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PREFACE

This book originates from notes used in teaching Electromagnetic Field Theory
course at the final year HND level in Electrical/Electronic Engineering Department,
Federal Polytechnic, Oko, Anambra State, Nigeria. Along with other materials
gathered by the author during his degree and post-degree years of academic
pursuit, and over fifteen years of teaching experience in accordance with course
curriculum guidelines from the National Board for Technical Education (NBTE), this
text, “ELECTROMAGNETIC FIELD THEORY with Application for Undergraduate
Students”, was written.

The content of each chapter was designed to accommodate Higher National
Diploma (HND) and Bachelor of Science/Engineering (B.Sc./B.Eng.) undergraduate
students as the materials presented were made comprehensive enough to cover
both classes of programs at their final year and mid-course levels respectively.

Chapter 1 covers the introduction to electric and magnetic fields, vectors and
scalar quantities, gradients and curl of vectors. Chapter 2 covers introduction to
divergent and Stokes’s theorems, Maxwell’s equations and Gauss's law with their
applications and chapter 3 talks about Electrostatics.

Chapter 4 and 5 cover capacitance of capacitor and electromagnetic induction.
electromagnetic equations, Ampere’s circuital laws, Faraday’s law, Gauss’s law and
more and in chapter 6, while electromagnetic waves analysis and wave
propagation in a lossless medium are in chapters 7 and 8 respectively.

Also, at the end of the chapters are enough review problems designed to help
student exercise their level of comprehension of the treated matters, and by so
doing, internalizes the underlying principles of lessons taught.
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CHAPTER 1

ELECTRIC/MAGNETIC FIELD BASIC THEORY
1.0 Circuit and Field Vectors

The circuit theory studied in electrical electronics engineering is used to predict with
accuracy the “performance” of electrical network with regards to the followings:

e The voltages and currents
e The simplicity (as can be applied to any electrical network)
e The usefulness (helps in evaluating performance parameters of any network).

Meanwhile, in microwave or R.F transmission, we generally deal with transmitting power
and voltage or current, as it is very difficult to open or short circuit at high frequency.
Power is actually expressed in terms of integrated effects of voltages

(Eelectric field) and current (H, magnetic field)

TE :A_BF%t TE (TE —»Terminal equipment)

Tx ’\/l\/\/ Rx

“Fails”

Figure. 1.1 Radio Frequency link

The Fig. 1.1 shows that the ratio V/I cannot be evaluated on any high frequency link,

instead E/ H are evaluated for calculation of power transmitted.
Also, Electromagnetic field theory. Electromagnetic field theory deals with field vectors

Eand H. Voltage and currents are integrated effects of electric and magnetic fields.
Again, Electromagnetics: Electromagnetics is study of effects of electrical charges at rest
and in motion. Moving charges produce a current, which gives rise to magnetic field.

The varying electric and magnetic fields are coupled, producing electromagnetic field.
More difficult. Because of large number of variables involved, calculations are difficult in
electromagnetism.



It should be noted that when current is constant around a circuit, voltages and currents
are functions of one variables “time”

In uniform transmission-line theory, the “distance” along the line is an added variable. In
this, we define R, L, C, G in terms of length.

Finally, the Four Fundamental Vector Field Quantities in Electromagnetics are:

E= Electric field intensity

—

D = Electric flux density
B = Magnetic flux density
E= Magnetic field density

Used in study of electric and magnetic fields in materials media, as D =¢Eand B =

,uﬁ where € and u, are permittivity and permeability of medium respectively.
1.1 Scalars and Vectors Review

Elementary physics taught is that scalars have only magnitude (size) whereas
vector have both magnitude and direction. That means that the former cannot have a
negative value (at least when not technically speaking), examples of which include mass,
distance, speed commonly encountered in mechanics, and energy etc. that is met
commonly in thermodynamics. However, mass with direction becomes force (or weight
when caused by the acceleration due to earth’s gravity), distance with direction be one’s
displacement while directed speed is velocity. Energy with direction is used to perform
work (both have the unit of joules); these results are all examples of vector quantities;
and these unlike scalars, can indeed take up negative values. Scalars can be seen as one-
dimensional quantities along x axis that start from zero and only move “eastward” (to
the right on x-y coordinate system). Vectors, on the other hand, can exist in one -, two-
and three dimensions and can take up negative values. The above is without prejudice to
the fact that, from a pure mathematical point of view, scalars can indeed also be
presented by negative quantities as long as they are single real numbers. Here, also,
vectors are restricted to two- and three-dimensional spaces, thereby leaning out the
trivial one dimension.



This course deals with SCALAR and VECTOR FIELDS, and by field is meant
summarily a function that connects a point (usually taken at the origin) to a general point
in space.

1.1.0 Vector Algebra

By definition, a typical vectors location is taken to be the origin (tail) of a
representative arrow. In textbooks the bold face type is used to indicate a vector
guantity, and the italic type is for a scalar. In these notes, however, vectors will be
indicated by letters with an arrow at the top, while scalars will be letters without an

arrow, or equally, arrowed letters straddled by two upright lines: A= |/T|.

Addition or subtraction of vectors in two (or three) dimensions follow the
parallelogram law (rule), and is associative and well as commutative and distributive:
A+B+C=4A+B+C=4A+B+¢C, 1.1
(a+b) (A+B+C)=a(A+B+C)+b(A+B+0) 1.1.1
A-B=A4A+ (—§), that is to say, the positive A is added to the negative of B. Two
vectors are identical off (if and only if) they have the same magnitude and direction. By

this is meant that the actual (tail) locations of the vector to be compared are,
mathematically speaking, inconsequential.




For vectors, there are three different types of coordinate systems, namely, (1) the
rectangular (2) the circular cylindrical and (3) spherical coordinate systems and each one
can be converted to the others equivalent.

1.2 The Rectangular Coordinates

Here the right-hand-rule is employed or the right-handed screw with positive y
axis pointing to the right (“east”) of the board, the positive x axis pointing to the “North”
and positive x axis pointing out of the board. Another view is of the right hand with the
thumb, the forefinger and the middle finger representing, respectively, x, y and z axis. So,
negative x will point to the “inside” of the board, negative y “westward”, and negative z
“southward”.

Example 1.0:

B(2,-1,4) A1

For the above xyz plane, A is the point at which the planes x =1,y =2andz=3
intersect (at each location the plane is parallel to the other two coordinates), and B is
where the planes x = 2,y = —1 and z = 4 intersect.

7y =x+2y+3z
Tg =2x—y+4z
Ryp=tg—7 =2 -1+ (-1-2)ad, + (4—3)a,
=a,—3a, +4d,

with @y, @,and a, being unit vectors in the directions of x, y and z axis respectively. The

scalar values of 74, 7'g (also known as their modulus) Are:



| 74| = 1= V12 +22+32=414
| 75| =15 =V2Z+12 +42=4/21
Also, |Rag| = |8, — 38, + a,| = V12 + 32 + 12 = V11

A a, + 2a, + 3d,

JAZ+ A2+ A2 V12422 132

-

Ta

a, 2a,  3a,

~Vid | vid | via

is the unit vector in the direction of 4 [actually 74, which is here not used, to avoid double
subscript (7,)].

Check that the modulus of d, (or dg) gives unity:

(1)2+(2)2+(3)2_ LA
14 14 14) |14 14 14 |14

1.3 Vector Field: The Dot Product

By definition, the dot product is the product of the magnitudes of given two vectors and
the cosine of the smaller angle a between them. Because this results in a scalar, one can
therefore only have a dot product of two vectors, since there’s no dot product of a scalar
and a vector!

A-B("Adot B") = |A||B| cos 0,5 1.2
= |B||AlcosOpy =B - A 1.2.1

and so, obeys the commutative law. Dotting a vector by itself simply produces the
magnitude of the vector squares.

A4 =|A||A| cos o =|A|" = A2

Resolving the dotted result of two vectors along their component axis;



A-B=(Aya,+A,4,+A4,8,) (By 4+ B, d, + B, a,) 1.3
= AyBy G, - Gy + ABy @y -8, + AB, @, -8, + A B.d, -4, + AyB, &, a4, + AyB, 4,
-4, +A,B, 4, @, + A,B, a4, 4, + A,B, 4, @,

Observe that AnBm'’s are all scalars and two dotted unlike unit vectors disappear since
ay, ay, a, are mutually perpendicular (cos 90°=0), leaving: [A- B = A,B, + A,B, +
AZBZI

A A 142 _ A A _ A oA
because @, - a, = 1°,=a,-a,=d,-a,=1

dotting a vector A with a unit vector in any direction results in mechanically
advantageous result of merely determining the component of that vector along the axis
on which the unit vector lies:

A.a = |Allal cos 8, = Acos b,

Example 1.1: Given the vector F = za, + 3.5a,, — 2xa and the point P (3, 2,4)
determined (1) F at P.

Solution:
(1) To determine F at P,
F(#,) = 4a, + 3.5a, — (2)(3)a, = 4a, + 3.5a, — 6a,
(2) The scalar component of F at P in the direction of ay = (24, — a, + 2a,)/3:

2a, —a, + 24,
3

(F.dy) = (4d, + 3.54, — 64,).

_8-35-12 75 ,
B 3 -3 T

(3) the vector component of F in the direction of dy-

(2a, — a, + 2a,)
3

(ﬁ' dN)aN = _25 X



= —1.667d, + 0.833d, — 1.667d,

(4)  Theangle 6z, between ﬁ(Fp) and dy:

. S 2.5
—25=F.ay = |F|cosHFa = oSOy, = _ﬁ
0 2.5 2.5
cos = — = ——
fe T V6+1225+36 802
., 25 .
Opq = cos™ (— m} =71.83

You can try this: Consider the vector field C= yax — 2.5xay +3.5a; and the point P (4, 5, 2).

We wish to find: C at P; the scalar component of C at P in the direction of ay = § (2ax + ay

— 2az); the vector component of C at Q in direction of an; and finally, the angle 6.5
between C (r¢) and an.

Notice that in this proceeding example, the component of the vector F can be
dependent on the magnitude of the scalar component of a vector located at P, in any
direction.

1.4 The Vector Product
By definition, the vector (or cross) product of A and B is:

A x B(A cross B) = dN|/T||§| sinf,5, with 6,5 being the smaller angle between
Aand B.
Therefore, 180° > 8,5 > 0°; and @y is the unit vector normal to the plane containing

vectors A and B with its direction obeying the right-handed screw rule when Ais turned

into B.
A) X § = (Axaxy + Ayay + Azaz) X (Bxax + Byay + BZa'Z) 14

= AyBoly X 8y + AxBya, X Gy + A B,dy X a,



+A,Bya, X ay + A,B,a, X a, + A,B,a, X 4,
+A,Bd, X 4y + A,Bya, X a, + A,B,4, X a,

This time around d, X d, = @, X 4, = d, X 4, = 0, because sin 0 = 0, when a vector is

crossed onto itself!
Combined,
AxB = (AyB, — A,B,)a, + (A,B, — AB,)a, + (A B, — A}B,)a,

Though this looks quite complicated, the cyclic nature of the terms lends itself to easy
remembrance, once the first grouping is put down. Notice thatyintozand xintoy
implies (AyBZ ...... )dx, and the negative second grouping is put down by merely
exchanging the subscriptsy, z attached to A, B respectively: A, B, = A,B,

xyz; yzx; zxy cyclically for the second and third grouped terms.

However, in a more compact easily remembered form we write the determinant:

a, a, da,
A) X § = Ax Ay Az 1.4.1
B, B, B,
Example 1.2: Given A= 3d, — 24, + a,, B = —2dy — @, + 44, then
L a, a, a,
AXB=(3 -2 1
-2 -1 4

=[(-2)(4) — (=D D]a, + [(D(-2) - B)WD]a, + [ (-1) = (-2)(-2)]a,
=(-8+1Da, +(-2—-12)a, + (-3 — 4)a,

= —74, — 14a, — 74,



1.5 Unit Vector

A unit vector (4) has the direction of main vector (ﬁ) but is of unit magnitude. It is
the ratio of vector itself by its magnitude.

A=2 15
Al

—

Ay _L--"TA —

e ' Ay
—

—- > —> >

A =A1+Az+A3K’
2

—»

Az

Fig 1.2 Vector Addition

|A| = /A% + A3 + AZ, where A, A, A, are components of vector A along x,y,z
directions.

Example 1.3 given point M (-1,2,1), N (4, -4,0) and P (-1, -3, -4), find:
(a) Rmn

(b) Rvn + Rwp

(c) rml

(d) @me

(e) 2[re|=3]rml

Solution

(@) [4-(-1)]ax +[-4 -2]ay + [0-1]a, = 5ax— 6ay — a,
(b) (Sax - Gay—az) + ('ax 'Say 'Saz)) = 4ax - llay - 6az



() VI+4+1=+6=245

ax—5ay—5a, _ _ _
(d) (ﬁ) = -0.14ay O.7ay 0.7a;

(e) [2J(4+9+16)3(V1I+4+1)] =342

Example 1.4: A vector field 7 is expressed in rectangular coordinates as:
7 ={125/[(x-1)+(y-2)*+(z+1)°]} {x-1) ax +(y-2) ay + (z+1) a;}

(a) Evaluate 7 at A(35, 4)
(b) Determine a unit vector that gives the direction of 7 at A(2,4,3)
(c) Specify unit vector extending from origin towards point M (2, -2, 1)

Solution

(a) 6.579ax + 9.869ay + 16.447a;, (Put x=3, y=5, z=4)
(b) 0.218ay + 0.436a, +0.873a, 7 at A(2,4,3)

~ —i— 2ax—2ay—ay
(© (A) Qu =57 = J@2+(=2)2+(-1)?

