑦1 𝐷𝑦 = 0 

Or   𝐻𝑦1 = 𝐻𝑦2  

Tangential component of 𝐻⃗⃗  is continuous.      6.13 

Note: “Current sheet” – as conductivity (of conductor) increases depth of penetration of 

electric field (𝐸⃗ ) reduce a high frequency current will flow in this sheet near the surface 

⟹ finite current per unit width ′𝐽𝑠
′ ampere per meter. 

1imit
∆𝑥→0

J∆x = J𝑠   A/m 

(B) Consider: (1) if current density ′𝐽𝑧
′  becomes ‘Infinite’ as ∆𝑥 = 0, RHS = 0 
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So,  𝐻𝑦2 𝐷𝑦 − 𝐻𝑦1 ∆𝑦 = J𝑠𝑧 ∆𝑦  

⟹  𝐻𝑦1 = 𝐻𝑦2 − J𝑠𝑧   (∴   ∆𝑥 = 0 ⟹ J𝑧 = J𝑠𝑧) 6.14 

 “if electric field is zero within perfect conductor, the magnetic field must also be 

zero”. 

⟹  𝐻𝑦1 = −J𝑠𝑧 

Current per unit width along surface of a perfect conductor is equal to magnetic 

field strength (H) just outside the surface.   

Magnetic field and surface current will be parallel to surface, but perpendicular to 

each other.  

⟹  J𝑠𝑧 = 𝑛̂ × 𝐻       6.15 

"𝑛̂"  is unit vector along outward normal to surface.  

6.2 Conditions on Normal Components of 𝑩⃗⃗  and 𝑫⃗⃗  

∮𝐷 ∙  𝑑𝑎 = ∫𝜌 𝑑𝑉
𝑉𝑆

     (From Gauss′s law) 

                                                                                      
Figure 6.3 Pillbox 

With reference to three surfaces of pill-box in Fig 6.3 we can rewrite above as  

⟹                 𝐷𝑛1  𝑑𝑎 − 𝐷𝑛2𝑑𝑎 + 𝜓edge = 𝜌 Δ𝑥 𝑑𝑎 

Where 𝜓edge′ is outward electric flux through the curved edge surface of pill box. 
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As  Δ𝑥 → 0, 𝜓edge → 0  

⟹   𝐷𝑛1  𝑑𝑎 − 𝐷𝑛2  𝑑𝑎 = 0 

∴  𝐷𝑛1 = 𝐷𝑛2         6.16 

If there is no surface charge the normal component of 𝐷⃗⃗  is continuous across the surface. 

(A) Consider: ρ  ∆x = ρs 

In use of metallic surface, charge resides “on the surface”. If this layer of surface charge 

has a surface charge density 𝜌𝑠 c/m
2 the charge density ′𝜌′ of surface layer is given by 

𝜌 =
𝜌𝑠

∆𝑥
        6.17 

⟹  limit
∆𝑥→0

𝜌∆𝑥 = 𝜌𝑠 ⟹ ∆𝑥 = 0, charge density approaches infinity. 

∴  𝐷𝑛1 = 𝜌𝑠        6.18 

 Normal component of displacement density in dielectric’ is equal to surface 

charge density on conductor. 

 Similarly, in case of magnetic flux density 𝐵⃗ , since there are no isolated “magnetic 

charge”. 

𝐵𝑛1 = 𝐵𝑛2       6.19 

 Normal component of magnetic flux density is always continuous across 

boundary surface. 

6.3 Exercise   

1. An a.c voltage source 𝑣 = 𝑉0 sin𝜔𝑡 is connected across a parallel plate capacitor 

C. verify that the displacement current in capacitor is same as conduction current 

wires. 

2. A straight conductor of 0.4m lies on x-axis with one and at origin. The conductor 

is subjected to magnetic flux density 𝐵 = 0.08𝑦̂ 𝑇 and velocity 𝑣 =
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2.5 sin 103 𝑡 𝑧̂  𝑚/𝑠. Calculate motional electric field intensity and emf induced in 

conductor. 

3. The magnetic flux density in given is cylindrical coordinate by  

𝐵⃗ = [
4 𝐵0 cos𝜔𝑡 𝑧̂  𝑟 < 𝑎
0              𝑟 < 𝑎

  

Where 𝐵𝑜 and 𝜔 are constants. Calculate the induced electric field at all values of 

𝑟.  

4. Fig. 6.4 is a rectangular loop moves toward origin at velocity 𝑣 = −200𝑦̅  m/s in a 

magnetic field 𝐵⃗ = 0.75 𝑒−0.5𝑦𝑧̂ 𝑇. Find current at the instant coil sides are at 𝑦 =

0.5𝑚 and 0.6 𝑚, if 𝑅 = 3Ω 

                                                                                                                                                                
Figure 6.4 

5. Two regions are separated by a surface 3𝑥 − 2𝑦 + 5𝑧 = 0. Region 1 has 

permeability 𝜇1 = 2𝜇0 and region 2 has 𝜇2 = 5𝜇0. The point 𝑃(2, 2, 2) lies in 

region 2. For a field 𝐻1 = 4𝑥̂ + 6𝑦̂ − 3𝑧̂  A/m. find 𝐻2.  

6. There exists a boundary between two magnetic materials at 𝑍 = 0, having 

permittivities 𝜇1 = 4𝜇0 H/m for region 1 where 𝑧 > 0 and 𝜇2 = 7𝜇0 H/m for 

region 2 where 𝑧 < 0. There exists a surface current of density 𝐾 = 60 𝑥̂ A/m at 

boundary 𝑍 = 0. For a field 𝐵1 = 2𝑥̂ − 3𝑦̂ + 2𝑧̂ 𝑚T in region 1. Find value of flux 

density 𝐵2 in region 2. 

7. What are Maxwell’s equations? 

8. Write Maxwell’s equation in differential and integral form  
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9. Write corresponding electromagnetic laws used for derivation of Maxwell’s 

equation. 

10. State all four Maxwell’s equation  

11. Rewrite Maxwell’s equation for harmonically varying field. 

12. Which theorem help to convert differential to integral form of Maxwell’s 

equation. 

13. What is physical significance of differential (Maxwell’s) equation? 

14. What is physical significance of integral (Maxwell’s) equation?  

15. At the surface of discontinuity, derive relation for  

a. Tangential component of 𝜀  

b. Tangential component of 𝐻⃗⃗  

c. Normal component of𝐵⃗  

d. Normal component of 𝐷⃗⃗  

16. Which Maxwell’s equation is used for derivation of above continuity expression in 

Q.15 (a), (b), (c), (d)? 
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CHAPTER 7 

ELECTROMAGNETIC WAVES ANALYSIS 

7.0 Constitutive Relations of E.M Waves  

Relations that concern the characteristics of medium in which field exists are called  

Constitutive Relations, given below are true  

  𝐷 = 𝜀𝐸  (Permittivity)    (7.1) 

  𝐵 = 𝜇𝐻 (Permeability)     (7.2) 

  J = σE  (Conductivity)     (7.3) 

Provided the medium is assumed to be homogenous, isotopic and source free.  

i. In homogeneous medium, 𝜀, 𝜇 and σ are constant throughout medium. 

ii. In Isotopic medium, if ε is a scalar constant, D⃗⃗  and E⃗⃗  everywhere have the 

same direction. 

iii. In source-free regions, there are no impressed voltages or currents. (No 

generators). 

7.1 Solutions for Free Space Conditions  

From free space condition, σ = 0 (source free) and ρ = 0 (no free charges  

                                                          ∴    J = 𝜎E⃗⃗                                                                      7.4 

⟹   J = 0 

From Maxwell’s equation:  

∇ × H⃗⃗ = 𝐷̇ → Taking time derivative on both sides we get  

𝜕

𝜕𝑡
 (∇ × H⃗⃗ ) = ∇ × H⃗⃗ = D⃗⃗ = 𝜀E⃗⃗  

From Maxwell’s equation  
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∇ × E⃗⃗ = −B⃗⃗ → Taking curl on both sides we get ∇ × ∇ × E⃗⃗ = −𝜇∇ × H⃗⃗ = −𝜇(𝜀E⃗⃗ )      7.5 

 From assumed conditions we infer,  

∇ ∙  D⃗⃗ = 0      7.6 

∇ ∙ B⃗⃗ = 0      7.7 

From Maxwell’s equation Using vector identity 

∇ × ∇ × E⃗⃗ = ∇(∇ ∙ E⃗⃗ ) − ∇2E⃗⃗ = −𝜇𝜀E⃗⃗                   [∇ ∙ E⃗⃗ =
1

𝜀
∇ ∙ D⃗⃗ = 0] 

∴  ∇2 E⃗⃗ = 𝜇𝜀𝐸̈  Law that E⃗⃗  must obey    7.8 

Parallelly  ∇2 H⃗⃗ = 𝜇𝜀𝐻̈  “Wave equations”    7.9 

E⃗⃗  and H⃗⃗  must satisfy “wave equations” 

Example 7.1 Let us express 𝐸𝑦  (z, t) = 200 cos(10
8 𝑡 − 0.5𝑧 + 30𝑜) V/m as phasor.  

Solution: We first go to exponential notation.  

𝐸𝑦⃗⃗ ⃗⃗  (𝑧, 𝑡) = 𝑅𝑒 [200 𝑒
𝑗(108𝑡−0.5𝑧+30𝑜)] 

And then drop 𝑅𝑒 and suppress 𝑒𝑗(10
8 𝑡), obtaining the phasor  

𝐸𝑦𝑠 (𝑧) = 200𝑒
−𝑗0.5𝑧+𝑗30𝑜   

7.2 Uniform Plane-Wave Propagation 

A uniform plane wave is a particular solution of Maxwell’s equations with E⃗⃗  assuming the 

direction, same magnitude and same phase in infinite planes perpendicular to direction 

of propagation (same applies to H⃗⃗ ). A uniform plane wave does not exist in practice 

because a source infinite in extent would be required to create it, and practical waves 

sources are always finite in extent. But if we one for enough away from source, the wave 

front (surface of constant phase) becomes almost spherical and a very small portion of 

the surface of a giant sphere is very nearly a plane. The characteristics of uniform plane 



                                                                                                     Electromagnetic Field Theory 

246 
 

waves are particularly simple, and their study is of fundamental and theoretical, as well 

as practical, importance from equation E⃗⃗ = 𝐴 sin(𝜔𝑡 − 𝛽𝑧) we can infer following 

characteristics:       

1. It is time harmonics because we assumed time dependence of form ejωt to arrive 

at above equation.  

2. The amplitude of wave is A has same units as E.  

3. The phase (in radius) of wave depends on time ′t′ and space variables z, it is the 

form (ωt − βz). 

4. The angular frequency ω is given in radians per second; β is phase constant or 

wave number is given in radians per meter.  

7.2.1 Wave Equation 

E⃗⃗  and H⃗⃗  are considered to be independent of two dimensions, y and z.  

So, we can write ∇2𝐸 =
𝜕2𝐸

𝑑𝑥2
 ⟹

𝜕2𝐸

𝜕𝑥2
= 𝜇𝜖 

𝜕2𝐸

𝜕𝑡2
    (Wave equation) 

 For uniform-wave propagation in the 𝑥 direction, 𝐸⃗  may have components 

𝐸𝑦 and 𝐸𝑧 

                                                           
𝜕2𝐸𝑦

𝑑𝑥2
= 𝜇𝜀

𝜕2𝐸𝑦 

𝑑𝑡2
                                                     7.10     

For above differentials is equation,  

General solution isE⃗⃗ = f1 (x − v0𝑡) + f2 (x + v0𝑡)              7.11 

                                                               



                                                                                                     Electromagnetic Field Theory 

247 
 

Figure 7.1 Uniform Plane Wave 

 If a physical phenomenon that occurs at one place at a given time is reproduced 

at other places at later times, time delay being proportional to the space separation from 

first location, then group of phenomena constitute a wave as in Fig 7.1 (a). 

 For fixed time t2 . 𝑣0𝑡1𝑎𝑛𝑑 𝑣0𝑡2 are constant  

 f1 and f2 are functions of ′𝑥′ only  

Displacement of curve to right = v0 (t2 − t1)  

Phenomenon has travelled in the positive ′𝑥′ direction with velocity𝑣0. (f1 (𝑥 − v0 t1)) 

Fig 7.1(b)).  

  f2 (𝑥 − v0𝑡) wave traveling in –ve x direction  

 General solution of wave equation consists of two waves, one travelling to right 

(away from source) and other travelling to left (back from source). 

 If there is no reflecting surface present to reflect the wave back to source solution 

is given by  

𝐸⃗ = f1(𝑥 − 𝑣0𝑡) 

Example 7.2 Given the complex amplitude of the electric field of a uniform plane wave, 

𝐸⃗ 𝑜 = 100𝑎̂𝑥 + 20 < 30
𝑜 𝑎̂𝑦 V/m construct the phasor and real instantaneous fields if 

the wave is known to propagate in forward z direction in free space and has frequency of 

10 MHz.  

Solution: We begin by constructing the general phasor expression:  

𝐸⃗ 𝑠 (𝑧) = [100𝑎̂𝑥 + 20𝑒
𝑗30𝑜𝑎̂𝑦]𝑒

−𝑗𝑘0 𝑧 

Where  

𝛽 =
𝜔

𝑉
= 0.21 

The real instantaneous form is them found through rule 
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𝐸⃗ (𝑧,𝑡)  = 𝑅𝑒 [100𝑒
−𝑗0.21𝑧 𝑒𝑗 2𝜋×10

7
𝑎̂𝑥 + 20 𝑒

𝑗 30𝑜𝑒−𝑗0.21𝑧𝑒𝑗 2𝜋×10
7
𝑎̂𝑦] 

= 100 cos(2𝜋 × 107 𝑡 − 0.21𝑧) 𝑎̂𝑥 + 20 cos  (2𝜋 × 10
7𝑡 − 0.21𝑧 + 30𝑜)𝑎̂𝑦  

Proceeding further for uniform plane wave, we get  

𝐸⃗ = 𝑓1(𝑥 − 𝑣0𝑡)  (From Equ 7.12) 

Equ 7.12 says that 𝐸⃗ ≠ 𝑓(𝑦, 𝑧) 

𝐸⃗ = 𝑓(𝑥, 𝑡) 

Such a wave is called uniform plane wave.  

Rewriting wave equation,
𝜕2𝐸

𝜕𝑥2
=
𝜇𝜀𝜕2𝐸

𝜕𝑡2
 

 In terms of components of 𝐸⃗ , (𝑖. 𝑒. , 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧 along X, Y and Z axis 

respectively) 

𝜕2𝐸𝑥
𝜕𝑥2

=
𝜕2𝐸

𝜕𝑡2
 𝜇𝜀                                                 7.13 

𝜕2𝐸𝑦

𝜕𝑥2
= 𝜇𝜀

𝜕2𝐸

𝜕𝑡2
                                                   7.14 

𝜕2𝐸𝑧
𝜕𝑥2

= 𝜇𝜀
𝜕2𝐸

𝜕𝑡2
                                                     7.15 

We know that ∇ . 𝐸⃗ =
1

𝜀
 (∇ . 𝐷⃗⃗ ) = 0 (From Gauss’s law) 

⟹                                                     
𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦

𝜕𝑦
+
𝜕𝐸𝑧
𝜕𝑧

= 0                                    7.16 

As 𝐸⃗ = 𝑓(𝑥, 𝑡) 

∴  
𝜕𝐸𝑥

𝜕𝑥
= 0 ⟹ there is variations of 𝐸𝑥 in x direction  
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𝜕2𝐸𝑥
𝜕𝑥2

= 0 ⟹ 𝐸𝑥 = 0/Constant in time/increasing with time 

𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭. Uniform plane wave progressing in x direction has no x component of E⃗⃗  and H⃗⃗  

∴ Uniform plane electromagnetic waves are transverse and have component of 𝐸⃗  

and 𝐻⃗⃗  only in directions perpendicular to the direction of propagation.  

7.3 Relation Between 𝑬⃗⃗  and 𝑯⃗⃗⃗  in a Uniform Plane Wave  

We know that by retaining components variations along x direction and keeping 𝐸𝑥 = 0, 

we get 

∇ × 𝐸 = −
𝜕𝐸𝑧
𝜕𝑥
𝑦̂ +

𝜕𝐸𝑦

𝜕𝑥
𝑧̂

∇ × 𝐻 = −
𝜕𝐻𝑧
𝜕𝑥

𝑦̂ +
𝜕𝐸𝑦

𝜕𝑥
𝑧̂

 

Expanding Equ (7.17) and Equ (7.18), we get  

(I)                   −
𝜕𝐻𝑧
𝜕𝑥

𝑦̂ +
𝜕𝐻𝑦

𝜕𝑥
𝑧̂ = 𝜀 (

𝜕𝐸𝑦

𝜕𝑡
𝑦̂ +

𝜕𝐸𝑧
𝜕𝑡
𝑧̂) (𝑎𝑠 ∇⃗⃗ × 𝐻⃗⃗ =

𝑑𝐷⃗⃗⃗⃗  ⃗

𝑑𝑡⃗⃗⃗⃗ 
)                   7.19 

(II)                   −
𝜕𝐸𝑧
𝜕𝑥
𝑦̂ +

𝜕𝐸

𝜕𝑥
𝑧̂ = −𝜇 (

𝜕𝐻𝑦

𝜕𝑡
𝑦̂ +

𝜕𝐻𝑧
𝜕𝑡
𝑧̂) (𝑎𝑠 ∇⃗⃗ × 𝐸⃗ =

𝑑𝐵⃗⃗⃗⃗  ⃗

𝑑𝑡⃗⃗⃗⃗ 
)                    7.20 

Therefore, by comparing coefficients in Equs (7.19), (7.20) we get  

                      
−𝜕𝐻𝑧
𝜕𝑥

= 𝜀
𝜕𝐸𝑦

𝜕𝑡
                                                7.21 

                         
𝜕𝐸𝑧
𝜕𝑥

=
𝜇𝐻𝑦

𝜕𝑡
                                                  7.22 

                        
𝜕𝐻𝑦

𝜕𝑥
=
𝜀𝜕𝐻𝑧
𝜕𝑡

                                                 7.23 

                          
𝜕𝐸𝑦

𝜕𝑥
= −𝜇

𝜕𝐻𝑧
𝜕𝑡
                                               7.24 
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        𝐸𝑦 = 𝑓1(𝑥 − 𝑣0𝑡);  𝑣0 =
1

√𝜇𝜀
        (where 𝑣0 is speed of light)                    7.25 

Differentiating w.r.t time we get  

𝜕𝐸𝑦

𝜕𝑡
=

𝜕𝑓1
𝜕(𝑥 − 𝑣0𝑡)

 
𝜕(𝑥 − 𝑣0𝑡)

𝜕𝑡
= −𝑣0

𝜕𝑓1
𝜕(𝑥 − 𝑣0𝑡)

 

𝜕𝐸𝑦

𝜕𝑡
= 𝑓1

′(𝑥 − 𝑣0𝑡)
𝜕(𝑥 − 𝑣0𝑡)

𝜕𝑡
= −𝑣0𝑓1

′(𝑥 − 𝑣0𝑡) 

Where  

𝑓1(𝑥 − 𝑣0𝑡) =
𝜕𝑓1 (𝑥 − 𝑣0𝑡)

𝜕(𝑥 − 𝑣0𝑡)
 𝑜𝑓 𝑓1

′ 

⟹ Putting Equ (7.25) in Equ (7.21) we get  

⟹  −
𝜕𝐻𝑧

𝜕𝑥
= 𝜀

𝜕𝐸𝑦

𝜕𝑡
= 𝐸(−𝑣0𝑓1

′(𝑥 − 𝑣0𝑡)) 

⟹  
𝜕𝐻𝑧

𝜕𝑥
= 𝑣0𝜀f1

′         2.26 

Then after integration w.r.t. 𝑥,  

𝐻𝑧 = √
𝜀

𝜇
 ∫ 𝑓1

′𝑑𝑥 + 𝐶      7.27 

 Where 𝐶 is constant of integration  

Now,    
𝜕𝑓1

𝜕𝑥
= 𝑓1

′ 𝜕(𝑥−𝑣0𝑡)

𝜕𝑥
= 𝑓1

′ 

Hence,    𝐻𝑧 = √
𝜀

𝜇
 ∫
𝑑𝑓1

′

𝜕𝑥
𝑑𝑥 + 𝐶 = √

𝜀

𝜇
 ∫ 𝑓1

′ + 𝐶 

= √
𝜀

𝜇
 ∫𝑓1

′𝑑𝑥 + 𝐶 

[C indicates that field independent of x would be present]  
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⟹   𝐻𝑧 = √
𝜀

𝜇
 𝐸𝑦        7.28 

Parallelly   
𝐸𝑧

𝐻𝑦
= −√

𝜇

𝜀
        7.29 

And    
𝐸𝑦

𝐻𝑧
= −√

𝜇

𝜀
        7.30 

Also,                          𝐸⃗ = √𝐸𝑦2 + 𝐸𝑧2  𝑎𝑛𝑑   𝐻⃗⃗ = √𝐻𝑧2 + 𝐻𝑦2                                           

𝐸⃗  and 𝐻⃗⃗  are total electric and magnetic field strength  

                             
E

𝐻
= √

𝜇

𝜀
                                                                         7.31 

Equ 7.31 is called Characteristics impedance/intrinsic impedance.  