=0.667ax— 0.667ay — 0.333a; Ans

Example 1.5: Add the following vectors

(a) A=162+39and B = 3% — 79
(b) A= —8% 4+ 129; B = —59 + 15%; C = —2% + 479

Solution: (a) A+B=(16+4)2+ (3— 7))
A+B =202 — 49 Ans

(b) A+B+C=(-8+15-2)%+ (12—5+4)9

1.6 Properties of Vector Product

1. Associative Law (/Tx §)x5 +Ax (§><5) 1.6

10



=

2. Distributive law Ax (E +5) =AxB + AxC 1.6.1

3. Cross product AB sin @ is the area of parallelogram PQRS of which vectors A and
B are two adjacent sides, see in Fig. 1.3

The cross-product operation is useful for obtaining the unit vector normal to two
given vectors at a point, i.e.

- —
L AxB
e ———
ABsinf
For unit vectors along X, ¥, Z, we have
ix X ix = 0, ix X iy = lz; ix X iz = ly,
Iy X Ixy= —l| |ix i,= 0; Iy x i,= Iy
iy X Ixy= Iy I X Iy= —iy i, x i,= 0

>y
AN

18

Figure 1.3 (a) Product of two vectors related to Area of Parallelogram

Thus, cross product of two identical unit Vectors is the null vector 0. If we arrange the
unit vectors in the manner iy iy izix iy, then going to right the cross product of any two
successive unit vectors is the following unit vector, whereas going to left the cross
product of any two, successive unit vectors is negative of the following unit vector. Also,
cross product is not commutative since.

- -

BxA= |B||A|sin6 (—iy) = —ABsinfiy = — AXB

Component of a vector in a vector in a particular direction is given by dot multiplication
of the vector and unit vector in that direction as in Fig 1.3(b)

11



C=(C.1)1,+ (C.1p) 1, 1.7

>
1A

Figure 1.3 (b) Component of vector C in 2 directions

1.7 Scalar Triple Product

[ff . (Exf)] Scalar triple product involves three vectors in a dot product operation and a
cross product operation.

It gives the value of volume of parallel-piped having the three vectors as three of
its contiguous edges.

A A, A,
A-(BxC)=|By B, Bj 1.8
G, G G

Example 1.7 The three vertices of a triangle are located at P(6, -1, 2), Q(-2, -3, -4) and
N(-3, 1, 5). Find: (a) Req; (b) Ren; (c) the angle.

Solution:

(a) -8ax-2ay—6a; [Hint: Ry — Rp = (=2 —6)a, + (=3 + 1a, + (-4 —2)a,) ]
(b) -9ax + 2ay + 3a; [Hint: Ry — Rp = (—3 — 6)ax+ (1 + 1)ay+ (5 — 2)a;

12



(c) 59.6° [Hint: 8 = cos™! <(RQ_ Rp)-(RN—Rp) _ 50 )

|[Ro— Rp| IRy—Rp| ~ /(64+4+36)(81+4+9)

Example 1.8 If P= 2a, — 3a, +a, and a = —4a, — 2a,, + 5a,, we have to find ﬁxa

ay a, a,
Solution:PxQ =2 -3 1
-4 -2 5

=[(=3)(5) — (D (=2)]a, = [(2)(5) = (D (D]ay +[RD(=2) = (=3)(-D]a,
P x Q=-13a,- 14a, - 16a, Ans

Example 1.9: The three vertices of a triangle are located at A(6, -1, 2), B (-2, 3, -4), and
C(-3, 1, 5). Find: Ras x Rac (b) the area of triangle (c) a unit vector perpendicular to plane
in which triangle is located. Solution

(b) 42
(c) 0.286ax + 0.928ay +0.2384..

Example 1.10: Refer to Example 1.5 and find angle of the resultant vector with respect to
X-axis.

Solution: let us say C =A+B =20% - 4y

« magnitude of C =|C| =+/(20)2 + (4)2 = 20.396
Angle of ‘C’ w.r.t. x-axis

Solution: lets us say C =A+F = 20% — 4y

- magnitude of C = |C| = /(20)2 + (4)? = 20.396

Angle of “C” w.r.t. x-axis

x = cos™ ! (&) = cos‘l( 20 )
|C| 20.396

= 11.31° Ans.
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Example 1.11: Given A = 6% +29 + 102, B = 3% +49 + 72. Find (a) the area of
parallelogram of which Ax B are adjacent sides, (b) unit vectors normal to plane

containing/f and B

Solution: (a) area of parallelogram of which A and B are adjacent sides

- — IX\ y 2
|AXB|=16 2 10
3 4 7

= ®(14 — 40) — $(42 — 30) + 2(24 — 6)

= —26% — 12y + 182

Area of ||gm = /262 + 122 + 182

Area = 33.82 Ans

= from (a) | Ax B | = 33.82
Ax B= —26% — 129 + 182
s iy = (0.029)(—26x — 12y + 182)
= —0.77x — 0.35y + 0.532
i, =—0.77x% — 0.35y + 0.53Z Ans
Example 1.12: Evaluate:

(a) Ax ( BxC)
(b) (A4 x B) - (CxD)
(c) (AxB) x (CxD)

Solution: (a) let us first evaluate (§X5) assume it to be D

14



x y 2z
(E)XC))XB= Bx By Bz
Ce C, G,

£(ByC, — B,C,) — 9(B,C, — C:B,) + 2(B,Cy, — B, Cy)

x y 2z
= A)X §X 5 =A)XB = Ax Ay Az
D, D, D,

There D, = B, C, — B,C,
D, = C,B, — C,B,
D, = B,C, — B,C,x
Ax(BxC) = Z % (Ay(B.Cy — B,C,) — Az (C,B, — C,By)

= Z % (A, BC, — B,C,) — A;(C,B, — C,B,)

- z % (B(AyC, + 4,C,) — Co(A, B, — A,B,)
=(ACO)B-ABC
=Ax (BxC)=(A-C)B— (4B) C

— =

(b) let us assume CxD =F



(AxB).(CxD) (A-C)=(A-C) (BD)—(A-D) (B-C) Ans
() letusassume CxD = E
(AxB)xE = (A-E) B — (B -E)A [from (a)]
= (4-(CxD))— (B-(CxD))4
(AxB) x(CxD) ([A-(CxD)] B) — ([B- (CxD) ] 4)
1.8  Physical Interpretation of Gradient

Maximum space rate of change of a physical function is called gradient of that
function, e.g if scalar function V represent temperature, then VV = grad V is
temperature gradient or rate of change of temperature with distance.

VV is a “vector quantity”, its direction being that in which the temperature
changes most rapidly.

ov . oV . 9V ,
VV—aX'Fay-l‘a—ZZ 1.9

With reference to fig 1.4 (a), we have defined an equipotential surface V(r) wherein

?3_11/ is derived of scalar V at point P in direction dl (change in length)

v . e .
Pl derivation in direction of normal

v _ av o )
Py («~ PQ is minimum distance between Vyand V;

(as shortest distance between any two lines is perpendicular between them)

oV )%
= —_— =
0l 0dlcosé
av v
= o1 = 9, €08 7] 1.10
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av
(— 1y = gradient of scalar V)

on

Figure 1.4 Equipotential Surface V. =V(x, vy, z)

The gradient lines are orthogonal (perpendicular) to the equipotential lines (level
surface).

Note: VV.dl = 0 on equipotential surface (as potential remains same throughout)

Example: 1.13 Given the potential field, V=2x?y — 5z, and point P(4, 3, 6), we wish to find

(a) The potential V (i.e E=- VV)
(b) The electricity field intensity

Solution: (a) The potential at P(-4, 5, 6) is
V, = 2(—4)* (3) — 5(6) = 66V Ans
(b) we may use gradient operation to obtain electric field intensity
E=-VV=—4xya, —2x*a, +5a,V/m
The value of E at point P is

E, = 48a, —32a, + 5a,V/m

And |E,| = V(48)2 + =32)2+ (5)> =57.9V/mAns

Example 1.14: Find gradient of a scalar function of position v where v(x, y, z)= x? y +e%.
calculate the magnitude of gradient at point P (1,5, -2).

17



Solution:

AtP(1,5,2)

v(x,y,2) = x?y + e?

v v av

Gradient: v=VW=—da,+—a,+—a
ox * oy Y 0z ?

= (2xy)ay + (x*) 4y + (eM)a,

A A~ —2 A A A~ 1
VW =104, +d, + e *a, = 104, + ay +—ad,

= 104, + &, + 0.13534,

|Vv| = {/(10)2 + (1)2 + (0.1353)2 = 10.051

e “VV" at any point is perpendicular to constant V surface that passes through that

point.

e |n electrostatics, Vx E = 0, as curl of any vector is zero, then vector is
represented by gradient of another scalar i.e, E = —Vv where “V” is scalar
potential.

1.9 Physical Interpretation of Divergence

Figure 1.5 Divergence

Net outward flow per unit volume is called divergence (for a compressible fluid).

Derivation: the rectangular parallel-piped is assumed, Vx,Vy,Vz is an

infinitesimal volume element within the fluid (e.g., water, or steam) as in Fig. 1.5.

If pm is mass density of fluid, flow into the volume through L.H.S face is

Pm Vy Byx.A,= v, is the average of y component of fluid velocity through left hand face

(as density =mass/volume and velocity=distance/time, A,.A,= area).

18



Corresponding velocity through the R.H.S face will be

avy

vy, + (ay)Ay
Flow through this face is
PmVy + [a(;;_,;vy Ay] Ax Az
The net outward flow in y direction is

"’(‘;—";”y) Ax Ay Az (i.e,R.H.S flow — L.H.S flow)

a
Similarly, the net outward flow in z dir” % Ax Ay Az

. n 9(pmvy)
X dir oy Ax Ay Az

0(pmvy) + 0(pmvy)

9(pmvy)
3y +—, ] Ax Ay Az

Total net outward flow is [

Where Ax Ay Az represent volume of parallel-piped.
The next outward flow per unit volume is

a(pmvx) + a(pmvy) + a(pmvz)
dx ady 0z

= 0lv(pmv) = V. (pmx

For incompressible fluid, divergence is always zero. (Solenoidal)
Divergence % +ve for valve on steam boiler opened

$ -ve for evaluated light bulb broken
Example 1.15 Find div D at originif D=e* siny a, + 2za,

Solution: Divergence is given by

19
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— dD, dD, dD,
div D =
v dx + dy + dz

= 2 (at origin sin 0 = 0).

=—e *siny+e ¥*cosy+2

Also, the value is the constant 2, regardless of location.

Example 1.16: Find the value of constant c for which vector
A=(x+ 3y)a, + (y — 2z)a, + (x + C,)a, is solenoidal.

Solution: for a solenoidal vector field A

Div A=0
V.A=0
L9 .8 . 0 . NG A
= [axa +ay -+ d, a_z] [(x +3y)a, + (y — 22)a, + (x + c2)d,] = 0
> L x+3)+2(y—22)+2(x+cz) =0
dx y dy y 0z
= c=-2

e Divergence of scalar has no significance, as dot product cannot be applied to
scalar quantities.

e Divergence is positive when source spreads out every, as then the net flow of flex
is in outward direction.

e Divergence is negative when sink intakes the power given by source, as then
system has inward flown flux.

e Divergence is zero, if system is neither a source or a sink, as then there is zero net
outward flow of flux.

1.10 Physical Interpretation of Curl
Rate of change of vector field is called curl, “circular rotation”.
Assumed here is stream of water over which leaf a float, therefore, if velocity at

surface is entirely in y direction, = translational motion.

20



If there are eddies or vertices in stream flow = Rotational +Translational

zA > v
Vy

Vxl @’ l( Vx + Zyv" dy)

( Vx +a4v dx)
Ax
x

Figure 1.6 Stream on surface of which floats a leaf

Leaf

The rate of rotation/angular velocity at any point is measure of curl of velocity of water
at that point.

(A x v), Rotation/curl of v in z direction.

+ve value denotes rotation from x to y. i.e counterclockwise dir” with reference to Fig.
1.6;

oy a H o4
A positive value for (%) — rotate leaf in CW dir

A positive value for (‘%‘) — rotate leaf in CW dir”

The rate of rotation about z axis is proportional to difference between these two

quantities
_ vy 0w
Axv), = 5 ay 1.18
a
Similarly (A x v), = Z—’;{Z—% 1.19
And (A x 0), = %"—% 1.20
S v _(%_a&)AJF(%_&)AJF(%_%)A 121
= 9y 9 x 0z ox)”Y ox  oy)” :

Not necessary to have circular motion to have CURL,
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Jdv
ifv, =0, v, varies in x dir", (Vxv), = a_xy = CURL
Other way. The curl of vector B is a vector whose magnitude is maximum net

5
circular of B per unit area as the area tends to zero and whose direction is normal
direction of area when the area is oriented to make the net circulation maximum.

dl
B B.
VXB= \71;90 Vs 1, 1.22

AC

If curl of any vector is zero then it is called irrotational.

e [f the divergence of vector is zero, then that vector quantity can be expressed as

curl of another, V. B = 0 then B = Vx4 ([1) is magnitude vector potential)

Example 1.17 If 4 = xz3@a, — 2x2yz a, + 2yz* a,, find Vx 4 at point (1, -1, 1).

a, 4 a,
= = |a d d
Solution Vx A= | — o =
xz3 —2x%yz 2yz*

=4, [dd—y Q2yz*) — % (—2x2yz)] +a, [% (xz%) — % Q2zy")
+a, [% (—2x2yz) — % (x3z)]
= a,(2z* + 2x%y) + 4,,(3xz*) + 4,(—4xyz)at point (1,—1,1)
Vx A=a,(2-2)+a,(3) +d,(4) = 34, + 44,

Example 1.18: Show that the field F= (?) a, + 104y (cylindrical coordinate) is

2

irrotational and non-solenoidal.
Solution: For field to be irrotational Vx F= 0

Using formula for curl F in cylindrical coordinate
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b oap &
T T
We get_ﬁx F= % :—® % (formula for curl in cartesian co-ordinates)
= 10r 0
"
a, d R [d (150)] az[d ] d (150)
=—|0——(1 —|— —|1—@1 ——|—
T (0 dz( 0r)>+a@ dz \ r? + r dr( 0r) do\ r?
=0 proved
For field to be solenoidal V.F= 0
. v13_161(150)_{_1 d(lO)—150¢0
e ar U2 r do R

So, non-solenoidal.