In a travelling plane, EM wave there is a definite ratio between amplitude of 𝐸⃗  

and 𝐻⃗⃗  and that this ratio is equal to square root of ratio of permeability to dielectric 

constant of medium.  

                           
𝐸

𝐻
= √

4𝜋 × 10−7

1
36⁄ 𝜋 × 109

=  377Ω  𝑜𝑟 120𝜋                           7.32 

Example 7.3. Show that 𝐸⃗ 𝑦 = 𝐸0 sin(𝜔𝑡 − 𝛽𝑧)𝑎𝑛𝑑 𝐻⃗⃗ 𝑥 = −
𝛽𝐸0

𝜇0𝜔
sin(𝜔𝑡 − 𝛽𝑧) travels with 

velocity of light in free space. Also find 
𝐸

𝐻
 ratio.  

Solution: 
𝐸

𝐻
=
𝜇0𝜔

𝛽
 where 𝜔/𝛽 is velocity of light  

𝐸

𝐻
= 𝜇0 ×

1

√𝜇𝜀
 

𝐸

𝐻
= √

𝜇0
𝜀0
= 𝜂 = 377Ω 
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From Maxwell’s equations  

∇⃗⃗ × 𝐸⃗ = −𝜇
𝑑𝐻⃗⃗ 

𝑑𝑡
= −𝜇 ×

𝛽𝜀0
𝜔𝜇0

cos(𝜔𝑡 − 𝛽𝑧) × 𝜔 

=
𝜇0𝛽𝐸0
𝜔𝜇0

cos(𝜔𝑡 − 𝛽𝑧) × 𝜔 

∇⃗⃗ × 𝐸⃗ = 𝛽𝜀0 cos(𝜔𝑡 − 𝛽𝑧) × 𝜔 

Expanding L. H. S.  

||

𝑖̂ 𝑗̂ 𝑘̂
𝑑

𝑑𝑥

𝑑

𝑑𝑦

𝑑

𝑑𝑧
0 𝜀𝑦 0

|| = 𝑖̂ (
−𝑑𝜀𝑦

𝑑𝑥
) − 𝑗̂(0) + 𝑘̂ (

𝑑𝜀𝑦

𝑑𝑥
(0) − 0) 

= 𝑖̂ 𝐸0 cos(𝜔𝑡 − 𝛽𝑧) × 𝛽 

= 𝛽𝐸0 cos(𝜔𝑡 − 𝛽𝑧) 

Example 7.4. Find magnetic field intensity for a TEM wave with electric field intensity of 

4 𝜇𝑉/𝑚 in air, lossless dielectric with 𝜀𝑟 = 5.  

Solution:  
𝐸

𝐻
= 𝜂 = 377Ω in free space or  

𝜂 = √
𝜇

𝜀
 

𝐻 =
𝐸

𝜂
=
𝐸

377
= 10.6 × 10−9 𝐴/𝑚 

Lossless dielectric with 𝜀𝑟 = 5 

𝜂 = √
𝜇

𝜀
=
377

√5
 168.6 

𝐻 =
𝐸

𝜂
=

1

168.6
× 4 × 10−6 = 23.72 × 10−9 A/m 
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7.4 Wave Equation for a Conducting Medium  

In a conducting medium, J = 𝜎𝐸⃗  i.e., conduction current is present. Therefore, from 

Maxwell’s equation:  

∇ × 𝐻 = 𝜀𝐸̇ + 𝐽      (𝐼)      (J = 𝜎𝐸⃗ )      7.33  

∇ × 𝐸⃗ = −𝜇𝐻̇          7.34 

(I) ∇ × 𝐻⃗⃗ = −𝜀𝐸̇ + 𝜎𝐸 (as J = σE) 

(II) ∇ × ∇ × 𝐸⃗ = 𝜇∇ × 𝐻⃗⃗ = −𝜇(𝜀𝐸⃗ + 𝜎𝐸⃗ ) = −𝜇(𝜀𝐸⃗ + 𝜎𝐸⃗ ) 

= −𝜇𝜀𝐸⃗ + 𝜇𝜎𝐸⃗  

(By taking curl of Equ  (7.34) and substituting Equ (7.33)  

⟹  ∇(∇. 𝐸⃗ ) − ∇2𝐸⃗ = −𝜇𝜀𝐸⃗ − 𝜇𝜎𝐸⃗  

(Using identity on L.H.S)    (∇ × ∇ × 𝐸 = ∇(∇ ∙ 𝐸) − ∇2𝐸) 

⟹  ∇
1

𝜀
 (∇ ∙ 𝐷⃗⃗ ) − ∇2𝐸⃗ = −𝜇𝜀𝐸⃗ − 𝜇𝛼𝐸⃗   (𝐷 = 𝜀𝐸) 

⟹  ∇ − ∇2𝐸⃗ = −𝜇𝜀𝐸⃗ − 𝜇𝛼𝐸⃗    (E in conductor is zero) 

⟹  ∇2𝐸 = −𝜇𝜀𝐻̈ + 𝜇𝛼𝐸̇   wave equation for 𝐸⃗   7.35 

Parallelly ∇ × ∇ × 𝐻⃗⃗ = 𝜀∇ × 𝐸̇ + 𝜎∇ × 𝐸 = 𝜀∇ × 𝐸̇ − 𝜇𝛼𝐻̇     

(Taking curl of 7.33 and substituting  7.34) 

⟹  ∇ (∇ ∙ 𝐻⃗⃗ ) − ∇2𝐻⃗⃗ = −𝜇𝜀𝐻⃗⃗ − 𝜇𝛼𝐻⃗⃗   (Using identity on L.H.S) 

∇2𝐻 = 𝜇𝜀𝐻̈ + 𝜇𝛼𝐻̇    wave equation for 𝐻⃗⃗   7.36 

7.5 Sinusoidal Time Variations  

Any time/periodic variations can always be analyzed in terms of sinusoidal variations 

with fundamental and harmonic frequencies  
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 Figure 7.2 Sinusoidal Time Variation 

∴ 𝐸 = 𝐸0 cos𝜔𝑡 

 𝐸 = 𝐸0 sin𝜔𝑡 

Or 𝐸(𝑟, 𝑡) = 𝑅𝑒{𝐸(𝑟)𝑒𝑗𝜔𝑡}        7.37 

 (∼) time varying quantity to distinguish it from phasor quantity.  

𝐸̃𝑥 (𝑟, 𝑡) = 𝑅𝑒 {𝐸𝑥(𝑟)𝑒
𝑗𝜔𝑡}        7.38 

𝐸𝑥(𝑟) is a complex number (represented as point r in complex plane) 

 Multiplication by 𝑒𝑗𝜔𝑡 results in rotation through angle ′𝜔𝑡′ measured from ′𝜙′ 

shown in Fig 7.2 

As time progress, the point 𝐸𝑥𝑒
𝑗𝜔𝑡 traces out a circle with center at origin.  

𝐸̃𝑥 = 𝑅𝑒 {|𝐸𝑥| 𝑒
𝑗∅ 𝑒𝑗𝜔𝑡} = |𝐸𝑥| cos(𝜔𝑡 + ∅)    7.39 

𝐸𝑥 is Peak value  

[√2  |𝐸𝑥| → rms value]  

Maxwell’s equations using phasor notation.  

In time varying form,  

∇ × 𝐻̃ =
𝜕𝐷̌

𝑑𝑡
+ 𝐽 
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⟹  ∇ × 𝑅𝑒 (𝐻⃗⃗  𝑒𝑗𝜔𝑡) =
𝜕

𝑑𝑡
 𝑅𝑒 {𝐷⃗⃗ 𝑒𝑗𝜔𝑡} + 𝑅𝑒 {Jejωt} 

{for sinusoidal steady state}  

⟹  𝑅𝑒 {(∇ × 𝐻⃗⃗ − 𝑗𝜔𝐷 − 𝐽)𝑒𝑗𝜔𝑡} = 0 

⟹  ∇ × 𝐻⃗⃗ = 𝑗𝜔𝐷⃗⃗ + 𝐽  required differential equation in phasor form  

It means that 
𝑑

𝑑𝑡
= 𝑗𝑤,  Rewritting Maxwell’s equations we get,  

∴ ∇ × 𝐻⃗⃗ = 𝑗𝜔𝐷⃗⃗ + 𝐽  ∮ 𝐻⃗⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ = ∫(𝑗𝜔𝐷 + 𝐽) ∙ 𝑑𝑎⃗⃗ ⃗⃗     7.40 

∇ × 𝐸⃗ = −𝜔𝑗𝐵⃗         ∮ 𝐸⃗ ∙ 𝑑𝑠⃗⃗⃗⃗ = −∫ 𝑗𝜔𝐵 ∙ 𝑑𝑎   7.41 

∇ × 𝐷⃗⃗ = 𝜌  ∮ 𝐷⃗⃗ ∙ 𝑑𝑎⃗⃗ ⃗⃗  = ∫ 𝜌 𝑑𝑉    7.42 

⟹ ∇ × 𝐵⃗ = 0  ∮ 𝐵⃗ ∙ 𝑑𝑎⃗⃗ ⃗⃗  = 0     7.43 

And  ∇ . J = −𝑗𝜔𝜌   or  ∮
𝐽
⇒ .

𝑑𝑎
→ = −∫ 𝑗𝜔𝜌 𝑑𝑉     7.44 

[Equation of Continuity] 

If 
𝑑

𝑑𝑡
= 𝑗𝜔, then 

𝑑2

𝑑𝑡2
= −𝑤2, putting in  

“Helmholtz equation”: ∇2𝐸⃗ = −𝜔2𝜀𝐸 

In a conducting medium: ∇2𝐸 + (ω2𝜇𝜀 − 𝑗𝜔𝜇𝜎)𝐸 = 0    7.45 

Example. 7.5. In free space, 𝐸⃗  (𝑧, 𝑡) = 103 sin(𝜔𝑡 − 𝛽𝑧)𝑎̂𝑦  (V/m). Obtain 𝐻⃗⃗  (𝑧, 𝑡) and 

determine the propagation constant 𝛾.Given that the frequency is 90MHz.     

Solution: 𝜔𝑡 − 𝛽𝑧 phase (shows that the direction of propagation is + z) 

 Since 𝐸⃗ × 𝐻⃗⃗  must also be in the + z direction,  

 𝐻⃗⃗  most have the direction −𝑎̂𝑥.  
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 Consequently  

𝐸𝑦

−𝐻𝑥
= 𝜂 = 120𝜋Ω 

Or 

𝐻𝑥 =
−103

120𝜋
sin(𝜔𝑡 − 𝛽𝑧) (A/m) 

𝛾 = √𝑗𝜔𝜇 (𝜎 + 𝑗𝜔𝜀) 

In free space,  𝜎 = 0, so that  

𝛾 = 𝑗𝜔 √𝜇0𝜀0 

𝛾 = 𝑗
2𝜋𝑓

𝐶
 

𝜔 = 2𝜋𝑓 

𝑐 =
1

√𝜇0𝜀0
 

𝛾 = 𝑗 
2𝜋 (90 × 106)

3 × 108
= 𝑗(1.884)m−1 

𝛼 + 𝑗𝛽 = 𝑗(1.884) 

Hence, attenuation factor  𝛼 = 0 

Phase shift constant   𝛽 = 1.884 

7.5.1 Time Harmonic Fields  

 A time-harmonic field is one that varies periodically or sinusoidally with time.  

 Let first discuss phasor representation of vector fields. A phasor is a complex 

number that contains the amplitude and phase of a sinusoidal oscillation. A phasor 𝑧 as a 

complex number, is given by  
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𝑧 = 𝑥 + 𝑗 𝑦 = 𝑟 < ∅    (rectangular form) 

Or   𝑧 = 𝑟𝑒𝑗∅ = 𝑟 cos∅ + 𝑥𝑦 sin ∅   (Polar form)  

Where 𝑗 = √−1 and 𝑥 is neat part and 𝑦is imaginary part 𝜔,  

r = |z| = √𝑥2 + 𝑦2 

and ∅ is phase of 𝑧, ∅ = tan−1 𝑦/𝑥 

given complex numbers,  

𝑧 = 𝑥 + 𝑗𝑦 = 𝑟 < ∅, 𝑧1 = 𝑥1 + 𝑗𝑦1 = 𝑟1 < ∅1 

And     𝑧2 = 𝑥2 + 𝑗𝑦2 = 𝑟2 < ∅2 

Im

Re

y

x

𝑟  

∅ 

𝜔 (𝑟𝑎𝑑/𝑠) 

                                                                                                                       
Figure 7.3 Representation of phasor 𝑧 = 𝑥 + 𝑗𝑦 = 𝑟 < ∅ 

The following properties can be inferred as  

1. Addition: 𝑧1 + 𝑧2 = (𝑥1 + 𝑥2) + 𝑗(𝑦1 + 𝑦2)  

2. Subtraction: 𝑧1 − 𝑧2 = (𝑥1 − 𝑥2) + 𝑗(𝑦1 − 𝑦2) 

3. 𝑧1 − 𝑧2 = 𝑟1𝑟2 ∅1 − ∅2 

4. 
𝑧1

𝑧2
=
𝑟1

𝑟2
 ∅1 − ∅2 

5. Square root: √𝑧 = √𝑟 < ∅/2 

6. Complex conjugate: 𝑧∅ = 𝑥 − 𝑗𝑦 = 𝑟 < −∅ = 𝑟𝑒𝑗∅ 

Let us now introduce time element,  

∅ = 𝜔𝑡 + 𝜃 

Where 𝜃 may be function of time or space coordinates or a constant.  

𝑟𝑒𝑗∅ = 𝑟𝑒𝑗∅. 𝑟𝑒𝑗𝜔𝑡 
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∴  𝑅𝑒 (𝑟𝑒𝑗∅) = 𝑟 sin(𝜔𝑡 + 𝜃 

𝐼𝑚 (𝑟𝑒
𝑗∅) = 𝑟 sin(𝜔𝑡 + 𝜃) 

Let us consider a complex sinusoidal current 𝐼(𝑡)𝑎𝑠 𝐼𝑜𝑒
𝑗𝜃. 𝑒𝑗𝜔𝑡, where  

𝐼𝑜 = 𝐼𝑜𝑒
𝑗𝜃 = 𝐼𝑜 < 𝜃  →   Phasor current  

And   𝐼(𝑡) = 𝐼𝑜 cos(𝜔𝑡 + 𝜃)  has instantaneous form  

  𝐼(𝑡) = 𝑅𝑒 (𝐼𝑠𝑒
𝑗𝜔𝑡) 

 In general, phasor can be scalar or vector. If a vector 𝐴 (𝑥, 𝑦, 𝑧, 𝑡) is time harmonic 

field, then phasor form is  

𝐴 = 𝑅𝑒 (𝐴𝑠𝑒𝑗𝜔𝑡) 

⟹  
𝑑𝐴 

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑅𝑒 (𝐴𝑠𝑒

𝑗𝜔𝑡) = 𝑅𝑒 (𝑗𝜔𝐴𝑠𝑒
𝑗𝜔𝑡) 

 Showing that taking the time derivative of instantaneous quantity is equivalent to 

multiplying states that the algebraic sum of all magnetic fluxes flowing of out of a 

junction in a magnetic circuit is zero.  

7.6 Polarization  

Polarization refers to time varying behaviour of electric field strength vector at some 

fixed point in space as shown in Fig 7.3.  

1. If 𝐸̃𝑦 = 0 and only 𝐸̃𝑥 is present  

POLARIZED IN ‘X’ DIRECTION  

2. If 𝐸̃𝑥 = 0 and only 𝐸̃𝑦 is present  

POLARIZED IN ‘Y’ DIRECTION 

3.  If both 𝐸̃𝑥 𝑎𝑛𝑑 𝐸̃𝑦 are present and in phase   

LINEARLY POLARIZED 
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Figure 7.4 Polarized in z dirn 

Direction is dependent on relative magnitude  

Angle is what the direction makes with x-axis tan−1 (
𝐸𝑦

𝐸𝑥
) 

(constant with time) 

 Uniform plane wave  

 

4. If 𝐸̃𝑥 𝑎𝑛𝑑 𝐸̃𝑦 are not in phase, they reach their maximum values at different 

instant time.  

In Fig 7.4, locus of END POINT   ⟹ CIRCLE 

      ⟹ ELLIPTICALLY POLARIZED  

     ⇓ if 𝐸̃𝑦 = 𝐸̃𝑦⟹ < 90𝑜 

 

                                                                                                                                              
Fig 7.5 (a) ellipse       Fig 7.5 (b) Circle 



                                                                                                     Electromagnetic Field Theory 

260 
 

In Fig 7.5, LOCUS of END POINT   ⟹ CIRCLE 

       ⟹ CIRCULARLY POLARIZED  

The electric field of a uniform plane wave travelling in ‘Z’ direction  

𝐸(𝑧) = 𝐸0𝑒
−𝑗𝛽𝑧       7.46 

In time varying form as 𝐸̃(𝑧, 𝑡) = 𝑅𝑒 {𝐸0𝑒
−𝑗𝛽𝑧 𝑒𝑗𝜔𝑡} 

   𝐸̃(0, 𝑡) = 𝑅𝑒 {(𝐸𝑟 + 𝑗𝐸𝑖) 𝑒
𝑗𝜔𝑡} 

𝐸̃(0, 𝑡) = 𝐸𝑟 cos𝜔𝑡 − 𝐸𝑖 sin𝜔𝑡     7.47 

 

𝐸̃ not only charges its magnitude but also changes its direction as time varies.  

7.6.1 Circular Polarization  

If 𝑦 component leads 𝑥 by 90𝑜 

𝐸0 = (𝑥̂ + 𝑗𝑦̂)𝐸𝑎   ⟹   𝐸̂(0, 𝑡) = (𝑥̂ cos𝜔𝑡 − 𝑦̂ sin𝜔𝑡) 𝐸𝑎 

𝐸̂𝑥 = 𝐸𝑎 cos𝜔𝑡

𝐸̂𝑦 = −𝐸𝑎𝑠 sin𝜔𝑡
}    𝐸̂𝑥

2 + 𝐸̂𝑦
2 = 𝐸𝑎

2      

 7.48 

∴ Endpoint of 𝐸̂(0, 𝑡) traces out a circle of radius ′𝐸𝑎
′  

𝐸0 = (𝑥̂ − 𝑗𝑦̂)𝐸𝑎 

7.6.2 Elliptical polarization  

𝐸0 = 𝑥̂𝐴 + 𝑗𝑦̂𝐵  ⟹   𝐸̂(0, 𝑡) = 𝑥̂𝐴 cos𝜔𝑡 − 𝑦̂𝐵 sin𝜔𝑡  

𝐸̂𝑥 = 𝐴 cos𝜔𝑡

𝐸̂𝑦 = −𝐵 sin𝜔𝑡
}    

𝐸̃𝑥
2

𝐴2
+
𝐸̃𝑦
2

𝐵2
= 1     

 7.49 
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∴  Endpoint of 𝐸̃ (0, 𝑡) traces out of ellipse  

7.6.3 Resolution in Different Polarization  

 The instantaneous field of a plane-wave travelling in negative z direction may be 

given as  

𝐸⃗  (𝑧, 𝑡) = 𝐸1 (𝑧, 𝑡)𝑥̂ + 𝐸2 (𝑧, 𝑡)𝑦̂     7.50 

In complex notation, Equ (7.50) is written as  

𝐸1 (𝑧, 𝑡) = 𝑅𝑒 [𝐸1𝑒
−𝑗(𝜔𝑡+𝛽𝑧)] 

⟹  𝐸1(𝑧, 𝑡) = 𝐸1 cos(𝜔𝑡 + 𝛽𝑧 + 𝛿𝑥)      7.51 

‖ly  𝐸2(𝑧, 𝑡) = 𝐸2 cos(𝜔𝑡 + 𝛽𝑧 + 𝛿𝑦)      7.52 

Where   𝐸1 → Maximum amplitude of 𝑥 component  

  𝐸2 → Maximum amplitude of 𝑦 component 

  𝛿 → time phase  

(I) Linear Polarization  

For wave to have linear polarization, the time phase difference between two 

components must be  

𝛿 = 𝛿𝑦 − 𝛿𝑥 = 𝑛 𝜋 

Where      𝑛 = 0, 1, 2, 3, 4…. 

A linearly polarized wave can be resolved into a light hand circularly polarized wave and 

left-hand circularly polarized wave of equal amplitude.  

 To prove the above statement let’s consider a linearly polarized plane wave 

propagating in z direction, we can assume, with no loss of generality, that 𝐸⃗  is polarized 

in 𝑥 direction. In phasor notation.  
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𝐸⃗ (𝑧) = 𝐸0𝑒
−𝑗𝛽𝑧 𝑥̂ 

But this can be written as  

𝐸⃗  (𝑧) = 𝐸⃗ 𝑟𝑐(𝑧) + 𝐸⃗ 𝑙𝑐 (𝑧) 

Where    𝐸⃗ 𝑟𝑐(𝑧) =
𝐸0

2
 (𝑥̂ − 𝑗𝑦̂)𝑒−𝑗𝛽𝑧 

And    𝐸⃗ 𝑙𝑐(𝑧) =
𝐸0

2
 (𝑥̂ − 𝑗𝑦̂)𝑒−𝑗𝛽𝑧 

Where   𝐸⃗ 𝑟𝑐 is RHCP wave and  

  𝐸⃗ 𝑙𝑐 is LHCP wave  

Having amplitude 
𝐸0

2
   

 The converse statement that sun of two oppositely rotating circularly polarized 

waves of equal amplitude is a linearly polarized wave is true. 