Example 1.19: If 7= xd, + yd, + zd, show that

I
w

i) V-7

_dx)  d(y) | d(2)
“ax T dy Tdz

V-#=1+41+1=3proved

. S o [~ d A~ d | ~ d] 14 ~ "
ii) V-r = [axa+ aya+ azE].[axx+ ayy+azz]

—

Proved

=y

_A[dz dy+A[dx dz]_l_A[dy dx_0
— dy dz Wldaz " dxl T % lax dyl

Example 1.20: For a vector field Ain cylindrical coordinates
A(r,0,2) = r3sin@ # + rcos?0 @ + z tan 62 determine ()V.A and V x 4
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ion: (i) L4 ldaz  daz _ g 7
Solution: (i) - dr(Ar) to—t—= V.A
Where A, =1%sinf
Ag =1 cos%0
A, =z tanf
1_1d . 3 . ldrcosze a
= V.A= -— (r° sinf) + et (z tanB)

— l 2 a4 i 2
= 3r-sinf + 5 (cos?*0) + tanb
= 3r sinf + 2cosO(—sinf) + tanb

V.A= 3r sinf — sin26 + tanb

[ 7 2
i -9 3
(ii) VXA = 4 4 4
dr ao dz
A, 1A, A,
p—trd _ 42 2
VA= - [ = (ztan®) o (r“cos“6)

H[d(t 0) - - ?5in0) |
= z tan e (r“sin@)
zrd d
ol IO SR N Lo
+ r[dr(r cos*) dH(r smH)]
7 ~ Z
= [; (z sec?@) — 0[0] + - (2rcos?6 — y? 6059]
- 1
VA= = [zsec?OF + (21 cos?0 — r? cos 6)2]
Two null identities
(@) V.VV = 0

The curl of gradient of any scalar field is identically zero.
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Proof: from strokes theorem we can write.
[ (VX VV) - ds= jg (V) -di

i.e surface integral of VxVV' over any surface gives line integral of VV around
closed path bounding that surface.

Also ¢ (Vx V) di= $(dV) (which is zero)
- (VX VV)-ds =0
Or VXVV =0

Converse statement is: if a vector field is curl, free then it can be expressed as the
gradient of scalar field.

Suppose E is vector field then if Vx E= 0 we can say that E=-vV.
An irrotational (or conservative)vector field can always be expresed as gradient of scalar field
BV x(VxA)=0
The divergence of curl of any vector field is zero

Proof: from divergence theorem
3@ V. (VxA) dv = 3€(Vx£) -ds
v S

Here we have taken arbitrary volume V and split it in two open surface S1and S;
connected by a common boundary that has been drawn twice as C1 and C;

3€(V xA) - ds = jg(Vx/T).ﬁzds
S S

:fza+f@m
c C,

1
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Here, the two-line integrals on R.H.S of above equation follow same path but in
opposite directions thus sum is zero, hence we can say that

f(VxZ)-d_sEo
S

or V x (VxA) =0

\% n

S
Figure 1.7 Proof of vector B

Converse statement is: if a vector field is divergenceless, then it can be expressed
as curl of another vector field is if B is vector field an V.B = 0,

hence.

1.11 Divergence Theorem

“The volume integral to the divergence of vector field /T, taken over any volume V

is equal to surface integral of A taken over the closed surface (total outward flux of
vector through surface) that bounds the volume V” is definition of Divergence Theorem

$,(V-A)-dV =$A-ds 1.23

Example 1.21: Show that (a) gﬁsﬁ .ds = 6V where s is a closed surface, enclosing a

volume V and F= 2xa, + 3ya, + za,.

(b)  Use divergence theorem to evaluate fsﬁ -ds when F = x3a, + yla, + z3a, and

S is surface of sphere x2 + y? + z2,
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Solution: from divergence theorem

@) [Fds [FFav = [, (£ @0+ =G0 + 2 (@) dv
f(z+3+1)dv=6fdv

=6V

(b)  Divergence theorem fsﬁ ds = flﬁ Fdv

d(x*) N d(y®) N d(z°)

I iy e (3x% +3y% +3z2) dV
v

R.H.S =

=3f(x2+y2+zz)dV=3a2fW
v v
= 3a? x Volume of sphere
4
= 3a? x §na3 = 4ma®
EXAMPLE 1.22: Given that E(y, 0,s) = %SinZH 7, evaluate (i) fsﬁ-a‘)(ii) 1ff (V.E) dv

over the region between spherical surfaces r = 2 and r = 4. What is the inference
drawn from results obtained in (i) and (ii)?

Solution: (i) fsﬁ .ds (you need to refer spherical coordinate system text).

T 21r1
= jﬁ£= J Z.sinzersined(brde
s 6=00=0
2T Vs 2T
1 . _ 1 1 — cos 26 .
== sin“6 do sinf df = ) -T]o [—cosO]}
P—=0 60=0
1 [(1—1) (1—1)' (—1-1)
= — X —_ ] | —(—1 —
r2 2 2 /] [ ]
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m E=L12 2 14 (212
(ii) Y E—err (r Er)—err (r . sin 9)

1d sin?6 1
=r—2d—(sin29.r_2)= " [——]
L —sin?*6
v-E=—3
4 21
- —sin?@r
fV-Edvz f fTsmederdQ
v r=20=0

4

2T T

1 4

;dr f sin?6 dé?‘ [fsin@ dH] =ln(E)><0><2
0 0

fv-ﬁdvzo

v

2

We see that result obtained from (i) and (ii) are equal and this is because they satisfy
divergence theorem i.e.

jV-F?dV=j§ds
v S

1.12 Stoke’s Theorem

The surface integral of curl of a vector field A over an open surface equals line integral of
vector field over the closed curve bounding the surface area “is definition of Stokes’

theorem”.

J(Vx A)ds = %Z -dl 1.24
c
S
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Example 1.23: Evaluate both sides of stokes theorem for field H = 6xy a, - 3y2€1y A/m
and rectangular path around region, 2 <x <5,—-1 <y <1,z = 0. Let the positive

direction of ds be a,.

Solution: Stokes theorem is fcﬁ di = fs(_ﬁx ﬁ) ds

a, a, a,
R.H.S. VxH=|= % -
6xy —3y? 0
= Vi = 2(0) = 9(0) + 2 |- (3y®) — 2 (6xy))
Vx H= —6x2

f—6xz“. (Z.dxdy) = — f 6x dx dy 2
5

S
1 5
f f6xdxdy2

y=—1x=2

x2]° 1
- 6 [71 [dylLy 2 = =6 x5 X (25 = ()2
2

=—-6X%X212
~126 2
L.H.S $.H -dl = § (6xy a, — 3y? 4,). (dx 4, + dyd, + dzd,)

= f(6xy dx — 3y?dy)
c

For this we need to find out equation of line integral.
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x=5,y=1 x=2y=-1
6x2  |° 6x? ®

=—(1 — (1| =-126
> D]+ D]

Example 1.24: Given E = 2r cos @7 + r@ in cylindrical coordinates verify Stokes
theorem for the contour in Fig. 1.8 which lies in x-y plane completely.

Figure 1.8

Solution: according to Stokes theorem
foE-dszgS E-dl
s

R.H.S. we have to evaluate line integral over the given curve as we see that we have 4
defined contours as shown:

3 T 2 0
¢ E-dl= ercos(Z)dr+ J r.rd® + JZrcosQ)dr+ J r.rd®
r=2 r=3 ¢=0 r=3 r=2Q=m

r2]° r2)?
= 2cos l7l +9[0]5 + 2 cos @ I7l + 4[0]2
2 3

=9[mr—0]+4[0 — 7] =971 — 4n

) E-di=5n
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7 = 2 7 =z Z

I R - r P

L.H.S VXE= |4 4 4dl= a a 4
dr do dz dr dp dz

Er rEQ® Ez 2rcos® r* 0

A

[0] — @[0] +§ [2r + 27 sin @]

S

= (24 2sin®) 2

So, [,V XE.ds = J.(2 +25in @) (rd@ dr)

= f(Zrdsdr+2rsin®ddr)

s
3 T 3 T

=2frdr d®+2frdr fsin(bd(l)
2 ¢=0 2 0=0

2 .94 9 — 4
=2 [7]2 [@]0 + 2 [7]2 [COS @]0 =27 [T + 2 [T [0]

fo—>.ds=57T
E
s

Thus, Stokes theorem is verified
1.13 Line Integral of a Vector Field

Consider path OMN between two points O and N and let ‘dl’ be an element of length at a
point on a smooth curve ON drawn in a vector field and A, a continuous vector point
function inclined at an angle ‘@' to ‘dl’ as shown in Fig 1.9 (a) such that it continuously
varies in magnitude as well as direction as we proceed along the curve. Then, the
integral.
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i

Figure 1.9 (a) Line Integral

(;\17 3= f;VA cos 6 dlThis is referred as the line integral of vector A along curve ON.

Note: if55 A-dl = 0, then the field is called a conservative field or lamellar field.
In terms of components of 4 along the three Cartesian coordinate, we have
N > —& N
Jo A-dl = [J(Axdx + Aydy + A,dz) 1.25
Where ‘dl’ represents differential length
But (di =diz +dly +di2)

Differential length vector: the differential length vector dl is the vector drawn
from point p (x, y, z) to a neighboring point Q(x + dx,y + dy,z + dz) obtained by
incrementing the coordinates of P by infinitesimal amounts. Thus, it is the vector sum of
the three differential length elements, as shown.

oy

dl

dy

Figure 1.9 (b) Differential Length
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curvel i,

surface

Figure 1.9 (c) Finding unit vector Normal to Surface

—

dl=dxx+dyy+dz2

The differential lengths dx, dy and dz are, however, not independent of each
other since in evaluation of line integrals, the integration is performed along a specific
path.

Differential length vectors are useful for finding the unit vector normal to a
surface at a point on that surface. This is done by considering two differential length
vectors at that point under consideration and tangential to two curves on surface,

i, x di,

iN [— —
dlyx dl,
1.14 Surface Integral of Vector Field

Let A be a continuously varying vector point function (or vector) at a point B in a small
elements dS;: of the surface S1 as shown in Fig. 1.10. (a)

Figure 1.10 (a) Surface Integral

A vector is at angle 8 with normal to surface, at that point (drawn outwards) if the
surface be closed and always towards the same side otherwise). Then the surface
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integral of vector field A is defined as the sum of product of normal components of A and
surface elements covering the whole surface.

If A is unit vector normal to surface elements dSi1 then normal component of field
Ais (A - an).

Hence surface integral of vector A over the surface is given as

f f (4-a,)ds, or yg(ﬁ-an)dsl

S1

In terms of Cartesian coordinates of A4 we have
f ] AdS, = f f (A,dS, + A,dS, + A,dS,) 1.26
s1 s1

If ., [(A.dS;) = 0, then vector field is said to be solenoidal vector field.

Where ‘ds’ represents differential area

d, o
/
/
7] /
diy

Figure 1.10 (b) Differential Surface Vector Concept

Differential surface vector: two differential length vectors Efl and mzoriginating ata
point define a differential surface whose area ‘ds’ is that of a parallelogram having

ﬁl and Ez as two of its adjacent sides.

ds = dlydl,sina =di;x di,
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tdyy X dzz= tdydzXx
+dzZ XdxX=2xdzdxy
tdxX Xdyy=+dxdy?z

Associated with planes x=constant, y =constant, z= constant. Respectively

d,d, 52 d,d,

d, dy

X

Figure 1.10 (c) Differential Surface Vectors in cartesian coordinate system
1.15 Volume Integral

Let A be a vector field and V be the volume enclosed by surface, at a point in
small element Dv of the region. Then the integral fV [for [ A.dv covering the entire

region, is called volume integral of a vector A over the surface. The differential or

elemental volumes are
dV = dx dy dz is Cartesian coordinate
dV =r df d@ dz is cylindrical coordinate
dV = r%sin@ dr df do is spherical coordinate

Differential volume: three differential length vectors dl4, dl; and dls originating at
a point define a differential volume dV which is that of the parallelepiped having

ﬁl,a’z and El)3 as three of its contiguous edges, so dV = area of base of parallelepiped

x height of parallelepiped.

= |dlyx dly|| dis- iy| = | dly x dl,| dls- =———== = | diz-dl; % dl,|
dl,x dl,

or dV == al'mz.a},
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1.16 Physical Significance of Gauss’s Divergence Theorem
Gauss’s Divergence theorem is given by

fﬁ-ﬁéfv-j-ﬁ 1.27

S 14

Let us consider a finite volume of any closed surface S in the region of any vector

function A

The flux diverging from the surface S of volume V is
0= i-@
S
Now lets us divide the volume v into two parts of volume V1 and V; enclosed by
surface S; and S; respectively.

The Flux emerging out of surface S; = fsl A-ds,

The Flux emerging out of surface S; = fsz A- Ez

The flux emerging from shaded surface will cancel each other (because flux
emerging in and out of it for both the volumes V1 and V; are equal and in opposite
direction). Thus, the flux

@=fﬁ-$=fﬁ-£l+fﬁ-$z 1.28
S Sl Sz

In the same way, if we divide the volume V into large number of parts Vi, V3, Vi.......... ,
Vi......Vn enclosed by surfaces 1, Sy, ......... , S1...... Sn respectively, we must have.

@:fg.d—s’: fg.agﬁ fg.£2+...+fg.gi+...+ fg.gn
S

S1 S, Si sn
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N
Si
i=1

Dividing and multiplying by Vi we get

N [ A-ds
> — S1
fA'dS= ViT 1.29
S i=1 i

If N is sufficiently large, then volume Vi becomes infinitely small i.e..., if N tends to infinity
Vitends to zero and in the limit we may write.

I A-ds _ vA
V:glo Vi -
S1

And convert the summation into integration writing dV for infinitely small volume Vii.e

n-oo

i=1

So, Equ. (1.32) can be written as
]Z-Es’ = Jv-ﬁ-ﬁ/’
S v

Note: This equation is called Gauss's Divergence Theorem.= this theorem is used to convert
the volume integral of divergence of vector field into surface integral of the vectro field
and vice versa.