(II) Circular Polarization  

 This can be achieved when magnitudes of two components are same and time 

phase difference between them is odd multiples of 𝜋/2 i.e., 

|𝐸⃗ 1| = |𝐸⃗ 2|  or 𝐸1 = 𝐸2   

𝛿 = 𝛿𝑦 − 𝛿𝑥 = {
+(
1

2
+ 2𝑛) 𝜋…… in CW

−(
1

2
+ 2𝑛) 𝜋…… in CCW

 

Where 𝑛 = 0, 1, 2… .. 

 In case direction of propagation is reversed (i.e., + 𝑧 direction) the phase in above 

two for CW and CCW can be interchanged.  

(III) Elliptical Polarization  
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 This is achieved only when the time difference between the two components is 

odd multiple of 𝜋/2 and their magnitude are not the same or when the time difference 

between two components is not equal to multiples of 𝜋/2 (irrespective of magnitudes) 

i.e. 

|𝐸⃗ 1| ≠ |𝐸⃗ 2| or 𝐸1 ≠ 𝐸2 

𝛿 = 𝛿𝑦 − 𝛿𝑥 = {
+(
1

2
+ 2𝑛) 𝜋…… in CW

−(
1

2
+ 2𝑛) 𝜋…… in CCW

 

Where   𝑛 = 0, 1, 2…… 

Or   

𝛿 = 𝛿𝑦 − 𝛿𝑥 ≠ ±
𝑛̇𝜋

2
{
> 0      for  CW
< 0     for CCW

 

 Here, the curved traced at a given position as a function of time is a tilt, ellipse for 

elliptical polarization ratio of major to minor axis is called axial ratio (AR) i.e 

𝐴𝑅 =
major axis

minor axis
=
𝑂𝑃

𝑂𝑅
) 

                                                                                                         
Fig 7.6. Polarization ellipse at an angle. 

AR lies between 1 to ∞ 
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𝑂𝑃 = √
1

2
{𝐸1

2 + 𝐸2
2 +√𝐸1

4 + 𝐸2
4 + 2𝐸1

2𝐸2
2  cos 2𝛿} 

And  

𝑂𝑄 = √
1

2
{𝐸1

2 + 𝐸2
2 +√𝐸1

4 + 𝐸2
4 + 2𝐸1

2𝐸2
2 cos 2𝛿} 

And tilt of ellipse is (w.r.t. y-axis) 

𝜏 =
𝜋

2
−
1

2
tan−1 {

2𝐸1𝐸2 cos 𝛿

𝐸1
2 − 𝐸2

2 }  

When ellipse is aligned with principal axis then 𝜏 =
𝑛𝜋

2
 (𝑛 = 0, 1, 2, … . ) 

7.7 Mathematical Analysis  

 Let   𝐸𝑥 = instantaneous electric field of horizontal polarized wave 

(component) 

   𝐸𝑦 = instantaneous electric field component of vertically polarized 

wave (component) 

 Then, electric field (Fig 7.6) components as a function of time and distance in 𝑥 

and 𝑦 directions are: 

𝐸𝑥 = 𝐸1 sin(𝜔𝑡 − 𝛽𝑧)       

 7.54   

𝐸𝑦 = 𝐸2 sin(𝜔𝑡 − 𝛽𝑧 + 𝛿)     7.55 

𝛿 is time phase angle by which 𝐸𝑦 loads 𝐸𝑥 

Now    𝐸⃗ = 𝐸𝑥 𝑥̂ + 𝐸𝑦 𝑦̂ = 𝐸1 sin(𝜔𝑡 − 𝛽𝑧)𝑥̂ + 𝐸2 sin(𝜔𝑡 − 𝛽𝑧 + 𝛿)𝑦̂ 

At    𝑧 = 0 (eqn 7.54)  

𝐸𝑥 = 𝐸1 sin𝜔𝑡  𝑎𝑛𝑑 𝐸𝑦 = 𝐸2 sin(𝜔𝑡 + 𝛿) 
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Or      

𝐸𝑦 = 𝐸2(sin𝜔𝑡 cos 𝛿 + cos  𝜔𝑡 sin 𝛿 

So,    
𝐸𝑥

𝐸1
= sin𝜔𝑡 

cos𝜔𝑡 = √1 − sin−1𝜔𝑡 = √1 − (
𝐸𝑥
𝐸1
)
2

 

⟹   
𝐸𝑦

𝐸2
= sin𝜔𝑡 cos 𝛿 + cos𝜔𝑡 sin 𝛿  

Putting values of cos𝜔𝑡 sin𝜔𝑡) we get 

𝐸𝑦

𝐸2
=
𝐸𝑥
𝐸1
cos 𝛿 + √1 − (

𝐸𝑥
𝐸1
)
2

× sin 𝛿 

Rearranging and squaring  

(
𝐸𝑦

𝐸1
)
2

+ (
𝐸𝑥
𝐸1
)
2

cos2 𝛿 −
2𝐸𝑥𝐸𝑦 cos 𝛿

𝐸1𝐸2
= sin2 𝛿 − (

𝐸𝑥
𝐸1
)
2

sin2 𝛿 

As   sin2 𝛿 + cos2 𝛿 = 1 

(
𝐸𝑦

𝐸2
)
2

−
2𝐸𝑥𝐸𝑦 cos 𝛿

𝐸1𝐸2
+ (
𝐸𝑥
𝐸1
)
2

= sin2 𝛿 

Dividing throughout by sin2 𝛿, we get  

𝐸𝑦
2

𝐸1
2 sin2 𝛿

−
2𝐸𝑥𝐸𝑦 cos 𝛿

𝐸1𝐸2 sin2 𝛿
+

𝐸𝑥
2

𝐸1
2  sin2 𝛿

= 1 

Or   𝛼 𝐸𝑥
2 − 𝑏𝐸𝑥𝐸𝑦 + 𝑐𝐸𝑦

2 = 1       7.56 

Where    𝛼 =
1

𝐸1
2  sin2 𝛿

 

𝑏 =
2 cos 𝛿

𝐸1𝐸2 sin2 𝛿
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𝑐 =
1

𝐸2
2  sin2 𝛿

 

𝑂𝑃 →semi-major axis, 𝑂𝑄 →semi-minor axis  

(I) Let 𝐸𝑦 be in phase or 180𝑜  out of phase with 𝐸𝑥 then 𝛿 = 𝐾𝐴, 𝐾 = 0, 1, 2. 

(
𝐸𝑥
𝐸𝑦
)

2

+
2𝐸𝑥𝐸𝑦

𝐸1𝐸2
+ (
𝐸𝑥
𝐸1
)
2

= 0 

Or     
𝐸𝑥

𝐸2
= 𝑚

𝐸𝑥

𝐸1
      7.57 

Or    𝐸𝑦 = 𝑚𝐸𝑥 where m =
𝐸2

𝐸1
 or slope of line  

 Hence when two linearly polarized waves are in phase or out of phase the 

resultant wave is a plane polarized wave with 𝐸⃗  i.e. If 𝐸1 = 0, the wave is polarized in y 

direction or if 𝐸2 = 0, wave is polarized in x direction or when 𝐸1 = 𝐸2 and 𝛿 = 0 where 

is still linearly polarized but at 45o.  

(II) Let   𝐸1 = 𝐸2 and 𝛿 = ± 90𝑜 

⟹   
𝐸𝑥
2

𝐸1
2 − 2 

𝐸𝑥𝐸𝑦 cos90
𝑜

𝐸1𝐸2
+
𝐸𝑦
2

𝐸1
2 = sin 90

𝑜 

⟹   
𝐸𝑥
2

𝐸1
2 +

𝐸𝑦
2

𝐸1
2 = 1 

⟹   𝐸𝑥
2 + 𝐸𝑦

2 = 𝐸1
2  or  𝐸𝑥

2 + 𝐸𝑦
2 = 𝐸2

2    7.58 

 Hence when too linearly polarized components are in time phase quadrature of 

90o and also are equal in magnitude, then resultant wave is circularly polarized.  

 Hence, when 𝐸1 = 𝐸2 and 𝛿 = ±
𝜋

2
 the wave is circularly polarized  

 Also,    𝛿 = +90𝑜 → Light circularly polarized  

    𝛿 = −90𝑜 → Right circularly polarized 
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7.8 Exercise  

1. A uniform plane wave in free space is given by 𝐸⃗ = (200 < 30𝑜)𝑒−𝑗250𝑥𝑦̂ V/m 

find:  

a. Phase constant (b) angular frequency (c) frequency (d) wavelength (e) 

intrinsic impedance (f) magnetic field intensity (g) 𝐸⃗  at 𝑥 = 8mm, 𝑡 =

6 × 10−9𝑠 

2. Given 𝐸(𝑥, 𝑡) = 103 sin(3 × 108 𝑡 − 𝛽𝑥)𝑦̂  V/m in free space, sketch the wave at 

𝑡 = 0 and 𝑡1, when it is travelled 𝜆/4 along the x-axis. Find 𝑡1, 𝛽 and 𝜆.  

3. A lossless dielectric medium has 𝜎 = 0, 𝜇𝑟 = 1 and 𝜀𝑟 = 4. An 𝜀𝑀 wave has 

magnetic field components expressed as  

𝐻⃗⃗ = −0.1 cos(𝜔𝑡 − 𝑧) 𝑥̂ + 0.5 sin(𝜔𝑡 − 𝑧) 𝑦̂  A/m 

Find the components of electric field intensity of wave. 

4. A normally incident electric field has amplitude 𝐸 = 1 V/m in free space just 

outside sea water in which 𝜀𝑟 = 80, 𝜇𝑟 = 1, 𝜎 = 2.5 S/m. for a frequency of 

120MHz at what depth the amplitude of 𝐸 be 10−3 V/m 

5. A perpendicularly polarized wave propagates from a region having 𝜀𝑟 = 4, 𝜇𝑟 =

1, 𝜎 = 0 to free space with angle of incidence of 30o. the incident field is 1 𝜇  V/

m, find reflected and transmitted electric field; incident, reflected and 

transmitted magnetic field.  

6. A parallel polarized wave propagates from air to dielectric at Brewster angle of 

8.5o. calculate relative dielectric constant of medium. 

7. What are constitutive relations of electromagnetic waves? 

8. What are constitutive relations of 𝜀𝑀 waves in homogeneous medium? 

9. What are constitutive relations of 𝜀𝑀 waves in isotropic medium? 

10. What are constitutive relations of 𝜀𝑀 waves in isotropic medium? 

11. Assuming free space conditions, derive wave equations? 

12. Explain uniform plane wave propagation 

13. What do you understand by uniform plane waves? 

14. Derive relations between 𝐸⃗  and 𝐻⃗⃗  in a uniform plane wave. 

15. Derive expression for intrinsic impedance.  

16. Derive wave equation for electric field (𝐸⃗ ) in conducting medium. 

17. Derive wave equation for magnetic field (𝐻⃗⃗ ) in conducting medium. 
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CHAPTER 8 

WAVE PROPAGATION IN A LOSSLESS MEDIUM 

Given a uniform plane wave case with no variation in the direction 𝑦 or z, the wave 

equation in phaser form will be: 

𝜕2𝐸

𝜕𝑋2
= −𝜔2𝜇𝜀𝐸   𝑜𝑟 

𝜕2𝐸

𝜕𝑋2
= −𝛽2 𝐸    8.1 

⟹   𝛽 = 𝜔√𝜇𝜀  

Solution for different equations gives  

𝐸𝑦  component ⟹ 𝐸𝑦 = 𝐶1𝑒
𝑗𝛽𝑥 + 𝐶2𝑒

𝑗𝛽𝑧   (𝐶1, 𝐶2 are arbitrary constants) 8.2 

⟹   𝐸̃𝑦(𝑥, 𝑡) = 𝑅𝑒 {𝐸𝑦(𝑥)𝑒
𝑗𝜔𝑡}  

= 𝑅𝑒 {𝐶1𝑒
𝑗 (𝜔𝑡−𝛽𝑥) + 𝐶2𝑒

𝑗 (𝜔𝑡+𝛽𝑥)} 

= 𝐶1 cos(𝜔𝑡 − 𝛽𝑥) + 𝐶2 cos(𝜔𝑡 + 𝛽𝑥)    8.3 

Equ 8.3 can be interpreted as:  

Sum of two waves traveling in opposite directions.  

If   𝐶1 = 𝐶2⟹   STANDING WAVE  

Wave velocity   v =
ω

β
    [𝜔𝑡 − 𝛽𝑥 = 𝛼 ⟹

𝑑𝑥

𝑑𝑡
= 𝑣 =

𝜔

𝛽
] 

Phase constant 𝛽 measure of phase shift in radians per unit length.  

Wavelength 𝜆 distance over which sinusoidal waveform passes through a full cycle of 2𝜋 

radians.  

8.0 Wave Propagation in a Conducting Medium  

 Helmholtz equation:   ∇2 𝐸 − 𝛾2 𝐸 = 0    8.4 
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        [∴  𝛾2 = 𝑗𝜔𝜇 (𝜎 + 𝑗𝜔𝜀)] 

Propagation constant   𝛾 = 𝛼 + 𝑗𝛽 

(as it has a real part → attenuation and imaginary part → phase shift  

Uniform plane wave traveling in 𝑥 direction: 
𝜕2 𝐸

𝜕𝑥2
= 𝛾2 𝐸 

𝐸(𝑥) = 𝐸0𝑒
−𝛾𝑧       8.5  

Time varying form:  𝐸̃(𝑥,𝑡) = 𝑅𝑒 {𝐸0𝑒
+𝑗𝜔𝑡−𝛾𝑥} 

= 𝑒−𝛼𝑥 𝑅𝑒 {𝐸0𝑒
𝑗 (𝜔𝑡−𝛽𝑧)}        (∴ 𝛾 = 𝛼 + 𝑗𝛽)   8.6 

Equ 8.6 is equation of wave travelling in x direction and attenuated by 𝑒−𝛼𝑥 

𝛼 + 𝑗𝛽 = √𝑗𝜔𝜇 (𝜎 + 𝑗𝜔𝜀) 

𝛼2 − 𝛽2 + 𝑗2𝛼𝛽 = 𝑗𝜔𝜇 (𝜎 + 𝑗𝜔𝜀) 

= 𝑗𝜔𝜇 × 𝑗𝜔𝜀 (1 +
𝜎

𝑗𝜔𝜀
) = −𝜔2𝜇𝜀 [1 +

𝜎

𝑗𝜔𝜀
] 

Equating real and imaginary parts  

⟹   𝛼2 − 𝛽
2 = −𝜔2 𝑣𝜀 

And    2𝛼𝛽 =
𝑗2 𝜔2 𝜇𝜀𝜎

𝑗𝜔𝜀
= 𝑗𝜔𝜇𝜎 

⟹   𝛽 =
𝑗𝜔𝜇𝜎

2𝛼
 

Now, putting value of 𝛽 we get  

𝛼2 − (
𝑗𝜔𝜇𝜎

2𝛼
)
2

= −𝜔2𝜇𝜀 

⟹  𝛼2 −
𝑗2𝜔2𝜇2𝜎2

4𝛼2
= −𝜔2𝜇𝜀 

⟹  4𝛼2 + 𝜔2𝜇2𝜎2 = −𝜔2𝜇𝜀 (4𝛼2) 
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⟹  4𝛼2 + 𝜔2𝜇𝜀4𝜎2 + 𝜔2𝜇2𝛼2 = 0 

⟹  𝛼2 = −
4𝜔2 𝜇𝜀± √(4𝜔2 𝜇𝜀)2+4×4×𝜔2𝜇2𝜎2

2×4
 

= −
4𝜔2 𝜇𝜀 ± √16𝜔4 𝜇2𝜀2 + 16𝜔2𝜇2𝜎2

8
 

= −
4𝜔2 𝜇𝜀 ± √(𝜔2𝜀2 + 𝜎2) 16𝜔2𝜇2

8
 

= −

4𝜔2 𝜇𝜀 ± 4𝜔2𝜇𝜀 √(1 +
𝜎2

𝜔2 𝜇2𝜀2
)

2 × 4
 

⟹   𝛼2 = −
4𝜔2 𝜇𝜀±𝜔2𝜇𝜀 √(1+

𝜎2

𝜔2 𝜀2
)

2
 

Therefore, we get, 

From above two equations we get;  

𝛼 = √
𝜇𝜀

2
 (√1 + (

𝜎

𝜔𝜀
)
2

− 1 ) ; 
𝜔

     8.7 

𝛽 = √
𝜇𝜀

2
 (√1 + (

𝜎

𝜔𝜀
)
2

+ 1 ) ; 
𝜔

     8.8 

 

8.1 Conductors and Dielectric  

(
𝜎

𝜔𝜀
) is ration of conduction current density to displacement current density  

 GOOD CONDUCTORS:   
𝜎

𝜔𝜀
≫ 1  (constant over frequency)  

 GOOD DIELECTRICS:   
𝜎

𝜔𝜀
≪ 1  (𝜎, 𝜀 = 𝑓 (frequency)) 
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 Dissipation factor 𝐷 is power factor of dielectric  

 ∴  P. F. = sin ∅ 

Where    ∅ = tan−1𝐷 

Where 𝐷 =
𝜎

𝜔𝜀
 i.e ratio of conduction to displacement current  

8.2 Wave Propagation in Good Dielectrics  

For dielectrics, denominator will be greater in 
𝜎

𝜔𝜀
. Refer to Equs  (8.7) and (8.8), we get  

𝜎

𝜔𝜀
≪ 1   ∴   √1 + 

𝜎2

𝜔2 𝜀2
≅ (1 +

1

2
 
𝜎2

𝜔2 𝜀2
) (from Binomial expansion) 

𝛼 ≅ 𝜔√
𝜇𝜀

2
 (1 +

𝜎2

𝜔2 𝜀2
) =

𝜎

2
 √
𝜇

𝜀
      

 8.9 

𝛽 ≅ 𝜔√
𝜇𝜀

2
 (1 +

𝜎2

2𝜔2 𝜀2
+ 1) = 𝜔√𝜇𝜀  (1 +

𝜎2

8𝜔2 𝜀2
)   

 8.10 

v =
ω

β
=

1

√𝜇𝜀 (1+
𝜎2

8𝜔2 𝜀2
)
≃ c (1 −

𝜎2

8𝜔2 𝜀2
)     

 8.11 

𝜂 = √
𝑗𝜔𝜇

𝜎+𝑗𝜔𝑡
        

 8.12 

= √
𝜇

𝜀
×

1

(1 +
𝜎
𝑗𝜔𝜀

)
 

𝜂 ≈ √
𝜇

𝜀
 (1 +

𝜎

2𝑗𝜔𝜀
)  intrinsic independence of good dielectric 𝜎 = 0. 
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Example 8.1  For a non-magnetic material drawing 𝜀𝑟 = 2.25, 𝜎 = 10
−4 s/m find (i) 

loss tangent (ii)attenuation constant (iii) phase constant (iv) intrinsic impedance for a 

wave having a frequency of 2.5MHz. assume the material to be good dielectric.  

Solution: (i) Loss tangent =
𝜎

𝜔𝜀
  

=
10−4

2𝜋 × 2.5 × 106 × 2.25 × 8.854 × 10−12
= 0.38 

𝜎

𝜔𝜀
< 1 

(ii)  Attenuation constant  

𝛼 =
𝜎

2
 √
𝜇

𝜀
=  
10−4

2
 √

4𝜋 × 107

2.25 × 8.854 × 10−12
 

= 0.01256  Np/m 

(iii)   phase constant  

𝛽 = 𝜔√𝜇𝜀  [1 +
𝜎2

8𝜔2 𝜀2
] 

= 2𝜋 × 2.5 × 106 

×√4 × 10−7 × 2.25 × 8.854 × 10−12  × [1 + (
0.320

8
)
2

] 

= 0.0796  rad/m 

(iv)  Intrinsic impedance  

𝜂 = √
𝜇

𝜀
  (1 + 𝑗

𝜎

2𝜔𝜀
) 

= √
4𝜋 × 107

2.25 × 8.854 × 10−12
 (1 + 𝑗

0.320

2
) 



                                                                                                     Electromagnetic Field Theory 

273 
 

= 254.35 < 9.09𝑜 Ω  

8.3 Wave Propagation in Good Conductor  

For good conductors, numerator will be greater in (
𝜎

𝜔𝜀
) 

As 
𝜎

𝜔𝜀
≫ 1   ∴ 𝛾 = √(𝑗𝜔𝜇𝜎)  (1 + 𝑗

𝜔𝜀

𝜎
)   ≅  √(𝑗𝜔𝜇𝜎) = √𝜔𝜇𝜎 < 45

𝑜  

∴  𝛼 = 𝛽 = √
𝜔𝜇𝜎

2
                                                                                                                

8.13 

  𝑣 =
𝜔

𝛽
= √

2𝜔

2
                                                                                                                    

8.14 

  𝜂 = √
𝑗𝜔𝜇

𝜎
= √

𝜔𝜇

𝜎
< 45𝑜                                                                                              

8.15 

We conclude that for good conductor 𝜎 ≫, so, 𝛼 ≫ and 𝛽 ≫ 𝑣 ≪ and 𝑍 ≪ 

Example 8.2  A uniform plane wave in medium having 𝜎 = 10−3 s/m 𝜀 = 80 𝜀0 and 

𝜇 = 𝜇0 is having a frequency of 10kHz. Calculate the different parameters of the wave.  

Solution:  
𝜎

𝜔𝜀
= 

10−3

2𝜋×104×80×8.854×10−12
=

10−3

4.448×10−5
= 22.48 ≫ 1 

The medium is a good conductor, so attenuation constant  

𝛼 = √𝜋 𝑓 𝜇𝜎 = √𝜋 × 104 × 4𝜋 × 10−7 × 10−3 

= 2𝜋 × 10−3  Np/m 

𝛼 = 𝛽 = 2𝜋 × 10−3  N∅/m 

Intrinsic impedance  
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𝜂 = √
𝜔𝜇

𝜎
< 45𝑜 = √

2𝜋 × 104 × 4𝜋 × 10−7

10−3
< 45𝑜 = 2𝜋 (1 + 𝑗) 

Wavelength   𝜆 =
2𝜋

𝛽
= 100𝑚 

Velocity of wave  =
𝜔

𝛽
=

2𝜋×104

2𝜋×10−3
= 107  m/sec 

8.4 Depth of Propagation  

In a good conductor at ratio frequencies, the rate of attenuation is very great.  

 Wave may penetrate over a small distance before being reduced to a negligibly 

small percentage of original strength.  

8.5 Depth of Penetration (𝜹)  

Depth of penetration (𝛿) is the depth in which wave is attenuated to (
1

𝑒
) or 

approximately 37% of its original value (as shown in Fig 8.1).  

            𝛿 = 𝛼−1 =
1

√𝜋𝑓𝜇𝜎
                                                    8.16 

 Electromagnetic waves, 𝑗, 𝐸, 𝐵, only penetrate a distance 𝛿 into a metal. Check 

the magnitude of 𝛿 in lab and web exercises.  

 The wave equation for match simplifier to  

𝜕2 𝐸𝑦(𝑧)

𝜕𝑧
2 = 𝑗𝜔𝜎 𝜇0 𝐸𝑦 (𝑧) 

The solution     𝐸𝑦(𝑧) = exp (−
1+𝑗

𝛿
𝑧) 

Where ‘d’ the skin depth is given be  

𝛿 = √
2

𝜔𝜎𝜇0
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Figure 8.1 (a) 

 

                                                                     

Figure 8.1 (b) Skin Depth 

8.5.1  Impedance per square  

By integrating the formula for the electric field inside a metal,  

𝐸𝑦(𝑧) = exp (−
1 + 𝑗

𝛿
𝑧) 

To find the current per unit width 𝐼𝑠 we defined the impedance per square as  

𝑍𝑠 = 𝐸𝑦(0)𝐼𝑠 =
1 + 𝑗

𝜎𝛿
= √

𝜋𝜇0𝑓

𝜎
 (1 + 𝑗) 

For a wire of radius, a length L and circumference 2𝜋𝛼, we obtain  

𝑍 =
𝐿

2𝜋𝛼
 𝑍𝑠 
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Example 8.3 A 160 MHz plane wave penetrates through A1 of 𝑠 = 105mho, 𝜀2 = 𝜇𝑟 =

1. Calculate skin depth and also depth at which the wave amplitude decreases to 13.5% 

of initial value.    

Solution: Skin depth = loops tangent = 
𝜎

𝜔𝜀
 

105

2𝜋 × 160 × 106 × 8.854 × 10−12
=

105

0.008896
≫ 1 

8 = √
2

𝜔𝜇𝜎
=

1

√𝜋 𝑓𝜇𝜎
=

1

√160 × 106 × 4𝜋2 × 10−7 × 105
 

𝛿 = 0.000125886 𝑚 

Given,    𝑒𝛼𝑥 =
1

0.135
= 7.407 

𝛼𝑥 = ln(7.407) = 2.0025 

𝑥 =
2.0025

𝛼
  where  α = √

𝜔𝜇𝜎

2
 

Example 8.4  The electric field intensity of a linearly polarized uniform plane wave 

propagating in the positive z direction in sea water is 𝐸⃗ = 100 cos(107 𝜋𝑡) 𝑎̂𝑥 V/

m at z = 0. The parameter of sea water are 𝜀𝑟 = 72, 𝜇𝑟 = 1, and 𝜎 = 4 s/m. 

i. Determine the attenuation constant (𝛼), phase constant (𝛽), intrinsic 

impedance (𝜂), phase velocity (𝑉𝜌), wavelength (𝜆), and skin depth (𝛿). 

ii. Find the distance at which the amplitude of E is one percent of its value of 𝑧 =

0. 

iii. Write the expression for 𝐸(𝑧, 𝑡) and 𝐻(𝑧, 𝑡) at 𝑧 = 0.8𝑚 as a function of t.  

Solution: Electric field at 𝑧 = 0 is  

𝐸⃗ = 100 cos(107 𝜋𝑡)𝑎̂𝑧 V/m 

𝜔 = 107 𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐 

𝜔 = 2𝜋𝑓 
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𝑓 =
𝜔

2𝜋
=
107𝜋

2𝜋
= 5 × 106 Hz 

In this case  

𝜎

𝜔𝜀
=

𝜎

𝜔𝜀0𝜀𝑟
=

4

107𝜋 [
1
36𝜋 × 10

−9] × 72
= 200 ≫ 1 

Hence, we have to use the formulae for good conductor:  

(i). Attenuation constant  

𝛼 = √𝜋𝜇𝜎𝑓 = √𝜋 × 5 × 106 × 4𝜋 × 10−7 × 4 

= 8.88 Nρ/m 

Phase constant:   𝛽 = 𝛼 = 8.88 Nρ/m 

Intrinsic impedance:  𝜂 = √
𝜔𝜇

𝜎
< 45𝑜 or (1 + 𝑗)√

𝜋𝑓𝜇

𝜎
 

𝜂 = (1 + 𝑗) √
𝜋 × 5 × 106 × 4𝜋 × 10−7 × 1

4
 

= (1 + 𝑗)(2.22) 

2.22 + 𝑗(2.22) 

= 3.14 < 45𝑜Ω 

Phase velocity  

𝑉 =
𝜔

𝛽
=
107𝜋

8.88
= 0.707 m/sec 

Skin depth:   𝛿 =
1

𝛼
=

1

8.88
= 0.1126 

(ii). The distance 𝑍1 at which the amplitude of wave decreases to one percent of its value 

at 𝑧 = 0. 
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𝑒−𝑎𝑧1 = 0.01 

𝑒−𝑎𝑧1 =
1

0.001
= 100 

𝑍1 =
1

𝛼
ln 100 =

4.605

8.88
= 0.5186𝑚 

(ii). The value of electric field in phasor notation is given as;  

𝐸⃗ (𝑧) = 100𝑒𝛼𝑧 𝑒−𝑗𝛽𝑧 𝑎̂𝑥 

Then the instantaneous expression for 𝐸⃗  is expressed as  

𝐸⃗ (𝑧, 𝑡) = 𝑅𝑒 [𝐸⃗ (𝑧)𝑒
𝑗𝜔𝑡] = 𝑅𝑒[100𝑒

𝛼𝑧 𝑒𝑗(𝜔𝑡−𝛽𝑧)𝑎̂𝑥] 

= 100𝑒−𝛼𝑧 cos(𝜔𝑡 − 𝛽𝑧) 

At 𝑧 = 0.8𝑚, the above expression can be written in the form as,  

𝐸⃗  (0.8, 𝑡) = 100𝑒−0.80𝛼 cos(107 𝜋𝑡 − 0.8𝛽)𝑎̂𝑥 

= 0.082 cos(107𝜋𝑡 − 7.11)𝑎̂𝑥     V/m 

 A uniform plane wave is a TEM wave with 𝐸⃗  perpendicular to 𝐻⃗⃗  and that both are 

normal to the direction of wave propagation 𝑎̂𝑧. Thus 𝐻⃗⃗ = 𝐻𝑦𝑎𝑦. 

Hence  𝐻𝑦 (𝑧, 𝑡) =
𝐸𝑥 (𝑧,𝑡)

𝜂
 

𝐻𝑦(𝑧) = 𝑅𝑒  [
𝐸𝑥(𝑧)

𝜂
𝑒𝑗𝜔𝑡] 

In this case  

𝐻𝑦 (0.8) =
100𝑒−80𝛼 𝑒−𝑗0.8𝛽

𝜋𝑒−𝑗𝜋/4
=
0.082𝑒−𝑗7.11

𝜋𝑒𝑗𝜋/4
 

= 0.026𝑒−𝑗1.61 
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 As both angles must be in radians before combining the instantaneous expression 

for 𝐻⃗⃗  at 𝑧 = 0.8𝑚 is then expressed as  

𝐻(0,8, 𝑡) = 0.026 cos(107𝜋𝑡 − 1.61)𝑎̂𝑦 A/m 

8.6 Properties of Uniform Plane Wave  

It is necessary to write the expression for plane wave i.e., travelling in some arbitrary 

direction w.r.t fixed set of axes.  

 This is done in terms of direction cosines of the normal to plane of wave  

By definition of uniform plane wave, the “equiphasic surfaces” are “planes”  

𝐸(𝑥) = 𝐸0 𝑒
𝐽𝛽𝑥           8.17 

(for wave travelling in x direction) 

                                                                                
Figure 8.2 Direction Cosines 

The planes of constant phase are given by, 𝑥 = 𝑎 constant  

 The equation of plane: 

𝑛̂ . 𝑟 = 𝑎            8.18 

Constant see Fig 8.2 

Where 𝑟 is radius vector from origin to any point P on plane 𝑛̂ is unit vector normal to 

plane (wave normal) 
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 𝑛̂ . 𝑟 is projection of radius vector ′𝑟′ along normal to plane  

 Constant value 𝑂𝑀 for all points in plane  

⟹  𝑛̂ . 𝑟 = 𝑥 cos𝐴 + 𝑦 cos𝐵 + 𝑧 cos 𝐶      8.19 

𝑥, 𝑦, 𝑧 are components of vector 𝑟, and cos A, cos B, cos C are the components of unit 

vector 𝑛̂ along 𝑥, 𝑦 and 𝑧 axes. 

 A, B, and C are the angles that unit vector 𝑛̂ makes with positive 𝑥, 𝑦 and 𝑧 axes, 

respectively. Their cosine are termed the ‘direction cosine or direction components of 

vector.  

⟹  𝐸(𝑟) = 𝐸0𝑒
𝑗𝛽𝑛̂.𝑟 = 𝐸0𝑒

−𝑗𝛽(𝑥 cos𝐴+𝑦 cos𝐵+𝑧 cos𝐶)  

In time varying form:  𝐸0 = 𝐸𝑟 + 𝑗𝐸𝑖  

𝐸̃(𝑟,𝑡) = 𝑅𝑒 {𝐸0𝑒
−𝑗(𝛽𝑛̂.𝑟−𝜔𝑡)} 

𝐸𝑟 cos(𝛽𝑛̂. 𝑟 − 𝜔𝑡) + 𝐸𝑖 sin(𝛽𝑛̂. 𝑟 − 𝜔𝑡)    8.20 

𝐖𝐚𝐯𝐞𝐥𝐞𝐧𝐠𝐭𝐡 Uniform plane wave expression:  

𝐞−𝐣𝐡𝐮 where        8.21 

′ℎ′ is some real constant  

′𝑢′distance measured along a straight line 
↔   ℎ
↔   𝜔

} for distance 𝑢̂ 

𝜆𝑢 =
2𝜋

ℎ
 

Phase velocity   v𝑢 =
𝜔

ℎ
     8.22  

Parallelly  𝜆𝑥 =
2𝜋

𝛽 cos𝐴
=

𝜆

cos𝐴
      8.23 

And   𝑣𝑥 =
𝜔

𝛽cos𝐴
=

𝜆

cos𝐴
       8.24 
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As 𝜆 =
2𝜋

𝛽
,   𝑣 =

𝜔

𝛽
 

 As long as angle A is not zero, both wavelength and phase velocity measured 

along x axis are greater than when measured along wave normal. 

 For small angles ′𝜃′ in Fig 8.3 velocity 𝑣𝑦 with which a crest moves along y axis, 

becomes very great,      

𝑣𝑦 = ∞  𝑎𝑠 𝜃 = 0  

                                                                                       
Figure 8.3 Uniform Plane Wave 

 

8.7 Reflection of Uniform Plane Waves by Perfect Dielectric-Normal Incidence  

 When a plane EM wave is incident normally on the surface of a perfect dielectric, 

part of energy is transmitted and part of it is reflected. Fig 8.4 

 A perfect dielectric is one with zero conductivity so that there is no loss of power 

in propagation through the dielectric. Consider. Plane wave travelling is 𝑥 direction   

Incident on a boundary i.e., parallel to 𝑥 = 0 plane   
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Figure 8.4 Normal incidence 

Medium:  𝜂1 = √
𝜇1

𝜀1
        8.25 

(1) Medium:  𝜂1 = √
𝜇2

𝜀2
       8.26 

Relationships for electric and magnetic fields  

Ei = ηi H
i       8.27  

Er = −ηi H
r       8.28 

Et = η2 H
𝑡       8.29  

Continuity of tangential components of  𝐸⃗   and 𝐻⃗⃗  require that  

Hi + H𝑟 = Ht,   𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡    8.30 

⟹   H𝑡 + H𝑟 =
1

𝜂1
 (𝐸𝑖 − 𝐸𝑟) =

1

𝜂2
 (𝐸𝑖 + 𝐸𝑟) 

⟹   𝜂2(𝐸
𝑖 − 𝐸𝑟) = 𝜂1(𝐸

𝑖 + 𝐸𝑟) 

(A) Reflection coefficient  

               Γ =
𝐸𝑟

𝐸𝑖
=
𝜂2 − 𝜂1
𝜂2 + 𝜂1

                                                                         8.31 

(B) Transmission coefficient  
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𝜏 =
𝐸𝑡

𝐸𝑖
=
𝐸𝑖+𝐸𝑟

𝐸𝑖
= 1 +

𝐸𝑟

𝐸𝑖
=

2𝜂2

𝜂1+𝜂2
 8.32 

⟹   
𝐻𝑟

𝐻𝑖
= −

𝐸𝑟

𝐸𝑖
=
𝜂1−𝜂2

𝜂1+𝜂2
     8.33 

And    
𝐻𝑡

𝐻𝑖
=
𝜂1𝐸

𝑡

𝜂2𝐸𝑖
=

2𝜂1

𝜂1+𝜂2
     8.34 

And   𝜂0 √
𝜇0

𝜀0
 

(C) For perfect dielectrics, 𝜇1 = 𝜇2 = 𝜇0 

𝐸𝑟

𝐸𝑖
=
√𝜀1 − √𝜀2

√𝜀1 + √𝜀2
    
𝐸𝑡

𝐸𝑖
=

2√𝜀1

√𝜀1 + √𝜀2
     
𝐻𝑟

𝐻𝑖
=
√𝜀1 − √𝜀2

√𝜀1 + √𝜀2
       

𝐻𝑡

𝐻𝑖
=

2√𝜀2

√𝜀1 + √𝜀2
 

Note: Important points  

• 1 + Γ = 𝜏 

• Γ  𝑎𝑛𝑑 𝜏 →dimensionless and may be complex  

• 0 ≤ |Γ| ≤ 1 

If medium 2 is perfect conductor, 𝜂2 = 0 ⟹ Γ = −1 and 𝜏 = 0 

∴  𝐸𝑟 = −𝐸𝑖 and 𝐸𝑡 = 0 

 Incident wave will be totally reflected and standing wave will be produced in 

medium (1)  

(D) Cases:  (a) Γ > 0 (𝜂2 > 𝜂1) → 𝑆𝑊 in (1) 

(b)  Γ > 0 (𝜂2 > 𝜂1) → 𝑆𝑊 in (2) 

Example 8.5 Determine the amplitude of reflected and transmitted 𝐸⃗  and 𝐻⃗⃗  at the 

interface between two regions. The characteristics of region 1 are 𝜀𝑟 = 0, 𝜇𝑟1 = 1 and 

𝜎1 = 0; region 2 is free spaces.  

 The incident 𝐸𝜔𝑖 in region 1 is of 4.5 V/m.  

Assume normal incidence also, find average power in two regions. (Fig 8.5).   
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     Figure 8.5 

 

solution:   𝜂1 = √
𝜇1

𝜀1
= √

4𝜋×10−7

8×8.854×10−12
= 133.3Ω 

 𝜂2 = √
𝜇0

𝜀0
= 377Ω 

𝐸𝑜𝑟 = (
𝜂2 − 𝜂1
𝜂1 + 𝜂2

) 𝐸0𝑖 =
377 − 133.3

377 + 133.3
× 4.5 = 2.148 V/m 

𝐸𝑜𝑡 = (
2𝜂2

𝜂1 + 𝜂2
)𝐸0𝑖 =

2 × 377

377 + 133.3
× 4.5 = 6.648  V/m 

𝐻𝑜𝑖 =
𝐸𝑜𝑖
𝜂
= 3.39 × 10−2  A/m 

𝐻𝑜𝑟 = (
𝜂2 − 𝜂1
𝜂1 + 𝜂2

)𝐻0𝑖 =
133.3 − 377

133.3 + 377
× 3.39 × 10−2

= −16.2 × 10−3 A/m 

𝐻𝑜𝑡 = (
2𝜂1

𝜂1 + 𝜂2
)𝐻0𝑖 =

2 × 133.3

133.3 + 377
× 3.49 × 10−2 = 17.7 × 10−3  𝐴/m 

The incident average power densities in two regions  

𝑃𝑜𝑖 =
1

2
𝐸𝑜𝑖 𝐻𝑜𝑖 = 7.63 × 10

−3  W/m2 

𝑃𝑖𝑟 =
1

2
𝐸𝑜𝑟 𝐻𝑜𝑟 = 1.74 × 10

−2  ω/m2 
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𝑃𝑖𝑡 = 𝑃2𝑖 =
1

2
𝐸𝑜𝑡 𝐻𝑜𝑡 = 5.88 × 10

−2  ω/m2 

8.8 Reflection by a Perfect Dielectric-Oblique Incidence  

When a plane wave is incident upon a boundary surface i.e, not parallel to plain 

containing 𝐸⃗  and 𝐻⃗⃗ , 𝐵. 𝐶. are more complex, see Fig 8.6.  

 Part of wave will be transmitted and part of it is reflected, but in this case the 

transmitted wave will be refracted: i.e, direction of propagation will be altered.  

                                                                                     
Fig 8.6 Oblique Incidence  

Incident ray travels distance CB  

𝑓𝑥𝑑 ray travels distance AD 

Reflected ray travels from A to E  

𝑣1 and 𝑣2 are velocities of medium 1 and 2 

𝐶𝐵

𝐴𝐷
=
𝑣1
𝑣2

 

𝐶𝐵 = 𝐴𝐵 = sin 𝜃1 and 𝐴𝐷 = 𝐴𝐵 sin 𝜃2 

⟹  
𝐶𝐵

𝐴𝐵
= sin 𝜃1;     

𝐴𝐷

𝐴𝐵
= sin 𝜃2 

So,  
sin𝜃1

sin𝜃2
=
𝐶𝐵

𝐴𝐷
=
𝑣1

𝑣2
      8.35 
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𝑣1 =
1

√𝜇1𝜀1
=

1

√𝜇0𝜀1
;                 𝑣2 =

1

√𝜇2𝜀2
=

1

√𝜇0𝜀2
 

sin 𝜃1
sin 𝜃2

= √
𝜀2
𝜀1

 

We, have   𝐴𝐸 = 𝐶𝐵 

So,  sin 𝜃1 = sin 𝜃3  ⟹𝜃1 = 𝜃3     8.36 

Angles of incidence = angle of reflection  

8.9 Snell’s Law  

Snell’s law relates angle of incidence with angle of refraction 

By conservation of energy:  

1

𝜂1
 𝐸𝑖2 cos 𝜃1 =

1

𝜂1
 𝐸𝑟

2
cos 𝜃1 +

1

𝜂2
 𝐸𝑡

2
cos 𝜃2  

𝐸𝑟
2

𝐸𝑖
2 = 1

𝜂1𝐸
𝑡2 cos 𝜃2

𝜂2𝐸𝑖
2
cos 𝜃1

 

𝐸𝑟
2

𝐸𝑖
2 = 1 −

√𝜀2 𝐸
𝑡2 cos𝜃2

𝜂2 𝐸𝑖
2
cos𝜃1

     8.37 

Example 8.6  the amplitude of 𝐸𝑖 in free space (region 1) at the interface with region 2 

is 1 V/m. if 𝐻𝑜𝑟 = −1.41 × 10
−3 A/m, 𝜀𝑟𝑒 = 18.5 and 𝜎2 = 0, find 𝜇𝑟2.  