1.17 Physical Significance of Stokes Theorem

Stokes’s theorem is given by:

fﬁ-il’zfv-ﬁ-ds 1.30
S
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Let us consider a surface S with C as its boundary. Let us calculate the line integral

of vector function A around the boundary C of surface S.

—

The line integral of A around the boundary C of surface S = gﬁcﬁ - dl

Now divide the surface S into two parts of surface S; and S, having boundaries C1 and C;
respectively as shown in fig 1.12(b)

>
A .
— C
parsrs '4
L[ [ SS
Aol [N
e[\
| Je [l 1])
Nl
N [ [ [/
C [ [ [
T T

(2)

—_
~
—

Figure 1.12 Stokes Theorem significance

For boundary Si: gﬁclff -dl,
For boundary S»: ¢, A-dl,

MN is the common boundary of both the surface and flux being equal and
opposite, cancel each other when considered together.

The rest of the boundaries C1 and C; are identical to original boundary C.

Thus, obviously

¢CAdl = fclA.dll+¢C2A.dlz 131
Similarly, if we divide the surface S into a large number of parts S1,S;........, Si, ...... Sn

having boundaries Cy, Cy, ....... , G Cn respectively, as shown in fig 1.13 (c), then

%/T-—i= %E-d_l:+ 36,3-37;+---+ J/T-d_l{+---+ fﬁ-d_l,v’
C

Cq Cy C; Cn



If N is sufficiently large, then surface area Si becomes infinitely small, i.e if N tends
to infinity, Si tends to zero and in the limits we may write.

. [A-dl, )
lim a,=VxA
§;—0 i

Ci

A-dl,

s
or lim a,-a,=curl A-a
$;—0 § Si n n n
Ci

A-di, .
=curl A-a,

lim
5i—0 Si
Ci

Convert the summation into integration writing ds for infinitely small area §;.

Note. This Equ. * is called Stokes theorem
= this theorem is used to convert the surface integral of the curl of vector field

A into the line integral of vector field and vise versa.

Example 1.25: Closed surface is defined is defined in spherical coordinates by 3< r<5, T <

0 < % <P < % Find volume enclosed.

Wil

5
VzrzsianHdrd(sz rzdrf
r=3

A

T
sin d@ f6d(z)
T
4

=L X[ cosH]Ex[n z
-3, Tl 4
_(125—27)X\/§+ ) X(47r—67r)

B 3 7 T 24

(125 - 27) (2.372) (—Zn) _ 2w x (125 — 27)(3.732
3 2 24 ) 144
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_2296.82
T 144

= 15.95

1.18 Cartesian Coordinates

y-axis

X-axis

Figure 1.13 (a) Cartesian Coordinate

You are probably familiar with Cartesian Coordinates. In two dimensions, we can
specify a point on a plane using two scalar values, generally called x and y as in Fig. 1.13

(a)

We can extend this to three dimensions, by adding a third scalar value z as in Fig. 1.13 (b)

z-axis
A
y = 0 plane x = 0 plane
(D P(x.y.2)
B y-axis
z =0 plane

X-axis
Figure 1.13 (b) Point in Cartesian Coordinate System

Note the coordinate values in the Cartesian system effectively represent the distance
from a plane intersecting the origin. For example, x = 3 means that the point is 3 units

from the y — z plane (i.e, the x = 0 plane).

Likewise, the y coordinate provides the distance from the x — z (y = 0) plane,
and the z coordinate provides the distance from the x — y (z = 0) plane.
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A
- 3 .2
“ *1P(2,3,2.5)
Z
P(0,0,0) _
y
2.5y

/ (x=2, y=3)

X
Figure 1.14 P(2,3,2.5) in cartesian coordinate

Once all three distances are specified, the position of a point is uniquely identified
as shown in Fig. 1.14

1.18.1 Terms

(a) dl = dx ay +dya,+dza, differential length (1.32)

|dl| = /|dx|2 + |dy|? + |dz|?

(b)dv =dxdydz differential volume
(c) ds = +dy dz ay, tdz dx a,, +dx dy a, differential area

The three displacements (increments) dx x°, dy Yy, dz z" also define three surfaces
of infinitesimal areas in three planes intersecting at point P.

1.18.2 Cartesian Base Vectors

X

Figure 1.15 Position Vector
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As the name implies, the Cartesian Base Vectors are related to the Cartesian coordinates.
Specifically, the unit vector @, points in the direction of increasing x. in other words, it
points away from the y — z (x = 0) plane. Similarly, d,and @, point in the direction of
increasing y and z, respectively as in Fig. 1.15.

A vector drawn from origin to an arbitrary point P(x, y, z) is called position vector.
7 = xd, +ya, + zd,
Example 1.26: Try and plot the following points in Cartesian coordinate system
(a) (2,-3,5) (b) (1, 4,-6) (c) (-1, 2, 3)

Solution

¢ (b)

1.19 Circular Cylindrical Coordinate System

Although the rectangular coordinate system does appear easier to work with, it
nevertheless often presents more work in order to break a given problem down to a
more palatable and “digestible” form. So, initial drawn effort needs to be made here to
convert rectangular to cylindrical and/or spherical coordinate systems, and vice versa.
Therefore, need-life problems than become easier to tackle.

For circular cylindrical coordinates (or cylindrical coordinates), the three
“coordinates” are p, defining the radial distance from the origin, @, which is the angle the
vector makes with “X” axis” anticlockwise, and Z, the distance perpendicularly from x —y
plane up the z axis. So, any vector located from an imaginary origin ends up at a point
which is the meeting point of three planes of: p constant (cylindrical radius); @ constant,
(angle with x axis, and z that is the same as the z of the rectangular coordinates.
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P Z4
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~
heS
~
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~
heS
~

~
e
~

e

Figure 1.16 Rectangular Vector at point P(pq, 01, 21)

In the diagram above, a vector located at P(p, @, z, )has the corresponding unit vectors
d., 4y, 4, initially perpendicular. Unlike in rectangular coordinates system, whereas a, is
also independent of changes along z axis in the cylindrical system, the unit vectors Eipand
dy do vary with changes in p and @ respectively. Their lengths remain unity, but their
directions constantly vary with varying e and @. Since direction is an integral part of the
definition of a vector, these two can no longer be treated as constants in differentiations
and integrations! The sketch below vividly shows the above:

! S— R
| I_ ........ —| |

v

p+d,

Figure 1.17 Differential Volume of a Cube

Shown above is a differential volume whose sides are the respective increments in
p,® and z. Note, however, that the increment counterclockwise, is not just @, but rather
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pd®, as a quick mental work would readily discern. The incremental volume is
dp (pd®)dz = pdpd® dz. The areas of the differential volume are:

Frontal= pd@dz; left (“elevation”) = dp dz; right (“elevation”) =left =dp dz; projection
downward=projection upward=(dp)pd® = pdpd®

1.19.1 Relating Cylindrical and Rectangular Coordinate Systems

>N

psin®
pcosP
P
N
z
-y
[0)

X

Figure 1.18 (a) Relating Rectangular and Cylindrical coordinate systems
In the Fig. 1.18 above relating rectangular and cylindrical coordinate systems,
x=pcos@®, y=psing, z=12z
From the above, x%2 4+ y% = (pcos®)? + (p sin P)?
x%2 + y? = p?(cos?@ + sin?@) = p?(1) = p?
= p=+x2+y2 (p =0) (pis never negative)

ang=PSn@ _x_ o, -1(x) d depend igns of x and
an = = - =tan - an epenas on stgns of x an Z =7
058 > p g y

So, transformations of scalar functions are easily accomplished using the above
relationships, from one to the other. However, transformations of vector functions are a
bit more demanding, as those require two steps to be taken as opposed to the scalar
transformations.

S
Given a rectangular vector A = A, d, + A, d, + A,a, to transform to a vector in
cylindrical coordinates
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A=A,4,+Agdy + A,Q,
We know that A. a, = |1¢T||&p| cosf = A, X 1xcos0
So, projection of Ain a, direction= 4,
Likewise, A. a, = AQ,/T. a,==4,
A, =48, = (A4, +A,8,+A,8,).4, = Ayd,.a, + A)d4,.4,

o~
S

|

o)

A, = A4, = (A8, +Aya, +A,08,).8, = A,8,.8, = A,

[Recall that dot product of mutually perpendicular vectors is zero (cos 90° = 0), hence

the “disappeared” terms].
From the Fig 1.18
y.d, = (1)(1) cos @ = cos @
Ay.d, = (1)(1) cos(90° — @) = sin @

a,.dg = (1)(1) cos(90°) =0

Qu
(=3
Qu
Q
1S)

90° — @ /NS

ag
Figure 1.18 (b)

Recall that a vector is completely identified by its magnitude and direction, and
not by its actual placement at a point, line, area or space. This thus informs the “sliding’
of the unit vector above to join tail-to-tail with the unit vector a,., straddling each other
with an angle of 180° — (90° — @) =90° + ¢

)
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So, A, — g = c0s(90° + @) = cos 90° cos @ — sin 90 sin @,
By trigonometric identity = — sin @
.Gy = —sin®
ay.dg = cos @

Angle between @, and dg is 90° + @, since @, and d, are mutually perpendicular, angle
between d, and dy is (90° + @) —90° = @ = a.dy = cos P

Obviously, a,.d, = @,.ds = cos90° = 0

SUMMARY

a, ag a,
a, cos @ —sin @ 0
a, sin @ cos @ 0
a, 0 0 1

From the above, then
A, = Ayay.a, + A, a,.4, = Aycos@ + A, sin®

Ap = Ayly.dg + Ayd,. 4y = —Axsin@ + Ay, cos @

Example 1.27: To transform the “rectangular” vector A= z4, + xa, — ya, into

cylindrical coordinates

Solution

A, =4-a,=(zd, +xd, — ya,)a,
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= z4, -4, + xa, -, — ya, - a,
=zcosP+xsin@—yxX0=2zcos@+ pcos@Psin®
Ag=A-dy =70, 8y+xa, 4y — yd, 4y
= —zsin@® + xcos® = —zsin @ + pcos?@
Note that x = pcos @
A,=A-4,=-y=—psin®

Finally, 4 = (zcos@ + pcos@sin@) a, + (p cos? @ — zsin @) dy — p sin Ba,

1.20 Spherical Coordinates

e Geographer specify a location on the earth’s surface using three scalar value:
longitude, latitude and altitude.

e Both longitude and latitude are angular measure, while altitude is a measure of
distance

e Latitude, longitude and altitude are similar so spherical coordinates.

e Spherical coordinates consist of one scalar value (r), with unit of distance, while

the other two scalar values (8, @) have angular units (degree or radians), shown in
Fig. 1.19

P(r 0.¢)

Figure 1.19 Spherical Coordinate System
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1. For spherical coordinates, (0 < r < o) expresses the distance of the point from
the origin (l.e similar to altitude).

2. Angle 8 (0 < 6 < m)represents the angle formed with the z-axis (i.e similar to
latitude). Angle 8 (0 < @ < 2m) represents the rotation angle around the z-axis,
precisely the same as the cylindrical to longitude) in Fig. 1.20.

P(3.0, 45°, 60")

P(, 0, &

Figure 1.20 P(3,45°,60°) in Spherical Coordinate System

Thus, using spherical coordinates a point in space can be unambiguously defined
by one distance and two angles.

1.20.1 Spherical Base Vector
Spherical base vectors are the “natural” base vectors of a sphere in Fig. 1.21

1. @, pointsin the direction of increasing r. in other words @, points away from the
origin. This is analogous to the direction we call up

2. Qg points in the direction of increasing 6. This analogous to the direction we call
south

Fig. 1.21 (a) spherical base vectors (b) transformation diagram

Z

z=rcos O

r z

> Y

X Y=rcosd
(b)
Figure 1.21 (a) Spherical Base Vector (b) Transformation Diagram
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3. @y points in the direction of increasing @. This is analogous to the direction we
call east.

From 1.21 (b) we get
x =rsinfcos@,y = rsinfsin®,z = rsinf

Finally, we can write cylindrical base vectors in terms of spherical base vectors, or
vice versa, using the following relationships.

a, +a, =sinf ag-a,=0 a,-a, =cos@
a, +dg = cos g dg =10 a,.0g = —sin@
a, g =0 g dp =1 a, ayz=20

a, = (@, a,)a, + (@, ag)ap + (4, - dp) g

=sinf d, —cos @ dy
ag = (89 4,)a, + (A - Ag)ap + (Ao - 8;) 4,
=cos0 d, —sinf a,
X =pcos;y =psin;z =1z
1.20.2 Spherical Coordinate System Summary

Here, the variables are r (radius); 8 (angle of a cone z axis; @ (angle as in the foregoing

cylindrical coordinate system.
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Figure 1.22  (a) Spherical coordinate 7, 8, @ (b) Unit vectors: @,, Gy, Gy

(1) Surface r = constant = a sphere

(2) Surface 6= constant = a cone

(3) Surface @ = constant= a plane passing through the z axis (6 = 0), same angle as @
in the cylindrical coordinate system.

Any point in spherical system is thus an intersection of a sphere, a cone and a plane
where are mutually perpendicular (to one another).

The unit vector @,, Gy, a4y are mutually perpendicular, where:

(1) @, radiates outward towards increasing r, and normal to the sphere r = constant,
lying in the cone 8 =constant and the plane @ =constant.

(2) Unit vector dgy lies normal to the surface of the cone, lies in the plane @ =
constant, and is tangential to the sphere r = constant.

(3) Unit vector dg is identical to that in the cylindrical, normal o the plane
@ =constant, and tangential to the cone 8 =constant and to the sphere r =
constant.