Solution:  

𝐸𝑜𝑟
𝐻𝑜𝑟

= −120𝜋 Ω = −377Ω 

And     
𝐸𝑜𝑖

𝐻𝑜𝑖
=
𝜂2−𝜂1

𝜂1+𝜂2
=
𝜂2−377

𝜂2+377
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𝐸𝑜𝑖
𝐻𝑜𝑖

=
1.0

−1.41 × 10−3
=
−377(377 + 𝜂2
𝜂2 − 377

 

Or    𝜂2 = 1234Ω 

Then    
𝜂√𝜇𝑟2

√18.5
= 1234 

⟹  𝜇𝑟2 = 198.4 

(i) Horizontal polarization    

t

r

                                                                                                          
Figure 8.7 Horizontal Polarization 

 Electric field vector ‘I’ is parallel to boundary surface or ⊥ to plane of incidence in 

horizontal polarization as shown in in Fig 8.7. 

 Horizontal Polarization: 

Example 8.7  A perpendicularly polarized wave propagates from region 1 (𝜀𝑟1 =

8.5, 𝜇𝑟1 = 1, 𝜎1 = 0) to region 2, free space, with an angle of incidence 150.  

 Given 𝐸𝑜𝑖 = 1𝜇V/m. find 𝐸𝑜𝑟 , 𝐻𝑜𝑟 , 𝜃𝑡 , 𝐻𝑜𝑖, 𝐸𝑜𝑡 and 𝐻𝑜𝑡.  

Solution:  The intrinsic impedances are: 

𝜂1 =
𝜂0

√𝜀𝑟1
=
120𝜋

√8.5
= 129.33Ω 
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𝜂2 = 𝜂0 = 377Ω 

And the angle of transmission is given by  

sin 15𝑜

sin 𝜃𝑡
= √

𝜀

8.5𝜀0
     𝑜𝑟  𝜃𝑡 = 48.99

𝑜 

𝐸𝑜𝑟
𝐸𝑜𝑖

=
𝜂2 cos 𝜃𝑖 − 𝜂1 cos 𝜃𝑡
𝜂2 cos 𝜃𝑖 − 𝜂1 cos 𝜃𝑡

=
120 𝜋 cos 15𝑜 − 129.33 cos 48.99𝑜

120𝜋 cos 15𝑜 + 129.33 cos 48.99𝑜
 

= 0.623 

Or  𝐸0
𝑟 = 0.623 × 1.0 𝜇 V/m 

= 1.623 𝜇 V/m 

𝐸𝑜𝑡
𝐸𝑜𝑖

=
2𝜂2 cos 𝜃𝑖

𝜂2 cos 𝜃𝑖 − 𝜂1 cos 𝜃𝑡
=

2 × 120𝜋 cos 15𝑜

120𝜋 cos 15𝑜 + 129.33 cos 48.99𝑜
 

= 1.623 

= 1.623 × 1𝜇V/m 

= 1.623𝜇 V/m 

Finally,  𝐻𝑜𝑖 =
𝐸𝑜𝑖

𝜂1
=
1 𝜇V/m

129.33
= 7.732𝑛A/m 

𝐻𝑜𝑖 =
𝐸𝑜𝑟
𝜂1
=
0.623 𝜇V/m

129.33
= 4.817𝑛A/m 

Similarly,   𝐻𝑜𝑡 = 4.31 𝑛A/m  

(ii) Vertical Polarization  

 (II) Magnetic vector is parallel to boundary surface and electric vector is parallel 

to plane of incidence in vertical polarization as shown in Fig 8.8 
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MATHEMATICAL EXPLANATION 

(I) Horizontal polarization  

𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡 (B.C  

    ∴ Tangential component of 𝐸⃗  is continuous) 

𝐸𝑡

𝐸𝑖
= 1 +

𝐸𝑟

𝐸𝑖
 

Or  
𝐸𝑟2

𝐸𝑖2
= 1 − √𝜀2

√𝜀1
 
cos𝜃2

cos𝜃1
∙ (1 +

𝐸𝑟

𝐸𝑖
)
2

 

⟹  1 − (
𝐸𝑡

𝐸𝑖
)
2

= √
𝜀2

𝜀1
 (1 +

𝐸𝑟

𝐸𝑖
)
2

 
cos𝜃2

cos𝜃1
 

⟹  1 −
𝐸𝑟

𝐸𝑖
= √

𝜀2

𝜀2
 (1 +

𝐸𝑟

𝐸𝑖
)
cos𝜃2

cos𝜃1
 

𝐸𝑟

𝐸𝑖
= √

𝜀2 cos𝜃1−√𝜀2 cos𝜃2

√𝜀1 cos𝜃1+√𝜀2 cos𝜃2
= 𝜎     8.38 

(II) Vertical Polarization  

(𝐸𝑖 − 𝐸𝑟) cos 𝜃1 = 𝐸
𝑡 cos 𝜃2  

(B.C. ∴ tangential component of 𝐸⃗  is continuous)  

𝐸𝑡

𝐸𝑖
= (1 −

𝐸𝑟

𝐸𝑖
) 
cos 𝜃1
cos 𝜃2

 

⟹  (
𝐸𝑟

𝐸𝑖
)
2

= 1 − √
𝜀2

𝜀1
× (1 +

𝐸𝑟

𝐸𝑖
)
2

 
cos𝜃1

cos𝜃2
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t

                                                                                  

Figure 8.8 Vertical Polarization 

⟹  1 − (
𝐸𝑟

𝐸𝑖
)
2

= √
𝜀2

𝜀1
 (1 −

𝐸𝑟

𝐸𝑖
)
2

 
cos𝜃1

cos𝜃2
 

⟹  1 +
𝐸𝑡

𝐸𝑖
= √

𝜀2

𝜀1
 (1 −

𝐸𝑟

𝐸𝑖
) 
cos𝜃1

cos𝜃2
 

⟹  
𝐸𝑟

𝐸𝑖
 (1 + √𝜀2

√𝜀1
 
cos𝜃1

cos𝜃2
) =  √

𝜀2

√𝜀1
 
cos𝜃1

cos𝜃2
− 1 

𝐸𝑟

𝐸𝑖
= √

𝜀2 cos𝜃1−√𝜀2 cos𝜃2

√𝜀1 cos𝜃1+√𝜀2 cos𝜃2
= Γ       8.39 

𝐸𝑟

𝐸𝑖
= 
√𝜀2 cos 𝜃1 −√𝜀1 (1 − sin2 𝜃2)

√𝜀1 cos 𝜃1 +√𝜀2(1 − sin2 𝜃2) 
  (Using cos2 𝜃 + sin2 𝜃 = 1)  

Also,  sin2 𝜃2 =
𝜀1

𝜀2
sin2 𝜃1 

∴  
𝐸𝑟

𝐸𝑖
= 

𝜀2
𝜀1
cos𝜃1−√(

𝜀2
𝜀1
)−sin2 𝜃1

𝜀2
𝜀1
cos𝜃1+√(

𝜀2
𝜀1
)−sin2 𝜃1

      8.40 

No Reflection √𝜀2 cos 𝜃1 − √𝜀1 cos 𝜃2 = 0 

⟹  
sin𝜃1

sin𝜃2
= √

𝜀2

𝜀1
 

Or    tan 𝜃1 = √
𝜀2

𝜀1
      8.41 
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Equ (8.25) refers to Brewster’s angle  

𝜏 =
𝐸𝑡

𝐸𝑖
=

2√𝜀1 cos𝜃1

√𝜀2 cos𝜃1+√𝜀1 cos𝜃2
 (Transmission coefficient)  8.42 

Example 8.8. A normally incident E field has amplitude 𝐸0𝑖 = 1.0 V/m in free space 

outside of sea water which 𝜀𝑟 = 80, 𝜇𝑟 = 7 and 𝜎 = 2.5 s/m. for a frequency of 30MHz, 

at what depth will the amplitude of 𝐸⃗  be 1.0 m/V? 

Solution:  Free Space   Sea Water 

   Region 1   Region 2 

   𝜂1 = 377Ω   𝜂2 = 9.73 < 43.5
𝑜Ω 

Then the amplitude of 𝐸0𝑡 just inside the sea water is 𝐸0𝑡 

𝐸0𝑡
𝐸0𝑖

=
2𝜂2

𝜂1 + 𝜂2
 

Or  𝐸0𝑡 = 5.07 × 10
−2 V/m 

From   𝛾 = √𝑗𝜔𝜇 (𝜎 + 𝑗𝜔𝜀) 

  𝛼 = 24.36 cos 46.53𝑜 

  = 16.76 Np/m 

Then  10−3 = (5.07 × 10−2)𝑒−16.76𝑧 

  𝐸𝑧 = 𝐸0𝑡 𝑒
−16.76𝑧 

  𝑧 = 0.234 m  

8.10 Reflection by a Perfect Conductor-Normal Incidence  

Wave is entirely reflected se Fig 8.9  

𝐸⃗ |𝐻⃗⃗  can’t exist so none of the energy of incident wave can be transmitted no 

energy is absorbed by perfect conductor (lossless).  
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 𝐸⃗  of incident wave 𝐸𝑖𝑒𝑗 (𝜔𝑡−𝑗𝛽𝑥) 

 Expression of reflected wave = 𝐸𝑟 𝑒𝑗 (𝜔𝑡+𝑗𝛽𝑥) (charge in direction of power flow) 

 Tangential component of 𝐸⃗  must be continuous across boundary and 𝐸⃗  is zero 

within conductor  

                                                                                                             
Figure 8.9 Free Space 

⟹  𝐸𝑖 + 𝐸𝑟 = 0 

 [Tangential component of 𝐸⃗  just outside conductor must be zero]  

⟹  𝐸𝑟 = −𝐸𝑖 

  (at odd multiples of 𝜆/4   𝐸𝑚𝑎𝑥 = 2𝐸
𝑖  at multiples of 𝜆/2 zeroes) 

⟹  𝐸𝑇 = 𝐸
𝑖 𝑒𝑗 (𝜔𝑡−𝛽𝑥) + 𝐸𝑟𝑒𝑗 (𝜔𝑡+𝛽𝑧)    8.43 

  = 𝐸𝑖  [𝑒𝑗(𝜔𝑡−𝛽𝑥) − 𝑒𝑗 (𝜔𝑡+𝛽𝑥)] 

  = −2𝑗 𝐸𝑖 sin 𝛽𝑥 𝑒𝑗 𝜔𝑡 

With 𝐸𝑖  to be real ⟹ 𝐸𝑇 = 2𝐸
𝑖  

sin 𝛽𝑥 sin𝜔𝑡 standing wave        

 Parallelly,  𝐻𝑇 = 𝐻
𝑖  𝑒𝐽 (𝜔𝑡−𝛽𝑥) + 𝐻𝑟𝑒𝐽 (𝜔𝑡+𝛽𝑥)]                                            

  = 𝐻𝑖  [𝑒𝐽 (𝜔𝑡−𝛽𝑥) + 𝑒𝐽 (𝜔𝑡+𝛽𝑥)] 
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  𝐻𝑇 = 2𝐻
𝑖 cos 𝛽𝑥  𝑒𝐽𝜔𝑡 

With 𝐸𝑖  in phase with 𝐻𝑒 ⟹ 𝐻𝑇 = 2𝐻
𝑖 cos 𝛽𝑥 cos𝜔𝑡     8.44 

   (max at surface and multiples of 𝜆/2) 

𝐸𝑇 and 𝐻𝑇 are 90𝑜 out of time phase  ∴ of factor ′𝑓′.  

8.11 Surface Impedance of Conductor  

Surface impedance of conductor is defined as ratio of tangential component of electric 

field strength on the surface of conductor to the linear surface current density 𝑘𝑠 

𝑍𝑠 =
𝐸𝑡

𝐾𝑠
        8.45 

Current density at face of conductor (𝐽 = 𝜎𝐸) decreases exponentially with distance.  

𝐽 = 𝐽0 𝑒
−𝑟𝑧 

𝐽0 conduction current density  

 Average surface current density  

𝐾𝑠 = ∫ 𝐽 𝑑𝑧 = ∫ 𝐽0

∞

0

 𝑒𝑟𝑧
∞

0

 𝑑𝑧 

⟹   𝐾𝑠 = 𝐽0  ∫ 𝑒−𝑟𝑧
∞

0
 𝑑𝑧 =

𝐽0

𝑟
 

And   𝐸𝑡 =
𝐽0

𝜎
 

∴   𝑍𝑠 =
𝐽0

𝜎 (𝐽0/𝑟)
=
𝑟

𝜎
      8.46 

For perfect conductors 𝑟 = √𝐽𝜔𝜇𝜎 

 𝑍𝑠 = √
𝐽𝜔𝜇

𝜎
= 𝜂 
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Or 𝑍𝑠 = √
𝐽𝜔𝜇

𝜎
< 45𝑜        8.60 

 𝑅𝑠 = √
𝜔𝜇

2𝜎
         8.61 

And 𝑋𝑠 = √
𝜔𝜇

2𝜎
         8.62 

Skin effect resistance per unit length   

                                                                               
Figure 8.10 Surface Impedance 

 Skin depth  𝛿 = √
2

𝜔𝜇𝜎
      ∴ 𝑅𝑠 =

1

𝜎𝛿
     8.47 

8.12 Poynting’s Theorem  

The Derivation of Poynting Theorem i.e., “Rate of energy transfer” refers to Poynting’s 

Theorem as can be seen in Fig 8.11 shows power from a source to three receivers at 

different location  

                                                                                                                                
Fig. 8.11 Shows power flow from a source to three Receiver at Different Location 

 M.M.F. (magnetomotive force) can be written as:  
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  𝐽 = ∇ × 𝐻 − 𝜀𝐸̇ (Using Maxwell’s modified Ampere’s law  8.48 

Dimension of current density  

Taking dot product with electric field of Equ (8.25) 

 ∴ 𝐸 ∙  𝐽 = 𝐸 ∙ ∇ × 𝐻 − 𝜀𝐸̇ ∙ 𝐸̇      8.49 

 Dimensions of power per unit volume  

 Identity:  ∇ ∙ 𝐸 × 𝐻 = 𝐻 ∙ ∇ × 𝐸 − 𝐸 ∙ ∇ × 𝐻    8.50 

 Using above identity in Equ (8.2) we get  

⋯   𝐸 ∙ 𝐽 = −∇ ∙ 𝐸 × 𝐻 +𝐻 ∙ ∇ × 𝐸 − 𝜀𝐸 ∙ 𝐸̇ 

Also,   ∇ × 𝐸 = −𝜇𝐻̇       8.67 

(Using faraday’s law in Maxwell’s equation)  

We get  

∴  𝐸 ∙ 𝐽 = −𝜇𝐻 ∙ 𝐻̇ − 𝜀𝐸 ∙ 𝐸̇ − ∇ ∙ 𝐸 × 𝐻    8.68 

Now we can write  

  𝐻 ∙ 𝐻̇ =
1

2

𝜕

𝜕𝑡
 𝐻2  and  𝐸 ∙ 𝐸̇ −

1

2

𝜕

𝜕𝑡
 𝐸2  8.69 

∴  𝐸 ∙ 𝐽 = −
𝜇

2

𝜕

𝜕𝑡
 𝐻2 −

𝜀

2

𝜕

𝜕𝑡
 𝐸2 − ∇ ∙ 𝐸 × 𝐻    8.70 

Integrating over volume,  

∫  𝐸 ∙ 𝐽 𝑑𝑉 = −
𝜕

𝜕𝑡
 ∫ (

𝜇

2
 𝐻2 +

𝜀

2
  𝐸2)

𝑉

 𝑑𝑉 − ∫(∇ ∙ E × H)𝑑𝑉
𝑉𝑉

  𝑜𝑟  

(Using divergence theorem) in R.H.S we get  

⟹  ∫𝐸 ∙ 𝐼 𝑑𝑉 =
−𝜕

𝜕𝑡
 ∫ (

𝜇

2
 𝐻2 +

𝜀

2
 𝐸2)  𝑑𝑉 − ∮ 𝐸 × 𝐻 ∙ 𝑑𝑎

𝑆𝑉
  8.71 
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The Poynting theorem explanation of terms I, II, III in Poynting equation (8.69) are: 

(I) (Instantaneous) Power dissipated in Volume ‘V’ Joule’s law  

 A conductor of cross-sectional area A, carrying current I,  

 Powerless of EI watts per unit length  

Power dissipated per unit volume =
𝐸𝐼

𝐴
= 𝐸𝐽 watts per unit volume or 𝐸 . 𝐽 

 Total power dissipated in a volume  𝑉 → ∫ 𝐸 . 𝑗 𝑑𝑉
𝑉

 

Or dissipated at ohmic (𝐼2𝑅)loss  

Note: if′𝐸′′is due to to source of power, e. g. , batter, then ∫𝐸 ∙ 𝐽 𝑑𝑉  would be used up in driving

the current against the battery voltage CHARGING BATTERY NEGATIVE
 

(II) 
1

2
𝜀𝐸2 stored energy (electric) per unit volume ELECTROSTATIC; 

1

2
 𝜇𝐻2 stored 

energy (magnetic) per unit volume MAGNETOSTATIC (−𝑣𝑒 time derivative of this 

represents rate at which stored energy in volume is decreasing). 

(III) Law of conservation of energy rate of energy dissipated in volume V must equal 

rate at which stored energy in V decreasing plus rate at which energy is entering the 

volume V from outside.  

∴ −∮ 𝐸⃗ × 𝐻⃗⃗ 
𝑆

∙ 𝑑𝑎 rate of flow of energy outward through the surface of volume.  

∴ −∮ 𝐸⃗ × 𝐻⃗⃗ 
𝑆

∙ 𝑑𝑎 rate of flow of energy inward through the surface enclosing 

volume.  

𝑃 = 𝐸⃗ × 𝐻⃗⃗  

 It is Poynting’s theorem that this vector product at any point is a measure of the 

rate of energy flow per unit area at that point.  

Example 8.9  In free space 𝐸 (𝑥, 𝑡) = 150 cos(𝜔𝑡 − 𝛽𝑧) 𝑎̂𝑥   V/m. find the average 

power crossing a circular area of circuit 5m in the plane 𝑍 =constant.  



                                                                                                     Electromagnetic Field Theory 

297 
 

Solution: In complex form   𝐸⃗ = 150 𝑒𝑗 (𝜔𝑡−𝛽𝑧) 𝑎̂𝑥   V/m 

      𝜂 = 120𝜋 Ω 

With propagation in Z direction  

𝐻⃗⃗ =
150

120𝜋
 𝑒𝑗 (𝜔𝑡−𝛽𝑧) 𝑎̂𝑥   𝐴/m  

Average pointing vector  

𝑃𝑎𝑣 =
1

2
 𝑅𝑒(𝐸⃗ × 𝐻⃗⃗ )W/m

2 =
1

2
 (150) (

150

120𝜋
) 𝑎̂𝑥 

With flow normal to area  

 Average power,  

𝑃𝑎𝑣 =
1

2
 (150) (

150

120𝜋
)𝜋 (5)2 = 2343.6 W   𝐴𝑛𝑠 

Example 8.10  A medium has the following characteristics: Propagation Constant 𝑟 =

520 + 𝑗2443.5 per m and intrinsic impedance 𝜂 = 50 < 12𝑜Ω at a wave frequency of 

𝑓 = 300MHz. the electric field is given by 𝐸⃗ 𝑥 = 200 𝑒
𝛼𝑥 cos(6𝜋 108 𝑡 − 𝛽𝑧)𝑎̂𝑥. 

Calculate the expression for magnetic intensity and the average power/m2 at 𝑍 = 1𝑚𝑚, 

given by electromagnetic wave.  

Solution: Given that: 

 𝐸⃗ 𝑥 = 200 𝑒
𝛼𝑥 cos(6𝜋 108 𝑡 − 𝛽𝑧)𝑎̂𝑥

𝛾 = 520 + 𝑗2443.5 = 𝑎 + 𝑗𝛽
𝛼 = 520 Np/m, β = 2443.5 rad/m
𝜂 = 50 < 12𝑜Ω, 𝛽𝑧 = 2.443.5 𝑟𝑎𝑑

𝛼𝑧 = 520Np

 

𝐸⃗ 𝑥 = 200 𝑒
−0.520 cos(6𝜋 108 𝑡 − 140𝑜)𝑎̂𝑥 

= 118.9 cos(6𝜋 108𝑡 − 140𝑜)𝑎̂𝑥   V/m  
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𝐻⃗⃗ 𝑦 =
200

50
  𝑒−0.520 cos(6𝜋 108 𝑡 − 140𝑜 − 120𝑜)𝑎̂𝑦 

∴  𝜂 = |𝜂| < 𝜃𝜂 and |𝜂| = 50 

∴   𝐻⃗⃗ 𝑦 = 2.378 cos(6𝜋 10
8 𝑡 − 152𝑜)𝑎̂𝑥   A/m  

The pointing vector in Z direction  

  𝑃𝑧 = 𝐸𝑥𝐻𝑦 

  = 282.74 cos(6𝜋 × 108𝑡 − 140𝑜) cos(6𝜋 × 108𝑡 − 152𝑜) 

Using the identity  𝐴 cos𝐵 =
cos(𝐴+𝐵)+cos(𝐴−𝐵)

2
  

∴  𝑃𝑧 = 𝐸𝑥𝐻𝑦 =
282.74

2
  cos(12𝜋 × 108𝑡 − 292𝑜) +

282.74

2
cos 12𝑜 

= 138.28 + 141.37 cos  (12𝜋 × 108𝑡 − 292𝑜)   𝜔/𝑚2  

Average power  

 Note that on interpretation of 𝐸⃗ × 𝐻⃗⃗ : Radiation problems  

 CLASSIC ILLUSTRATION: Bar magnet on which electric charge is placed.  