For the transformation of scalars from the rectangular to the spherical coordinate
system.
x=rsinfcos@, y=rsinfsin@®, z=rcosf

In the reverse, x? + y2 + z2 = r?sin%6 cos?@ + r?sin?0 sin’*@ + r?cos?0

= 12[sin?0(cos?*@ + sin’@) + cos?06]
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r2(sin?0 + cos?0) =r?  =r=x2+y2+2z2,r>0

z
0 = cos™?! (0° < 6 <1809
VxX?+y?+2z2

1 (Y

— 1(2

@ = tan (x)

Note that:

a,.a, =cosf,a,.a9 = —sinb,a,.as =0

”n

The dot product of a,, dy, a, “against” @, of the three equations above relating x, y, z to
their spherical equivalents, namely, sin 8 cos 8, sin 8 sin @, cos @, respectively. The dot
products of dy, d,, @, and both @, of the spherical can be worked out by borrowing a leaf
from the previously performed cylindrical system. Without going through the whole
rigmarole, here’s the

a, dg ag
a, sin 8 cos @ cos 8 cos @ —sin @
a, sin @ sin @ cos 8 sin @ cos @
a, cosf —sin @ 0

Example 1.28: Transform the vector field G = (3;—2) a, into spherical coordinates

Solution: we find the three spherical components by dotting G with appropriate unit
vectors and we change variables during the procedure:

S Xz XZ
G, =G-a, =—4a, a, = —sinfcos®
y
_ cos? @
= rsin 0 cos 8 —
sin @
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Xz Xz cos 20

Go =G dg = —a, 49 = —cos 6 = 29

0 dg yax ag ycos cos@ =r cos Sin G
., Xz . xz _

Gy =G-a9=7ax-a®=7(—sm®)=—rcos€cos®

Combining the results
G =rcos6cosPcotd d, +r cos?6 cos® cotd dg — r cos 6 cos @ dg
Example 1.29: Given two points, C(-3,2,1)and D (r = 5,8 = 20°, ¢ = —70°) find

(a) The spherical coordinates of ¢

(b) The rectangular coordinates of D
(c) Distance from Cto D

Solution: we know that
(a) r=4x?2+y2+22=V94+4+1=3.74

_ -1Y _ -1(2\ _ 0
@ = tan x—tan (3)—146.3

z 1
6 = cos™ ! = cos™ ! (—) = 74,50
VX2 +y? 4+ 72 V14

The Spherical Coordinates of C are (r,0,0) = (3.74,74.5°,146.3°).
(b) x =rsinf cos @ = 5sin20° cos(70°) = 0.585
y =rsinfsin@ = 5sin20°sin(—70°) = —1.607
z=1cosf = 5cos(20°) = 4.70
D(x = 0.585,y = —1.607,z = 4.70) Ans
(c) Distance CD = |5 —5|

= [(0.585 + 3)d, + (—1.607 — 2)a, + (4.70 — 1)a,|
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= |3.5854, — 3.6074, + 3.704,|
= ,/3.5852 + (—3.607)2 + 3.72

= 6.28 Ans

Example 1.30: Transform the vector field V= (%)éix into its spherical components and

variables
PN Z\ A A~ Z .
Proc:V, =V-a, = (y?)ax-ar = (%)sm@cos(b

_ (%) sin 6 cos @ = (sin @) (r cos §) sin 6 cos @

=7rcos@sinfBsin®

r cos %0 sin @

- (r cos ) _
Vo=V 0y = ————(—sinD)

cos @

r cos 6 sin*Q .
= —————— = (—rcos fsin @ tan @)
cos @

(r cos 8 sin?@) _
ag

= V= (rcos@sin@sin@) a, + (r cos?6 sin @) ag — cos @

=rcosfOsin® (sinf @, + cosf g —tan @ dy)
1.21 Applications

The geographic coordinates system applies the two angles of the spherical coordinate
system to express locations on earth, calling them latitude and longitude. Just as the two-
dimensional Cartesian coordinates system is useful to the plane, a two-dimensional
spherical coordinate system is useful on the surface of a sphere. In this system, the
sphere is taken as a unit sphere, so the radius is unity and can generally be ignored. This
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simplification can also be very useful when dealing with objects such as rotational
matrices.

Spherical coordinates are useful in analyzing systems that are symmetrical about
a point; a sphere that has the Cartesian equation x? + y2 + z2 + ¢? has the very simple
equation p = c in spherical coordinates. An example is in solving a triple integral with a
sphere as its domain.

Spherical; coordinates are the natural coordinates for describing and analyzing
physical situations where there is spherical symmetry, such as the potential energy
surrounding a sphere (or point) with mass or charge. Two important partial differential
equations, Laplace’s equation and the Helmholtz equation, allow a separation of
variables in spherical coordinates. The angular portions of the solutions to such
equations take the form of spherical harmonics.

Another application is ergonomic design, where p is the arm length of a
stationary person and the angles described the direction of the arm as it reaches out.

1.22 Converting Vectors Between Cartesian and Spherical Polar Bases

Let d = agPy + GgPg + apPy be a vector. Find the formula for the components
of ainthe basis {l, j, k}, i.e, find ay, a,, a;such thata = a,i + a,j + a,k.

It is easier to do the transformation by expressing each basis vector {pR, Po, pq,} as

componentin {l, j, k) and then substituting. To do this recall that r = xi + yj + zk

A .
R, sinf

Fig 1.26 conversion between Cartesian and spherical coordinates
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x = Rsin6 cos @ >R =x?>+y%+ 22 1.33

_ . . _ _ -1 VA
y =Rsinfsin® = R =6 = cos (—m) 1.34
Z=Rcos® = 0 = tan™! (X) 1.35
X
And finally recall that by definition
1 or 1 or 1 or 136
PR=Torfor P Tarjee  ° T jar]oo |
JOR 20 09

Hence, substituting for x, y, z and differentiating

r = Rsin 6 cos @i + R sin 6 sin @j + R cos 6k

ar
= 3R = sin 6 cos @i + sin 6 sin@j + cos Ok
Conveniently we find Z—; = 1 (check this for yourself, recalling the trig simplification (sin?

A +cos? A=1)

Therefore Pr = sin 0 cos @i + sin O sin@j + cos Ok
Similarly, g—; = R cos 8 cos @i + R cos 0 sin@j — R sin 0k
ar
And —| = R, so that
AR

The third basis vector follows as,

oar
3R - —Rsin 0 sin @i + R sin 0 cos @j

d|ar|—R in 6, so that
an aR = Sino, so a

Py = —sin @i + cosOj
Finally, substituting
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a = ag[sin 0 cos @i + sin 6 sin @j + cos Pk]

+ag[cos 0 cos @i + cos 6 sin @ —sin 0 k| + ag[—sin@i + cosPj]

Collecting terms in 1, j, and k we see that
a, = sin @ cosP ag + cos b cos @ ay — sin Pay
a, = sin sin@ ag + cos 6 sin @ ay + cos Pay
a, = cos 8 ap —sin Pay

If you like matrices, this transformation can be expressed as

Ay sin@ cos® cos@cos® —sin@][4r
Ayl =|sinfsin® cosfsin® cos® ||%
a, cos @ —sin@ 0 Qg

Conversely, let a = a,i + a,j + a,k. Find components
a = agpg + ag pe + agpPy
This time, we can use the formal approach present in section 2. We have
a = agpg + Agpe + agpgy = axi + a,j + azk
= a.pr = Qg = Axl.pyj.pgr + ag + azk.ag
(Where we have py. py = pg. pg = 0). Recall that
Pr = sin @ cos Pi + sin O sin 65 + cos Ok

= i.pg =sinfcos@j.pgr =sinfsin@ k. pr = cos

Substituting, we get
ag = sin 6 cos @a, + sin O sin Pa,, + cos Pa,

Proceeding in exactly the same way for the other two components

ag = cos 8 cos @ a, + cos 6 sin Pa,, — sin Pa,
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ag = — sin @a, + cos Pa,, 1.42
In matrix from
ag sin@ cos® sinfsin® cosO ][0
Ag| =|cosBcos® cosOsin@® —sind||ay
ag —sin @ cos @ 0 a,

(Comparing this result to the transformation from spherical to rectangular
coordinates, we notice that the matrices involved in the transformation have a neat
property-for each matrix, its inverse is equal to its transpose).

—

Figure 1.24

Example 1.31: Use spherical coordinate system to find area of strip a < 8 < 8 on the
spherical shell of radius “a” in Fig. 2.24. What will be the result when a = 0 and § = n?

Solution: the differential surface element is

ds = r2sin@ do do

21

B
thenA=j jazsinededw
0 «a

= a?[— cos 6] 5 [@]37
= a?[cosa — cosf] X 2m

A = 2ma?(cos a — cos )
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Also, when a = 0 and B = m we get A = 4ma? which is surface area of entire

sphere.

Example 1.32: Obtain the expression for the volume of a sphere of radius ‘a’ from the
differential volumes.

Solution: Differential volume element
dv =r?sin8 dé do

Thus,

2w M ra r2 a
v = f f f r?sin 6 drdfd® = I?l [—cosO]Z[0]3™
o Jo Jo 0

—a3><2><2 _d e
—3 7'[—377.'0!

Example 1.33: Transform vector A=7rF+2sin® 8+ 2cos6 B in spherical coordinate
system to Cartesian coordination system.

Solution: relation between spherical and Cartesian coordinate is given by Equ. (1.40).

From @ =tan ! (%) and 0 = cos™! (;) = cos™?! < z >

VX% +y? +z2

We can represent it on right angled triangle as:

0

and y
'

Z N X

Jx? +y? _ x
;sin@ = ———=; cosf =
Jx? +y? +z2 Jx? +y?

Ay =A G, = (rf-d, +2sin@h-a, +2cos6 B-ad,)

sin@ = ;cos@ =

y Z
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=rsinfcos®+ 2cosfsin@cos® — 2cosfsin®

( 2z y X 2z y )
=[x+ X X — X
VX2 +y24+z2 Jx2+y? fx2+y? (xP4y2+z2 (x2+4y?

2xyz 2yz
+ —_
(2 +y2)/x2+y2+22  J(x2 +y2) Jx2 +y% + 22

Similarly, A, =4 -4y =rf.4, +2sin@ .4, + 2 cosb 0. ay
=rsin@sin® + 2 cos 8 sin®> @ + 2 cos 6 cos @

2
2Xz ( y ) 2Xz x
Va2 +y2+z2 \Jx2+y2) x4+ y2+z2 \[x2+y2

2

2zy 2xz

+ +
(x2+y2)Jx2+y2+z2 (2 +y2+2z8)(x2 +y?)

And A, =Ad4,=rf.d,+2sin® 0.4, + 2cos6 B.a,
=71rcosf —2sinfsin @

2y

Jx?2+y?% + z2

=7z —

N

[ N 2xyz 2yz l
= |x —
(x2+y2) Jx2+y2+22  J(x2+y2+22)(x% +y?2)

A

Ay

2y%z 2xz .
+ + ay
(2 +y2)Jx2+y2+22 (2 +y2+z2)(x2 +y?)
2
+ |z — 24 a, Ans

VX2 +y?% +z2
1.22.1 Converting Between Cylindrical and Rectangular Cartesian Coordinates

The formulas below convert from Cartesian (x, y, z) coordinates to cylindrical
polar r, @, z coordinates and back again.
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X =rcos@ r=4x%+y?

y =7rsin@® ¢ = tan* (V/y)

s 4 [
T sin @ cos 0
) 0 0 1
V4 cos 6 —sinf 0

Refers to Fig. 1.25, when using cylindrical-polar coordinates, all vectors are expressed as
components in the basis (e, g, €,) shown. In words.

i

3

1= L

Figure 1.25 Conversion between Base Vectors
e, is a unit vector normal to the cylinder at P

eg is a unit vector circumferential to the cylinder at P, chosen to make (e,, ey, €,) a right-
handed trail.

e, is parallel to the k vector
You will see that the position vector of point P would be expressed as
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r =re, + ze, =rcosPi + rsin@j + zk
Note also that the basis vectors are intentionally chosen to satisfy

1 or 1 or 1 or
€r=zr|5 €y =E£ €Z=E£ 1.43
ar 99 0z
And there is therefore the natural basis for the coordinate system

1.22.3 Converting Vectors Between Cylindrical and Cartesian Bases

Let a = a,e, + agey + a,e, be a vector, expressed as components in (e, +eg + e,). Itis
straight forward to show that the component of ain (I, j, k) (a=a,i + a, j, +a k) are (as
in Fig. 1.25).

ay = a,cos® —agsin® 1.44

a, = a,sin@® — ag cos @ 1.45

a, =a, 1.46
As a matrix

Ay cos® —sin® 0][ar
[ay] = [sin @ cos® 0] [a@]
a, 0 0 1lla;

The reverse of this transformation is
a, = a,cos® +a,sin@

ap = —a,sSin@ + a,, cos @

In matrix from

ar cos® sin@ O0][ar
[a@] = [—sin @ cos® 0] [ay]
a, 0 0 1lla;
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Note: remember the cube (wherever solving numerical) on surface of object under
consideration in spherical coordinates.

Similarly, we extend point P(r,0,0)toQ(r+dr,6 +df) in spherical
coordinates as let us first plot P at distance of angles ‘0’and @'with 'r' as length extend
the same by incrementing in all directions. Finally, we obtain cuboid which we generally
assume as cube an any objects surface under questions.

Fig. 1.27

Terms:

dl=drf+71d6 0 +7rsin6 do @ (Differential length) 1.47

dv = (dv)(rsin 6 d@) (r dé (Differential volume) 1.48

ds = +(rdf)dxrsin0dp @ =+r2sinf do # (Differential area)
= +(rsinf d@ @) x dr # = +rsin6 dr dp  — 2.32

= +(dr)fx (rde)d =+rdrdd @ 1.49

Example 1.34: Express vector A =cos® a, — 2r g + @, in Cartesian coordinates.

Solution: Using the matrix relation

Ay cos® —sin@ 0][Ar cos® —sin@® 0] [cos®
Ayl =|sin® cos® O||Ag|=|sin® cos@® 0| |—-2r
A, 0 o 1lla, 0 o ul1

This can be written as
A = (cos 2@ + 2r sin®) @, + (cos @sin @ — 2r cos @) @, + d,
From cylindrical to Cartesian coordinates, we have

X
=—andsin(Z)=X= Y

x
Y o x?4+y? rooJx?+y?

cosP =
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S x? A
A= <m + 2y> a, +a,. Ans

Example 1.35: Find component of vector A=-2z d, + 5y a, at point (0, -2, 3) which is
directed towards the point Q(v/3,—30°,1).