Static electric field crossed with static magnetic field and Poynting’s theorem 

seems to require a continuous circulation of energy around magnet.  

Note: surface integral is over closed surface surrounding volume. If any closed surface is 

taken about bar magnet, 𝐸⃗ × 𝐻⃗⃗  is always zero.  

 Net power flow away from magnet is zero  

∮(𝐸 × 𝐻 + 𝐹) ∙ 𝑑𝑎 = ∮(𝐸 × 𝐻) ∙ 𝑑𝑎 + ∫∇ ∙ 𝐹 𝑑𝑉 = ∮(𝐸 × 𝐻) ∙ 𝑑𝑎−23.9 8.72 

Although 𝐸⃗ × 𝐻⃗⃗  correctly gives power flow “at each point?” 
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 It is seen that it may be possible to write an expression that gives correctly the 

net flow at power through closed surface, it is still not possible to state first where the 

energy is  

Note: (vp) Phase Velocity: is velocity of particles that constitute a wave 
(𝑣𝑔)group Velocity: is velocity of wave or the entire envelop

 

v𝑝 × v𝑔 = c
2 where c is speed of light and (𝑐 = 3 × 108 𝑚/𝑠) 

 

𝑃𝑎𝑣 =
1

2
  
𝐸0
2

|𝜂|
 𝑒𝑎𝛼𝑧 cos 𝜃𝜂 

=
1

2
 
(200)2

50
 𝑒−1.04 cos 12 

= 138.28  W/m2  

8.13 Power and Energy Relations  

 Consider a region of space represented by an array of field cell transmission lines 

of total width W and total height H as in Fig. 8.12 with a plane wave traveling from left to 

right. The electric field 𝐸𝑦 is vertical and the magnetic field Hz is horizontal. The voltage 

𝑉 = 𝐸𝑦𝐻 and the current 𝐼 = 𝐻𝑧𝑊. By analogy to circuits, the power conveyed is  

𝑃 = 𝑉𝐼 = 𝐸𝑦𝐻𝑧𝐻𝑊 = 𝐸𝑦𝐻𝑧𝐴      (𝑊)    8.73 

Where 𝐴 = 𝐻𝑊 = area of field-cell array. The power (surface) density is then  

𝑆 =
𝑃

𝐴
= 𝐸𝑦𝐻𝑧      (𝑊 𝑚

−2)      8.74 

Equ 8.74 relates the scalar magnitudes. The power flow is perpendicular to E and H and it 

can be shown that in vector notation the power density is given by. 

𝑆 = 𝐸 × 𝐻    (𝑊 𝑚−2)  𝑃𝑜𝑦𝑛𝑡𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟     8.75 
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Turning E into H and proceeding as with a right-handed screw gives the direction of S 

perpendicular to both E and H. S is a power surface density called the Poynting vector. Its 

value in 8.75 is the instantaneous Poynting vector. The average Poynting vector is 

obtained by integrating the instantaneous Poynting vector over one period and dividing 

by one period. It is also readily obtained in complex notation from.  

𝑆𝑎𝑣 =
1

2
𝑅𝑒 𝐸 × 𝐻 =

1

2
 𝑥̂ |𝐸𝑦||𝐻𝑧| cos 𝜉    (𝑊 𝑚

−2)   8.76 

Array of 
6 x 3 = 18
field cell
transmission
lines

H

H

E

Ey

S

Hz

Wave traveling left to
 right through area A of
width W and height H

Power through area =  EyHz Hw = SA

y

z

x

1 =  HzW

V = H Ey
W

                                                                             
Figure 8.12  

 Power flow of wave traveling left to right through area of width W and height H is equal 

to Ey Hz HW. 

Where   𝑆𝑎𝑣 = 𝑥̂𝑆 = average Poynting vector W m-2  

  𝐸 = 𝑦̂𝐸𝑦 = 𝑦̂|𝐸𝑦|𝑒
𝑗𝜔𝑡, 𝑉 𝑚−1 

  𝐻 = 𝑧̂𝐻𝑧 = 𝑧̂|𝐻𝑧|𝑒−𝑗(𝜔𝑡−𝜉), 𝐴  𝑚−1 

  𝜉 = time phase angle between 𝐸𝑦  𝑎𝑛𝑑 𝐻𝑧 rad or deg  

H is called the complex conjugate of H, where  
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  𝐻 = 𝑧̂𝐻𝑧 = 𝑧̂|𝐻𝑧|𝑒𝑗(𝜔𝑡−𝜉), 𝐴  𝑚−1 

The quantities H and its complex conjugate H have the same direction but they differ in 

sign in their phase factors. Note that if 𝐸𝑦  𝑎𝑛𝑑 𝐻𝑧 in 8.76 are rms values instead of 

(peak) amplitudes, the factor ½ in 8.76 is omitted.  

The magnitude of the average Poynting vector.  

𝑆𝑎𝑣 =
1

2
𝑅𝑒𝐸𝑦𝐻𝑧 =

1

2
|𝐸𝑦||𝐻𝑧| cos 𝜉           (𝑊 𝑚

−2)   8.77 

The relation corresponding to 8.77 for the average power for a travelling wave on a 

transmission line is.     

𝑃𝑎𝑣 =
1

2
𝑅𝑒 𝑉𝐼 =

1

2
|𝑉||𝐼| cos 𝜃           (𝑊 )   8.78 

Where   𝑉 =voltage between conductors of transmission line, V 

  𝐼 = current through one conductor, A 

  𝐼∗ = complex conjugate if I 

  𝜃 = time phase angle between 𝑉 and 𝐼, rad or deg  

Since the intrinsic impedance of the medium 

𝑍0 =
𝐸

𝐻
=
|𝐸|

|𝐻|
< 𝜉 = |𝑧0| < 𝜉 

The magnitude of the average Poynting vector can also be written  

𝑆𝑎𝑣 =
1

2
𝑅𝑒𝐻𝑧𝐻𝑧

∗𝑍0 =
1

2
|𝐻𝑧|

2𝑅𝑒𝑍0  (𝑊 𝑚
−2)    8.79 

Or  

𝑆𝑎𝑣 =
1

2
𝑅𝑒 

𝐸𝑦𝐸𝑦
∗

𝑍0
=
1

2
|𝐸𝑦|

2
𝑅𝑒

1

𝑍0
    (𝑊 𝑚−2)    8.80 
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Equ (8.79) is very useful, since if the intrinsic impedance Z0 of a conducting medium and 

also the magnetic field Hz at the surface are known, it gives the average Poynting vector 

(or average power per unit area) into the conducting medium.  

Example 8.11 Power into copper sheet. A plane 1-GHz traveling wave in air with peak 

electric field intensity of V m-1 is incident normally on a large copper sheet. Find the 

average power absorbed by the sheet per square meter of area.  

Solution. From (8.76-8.88-8.85), the intrinsic impedance of copper at 1GHz is  

𝑍0 = √
𝜔𝜇

𝜎
< 450 

For copper 𝜇𝑟 = 𝜀𝑟 = 1  𝑎𝑛𝑑 𝜎 = 58 𝑀℧ 𝑚
−1. Hence the real part of Z0 is  

𝑅𝑒𝑍0 = cos 45
0√
2𝜋 × 109 × 4𝜋 × 10−7

5.8 ×  107
= 8.2 𝑚℧ 

Next, we find the value of H at the sheet (tangent to the surface). This is very nearly 

double H for the incident wave. Thus,  

𝐻 = 2
𝐸

𝑍
=
2 × 1

377
  𝐴 𝑚−1 

From 8.79, we find that the average power per square meter into the sheet is tiny:  

𝑆𝑎𝑣 =
1

2
(
2

377
)
2

8.2 × 10−3 = 115n(𝑊 𝑚−2) 

Class work: Poynting vector into aluminum sheet. A 3-GHz wave is incident on a large 

sheet of aluminum (𝜎 = 3.5 × 10−7 ℧/𝑚). If the field E = 15 V/m, find the average 

power absorbed by the sheet (W/m2). Ans. 366n W/m2. 

 The relation corresponding to 8.79 and 8.80 for the average power of a traveling 

wave on a travelling wave on a transmission line are.  

𝑃𝑎𝑣 =
1

2
𝑅𝑒 𝐼𝐼∗𝑍0 =

1

2
|𝐼|2𝑅𝑒 Z0          (𝑊 )   (8.81a) 
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𝑃𝑎𝑣 =
1

2
𝑅𝑒 

𝑉𝑉∗

𝑍0
=
1

2
|𝑉|2 Re

1

𝑍0
           (𝑊 )   (8.81b)   

When Z0 is real (𝜉 = 0) and E and H are rms values, we have for the traveling space 

wave.  

𝑆𝑎𝑣 = 𝐸𝐻 = 𝐻
2𝑍0 =

𝐸2

𝑍0
               (𝑊 𝑚−2)   8.82 

And for the traveling wave on a transmission line (𝜃 = 0  and  𝑉  and 𝐼 rms) 

𝑃𝑎𝑣 = 𝑉𝐼 = 𝐼
2𝑍0 =

𝑉2

𝑍0
     (𝑊)   8.83 

From Equs (8.74-8.81) the energy density 𝑤𝑒 at a point in an electric field is  

𝑤𝑒 =
1

2
 𝜀𝐸2    (𝐽𝑚−3)      8.84 

Where 𝜀 =permittivity of medium, FM-1 and E = electric field intensity, Vm-1  

From Equs (8.74-8.84-8.89) the energy density wm at a point in a magnetic field is  

𝑤𝑒 =
1

2
𝜇𝐻2       (𝐽𝑚−3)     8.85 

 Where 𝜇 =permeability of medium, H m-1, and H = magnetic field, A m-1 
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Figure 8.13 

 Total electric and magnetic energy densities at three instants of time for a pure standing 

wave. Conditions are shown over a distance of 1𝜆 (𝛽𝑥 = 2𝜋). There is no net 

transmission of energy in a pure standing wave, but locations of energy oscillate back 

and forth. The situation here (pure standing wave) is identical with that in a short-

circuited transmission line or in a resonator.  

In a traveling wave in an unbounded lossless medium  

𝐸

𝐻
= √

𝜇

𝜀
       8.86 

Substituting from H from 8.86 in 8.85, we have  

𝑊𝑚 =
1

2
𝜇𝐻2 =

1

2
𝜀𝐸2 = 𝑊𝑒     8.87 

Thus, the electric and magnetic energy densities in a plane traveling wave are equal and 

the total energy density w is the sum of the electric and magnetic energies. Thus,  
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𝑤 = 𝑤𝑒 + 𝑤𝑚 =
1

2
𝜀𝐸2 +

1

2
𝜇𝐻2   (𝐽 𝑚−3       𝑬𝒏𝒆𝒓𝒈𝒚 𝒅𝒆𝒏𝒔𝒊𝒕𝒚   8.88 

Or  

𝑤 = 𝜀𝐸2 = 𝜇𝐻2   (𝐽 𝑚−3)     8.89 

Two waves of equal magnitude traveling in opposite direction produce a standing wave. 

There is no net transfer of energy in a pure standing wave but energy does oscillate back 

and forth like water slops in a pail. At one instant the energy is all electric as in Fig 8.13a 

with maximum at point A. one quarter of a period later, the energy is all magnetic, as in 

Fig 8.13c, with maximum at B, which is at a distance 𝜆/8 from A. one quarter period later 

the energy is all back at A. at intermediate times the energy is moving and is half electric 

and half magnetic as in Fig 8.13b. 

8.14 Linear, Elliptical, and Circular Polarization 

Consider a plane wave traveling out of the page (positive z direction) as in Fig 8.14a, with 

the electric field at all times in the y direction. This wave is said to be linearly polarized (in 

the y direction). As a function of time and position, the electric field is given by 

𝐸𝑦 = 𝐸2 sin(𝜔𝑡 − 𝛽𝑧) 

 

y

E2

z x

y y

E2 E2

z z
(out)

x x

E E

E1 E1

(a) (b) ( )c
                                                                                       

Figure 8.14 
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(a) Linear, (b) elliptical, and (c) circular polarization for left circularly polarized wave 

approaching  

 

Electric field is given by  

𝐸𝑦 = 𝐸2 sin(𝜔𝑡 − 𝛽𝑧)      8.90 

 

In general, the electric field of a wave traveling in the z direction may have both a 

y component and an x component as suggested in Fig. 8.14b. in this more general 

situation, with a phase difference 𝛿 between the components, the wave is said to be 

elliptically polarized. At a fixed value of z the electric vector E rotates as a function of 

time, the tip of the vector describing an ellipse called the polarization ellipse. The ratio of 

the major to minor axes of the polarization ellipse is called the axial ratio (AR). Thus, for 

the wave Fig 8.14b, 𝐴𝑅 = 𝐸2/𝐸1. Two extreme cases of elliptical polarization correspond 

to circular polarization E1=E2 and AR = 1, while for linear polarization E1 = 0 and AR =∞.   

 In the most general case of elliptical polarization, the polarization ellipse may 

have any orientation, as suggested in Fig. 8.15. The elliptically polarized wave may be 

expressed in terms of two linearly polarized components, one in the x direction and one 

in the y direction. Thus, if the wave is traveling in the positive z direction (out of the 

page), the electric field components in the x and y direction are 

𝐸𝑥 = 𝐸1 sin(𝜔𝑡 − 𝛽𝑧)     8.91 

𝐸𝑦 = 𝐸2 sin(𝜔𝑡 − 𝛽𝑧 + 𝛿)     8.92 
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Figure 8.15 Polarization ellipse at tilt angle 𝜏 showing instantaneous components Ex and 

Ey amplitudes (or peak values) E1 and E2.  

 

Where  𝐸1 = amplitude of wave linearly polarized in x y direction  

  𝐸2 = amplitude of wave linearly polarized in y direction  

  𝛿 = time-phase angle by which 𝐸𝑦  leads 𝐸𝑥 

Combining Equs (8.91 and 8.92) gives the instantaneous total vector field E. 

𝑬 = 𝒙𝐸1 sin(𝜔𝑡 − 𝛽𝑧) + 𝑦̂𝐸2 sin(𝜔𝑡 − 𝛽𝑧 + 𝛿)   8.93 

𝐴𝑡 𝑧 = 0, 𝐸𝑥 = 𝐸1 sin𝜔𝑡  𝑎𝑛𝑑 𝐸𝑦 = 𝐸2 sin(𝜔𝑡 + 𝛿). Expanding 𝐸𝑦 yields  

𝐸𝑦 = 𝐸2(sin𝜔𝑡 cos 𝛿 + cos 𝑡 sin 𝛿)    8.94 

From the relations for Ex we have sin𝜔𝑡 = 𝐸𝑥/𝐸1 and cos𝜔𝑡 = √1 − (𝐸𝑥/𝐸1)2.  

Introducing these in Equ 8.94 eliminates 𝜔𝑡, and on rearranging we obtain  
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𝐸𝑥
2

𝐸1
2 −

2𝐸𝑥𝐸𝑦 cos𝛿

𝐸1𝐸2
+
𝐸𝑦
2

𝐸2
2 sin

2 𝛿     8.95 

𝑎𝐸𝑥
2 − 𝑏𝐸𝑥𝐸𝑦 + 𝑐𝐸𝑦

2 = 1    8.96 

Or  

Where    a =
1

𝐸1
2𝑠𝑖𝑛2𝛿

      𝑏 =
2 cos 𝛿

𝐸1𝐸2𝑠𝑖𝑛2𝛿
      𝑐 =

1

𝐸2
2𝑠𝑖𝑛2𝛿

 

Equ 8.96 describes a (polarization) ellipse, as in Fig 8.15. The line segment OA is the 

semimajor axis, and the line segment OB is the semi minor axis. The tilt angle of the 

ellipse is 𝜏. The axial ratio is.  

𝐴𝑅 =
𝑂𝐴

𝑂𝐵
  (1 ≤ 𝐴𝑅 ≤ ∞)  𝐴𝑥𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜     8.97 

    If  𝐸1 = 0, the wave is linearly polarized in the y direction. If 𝐸2 = 0, the wave is 

linearly polarized in the x direction. If 𝛿 = 0 and 𝐸1 = 𝐸2, the wave is also linearly 

polarized but in a plane at an angle of 450 with respect to the x axis (𝜏 = 450). 

 If 𝐸1 = 𝐸2 𝑎𝑛𝑑 𝛿 = ±90
0, the wave is circularly polarized. When 𝛿 = +900, the 

wave is left circularly polarized, and when 𝛿 = −900, the wave is right circularly 

polarized. For the case 𝛿 = −900 and for 𝑧 = 0, 𝑎𝑛𝑑 𝑡 = 0, we have from Equs (8.91 

and 8.92) that 𝐸 = 𝑦̂𝐸2, as in Fig 8.16a. one quarter cycle later (𝜔𝑡 = 900), 𝐸 = 𝑥̂𝐸1, as 

in Fig 8.16b. thus at a fixed position (𝑧 = 0) the electric field vector rotates clockwise 

(viewing the wave approaching). According to the IEEE definition, this corresponds to left 

circular polarization. The opposite direction (𝛿 = +900) corresponds to right circular 

polarization.  
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Figure 8.16 Instantaneous orientation of electric field vector E at two instants of time for 

a left circularly polarized wave which is approaching (out of page). 

 If the wave is viewed receding (from negative z axis in Fig. 8.16), the electric 

vector appears to rotates in the opposite direction. Hence clockwise rotation of E with 

the wave approaching is the same as counterclockwise rotation with the wave receding. 

Thus, unless the wave direction is specified, there is a possibility of ambiguity as to 

whether the wave is left or right-handed. This can be avoided by defining the polarization 

with the aid of an axial mode helical antenna. Thus, a right-handed helical antenna 

radiates (or receives) right circular (IEEE) polarization. A right-handed helix, like a right-

handed screw, is right-handed regardless of the position from which it is viewed. There is 

possibility here of ambiguity.  

 The institute of Electrical and electronics engineers (IEEE) definition is opposite to 

the classical optics definition which had been in use for centuries. The intent of the IEEE 

standards committee was to make the IEEE definition agree with the classical optic 

definition, but it got turned around so now we have two definitions. In this book we use 

the IEEE definition, which has the advantage of agreement with helical antennas as noted 

above.  

8.15 Poynting Vector for Elliptically and Circularly Polarized Waves 

In complex notation the Poynting vector is  

𝑆 =
1

2
 𝐸 × 𝐻∗      8.98 

The average Poynting vector is the real part of (1), or  
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𝑆𝑎𝑣 = 𝑅𝑒 𝑆 =
1

2
𝑅𝑒 𝐸 × 𝐻∗     

 8.99 

We can also write  

𝑆𝑎𝑣 =
1

2
𝑧̂
𝐸1
2 + 𝐸2

2

𝑍0
=
1

2
𝑧̂
𝐸2

𝑍0
      𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑦𝑛𝑡𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟                             8.100 

Where 𝐸 = √𝐸1
2 + 𝐸2

2 is the amplitude of the total E field.  

Example 8.12  Elliptically polarized wave power. An elliptically polarized wave traveling 

in the positive z direction in air has 𝑥 and 𝑦 components.  

𝐸𝑥 = 3 sin(𝜔𝑡 − 𝛽𝑥)           (𝑉 𝑚
−1) 

𝐸𝑦 = 6 sin(𝜔𝑡 − 𝛽𝑥 + 75
0)           (𝑉 𝑚−1) 

Find the average power per unit area conveyed by the wave.  

 

Solution. The average power per unit area is equal to the average Poynting vector, which 

from Equ (8.100) has a magnitude 

𝑆𝑎𝑣 =
1

2

𝐸2

𝑍
=
1

2

𝐸1
2 + 𝐸2

2

𝑍
 

From the stated conditions, the amplitude 𝐸1 = 3  𝑉𝑚
−1 and the amplitude 𝐸2 =

6 𝑉𝑚−1. Also, for air 𝑧 = 377Ω. Hence 

𝑆𝑎𝑣 =
1

2

32 + 62

377
=
1

2

45

377
≈ 60𝑚  𝑊𝑚−2   𝐴𝑛𝑠 

Class work:  EP wave power. An elliptically polarized (EP) wave in a medium with 

constant 𝜎 = 0, 𝜇𝑟 = 2, 𝜀𝑟 = 5 has H-field components (normal to the direction of 

propagation and normal to each other of amplitudes 3 and 4 A/m. find the average 

power conveyed through an area of 5 m2 normal to the direction of propagation. Ans 

14.9kW. 
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8.16 The Polarization Ellipse and the Poincare Sphere    

In the Poincare sphere representation of wave polarization, the polarization state is 

described by a point on a sphere where the longitude and latitude of the point are 

related to parameters of the polarization ellipse (see Fig. 8.17) as follows.  