3

Solution: x = rcos @ = V3 cos(—30°) = /3 x g =5= 1.5

y =rsin@ = vV3sin(=30°) = —/3 x % = —0.866
Q = (1.5,-0.866,1)
Tpg = (1.5 — 0)a, + (—0.866 + 2)a, + (1 —3)a,
rpo = 1.58, + 1.13a, — 24,

Unit vector is now:

1.5a, + 1.13a, — 2a,
apQ =
J(1.5)2 + (1.13)2 + (2)2

Component of vector A at point P(0,-2,3) towards point Q
A-dpy = (-2)(3) &, + (2)(—2)a, -aQP

(154, + 1.13@, — 24,) —6.78+8
2.74 274

= (—6a, — 4d,) — 0.445

Example 1.36: Use cylindrical coordinate system to find the area of curved surface of a
right circular cylinder where r=3m, h=4m and 30° < @ < 120°

Solution: the different surface element is

ds=rdpdz

2
A_j‘*j?nd@d _4X<27T ﬂ)_4x[4n—n]_4x3n
"y e ‘= 36 6 1~ """
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A = 2mm? |Ans

Table 1.1 Dot product of unit vectors in three coordinate systems

Rectangular Cylindrical Spherical

T 7 2 7 3 2 7 F; 3
& x|1 0 0 cos@ —sin@ 0O sinfcos® cosfcos® —sind
% v |0 1 0 sin@ cos@ 0 sinfcos® cosfcos@® cosd
E 2o 0 1 0 0 1 cos 6 —sin@ 0
= 7 cos @ sin @ 0 1 0 0 sin § cos 0
6| -sin@  cos® 0 0 1 0 0 0 1
% Z 0 0 1 0 0 1 cos @ —siné 0
_ 1 | sinfcos@ sinfsin® cos6 | sind 0 cosf |1 0 0
-g 0 | cos@cos® cosfOsin® —sinf | cos@ 0 —sinf | 0 1 0
'E;’ i) —sin@ cos @ 0 0 1 0 0 0 1

Note that the unit vectors # in the cylindrical and spherical systems are not the same. For

example
Spherical cylindrical Rectangular
7+X =sinf cos @ 7+X =cosQ x =rsin @ cos @
7 -y =sin 6 sin @ -y =sin@® y =rsin 8 sin @
7+2 =cos@ 7-2=0 Z =rcos 6
FORMULAS
ov .  O0v . 0V . .
VI = X + 3y + 5, 2 Cartesian
coordinates
v , 10v = , 0V L
=5 t:550%15 2
Cylindrical coordinates
v , 10v 5 1 0v = .
= f+-— 9+rsin96®® Spherical

coordinates
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_yx oy
V']_ax dy 9z

Cartesian coordinates

16]@ 6]2

rar(]) E

coordinates

— 2
r26r ] )rsm969 (51n6)]9+

Spherical coordinates

rsin @

|o <
Sl

ay
B, B,

Cartesian coordinates

<

X

ou}

Il
Rl »

ERIE

3l =

or
Br TB@

coordinates

Nm NERIES

? ?
r2sin® 7rsin®
= 9 9
ar 20 20
B, rB, 7rsinf By

Spherical coordinates

|o;-:|s>

1.23 Exercise

1. Given three vectors

199
rsinf 00
28+29—2
£—39—4z
=2-9+2
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- -

Find: (a) A-B+2C (b) The unit vector alongff -2¢ (c) B.C (d) AXB (e) AXB.C

2.

9.

10.

11.

12.

Three points P1, P> and P3 are given by (2, 3-2), (5,8,3) and (7,6,2) respectively
obtain.

(a) Vector drawn from P4, to P,

(b) Unit vector along the line from P31, to P3

A vector field is given by E= yX — 2.5xy + 3Z at a point P(4, 5, 2). Calculate:
a. Thefield E at point P

b. A scalar component of E in dir™ of vector 4 = §(2£ + y + 22) at point P

c. The angle between Eand A at P.
Given the points P(r = 5,0 = 60°,z = 2)and Q(r = 2,0 = 110°%,z = —1):
a. Find distance from P to Q
b. Find unit vector towards the direction P to Q
Two points are given as P(2, -1, -3) and Q(1,3,4). Give the vector that extends
from P to Qin
a. Cartesian
b. Cylindrical
c. Spherical
An electric field intensity is given as

= _ (100cos@) . , (50sin6\ 5 2 , , ,
E= ( :305 )r + ( :;n )0. Calculate | E'| and a unit vector in Cartesian

coordinates in direction of E at point (r=2, 8 = 60°,@ = 20°).
. > 573\ . . . . .
Give that 4 = (%) 7 c/m2 in spherical coordinates, evaluate both sides of
divergence theorem for volume enclosed by r=1m, r=2m.
Find the rate at which the scalar function v = r? sin 20, in cylindrical coordinates,

increases in the direction of vector 4 = # + @ at the point (2,%, 0).

A = 27 cos oF + ro. Verify Stokes theorem, in cylindrical coordinates in
region between closed curves C; and C;
A scalar function is given by V(X,Y,Z)= xy. Find a unit vector normal to constant V
surface of value 2 at point (2,1,0)
For a vector field F = xy?% + yz29 + 2xzZ; calculate the line integral fcﬁdl,
where c is a straight line between points (0,0,0) and (1, 2, 3).
In cylindrical coordinates (4<r<6), (30 <@ < 60), (2 < z < 5). Find

a. Volume defined by these parameters
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13.

14.

15.

16.

b. Length of longest straight line that lies entirely with in volume

c. Total surface area
given A=71%t+7rsinf0in spherical coordinates: Evaluate gﬁsff. ds over the
following:

a. the surface of that part of spherical volume of radius unity lying in the first

octant.

b. The surface of solid spherical shell lying between r=a and r=b where a>b.

Given:

A=rsinfcos®F — cos26 sin®§+tan§ inr® atpointp(z,g,%”),

determines the vector component of A thatis

a. Parallelto Z

b. Normal to surface @ = 37”

c. Tangent to surface at r=2
d. Parallel to line y=-2, z=0
(a) Show that point transformation between cylindrical and spherical coordinates
is given by
(i) r=f(p, 2); (i) & = tan™'f (p, 2); (i) ® = £(@); (V) p = f(r,8); (v) z = f(r,0);
(vi)@ = (@)
(b) (i) Given /A/= xz — xy + yz, express /A/ in cylindrical coordinates.
(ii) Given /B/=x?-2y*+3z?, express /B/ in spherical coordinates.
FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM

(a) Convert point A (0,-4,3) from Cartesian to cylindrical and spherical
coordinates.

(b) Describe the intersection of the following surface: (i)x=1, y=2 (ii) x=3, y=-2, z=5
(iii) r=10, 8=30° (iv) p = 10,0 = 50° (v) ® = 40°,z = 8 (vi) r=4, @ = 30°
FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM
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CHAPTER 2

INTEGRAL THEOREMS
2.0 Stokes Theorem

Consider a vector field B(7) ; where:

B(H) =V x A(P)

Say we wish to integrate this vector field over an open surface S:

[[ 7~ [ [ o i

We can likewise evaluate this integral using Stokes theorem.

In this case, the contour C is a closed contour that surrounds surface S. the
direction of C is defined by ds and the right-hand rule. In other words, C rotates
counterclockwise around ds, as in Fig 2.1

Figure 2.1 Surface with Contour C

UV x A(F).ds = jéA(f).aTl 2.1

S c
(ds) = (Ads)

(dl) = (2dD)
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e Stokes’s theorem allows us to evaluate the surface integral of a curl as simply a
contour integral!

. . . ° ° . . ° . .
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Fig 2.2 Vector field

e Stokes’s theorem state that the summation (i.e. integration) of the circulation at
every point on a surface is simply the total “circulation” around the closed
contour surrounding the surface.

In other words, if the vector field is rotating counterclockwise around some point in the
volume, it must simultaneously be rotating clockwise around adjacent points within the
volume-the net effect is therefore zero! As in Fig. 2.2.

Thus, the only values that make any difference in the surface integral is the
rotation of the vector field around points that lie on the surrounding contour (i.e. the
very edge of the surface S). these vectors are likewise rotating in the opposite direction
around adjacent points- but these points do not lie on the surface, (thus, they are not
included in the integration). The net effect is therefore non-zero!

Note that if S is a closed surface, then there is contour C that exists! In other

words.

¢V x A(P).ds = $ A(F).dl =0 2.2
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Therefore, integrating the curl of any vector field over a closed surface always
equals zero.

Example 2.1: A numerical example may help you to illustrate the geometry involved in
Stokes theorem. Consider the portion of a sphere shown in Fig. 2.1. the surface is
specified by r=4,0<60<0.1m,0 < @ < 0.3m, and the closed path forming its

perimeter is composed of three circular arcs. We are given the field H=6rsin® a,+
187 sin 8 cos @ Ay and hence evaluate each side of Stokes theorem.

Solution: the first path segment is described in spherical coordinates by r = 4,0 < 6 <
0.1, ® = 0; the second one by r =4,0 = 0.17,0 < @ < 0.3m; and the third by r =
4,0<60<01m 0 = 0.3m.

The differential path element dl is.
dl = dr @, +rdf dg + rsin 6 do d,
=0 on all three segmentsasr =4 and dr =0

[I=0  onsegment 2 since & =constant

lI=0 onsegmentland3
jfﬁ.cﬂ = ng rd6 +fH®rsin0 do +fH9 rd
1 2 3
Since, Hg = 0, we have to evaluate only second
N 3T
jg H.dl = f [18(4) sin(6. 11) cos @] 4 sin(0.1m)d®
0

= 288 sin%0.1rsin 0.37 = 22.24

Next, evaluate surface integral

Yo = 1 (qu)sinH_ng)d +1( 1 dHr_d(qu)))a
rsin 0 do do/) " " r \sin6 do dr 0
1(d(rHg) dH,\ _
+F< ar de)“‘”
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! . 171
= (367 sin @ cos 6 cos @) a, +;<

g - 61 cos @ — 367 sin 6 cos (Z)> dg

dS =r?sinf dO d@ a,, the integral is

0.3m® (0.1
f(ﬁ x H .ds) =f f (36 cos 8 cos @) (16sin8) d6 do
s o Yo

0.3 1
= f 576 (Esinze) 01T cos @ d@
0

= 288 sin® 0.1 0.3 = 22.2 A

Thus, the results check Stokes Theorem and we note in passing that a current of 22.2A is
flowing upwards through this section of a spherical cap.

Example 2.2: A vector Ais represented in X-Y plane as A= —y ay + a,.

Calculate curl 4 and line integral ¢ 4. dl for the closed curve x2 + y% = r2,z = 0.
Hence verify Stokes theorem.

a, a, a,
Solution: VxA=|& &4 4
dx dy dz
-y x 0
o -k ] - safi2-f o
=V x4 = 2a,
ASI A) = _yax + xdy

Al =+/x?2+y2=r

jgﬁ.asz’.azrfdl=r.27tr=27tr2

In X-Y plane, normal to surface will be along Y-axis, so that ds = a,.ds
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fﬁxzagzjghiz.dzdsz 2§ds=2.r£r2
s s s

Comparing Equs (i) and (ii) Stokes theorem is verified.

Example 2.3: Evaluate ffsﬁ.ﬁ ds where F = x2a, + y?a, + z*@, and S is surface of

cube boundedbyx =0,x =5,y =0,y =5,z = 0,z = 5 as shown in the Fig. 2.2

dx

G F/

-y ——
X

Figure 2.2

Solution: for face DEFG

And

5 ~5 5 (5
ff F-Ads= f f (x?a, + y*a, + z%4,).d4, dydz = f f dydz = 25
DEFG 0o Y0 0o Y0

For face OABC; x = 0dx = 0 = —a, and ds = dydz

5 5
ﬂ F-Ads =f f (y?a, + 2d,) (—a,dydz) = 0
0 J0

OABC
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For ABEF,y = 1,dy = 0,7 = ay and ds = dxdz

5 05 5 05
.ff F-Ads= J. f (x2a, + y*a, + z%a,).a, dzdx = f f dydz = 25
ADEF 0 Y0 0 YO0
For face OCDG,y = 0,dy = 0,7 = —d, and ds = dxdz
R 5 5
.ff F-fids = f f (2@, + z%a,)(—a,) dxdz = 0
0CDG 0 -0
For face EBCD,z =1dz = 0,7 = 4, and ds = dxdy

5 r5 5 r5
ﬂﬁ.ﬁds=f j(xzdx+y2&y+zzdz)- &xdxdz=J dedz=25
0 Y0 0 Y0

EBCD

For face OAFG,Z =0,dz =07 = a, andds = dxdy

5 5
.ff F-Ads= f f (x%a, + y?a,) (—a,) dxdy =0
0 Jo

OAFG

The total surface integral about surface S of cube will be obtained on adding
equations.

Uﬁ-ﬁds=25+0+25+0+25+0=75
S

2.1 Divergence Theorem

Recall the studied volume integrals of the form:

JVU g(@)dv

It turns out that any and every scalar field can be written as the divergence of
some vector field, i.e.

g =V-A(7)
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Therefore, we can equivalently write any volume integrals as:

fvffv-A(f)dv

The divergence theorem states that these integrals is equal to:
IIf, v-A@@dv = § A(F)ds 2.3

Where S is the closed surface that completely surrounds volume V and vector ds points
outward from the closed surface. For example, if volume V is a sphere, then S is the
surface of that sphere.

The divergence theorem states that the volume integrals of a scalar field can be
likewise evaluated as a surface integral of a vector field!

What the divergence theorem indicates is that the total “divergence” of a vector
field through the surface of any volume is equal to the sum (i.e integration) of the
divergence at all points within the volume.