Longitude = 2𝜏    8.101 

Latitude = 2𝜀 

Where 𝜏 = tilt angle, 0𝑜 ≤ 𝜏 ≤ 180𝑜  (𝑠𝑒𝑒 𝑓𝑜𝑜𝑡𝑛𝑜𝑡𝑒)𝑎𝑛𝑑 𝜀 = 𝑡𝑎𝑛−1 (1/∓𝐴𝑅),−45𝑜 ≤

𝜀 ≤ +45𝑜 . The axial ration (AR) and angle 𝜀 are negative for right handed and positive for 

left handed (IEEE) polarization.  

2 (latitude)

(Great-Circle 

angle

(Equator-to-
great-circle

angle)

)




2 (latitude)

Polarization state
M( ,) or P ()

                                                                                       
Figure 8.17 Poincare sphere showing relation of angles 𝜀, 𝜏, 𝛿, 𝛾 

The polarization state described by a point on a sphere here can also be expressed in 

terms of the angle subtended by the great circle drawn from a reference point on the 

equator and the angle between the great circle and the equator as follows.  

Great circle angle = 2γ 
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Equator − to − great − circle angle = δ   8.102 

Whereγ = 𝑡𝑎𝑛−1 (
𝐸2

𝐸1
) , 0𝑜 ≤ γ ≤ 90𝑜 , 𝑎𝑛𝑑 𝛿 = phase difference between 𝐸𝑦 𝑎𝑛𝑑 𝐸𝑥 −

1800 ≤ 𝛿 ≤ 1800.   

 The geometric relations of 𝜏, 𝜀 𝑎𝑛𝑑 𝛾 to the polarization ellipse is illustrated in 

Figure 8.18. The trigonometry interrelations of 𝜏, 𝜀, 𝛾 𝑎𝑛𝑑 𝛿 are as follows: 

cos 2𝛾 = cos 2𝜀 cos 2𝜏

tan 𝛿 =
tan2𝜀

sin2𝜏

tan 2𝜏 = tan 2𝛾 cos 𝛿
sin 2𝜀 = sin 2𝛾 sin 𝛿

            𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠   8.103 

Knowing 𝜏 𝑎𝑛𝑑 𝜀  can determine 𝛾  𝑎𝑛𝑑 𝛿or vice versa. It is convenient to describe the 

polarization state by either of the two sets of angles (𝜀, 𝜏) 𝑜𝑟 (𝛾, 𝛿) which describe a 

point on the Poincare sphere (Fig. 8.18). Let the polarization state as a function of 

𝜀 𝑎𝑛𝑑 𝜏 be designated by 𝑀(𝜀, 𝜏), or simply M and the polarization state as a function of 

𝛾  𝑎𝑛𝑑 𝛿 be designated by 𝑃(𝛾, 𝛿), of simply P, as in Fig. 8.19.  

 As an application of the Poincare sphere representation (see Fig 8.20) it may be 

shown that the voltage response V of an antenna to a wave of arbitrary polarization is 

given by  

𝑉 = 𝑘 cos
𝑀 𝑀𝑎

2
         𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒   

 8.104 

Where   MMa = angle subtended by great circle line from polarization state M to 

Ma  

 M  = Polarization state of wave  

 Ma = Polarization state of antenna  

 K = Constant  

The polarization state of the antenna is defined as the polarization state of the wave 

radiated by the antenna when it is transmitting. The factor k in (4) involves the field 



                                                                                                     Electromagnetic Field Theory 

313 
 

strength of the wave and the size of the antenna. An important result to note is that, if 

MMa = 00, the antenna is matched to the wave (polarization state of wave same as for 

antenna) and the response is maximized. However, if MMa = 1800, the response is zero. 

This can occur, for example, if the wave is linearly polarized in the y direction while the 

antenna is linearly polarized in the x direction; or if the wave is left circularly polarized 

while the antenna is right circularly polarized. More generally we may say that an 

antenna blind to a wave of opposite (or antipode) polarization state. 

Minor axis
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y 
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ajo

r
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Figure 8.19 Polarization ellipse showing relation of angles 𝜀, 𝛾, 𝑎𝑛𝑑 𝜏, 
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Figure 8.20 The match angle MMa between the polarization state of wave (M) and 

antenna (Ma). for MMa = 00, the match is perfect. For MMa = 1800, the match is zero.   

 Referring to 8.104 a polarization matching factor F (for power) is given by  

𝐹 = 𝑐𝑜𝑠2
𝑀𝑀𝑎

2
     8.105 

Thus, for a perfect match the match angle MMa = 00 and F = 1 (states of wave and 

antenna the same). For a complete mismatch the match angle MMa = 1800 and F = 0 (Fig. 

8.20). 

 For a linearly polarization, 
𝑀𝑀𝑎

2
= ∆𝜏 and 8.105 reduces to  

𝐹 = 𝑐𝑜𝑠 2 ∆𝜏      8.106 

Where ∆𝜏 difference between the tilt angles of wave and antenna. 

 In the above discussion we have assumed a completely polarized wave, that is 

one where Ex, Ey, and 𝛿 are constant. In an unpolarized wave they are not. Such a wave 

result when the vertical component is produced by one noise generator and the 

horizontal component by a different noise generator. Most cosmic radio sources are 

unpolarized and can be received equally well with an antenna of any polarization. If the 

wave is completely unpolarized, 𝐹 =
1

2
 regardless of the state of polarization of the 

antenna.  



                                                                                                     Electromagnetic Field Theory 

315 
 

Example 8.13  Polarization matching. Find the polarization matching factor F for a left 

elliptically polarized wave (w) with (AR) = 4 and 𝜏 = 15𝑜 incident on a right elliptically 

polarized antenna (a) with AR = -2 and 𝜏 = 45𝑜.  

From (1), 2𝜀 (𝑤) = 28.1𝑜 and 2𝜀 (𝑎) = 53.1𝑜 . Thus, the wave polarization state M is at 

latitude +28.1𝑜 and longitude 300 while the antenna polarization state Ma is at latitude 

−−53.1𝑜 and longitude 900. Locate these positions on a globe and measure M Ma but 

also illustrate the geometry. Then compare this result with an analytical one as follows: 

From proportional triangles obtain 2𝜏(𝑤) = 20.7𝑜 along the equator and 2𝜏(𝑎) = 39.30 

further along the equator. Next from (3), obtain 2𝛾(𝑤) = 34.3𝑜 and 2𝛾(𝑎) = 62.4𝑜 . 

Thus, the total great-circle angle 𝑀 𝑀𝑎 = 2𝛾(𝑤) + 2𝛾(𝑎) = 96.7
𝑜 and the polarization 

matching factor.  

𝐹 = 𝑐𝑜𝑠2  (
96.7

2
) = 0.44 

Or the received power is 44 percent of the maximum possible value. Ans 

Class work:  Antenna response. Find the relative voltage response for an antenna 

oriented to receive  

a wave traveling in the +x direction if the wave is given by 𝐸 = 𝑧̂ sin(𝜔𝑡 −

𝛽𝑥)  𝑚𝑉(𝑟𝑚𝑠)/𝑚 and the parameters for the antenna are: (a) AR = -1; (b) 𝐴𝑅 =

∞, 𝜏 = 0𝑜 (with respect to y direction); (c) 𝐴𝑅 = ∞, 𝜏 = 45𝑜; (d) 𝐴𝑅 = ∞, 𝜏 =

90𝑜; and (e) 𝐴𝑅 = 1.5, 𝜏 = 67.5𝑜 . Ans (a) 0.707; (b) 0; (c) 0.707; (d) 1; € 0.79. 

Class work:  Polarization matching factor. Find the polarization matching factor F for 

the following  

cases: (a) wave VLP, antenna HLP; (b) wave SLP (𝜏 = 600), antenna HLP; (c) wave 

RCP antenna REP; (d) wave RCP antenna VLP; (e) wave RCP, antenna HLP; (f) wave 

RCP, antenna REP (𝐴𝑅 = −3, 𝜏 = 00) and (g) wave LEP 𝐴𝑅 = 4, 𝜏 = 00), antenna 

REP 𝐴𝑅 = −4, 𝜏 = 450). VLP = vertical linear polarization, HLP = horizontal linear 

polarization, SLP = slant linear polarization, RCP = right circular polarization, LCP = 

left circular polarization, REP = right elliptical polarization and LEP = left elliptical 

polarization. Ans (a) 0; (b) 0.25; (c) 0 (d) 0.5 (e) 0.5; (f) 0.8 (g) 0.39.  
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8.17 Oblique Incidence: Reflection and Refraction  

consider a linearly polarized plane wave obliquely incident on a boundary between two 

media as shown in Fig. 8.21. The incident wave (from medium 1) makes an angle of 𝜃𝑖  

with the y axis, the reflected wave (medium 1) makes an angle of 𝜃𝑟 with the y axis and 

the transmitted wave make an angle 𝜃𝑟 with the negative y axis. 

 Consider two cases: (1) the electric field perpendicular to the plane of incidence 

(the xy plane) and (2) the electric field parallel to the plane of incidence. These waves are 

said to be perpendicularly polarized and parallel polarized, respectively. The field vectors 

shown in Fig. 8.21 are for the case of perpendicular polarization. It is clear that any 

arbitrary plane wave can be resolved into perpendicular and parallel components.  

Perpendicular Case (E) 

From the boundary conditions.  

𝜂1 sin 𝜃𝑖 = 𝜂1 sin 𝜃𝑟 = 𝜂2 sin 𝜃𝑡    8.107 
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Figure 8.21 Geometry in the plane of incidence (x-y plane or plane of the page) for 

linearly polarized wave at oblique incidence and for perpendicular polarization. The z 

direction is outward from the page. 
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From the first equality  

𝜃𝑟 = 𝜃𝑖       8.107.1 

i.e., the angle of reflection is equal to the angle of incidence. From the second equality.  

 

sin 𝜃𝑡 =
𝜂1

𝜂2
 sin 𝜃𝑖    𝑆𝑛𝑒𝑙𝑙

′𝑠 𝑙𝑎𝑤     8.108 

Where 𝜂1  𝑎𝑛𝑑 𝜂2 are the indices of refraction of medium 1 and medium 2, respectively. 

Equ (8.108) is known as Snell’s law and is a relation of fundamentals importance in 

geometrical optics. For a lossless medium the index of refraction 𝜂 can be written as 

equal to 𝜇𝑟𝜀𝑟 and Snell’s law becomes.  

 

sin 𝜃𝑡 = √
𝜇1𝜀1

𝜇2𝜀2
        𝑆𝑛𝑒𝑙𝑙′𝑠 𝑙𝑎𝑤    8.109 

Example 8.13 Polystyrene-air interface. Polystyrene has a relative permittivity of 2.7. if a 

wave is incident at an angle of 𝜃𝑖 = 30
𝑜from air onto polystyrene, (a) calculate the angle 

of transmission 𝜃𝑡 and (b) interchange polystyrene and air and repeat the calculation.  

Solution. From air onto polystyrene 𝜀1 = 𝜀0, 𝜇1 = 𝜇0, 𝜀2 = 2.7 𝜀0  𝑎𝑛𝑑 𝜇2 = 𝜇0. From (3)  

sin 𝜃𝑡 = √
1

2.7
(0.5) = 0.304 

𝜃𝑡 = 17.7
0  𝐴𝑛𝑠  (𝑎) 

From Polystyrene onto air 𝜀1 = 2.7𝜀0, 𝜇1 = 𝜇0, 𝜀2 = 𝜀0  𝑎𝑛𝑑 𝜇2 = 𝜇0 

sin 𝜃𝑡 = √2.7(0.5) = 0.822 

𝜃𝑡 = 52.2
0  𝐴𝑛𝑠  (𝑏) 

We have also  
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−cos 𝜃𝑖 + 𝜌⊥ cos 𝜃𝑖 = −𝜏
𝑍1

𝑍2
cos 𝜃𝑡     

 8.110 

And     1 + 𝜌⊥ = 𝜏⊥      8.111 

And on substituting Equs (8.111 into 8.110) and solving for the Fresnel reflection 

coefficient 𝜌⊥, we have  

𝜌⊥ =
𝑍2 cos𝜃𝑖−𝑍1 cos𝜃𝑡

𝑍2 cos𝜃𝑖+𝑍1 cos𝜃𝑡
      8.112  

Where 𝑍1 and 𝑍2 are the impedance of medium 1 and medium 2, respectively. It is seen 

that the previously derived reflection coefficient for normal incidence, Equs (8.108-113-

8.118). Is obtained as a special case; when 𝜃𝑖 = 0. 

 If medium 2 is a perfect conductor 𝑍2 = 0  𝑎𝑛𝑑 𝜌⊥ = 1. If both media are lossless 

nonmagnetic dielectric (6) becomes.  

𝜌⊥ =

cos𝜃𝑖−√(𝜀 2
𝜀1

)−𝑠𝑖𝑛2𝜃𝑖

cos𝜃𝑖+√(
𝜀2
𝜀1
)−𝑠𝑖𝑛2 𝜃𝑖

             𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ⊥   8.113 

 Provided medium 2 is a denser dielectric than medium 1 (𝜀2 > 𝜀1), the quantity under 

the square root will be positive and 𝜌⊥ will be real. If, however, the wave is incident from 

the denser medium onto the less dense medium (𝜀1 > 𝜀2), and if 𝑠𝑖𝑛2𝜃𝑖 ≥ 𝜀1/𝜀2 then, 

𝜌⊥ becomes complex and |𝜌⊥| = 1. Under these conditions, the incident wave is totally 

internally reflected back into the denser medium. The incident angle for which 𝜌⊥ = 1 <

00 is called the critical angle 𝜃𝑖𝑐. From 8.113 it is seen that this happens when the radical 

is zero, so that  

𝜃𝑖𝑐 = 𝑠𝑖𝑛
−1 √

𝜀2

𝜀1
        𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑔𝑙𝑒     8.114 

Defines the critical angle. For all angles greater than the critical angle, |𝜌⊥| = 1. Using 

Snell’s law, we see that when 𝜃𝑖 = 𝜃𝑖𝑐  𝑡ℎ𝑒𝑛 sin 𝜃𝑡 > 1,  𝑎𝑛𝑑 cos 𝜃𝑡 must be imaginary, 

i.e. 
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cos 𝜃𝑡 = √1 − 𝑠𝑖𝑛2𝜃𝑡 = 𝑗𝐴      8115 

Where 𝐴 = √(𝜀1/𝜀2)𝑠𝑖𝑛2𝜃𝑖 − 1 is a real number  

The electric field in the less dense medium can now be written  

𝐸𝑡 = 𝑧̂𝜏⊥𝐸0 exp(−𝛼𝑦) exp(𝑗𝛽2𝑥 sin 𝜃𝑡)    8.116 

Where    𝛼 = 𝛽2𝐴 = 𝜔√𝜇2𝜀2√
𝜀1

𝜀2
 𝑠𝑖𝑛2𝜃𝑖 − 1    8.117 

Thus, 𝐸⊥ in the less dense medium has a magnitude 𝜏⊥ 𝐸0, decaying exponentially away 

from the surface (y direction) and propagating without loss in the x direction. Waves 

whose fields are of the form of Equa (8.116) are called surface waves. These results can 

be summarized by the principle of total internal reflection as follows. When a wave is 

incident from the denser onto the less dense medium at an angle equal to or exceeding 

the critical angle, the wave will be totally internally reflected and will also be 

accompanied by a surface wave in the less dense medium.  

 

Example 8.14  Total internal reflection with surface wave. Referring to Fig. 8.22, a 

linearly polarized plane wave is incident from water onto the water-air interface at 450. 

Calculate the magnitude of the electric field in air (a) at the interface and (b) 𝜆/4 above 

the surface if the incident electric field 𝐸𝑖 = 1 𝑉𝑚
−1. Take the water constants to be 

those of distilled water: 𝜀𝑟 = 81, 𝜇𝑟 = 1, 𝜎 ≈ 0. 
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Figure 8.22 Total internal reflection of incident wave with accompanying surface wave 

which attenuates exponentially above surface (y direction) as shown by graph at left. No 

power is transmitted in y direction (up).   

Solution. From Equ (8.101), the critical angle  

𝜃𝑖𝑐 = 𝑠𝑖𝑛
−1√

1

81
= 6.38𝑜 

Thus, the angle of incidence 𝜃𝑖𝑐 (= 45
0) exceeds the critical angle and the wave will be 

totally internally reflected (see Fig. 8.22 From 8.100 

sin 𝜃𝑡 = √81 (0.707) = 6.36 

From Equ (8.115)  

cos 𝜃𝑡 = 𝑗𝐴 = √1 − 6.362 = 𝑗6.28 

From Equ (8.117) 

𝛼 = 𝛽2𝐴 =
2𝜋

𝜆0
6.28 =

39.49

𝜆0
 𝑁𝑝 𝑚−1 

From Equs (8.102 and 8.104), 
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𝜏⊥ = 1 + 𝜌⊥ = 1 +
0.707 − √

1
81 − 0.5

0.707 + √
1
81 − 0.5

= 1.42 < −44.64𝑜 

Therefore, the magnitude of the field strength is  

(a) At the interface: 

|𝐸𝑡| = 1.42 𝑉 𝑚
−1 

(b) 𝜆/4 away from the interface:  

          

|𝐸𝜏| = 1.42 exp (−
39.49

𝜆0

𝜆0
4
) = 73.2 𝜇 𝑉𝑚−1     𝐴𝑛𝑠     (𝑎) 

Thus, the field 𝜆/4 above the surface is  

20 log
73.2 × 10−6

1.42
= −85.8𝑑𝐵       𝐴𝑛𝑠      (𝑏) 

Less than the field at the surface. Recalling that a power ratio of 1 billion equals 90dB, it 

is evident that the field attenuates very rapidly above the surface (in the y direction) (see 

Fig. 8.22), meaning that the surface is very tightly bound to the water surface. Note that 

sin 𝜃𝑡 is greater than 1 but real, while cos 𝜃𝑡  is imaginary, from Equ (8.116)  

𝐸𝑡 = 𝑧̂𝜏⊥𝐸0𝑒
−(𝛽2𝐴)𝑦𝑒𝑗𝛽2𝑥 sin𝜃𝑡        8.118 

And  

                   𝐻𝑡 = (−
𝑥̂

𝑗𝐴
+ 𝑦̂ sin 𝜃𝑡) 𝜏⊥

𝐸0
𝑍2
𝑒−(𝛽2𝐴)𝑦 𝑒𝑗𝛽2𝑥 sin𝜃𝑡                         8.119                    

Where 𝐴 = −√𝑠𝑖𝑛2𝜃𝑡 − 1. 

From Equs (8.118 and 8.119), the average Poynting vector of the wave in the y direction 

in air (above the water surface) is  
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𝑆𝑦(𝑎𝑣) =
1

2
 𝑅𝑒𝐸 × 𝐻∗ = 𝑦̂

1

2
𝐸𝑡𝑧𝐻𝑡𝑥 sin 𝜙 cos𝜙 

Where 𝜙 =space angle between E and H (= 900) 𝑎𝑛𝑑 𝜃 =time phase angle between E 

and H. 

The exponentials in Equs (8.118 and 8.119) are identical. However, 𝐻𝑡𝑥 has a factor 

where 𝐸𝑡𝑧 does not, indicating a 900 time phase difference between E and H. hence, 𝜃 =

900, and since sin 𝜃 = sin 900 = 1, 

𝑆𝑦(𝑎𝑣) =
1

2
𝐸𝑡𝑧𝐻𝑡𝑥 cos 90

0 = 0    8.120 

Thus, no power is transmitting in the y direction (wave reactive). Both 𝐸𝑡   𝑎𝑛𝑑 𝐻𝑡 decay 

exponentially with y. similar waves, called evanescent waves, exist in hollow conducting 

wave guides at wavelength too long to propagate through the guide 

 The wave in medium 2 (air) involving 𝐸𝑡𝑧 and 𝐻𝑡𝑦 propagate without attenuation 

as a surface wave in the x direction with a velocity 𝑉𝑥 equal to the wave velocity in the 

water (medium 1) as observed parallel to the x axis (𝑣𝑥 = 𝑣𝑤𝑎𝑡𝑒𝑟/ sin 𝜃𝑡). The traveling 

wave is simply the matching field at the boundary. Total internal reflection with a surface 

wave can also occur for 𝐸||, but the details differ. 

8.17.1 Parallel case (𝑬||) 

Consider now the case of parallel (||) polarization. The geometry is the same as in Fig. 

8.21 but with 𝐸𝑖 , 𝐸𝑟  𝑎𝑛𝑑 𝐸𝑡 parallel to the plane of incidence as would be obtained by 

replacing 𝐻𝑡  𝑏𝑦 𝐸𝑖 , 𝐻𝑟 𝑏𝑦 𝐸𝑟  𝑎𝑛𝑑 𝐻𝑡 𝑏𝑦 𝐸𝑡 . By matching boundary conditions, as before, 

it is found that the angle of incidence equals the angle of reflection and that Snell’s law 

(2) holds. It can also be shown that 

1 + 𝜌|| =
cos𝜃𝑡

cos𝜃𝑖
 𝜏||     8.121 

The Fresnel reflection coefficient is found to be  

𝜌|| =
𝑍2 cos𝜃𝑡−𝑍1 cos𝜃𝑖

𝑍1 cos𝜃𝑖−𝑍2 cos𝜃𝑡
      8.122 

Which for lossless nonmagnetic dielectrics becomes  
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𝜌|| =
−(
𝜀2
𝜀1
)cos𝜃𝑖+√(

𝜀2
𝜀1
)−sin2 𝜃𝑖

(
𝜀2
𝜀1
)cos𝜃𝑖+√(

𝜀2
𝜀1
)−sin2 𝜃𝑖

      𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ||  8.123 

And reduces to 𝜌∥ = −1 if medium 2 is a perfect conductor.  