In other words, if the vector field is diverging from some point in the volume, if
must simultaneously be converging to another adjacent point within the volume the net
effect is therefore zero as in Fig. 2.3

DEnEr
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Figure 2.3 Vector Field
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Thus, the only values that make any difference in the volume integral are the
divergence and convergence of the vector field across the surface surrounding the
volume vectors that will be converging or diverging to adjacent points outside the
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volume (across the surface) from points inside the volume. Since these points just
outside the volume are not included in the integration. Their net effect is non-zero!

2.2 Proof of Divergence Theorem

Fig. 2.4 shows a closed surface enclosing a volume V that contains charges (or a charge
density) that produce an electric flux density D.

Z 5

S_EJ
X1 X

Figure 2.4 Proof of Divergence Theorem

P X

Divergence

d0Dx 0Dy 0Dz
+—+

V.D=
v 0x dy 0z

dDx 0Dy 0Dz
+—=+
0x dy dz

So, that ] v - Dav = fff (

> dxdydz 2.4

Let D,4 and D,., respectively be x component of electric flux entering LHS and leaving
RHS of rectangular volume.

The total flux emerging is the algebraic difference of these two.

D D szand
2 V= - ax
X X X ax

dDx
or [[f v dxdydz = [[ (Dy, — D,;)dydz 2.5

dydz is x component of surface elements da
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Its integration of product of D, times da

Putting (2.5) in (2.4), RHS is
f V.DdV = jg(Dadax + Dyda, + D,da,) = ng -da
14 S N

HENCE DIVERGENCE THEOREM IS PROVED

2.3 Integral Definition of Divergence Theorem

.f V.Ddv = jgl__)) da (from divergenc theorem)
v s

[.D-da

S

V:D =lim

1= Net outward flux per unit volume 2.5
S—

RHS net outward electric flux through the closed surfaces S.
LHS average divergence of D multiplied by volume V that is enclosed S.

Thus, the average divergence of a vector is the net outward flux of vector through
a closed surface S divided by volume V enclosed.

He limits of the average divergence as S is allowed to shrink to zero about a point
is divergence of vector at that point.

Example 2.4: The volume charge density of a spherical body of radius “a” centered at
origin is given by p,(r,60,0) = % C/m3 where p, is constant, calculate the total charge

in sphere.

Solution: dv = r? sin 8 dr d6 d®
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p a T 21
= Q:f—oxrzsinﬁdrded(bzf pordrf sin9d0f el
v T 0 0 0

Q=2pya®C

N » € . I .
Example 2.5: Given that D = (IOT ) a,— in cylindrical coordinates, evaluate both
4 m

sides of divergence theorem for volume enclosed by r = 1m,r =2m,z=0and z =

10m.

Figure 2.5

Solution: $ D.ds = [V.D dv

Since D has no Z component, D.ds is zero for top and bottom. On the inner

cylindrical surface ds is in the direction @,

ng.ds = j:o LZHZ—0(1)3 a, (1)d@ dz (—a,)

10 (2w 10
+ f f — ()3 a, (2)d® dz a,
o Jo 4

=750 C

_ —200m N 16 x 2007
T4 4
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From R.H.S of divergence theorem

D_ld 10r4 _ 102
T rdr\ 4 -

10 21 (2
f V-D-dV = f f f (10r®)r drd@dz = 7507 C proved
v 0 0 1

. 512\ . . . . .
Example 2.6: Giventhat D = (%) a, % in spherical coordinates evaluates both sides

of divergence theorem for volume enclosed by r = 4 and 6 = %.
Solution: fsﬁ-ﬁ= J.V-Ddv

- —
Since D has only a radical component, D - ds has non-zero value only on surface r
=4m.

L . (% (75(4)? _
ng-ds=f f 2 a,(4)sin6 do do a,
0 0

=589.1C

Figure 2.6

For R.H.S of divergence theorem
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VD_ld 5r4 _c
T r2dr \ 4 -

2m /4 4
f V-Ddv = f f f (57)(r? sin 8 drd6d o)
v o Jo Jo

= 589.1 C Hence proved

24 Magnetostatics

We have just dealt with the study of electrostatics: fields due to static charges,
E(Ex, Ey, EZ). We shall now deal with the concept of magnetostatics: field due to moving
charges (or steady current) H(Hx, H,, HZ)

The interaction of electrostatic and magnetostatic fields gives rise to electromagnetic
field

(Ex,Ey,E,) and (Hy, Hy, H,) = EM field
Sources of steady magnetic field are:

i.  Permanent magnet
ii.  Charging electric field
iii.  Direct current

We shall go straight to the basic laws that govern magneto-static fields which include
Biot-savart law and Ampere's circuital law.

2.5 Biot-Savart Law

The law states that at any point P the magnitude of the magnetic field intensity dH
produced by a differential current element Idl at rl is proportional to the product of the
current, the magnitude of the differential length and the sine of the angle lying between
the filament and a line connecting the filament to the point P at which the field is to be
determined. Also, this magnetic field Intensity is inversely proportional to the surface of
the distance from the differential element to the point, P.

1dl

= WaR 2.6

dH
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_IdlxR

_ A
4TTR3 /m
Where R=r—1r'
dH_Idlx(r—r’) 27
 4m|r—1r'J3 '

For surface or volume current distribution, we simply replace I dl in Eq. 2.6 with K ds or
J dv respectively, i.e.

Idl=Kds=]dv 2.8

ngdIXaR
. 4mR?
_j‘deXaR

A1 R?

Hence,

S
_ [JdvXag

2.9
41TR?

%4

Example 2.7: Find the incremental contribution dH to the magnetic field intensity at the
origin caused by a differential current element in free space I dl equal to

(a) 3ma, uA.m Located at (3,—4,0) and
(b) n(ax - 2a, + Zaz) HA. m located at (5,0,0)
Solution

a) Given I dl = 3ma, X 107 Am
r = (0,0,0)
r=(3,—4,0)

Now, r—r'=(-3,4,0)
|r—r'|=\/32—+42=5
IRl =[r—7"| =5
R r—r"  -3ay+4a,
IRl Ir=r1" 5

ag
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Idl X ag
i ==
3w X 107° A.ma, x (—3a, + 4a,)
- 4XxXmx25x%x5

=94x10"°Ama, x (—3a,+4a,)

ay, a, a,
=10 0 94x10°°
-3 4 0

dH = (0 —3.769 X 107)a, — (0 4+ 2.827 x 10™°) a,, + 0

= —3.769 x 107° a, — 2.827 x 107> a,, A/m
dH = —38 a, — 28 a, uA/m Ans

(b)  Idl =n(a, — 2a, + 2a,) uA.-m

r = (0,0,0)
r' = (5,0,0)
r—r'=(-5,0,0)
_ ldlxag
i =R

B n(ax - 2a, + ZaZ) X =5a,
B 4 X 52 X 5

UA. m

B n(ax —2a, + ZaZ) X —5a,

41 X 25 X 5 HA.m

ay — 2ay, + 2a, X —5a,
= A.
500 He-m

= (ay — 2a, + 2a,)(—0.01a,) pA.m

Ay a, a,
=(-0.01 0 O0fx10°°
1 -2 2
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= [~(=0.02 — 0)a,, + (0.02 — 0)a,] x 1076 A/p
dH = 20a, + 20a, nA/m

2.6 Ampere's Circuit Law

The law states that the circulation by the magnetic field intensity, H around a closed path
is equal to the current enclosed by the path, i.e.

ng-dl=I 2.10

This law is similar to Gauss's law which we have earlier treated; gﬁs Ds eds = Q.

Ampere's circuital law can be explained using the Fig. 2.7;

Figure 2.7
The conductor has a total current I. The fine integral of the magnetic field intensity, H
around the paths a and b is just equal to the total current I. The line integral of H around

the path C is obviously less than I because the entire current is not enclosed by the path.

Example 2.8: Each of the three coordinate axes carries a filamentary current of 2 A in the
Ay, Ay, O a, direction. Find the magnetic field intensity H at the point (2,3,4).

I=§>‘H0dl
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Now [dl, is simply the circumference of the path enclosing the current. Hence
[dl =2nr

I = H ¢ 27y
H = I,
—anar

I'is the ay, ay, a,, directions. We therefore calculate Hin the 3 directions
H=Hay, + Ha, + Ha,
In the a,direction, we have:
Idl =2 X a, = 2a,
P, = (2,3,4) = (2a, + 3a, + 4a;,)
P; = (0,0,0)
r,=1r—r =(23,4) —(0,0,0) =(2,3,4)
|r, —11la, = V32 +4%=5

2a, (2ax +3a, +4a,)

Ha, = 27(5) X z
Ha, = 12.7 x 1073a, X (2a, + 3a, + 4a,)
Ay a, a
=[127x1072 0 0
2 3 4

= —(4x 127 x1073)a, + (3 x 12.7 x 107%)a,
Ha, = —0.0509a,, + 0.0382a,

In the a,, direction, we have:

ldl =2 Xa, = 2a,
P, = (2,3,4) = (2ay + 3a, + 4a;,)
P, = (0,0,0)
7'12 = TZ - rl = (2,3,4’) - (0,0,0) = (2,3,4)
|T2 - Tllay = 22 + 4‘2 = 4‘4‘7
Ha — 2a, o (2ax + 3a,, + 4a,)
Yo 2m(4.47) 4.47
Ha, = 15.9 x 1073a, X (2a, + 3a, + 4a,)
a, ay a,
=0 159x107% 0
2 3 4
= (4%x159%x1073)a, — (2 x 159 x 1073)a,
Ha, = 0.0637a, — 0.0318a,
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In the a, direction;
Idl =2 X a, = 2a,
P, = (2,3,4) = (2a, + 3a,, + 4a;,)
P; = (0,0,0)
r,=1r—r =234 —(000) =(234)

lr, —11la, =22 4+ 32 = 3.605

2a, (2a, + 3a,, + 4a,)
Ha, = X
2m(3.605) 3.605
Ha, = 245 x 1073a, x (2a, + 3a, + 4a,)
ay ay a,
=10 0 245x1073
2 3 4

= —(3x245x107*)a, — (=2 x 24.5 X 107%)a,
Ha, = —0.0735a, + 0.049a,,
Hence H in all a,aya,, directions are:
H = -0.0509a,, + 0.0382a, +.0637a, — 0.0318a, — 0.0735a, + 0.049a,,

H = —9.8a, — 1.9a, + 6.4a, &/ Ans

2.7 Forces Due to Magnetic Fields

There are at least three ways in which forces due to magnetic field can be experienced:

a. Force on a moving charge particle in a magnetic field.
b. Force on a differential current element in an external magnetic field.
c. Force between two differential current elements.

2.7.1 Force on a Moving Charge Particle

We know that the electric force F, on a stationary or moving electric charge Q in an
electric field E is given by Coulombs law and is related to the electric field intensity as

F,=QE (N)

If Q is positive, then F, and E arc in the same Irection. A magnetic field, B can equally
exert force on a charge particle only if the particle is in motion. The magnetic force F,
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experienced by a charge Q@ moving with a velocity, V, In a uniform magnetic field B is
given by;

E, =Q(V xB) 2.11
Note: E,V, B are all vectors

F,, is perpendicular to both V and B. Observe that F, is independent of velocity while F,
is dependent on it. For a moving charge Q in the presence of both electric and magnetic
fields, the total force on the charge is given by Lorentz force equation;

F=F+EF, 2.11a
=QE+Q(V xB)
=Q(E+V XB)
which relates mechanical force to electric force. If the mass of the charge particle moving

in both electric and magnetic fields is m(kg) then by Newton's second law of motion;

du
F=mE=ma=Q(E+V><B) 2.11b

The solution of the above Equ. (2.11) is very crucial in finding the motion of charged
particles in electric and magnetic fields. We should bear in mind that in such fields, the
bulk of the energy transfer is due to the electric field.

Examples 2.9: A point charge of —1.8 C has a velocity of 4a, + 3a, — 2a, m/s. Find the
magnitude of the force exerted on it by the field; (a) E = 9a, + 4a,, — 6a, V/m (b) B =
—4a, + 4a, + 3a, Wb/m? (c) both E and B

Solution
(a) F, = QF
= —1.8(9a, + 4a, — 6a,)

= —16.2a, — 7.2a,, + 10.8a,

|F,| =/16.22 + 7.22 + 10.82

|F,| = 20.76 N Ans
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ay a, a
(b) E,=Q(VxB)=-18(4 3 =2
-2 =2 1

~1.8[(3 - 4)a, — (4 — 4)a, + (—8 + 6)a,]
= —-18(—a, — 2a,)
= 1.8a, + 3.6a,
|Fl = 7/1.82 + 3.62
|F,.| = 402N Ans.
) F=Q(E+VxB)

ay a, a,
=-1.8| (9a, +4a, —6a,)+ |4 3 -2
-2 -2 1

= —1.8 (9a, + 4a, — 6a, + —a, — 2a,)
= —1.8(8a, + 4a, — 8a,)

F = —14.4a, — 7.2a, + 14.4a,

|F| = /14.4%2 + 7.22 + 14.42
|IF| = 21.6N

Example 2.10: A charge particle of mass 4 kg and charge 2.5 C starts from point (—1,2,0)
with velocity 2a, + 3a, m/s, in an electric field 6a, + 5a, V/m. At time 1 s. Determine
(a) the acceleration of the particle. (b) the velocity. (c) the kinetic energy. (d) its position.

Solution
(a) F=ma=QE=>a=%
2.5
a= T(Za" + 3a,)

1.25a, + 1.875a, m/s?

(b) acceleration = rate of change of velocity
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du
a=—r= (U ,Uy,U,) = 1.25a, + 1.875a,, m/s?