 It is of especial interest that, for parallel polarization, it is possible to find an 

incident angle so that 𝜌∥ = 0 and the wave is totally transmitted into medium 2. This 

angle, called the Brewster angle 𝜃𝑖𝐵 , can be found by setting the numerator of Equ 

(8.123) to zero, giving.  

𝜃𝑖𝐵 = sin
−1√

𝜀2/𝜀1

1+(𝜀2/𝜀1)
= tan−1√

𝜀2

𝜀1
             𝐵𝑟𝑒𝑤𝑠𝑡𝑒𝑟 𝑎𝑛𝑔𝑙𝑒   8.124 

 

The Brewster angle is also sometimes called the polarizing angle since a wave composed 

of both perpendicular and parallel components and incident at the Brewster angle 

produces a reflected wave with only a perpendicular component. Thus, circular polarized 

wave incident at the Brewster angle becomes linearly polarized on reflection.  

Example 8.15 Brewster angle. A parallel polarized wave is incident from air onto (a) 

distilled water (𝜀𝑟 = 81), (b) flint glass (𝜀𝑟 = 10) and (c) paraffin (𝜀𝑟 = 2). Find the 

Brewster angle for each of these cases.  

Solution  

𝜃𝑖𝐵 = tan
−1 √81 = 83.7𝑜  𝐴𝑛𝑠  (𝑎) 

𝜃𝑖𝐵 = tan
−1 √10 = 72.4𝑜  𝐴𝑛𝑠  (𝑏) 

𝜃𝑖𝐵 = tan
−1√2 = 54.7𝑜  𝐴𝑛𝑠  (𝑐) 

Example 8.16  Effect of ground reflection on antenna patter. A linear in-phase antenna 

in free space radiates equally in all directions perpendicular to its length. Above ta 

perfectly conducting ground the field may double or go to zero depending on the relative 

phase of the direct and ground-bounce waves. If the antenna height ℎ = 𝜆, what is the 

field patter? 
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Solution. Referring to Fig. 8.23a the antenna is horizontal and perpendicular to the page. 

The pattern is the same as that of the antenna and its image as given by  

𝐸(𝜃) = 2𝐸0 sin (2𝜋
ℎ

𝜆
sin 𝜃) 

Where 𝐸0 = free space field, V m-1 and ℎ =height above ground, m. no mutual coupling 

antenna and image is assumed. In practice this is small when ℎ is large (> 𝜆/2).  

Direct wave

Antenna

Ground

Image

Free-space
field


+

-

(a)   (b)                                            
Figure 8.23(a) The pattern is shown in Fig 8.23 (b) 

Class work:  angle of maximum field. Find the angles for which the field in Fig. 8.23b is 

maximum.  

Ans 14.50 and 48.60. 

 Class work:  Angle of maximum field. Find the angles for which the field is maximum if 

ℎ = 2𝜆. Ans. 7.20, 22.00, 38.70 and 61.00. 

 

8.18 Exercise  

1. For a lossy dielectric material having 𝜇𝑟 = 1, 𝜀𝑟 = 48, 𝜎 = 20S/m, calculate the 

attenuation constant, phase constant and intrinsic impedance at a frequency of 

16GHz.  
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2. A uniform plane wave in a medium having 𝜎 =  10−3 S/m, 𝜀 = 80 𝜀0 and 𝜇 = 𝜇0 

is having a frequency of 10KHz. Calculate the different parameters of wave.  

3. For a non-magnetic material having 𝜀𝑟 = 2.20, 𝜎 = 10
−4 s/m. fine (i) loss tangent 

(ii) attenuation constant (iii) phase constant and (iv) intrinsic impedance for a 

wave having a frequency of 5MHz. assume material to be good dielectric. 

4. Find skin depth S at frequency of 1.8 MHz is aluminum, where 𝜎 = 34 MS/m and 

𝜇𝑟 = 1. Also find propagation constant and wave velocity.  

5. A travelling electric field 𝐸⃗  in free space with an amplitude of 200V/m strikes 

a sheet of silver of thickness 6𝜇𝑚 as shown in Fig 8.14. by taking conductivity 

of silver 𝜎 = 61.5 MS/m and a frequency 250 MHz find the magnitude of 

𝐸2, 𝐸3 and 𝐸4.  

 Fig 8.12 

6. The electric field intensity in the radiation fields of an antenna located at origin of 

a spherical coordinates system is given by  

𝐸 (𝑟, 𝜃, ∅) = 𝐸0
sin 𝜃

𝑟
cos(𝜔𝑡 − 𝛽𝑧)𝜃̂ 

Where 𝐸0, 𝜔2 and 𝛽(= 𝜔√𝜇0𝜀0) are constants. Find  

i. Magnetic field associated with E 

ii. Poynting vector  

iii. Total power radiated over a spherical surface of radius ‘r’ centered at 

origin  
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7. A travelling E field in free space of amplitude 100V/m strikes a perfect dielectric 

as shown in Fig 8.15. find the electric field strength in medium 3  

 

                                                                                                          
Fig 8.13 

8. A medium has following characteristic: Propagation constant 𝑟 = 528 +

𝑗 244𝑚−1 and intrinsic impedance 𝜂 = 50 < 𝐿12𝑜Ω at a wave frequency of 𝑓 =

350 𝑀𝐻𝑧. The electric field is given by 𝐸𝑥 = 200𝑒
−𝑎𝑧 cos(2𝜋 × 108𝑡 − 𝛽𝑧)𝑥̂. 

Calculate the expression for magnetic field intensity and the average power/m2 at 

𝑧 = 1mm, given by electromagnetic wave.  

9. Explain wave propagation in lossless medium 

10. In lossless medium, derive expression for 𝛼, 𝛽. 

11. Explain wave propagation in conducting medium.  

12. In conducting medium, derive expression for 𝛼, 𝛽  

13. Explain significance of term (
𝜎

𝜔𝜀
).  

14. What are standing wave? 

15. Explain wave propagation in good dielectric 

16. Define depth of penetration  

17. Define depth of propagation 

18. What are direction cosines? What is their significance? 

19. Define equiphasic surface. 
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20. Derive the expression for reflection of uniform plane waves by perfect dielectric 

for  

a. Normal incidence  

b. Oblique incidence  

21. What is Snell’s law? 

22. Derive condition for horizontal and vertical polarization. 

23. Derive the expression for reflection by perfect conductor of uniform plane wave. 

24. Define surface impedance of conductor  

25. Derive expression for surface impedance of conductor  

26. What do you understand by Poynting Vector? 

27. Derive the expression for Poynting’s theorem  

28. Explain significance of term (𝐸⃗  . 𝐽 ). 

29. What do you understand by electrostatic and magnetostatics’ energy in 

Poynting’s equations? 

30. Write note on interpretation of 𝐸⃗ × 𝐻⃗⃗ . 

31. Explain why there is negative sign in terms on R.H.S. of Poynting equation.  

32. Attenuation in lossy medium. A medium has constant 𝜎 = 1.112 × 102 ℧/

𝑚, 𝜇𝑟 = 5 − 𝑗4, and 𝜀𝑟 = 5 − 𝑗2. At 100MHz find (a) impedance of the medium 

and (b) distance required to attenuate a wave by 20dB after entering the 

medium.  

33. Index of refraction. The measured phase velocity of a dielectric medium is 186 

Mm/s at 𝑓1 and 223Mm/s at 𝑓2 find: index of refraction at the two frequencies  

34.  Field intensity. Find the magnetic field intensity for a TEM wave with electric 

field intensity of 1 𝜇𝑉/𝑚 in (a) air (b) lossless dielectric with 𝜀𝑟 = 5, and (c) a 

lossless dielectric with 𝜀𝑟 = 14.  

35. medium impedance. What is the impedance of a medium with 𝜎 = 10−2℧/𝑚, 

𝜀𝑟 = 3, and 𝜇𝑟 = 1 (a) at 1MHz (b) at 50MHz and (c) at 1GHz? 

36. Medium impedance. Find the impedance of a conducting medium with 𝜎 =

10−4
℧

𝑚
, 

 𝜇𝑟 = 1 + 𝑗0.5, and 𝜀𝑟 = 12 − 𝑗4 at a frequency of 800MHz. 

37.  Poynting vector. A plane wave is traveling in a medium for which 𝜎 = 0, 𝜇𝑟 = 1, 

and 𝜀𝑟 = 3. If E(peak) = 5V/m find (a) peak Poynting vector, (b) average Poynting 

vector, (c) peak value of H, (d) the phase velocity and (e)the impedance Z of the 

medium.  



                                                                                                     Electromagnetic Field Theory 

328 
 

38. Poynting vector. A plane 200MHz wave is traveling in a medium for which 𝜎 = 0, 

𝜇𝑟 = 2, and 𝜀𝑟 = 4. If the average Poynting vector is 5W/m2 find (a) rms E; (b) 

rms H; (c)phase velocity; and (d) the impedance of the medium.  

39. Phase velocity. What is the relative permittivity of a nonferrous medium for 

which the phase velocity is 150Mm/sec? 

40. Poynting vector. A plane traveling wave has a peak electric field E0 = 15V m-1 if 

the medium is lossless with 𝜇𝑟 = 1, and 𝜀𝑟 = 12. find (a) velocity of the wave, (b) 

peak Poynting vector, (c) the impedance of medium.  

41. Poynting vector. A plane traveling 800MHz wave has an average Poynting vector 

of 8m W/m2. If the medium is lossless with 𝜇𝑟 = 1.5, and 𝜀𝑟 = 6. find (a) velocity 

of wave, (b) wavelength, (c) impedance of medium (d) rms electric field E and 

(e)rms magnetic field H.  

42. Poynting vector. A plane wave propagating in free space has a peak electric field 

of 750m V/m. find the average power through a square area 120cm on a side 

perpendicular to the direction of propagation.  

43. Energy density. Find the energy density in a plane traveling wave with electric 

field intensity E = 5 V/m in a nonmagnetic medium with impedance Z = 100Ω. 

44. Angles of reflection and transmission. A plane wave is incident from air onto a 

medium with 𝜀𝑟 = 5 at an angle of 300. Find (a) the angle of reflection and (b) the 

angle of transmission (c) repeats with the materials interchanged.  

45. Reflection coefficient, perpendicular polarization. Find the reflection coefficient 

for a plane wave with polarization perpendicular to the plane of incidence from 

air onto a medium with permittivity 𝜀𝑟 = 5 at an angle of 300.  

46. Critical angle. If the media Exercise 45 were interchanged, find the critical angle 

at which total internal reflection occurs.       

47. Reflection coefficient, parallel polarization. Repeat Exercise 45 for parallel 

polarization. 

48. Brewster angle. Find the Brewster angle for the conditions of Exercise 45 

 

 

 

  



                                                                                                     Electromagnetic Field Theory 

329 
 

BIBLIOGRAPHY 

1. Hayt W.H and Buck J.A, (2006), Engineering Electromagnetics-(7th edition). 

McGraw-Hill, New York.  

2. Kraus J.D and Fleisch D.A, (1999), Electromagnetic with Applications-(5th 

edition). McGraw-Hill, New York. 

3. Parul Dawar, (2009). Electromagnetic Field Theory-(1st edition) Kataria S.K 

& Sons, New Delhi. 

 

 

 

  



                                                                                                     Electromagnetic Field Theory 

330 
 

INDEX 

A 

Absolute permeability (167) 

Ampere (165) 

Ampere circuital law (170) 

Ampere work done (168) 

Amplitude of wave (183) 

Angle (189) 

Angle between two vectors (4) 

Angular frequency (183) 

Angular velocity (17)  

Annular ring (123) 

Antenna voltage response (232) 

Area of plate (136) 

Attenuation (200) 

Axial rotation (230) 

Axial ratio (228) 

Average density (153) 

Average poynting vector (222,229) 

B 

Binomial expansion (202) 

Biot-savart (166) 

Boundary (30) 

Boundary condition (120,139,149)  

 

Boundary surface (175) 

C 

Capacitance (131,142,150) 

Capacitor (130) 

Capacitor plate (149) 

Cartesian coordinate (25,28,32,158) 

Cartesian base vector (34) 

Characteristic impedance (187) 

Charges (67,80,130) 

Charge distribution (83,108,140) 

Charge density (99,104,131,156)  

Charge enclosed in volume (98) 

Charge of flux (161) 

Charge on conductor surface (145) 

Closed path (168) 

Closed surface (21) 

Closed system (92) 

Circulation close surface (57) 

Circular path (147) 

Circular polarization (195) 

Circular rotation (16) 
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Coaxial cylinders (134) 

Complex number (191) 

Compressible fluid (15)  

Conducting plane (122) 

Conducting sphere (134) 

Conducting current density (218) 

Conducting surface (139) 

Conductivity (182) 

Conservative field (25,113)  

Conservation of energy (213) 

Converting vector (48) 

Copper slab (137) 

Coulomb’s law (68) 

Circular cylindrical (2) 

Circular polarization (226) 

Counter clockwise (17) 

Critical angle (236) 

Cross product (9) 

Cross vector (5) 

Cube (36) 

Curl (16,17,20) 

Current density (170,217)  

Cylindrical capacitor (134) 

Cylindrical coordinate (18,19,28,37,153) 

Cylindrical conductor (119) 

Cylindrical surface (63) 

D 

Decibel (165) 

Density (15) 

Dept of penetration (204) 

Dielectric field (187) 

Dielectric fills (137) 

Dielectric medium (80) 

Differential area (27,33) 

Differential length (25,32) 

Differential surface vector (27,28) 

Differential volume (28,32) 

Dipole (156) 

Dipole moment (157) 

Dot product (162) 

Dot superscript (170) 

Dir (16) 

Dirac-delta (156) 

Divergence (16,99,) 

Divergent (170) 

Divergenceless (20) 

Divergence theorem (21,60) 

Dot product (3) 
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E 

Effective separation (137) 

Electric charge (144,221)  

Electric displacement (116) 

Electric flux (61,79) 

Electric flux density (130) 

Electric field (1,135,144,187) 

Electric force (80) 

Electrostatic energy (143) 

Electrical field intensity (14,67,115,144) 

Electric field strength (114,192) 

Electric generation work (162) 

Electric potential (83,111,148)  

Electric potential field (130) 

Electromagnetic (1) 

Electromagnetic induction (161) 

Electromagnetic wave (204) 

Electrostatic (14) 

Electrostatic energy (110) 

Electrostatic field (108) 

Electrostatic green (106) 

Electrostatic images (118) 

Electrostatic potential (111) 

Element (106) 

Elliptical polarization (194,226)  

E.M.F (161) 

E.M waves (182,187) 

Energy (143,222)  

Energy density (146,226)  

Energy storage in capacitor (140) 

Energy transfer (218) 

Equipotential surface (14) 

F 

Faraday experiment (88) 

Faraday law (131,161,170,219)  

Flux (16,167) 

Flux crossing (92) 

Flux emerging (29) 

Flux density (60,76,163)  

Flux diverging (29) 

Flux strength (165) 

Field of line charge (74) 

Field theory (80) 

Finite volume (29) 

Force (113) 

Force on a charge conductor (145) 



                                                                                                     Electromagnetic Field Theory 

333 
 

Free space (112,163) 

Free space conductor (182) 

Fresnel reflection coefficient (236) 

Function (111) 

G 

Gaussian surface (96,132) 

Gauss’s divergence theorem (30) 

Gauss law (91,100,133,139,164,170) 

General solution (183) 

Good dielectric (202) 

Gradient (13,153)  

Grad (13) 

Gradient of scalar (13) 

Group velocity (221) 

H 

Harmonics (183) 

Harmonics field (191) 

Harmonics field (191) 

Homogenous dielectric (138) 

Harmonic s frequency (189) 

Helmholtz equation (190,200) 

Homogenous medium (167,182) 

Horizontal polarization (213) 

I 

Incident wave (216) 

Infinitesimal (15) 

Infinitesimal dipole (156) 

Infinite plane (183) 

Instantaneous electric field (196) 

Instantaneous poynting vector (222) 

Integral (147) 

Intensity (83) 

Intrinsic impedance (187) 

Irrotational (17) 

Isotopic medium (168,182) 

Isolated sphere (134) 

K 

Kinetic (113) 

L 

Lamellar field (25) 

Laplace’s equation (148)  

Lenz’s law (161) 

Linear polarization (194,226) 

Line charge (92) 

Lines of force (91) 

Line of flux (91) 

Lossless medium (200,234)  

N 
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Nominal component (176) 

Nonmagnetic material (202) 

Non solenoidal (18) 

Non uniform field (31,146) 

Null identities (19) 

M 

Magnetizing current (167) 

Magnetomotive force (165) 

Magnetic field (1,161,167)  

Magnetic field strength (168) 

Magnetic flux (162) 

Magnetic flux density (178) 

Surface charge density (178) 

Maxwell’s equation 

(97,148,170,183,189,219)  

Medium (138) 

Modulus (3) 

Monopole (170) 

O 

Oblique incidence (212,234)  

Opposite charge conductor (138) 

Outflow of flux (99) 

P 

Path link (168) 

Parallel plane capacitor (140) 

Parallel plate capacitor (134,139)  

Parallelogram (9,28)  

Parallelepiped (15,28) 

Permeability (167, 182)  

Permittivity (67,139)  

Perpendicular vector (37) 

Phase (192) 

Phase angle (196) 

Phase constant (183) 

Phase velocity (208,221) 

Phasor (191) 

Physical phenomenon (184) 

Plane travelling wave (194) 

Plate separation (134) 

Pill pox (116) 

Polar (191) 

Polarization (192) 

Polarization angle (240) 

Polarization parameter (231) 

Polarization matching factor (234) 

Polarization state of antenna (232) 

Polarization state of wave (232) 

Poincare sphere (230) 
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Point charge (120) 

Point function (26) 

Poisson’s equation (148) 

Positive charge (138) 

Potential (14,113) 

Potential difference (130) 

Potential distribution (125) 

Potential field (156) 

Potential function (156) 

Power (222) 

Power density (211) 

Poynting equation (219) 

Poynting’s theorem (218) 

Poynting vector (222) 

Propagation (183) 

Propagation constant (190) 

Pyramid (7) 

R 

Radiation problem (221) 

Radius (96,134) 

Rectangular (2,191) 

Rectangular coordinate (7)  

Rectangular vector (35,37) 

Reflection (234) 

Reflection coefficient (236) 

Reflected wave (216) 

Refraction (234) 

Relative permeability (167) 

Resistance (150,167) 

Resultant vector (11) 

Rotational motion (16) 

S 

Scalar field (2) 

Scalar triple vector (10) 

Scalar potential (113) 

Shaded surface (29) 

Separation of variable (150) 

Sheet of charge (76) 

Skin dept (204) 

Sink (16) 

Sinusoidal variation (189) 

Snell’s law (213,235) 

Solenoidal (15) 

Solenoidal vector field (27) 

Source free medium (182) 

Standing wave (200,217)  

Steady state (190) 

Straight line (147) 
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Stokes’s theorem (22,24,30,31,56,170) 

Store energy (141) 

Space variable (183) 

Spherical (99) 

Spherical capacitor (132) 

Spherical coordinate (2,28,38,63,156)  

Spherical to rectangular coordinate 

system (46) 

Shrineless (99) 

Superposition principles (112) 

Surface boundary (170) 

Surface charge density (122,178) 

Surface impedance (217) 

Surface integral (92,142) 

Surface integral contour (56) 

Surface layer (175,178) 

Symmetry (96,114) 

T 

Tangential component (175) 

Telsa (165) 

TEM (206) 

Thickness (144) 

Total flux (60) 

Total internal reflection (237) 

Total magnetic flux (164) 

Transformer induction equation (171) 

Transformation differential volume (46) 

Transform to a vector (37) 

Transform vector cartesian coordinate 

(48) 

Translational motion (16) 

Transmission coefficient (216) 

Travelling wave (200) 

Triangle (10) 

Tylor’s series (97) 

U 

Uniform flux (163) 

Uniform plane wave (183) 

Uniform transmission line theory (1) 

Uniform plane wave (183) 

Unit vector (5, 6, 9,27,67) 

Unique solution (150) 

Uniqueness theorem (149) 

V 

Vector (27,164) 

Vector addition (7) 

Vector component (5,10) 
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Vector field (2, 3,25) 

Vector normal to plane (11) 

Vector product (4) 

Vector quantity (13,89,168) 

Vector sum (25,84,112) 

Velocity (16,184)   

Velocity of light (187) 

Vertical polarization (214) 

Volume (21) 

Volume enclosed (31) 

Volume integral (28)  

W 

Wave propagation (200) 

Wavelength (208) 

Weber (165) 

Weaker field (135) 

Work done (112,142) 

Z 

Zero reference (112) 
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