Equating components to find U at time t

d
—Uc=25= U, —f1.25dt=1.25t+L

d
U, =375=1U, = f 1.875dt = 1.875t + M

d
aUZ=0=>UZ=f0d1:=0+N

We now solve for the constants L, M, N as follows: at t=0,
U = 2a, + 3a, m/s which shows that
Uelizo =2=125(0)+ L =L =2

Uy| =0=1875(0)+M =M =0

t=0
Uplgzo=3=0+N=N=3
U(t) = (Uy, Uy, Uy)
U(t) = (1.25t + 2,1.875t,3)
Which can be expressed as,
U(t) = (1.25t + 2)a, + (1.875t)a, + 3a,
Then the velocity at t = 1 s is thus,
U(1) = (1.25 + 2)a, + (1.875)a, + 3a,
= 3.25a, + 1.875a,, + 3a, m/s

(c) K.E =%mu2

1
=X 4 x (3.252 + 1.875% + 3?)
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= 46.2]

_dl

d
(d) U—E—E(x»}’»z)

= (1.25¢t + 2,1.875t, 3)

Equating coefficients of components gives

dU,(t)
e 1.25t+ 2 = U,(t) = f(1.25t + 2)dt = 0.65t* + 2t + L,
dU,,(t)
— = 1875t = Uy(1) = f(1.875t)dt = 0.9375t2 + M,
du,(t
;t( ) _3 U,(t) =f(3)dt= 3t + N,

At t=0,(xy2) =(-1,-20)
From where

U,(0) =0.65(0)2+2(0) +L;, = L, = —1
U,(0) = 0.9375(0)2 + M; = M; = —2
U,(0)=3t+N, = N, =0
Substituting,
(U(0), Uy (1), U,()) = (0.65t% + 2t — 1,0.9375t% — 2,3t) = Iy
att =1 Iy = (1.65,—1.0625,3)

the position is 1.65a, — 1.0625a,, + 3a, Ans.

Example 2.11: A charged particle of mass 4 kg and charge 2 C starts at the origin with

velocity 6a, and travels in a region of uniform magnetic field B = 20a, Wb/mz. At

time = 6 s, calculate, (a) the velocity and acceleration of the particle. (b) the magnitude
force on it. (c) its kinetic energy and location. (d) the particle's trajectory. Show that the

kinetic energy is constant.

Solution:
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(a) F=ma=m%=Q(U><B)

= a:ﬂ:ﬁ((]xg)

dt m
ay a, a,
U, Uy U,

0 0 20

a 1
— (Uxax +Uyay, + Uya,) =

1
=5 (20U, a, — 20U, a, + 0a,)
= 10U, a, — 10U, a,

Equating components,

Uy _ 10U
dt y
du,
—Y = 10U
dt x
du,
- =0=U, =0
Uy _ 10 by _ 10 X (—10U
dt2 dt ( x)
2
ie = —100U,
d?U,
— — + 100U, = 0

The solution is of the form,

U, = C;cos10t — C,sin 10t

But, 10U, = % = —10C, sin 10t + 10C, cos 10t
ie, U, = % = —(, sin 10t + C, cos 10t

initial conditions at t = 0 and U = 6a,, from

where,

U,=0=—-C,cos10(0) + C,sin10 (0)
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0=C 40

U, =6 = —C; cos 10(0) + C, cos 10 (0)

=6=0+C,

U,=0=C,
U = (U,,U,,U,) = (6sin10t, 6 cos 10t, 0)
Ui—¢ s = (6sin 60, 6 cos 60,0)
Required velocity = —1.8289a, — 5.7145a, "/

The acceleration therefore, is

du
a= I = (60sin 10t, 60 cos 10t,0)

Ai—g s = (60 cos 60, — 60 sin 60,0)
= —57.1448a, + 18.2886a,, + Oa, m/sz
(b) E,=Q(U X B)
But, F =ma
= 4(60 cos 60, — 60sin 60,0)N
= —228.58a, + 73.15a, N

F = 2(—1.8289a, — 5.7145a,) X 20a,

ay a, a,
=|-1.8289 -—-5.7145 0
0 0 20

F = 2(~114.29 — 0)a, — 2(—36.578 — 0)a, + 0
= —228.58a, + 73.15a, N

(c) K.E =%m|u|2
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=a,—a,

1
= 5 X 4(~1.8289)% + (=5.7145) + 0?)

=72]
To find the location,
U= (Ux' Uy, Uy)

= (6sin 10t, 3 cos 10t,0)

dx ) -6
Uy == 6sin10t = x =Ec0510t+b1

d
Uy=—y=6c0310t=>y=ﬁsin10t+b2

dt
dz
UZ = E =0=z= b3
At t=0,(x,y,2z) =(0,0,0)

—6 6
XL’=O ZOZECOS].O(O)‘l‘bl:bl :E

6
Yt=0=O=Ec0510(0)+b2$b2=0

Zt=0 :O: b3

(x,y,2) —(_6 10t + 2,2 sin 10t 0)
XV, 2); = 10cos 10,1Osm ,

Att =4s
(x,y,z) = (0.6 — 0.6 cos 60, 0.6 sin 60,0)
x = 0.6 —0.6cos 5t

cos 10t = 287
0.6
y = 0.6sin 10t
sin10t = <
0.6
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0.6 — x\° 2
cos? 10t +sin?10t =1 = ( ) + (L)

= 0.62 = (0.6 — x)? + y?
0.6% = (x — 0.6) + (y — 0)?

This is the form x2 + y2 = r2, the equation of a circle with radius = 0.6

1’(E—1 |u)?
. —Zmu
Where m=4,att =0,u = 6a,,

|U| = (0% + 62 + 0%)1/2
— (62)1/2
=6

U?=aqa

1
2

K.E=-X4X36=72]

Example 2.12: An electron has a velocity of 10® M/ in the a, direction in a magnetic

field B = 0.2a, — 0.3a, + 0.5a, Wb/ ,,
(a) What electric field is present if no not force is being applied to the electron?

(b) If E = Eo(ax +a, + az), Where E, > 0, determine E; so that the not force on
the electron is 0.2 pN.

Solution
vV =10° M/
B =0.2a, — 0.3a, + 0.5a,
If no not force, FE+F,=0
F, = —F,
i.e QE = —-Q(V xB)

or E=—-(V xXB)
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= 10%a,(0.2a, — 0.3a, + 0.5a,)

a, a, da
= |10° 0 0
0.2 —-03 05

E = —[0a, — (0.5 x 10° — 0)a, + (—0.3 x 10° — 0)a,]
= —(—500a, — 300a,)
= 500a, + 300a, kV/m
(b) Net force = 0.2 x 10712 N
= Q(E +V +B)
Where Q =electron charge = 1.6 X 10719 C

E+V XB —0'2><10_12—125><106
( )_1.6><10‘19_ '

[E + (V x B)] = 1.25 x 10°
Substituting
E =Ey(ay +a, +a,)

= Epa, + Epgay + Epa,

So,

Eoa, + Epay + Eqa, + (V X B) = 1.25 x 10°
But, V x B = (—500a, — 300a,) kV/m
Hence,

Eoay + Egay, + Ega, + (—SOan — 300az) = 1250000
Select like terms

E = Eya, + (Eo — 500000)a,, + (Eo — 300000)a, = 1250000

1
|E| = [EZ + (E, — 500000)? + (E, — 300000)%]2 = 1250000

EZ + (E, — 500000)? + (E, — 300000)? = 1.562 x 102
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Expanding
E2 +E2+ E2 +25%x101°+9x 10%° — 16 x 10°E, = 1.562 x 10'2
3E2 +34 x10%° — 16 x 10°E, = 1.562 x 102
3E2 — 16 X 10°E, — 1.222x 1012 =0

Apply the quadratic function

— b+ Vb2 —4ac
Eo = 2a

Where b = —16 X 10°,a = 3,a = 1.222 x 10'?, and bearing in mind that b? — 4ac
must be positive

16 x 10° 4+ 4150180
EO =
6
= 957,888 Volts

=957 kV

2.8 Force on a Differential Current Element

To determine the force on a current element Idl of a current carrying conductor due to
magnetic field B, using the field that for connection current;

Current density | = p,u 2.12

Also, recall that the current element, I,dl = K ds = JdV, so that combining the
equations, we have,

Idl = p,udu = dQu 2.12a
Alternatively,
Idl—del—d dl—d 2.12b
=g = Qg = deu '

Hence Idl = dQu

Equ. (2.12b) shows that a charge dQ moving with velocity u, (thereby producing
connection current element dQu,) is equivalent to a conduction current element Idl.
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Thus, the force on a current element Idl, in a B-field is found from Equ 2.11 by simply
replacing Qu by Idl i.e

dF =1dl X B

If the current | is through a closed path L or circuit, the force on the circuit is given by,

szgldle 2.13
L

In using the last two Equ. 2.13 we should bear in mind that the magnetic field producing
by the current element Idl, does not exert force on the element itself just as a point
charge does not exert force on itself. The magnetic field that exerts force on Idl, must be
due to another element. In other words, the magnetic field B in the equations is external
to the current element Idl. If instead of the line current element Idl, we have surface
current K ds, or volume current element | dV, we simply write;

dF =Kds XBordF =]dV XB

So that,

szdexB 2.14

N

=j]dV><B 2.15
v

2.9 Force between Two Current Elements

Let us now consider the force between two differentials current .elements I;dL; and
I,dL,. According to Biot-Savart law, both current elements produce magnetic fields. So,
we may find the force d(dF;), on an element I,dL,, due to the field produced by
element I,dL,, as shown below.

d(dF>)
1 / 2
- |

ldLq L

L/
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Figure: 5.2. Two differential current elements

d(dFl) - IldLl X BZ 2.16

From Biot-Savart law,
tolodL
dB, =———a
27 4mR3, Tm
Therefore,
IdL,; X I,dL
d(dF,) =21 = 2 2.17
4mR3,

Equ 2.17 is essentially the law of force between two differential current elements and its
analogous to Coulomb's law which expresses the force between two stationary point
charges. From the above Equ 2.17, we obtain the total force Fl on current loop | due to
loop 2. The force F, on loop 2 due to the field from loop | is obtained from the same Equ
2.17 by simply Interchanging subscripts | and 2. The total force between two is obtained
by integrating Equ 2.17 twice.

L L dL, X dL
_ Hol1lz # 1 zaR21 218

Y7 4n R

Example 2.13: A filamentary conductor of infinite length on the z axis of 2 A in the a,
direction. Find the magnitude of the force on a 2.5 cm length of the conductor in the

magnetic field B = 0.1a, — 0.2a, Wb/m.
Solution
F=Q(V xB)
=1t (VX B)

l
=lt<—xB>
t
=1(LxB)
= BIL

= (0.1a, — 0.2a,) X 2.5 x 1072q, x 2

= (0.1a, — 0.2a,) X 5 X 107 2q,
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a, a, a,

=101 O —-0.2
0 0 5x10°2
= -5x1073q,

|F| =+4/25x 1073 =5mN

Example 2.14: A current filament passing through P;(0,0,0) carries a current of 6 A in
the a, direction, and a second filament goes through P,(4,8,2), also carrying 6 A, but in
the a,, direction. (a) Find the vector force exerted on an incremented length dL, of the
second filament located at P,, by an incremented length dL, of the first conductor at P;
(b) Find the force on dL; at P; caused by dL, at P,

Solution

Given P = (0,0,0)

11 - 6A
PZ = (4;8;2)
L=6A

Uo = 4m X 1077
uoly LdLydL,
=7 4Rz R
(4,8,2) — (0,0,0)
BT 18z 212

B AmR3

dF,

dF, (4a, + 8a,+2a,)

41 x 10°(6ay X 6a,) x dL dL,(4a, + 8a, + 2a,)
B 4rr(42 + 82 + 22)3/2

_ 107°(6ay x 6ay) x dL, dL,(4a, + 8a, + 2a;)
B 769.87

We resolve 6 Aa, and 6 A a,,

ay a, a
=l6 0 o0|=36q,
0 6 0
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_ 36a, x dLidL,(4a, +8a, + 2a;) x 1077

F, =
ar, 769.87
ay a, a,
now, =4 8 2
0 0 36
= —144a, + 288a,
_ (288a, — 144a,)dLdL, x 1077
2 769.87
= 0.374a, — 0.187a,dL,dL; X 1077
= 37.4‘ax dleLZ TlN
dFl = 18.7aydL1 dLZ nN
State of particles Electric field | Magnetic field Combined field

Stationary

F = QE

F=0

F =QE

Moving

F =QE

F=Q(V xB)

F=Q(E+V xB)

2.10 Exercise

1. Given a vector function 4 = (2x + C12)2+ (Cox —32)y+ 2x + C3y + C42)2

a. Calculate the value of constants C; C;, C5 if A is irrotational.

b. Determine constant C, if/f is solenoidal.

c. Determine scalar potential function V, whose negative gradient equals A

2. Avectorfield 4 (r,®,z) = 30e~"# — 2z2. Verify divergence theorem for the
volume enclosed byr = 2,z =0,z = 5.

3. Given A = rcos @ # — rsin@ @ in cylindrical coordinates. evaluate gﬁ/f ds over
the surface of the box bounded by planesz=0andz=1,0 =0 and @ = /2

and cylinderr = a.
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10.
11.
12.
13.
14.
15.

N

1m

1m

Figure 2.7
Integrate vector D = x2y3z*2 over the plane square surface bounded by the
points (x,y,z) = (1,1,2); (5,1, 2); (1,5, 2); (5,5,2).
Express the vector A = xy2z a & + x2yz a§ + xyz? @, in cylindrical and
spherical polar coordinate.

. 10x3 . .
Given that = Tx a, C/m?, evaluate both sides of the divergence theorem for

volume of a cube, 2m on an edge, centered at origin and with edges parallel to
axes.

Given a vector field: ﬁ(x, y,z) =55 xyz &+ y*y + yzZ verify Stokes theorem
by evaluating suitable line and surface integrals over the open surface defined to
five sides of a cube measuring 1m on a side and about the closed contour
boundary S as shown in Fig. 2.7

(a) State the Divergence theorem.

(b) Given A(r)=10e % (ra, + a,, (i) determine the flux of A over the closed
surface of the cylinder0<z < 1,p = 1.

(ii) Verify the divergence theorem for same.

FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM

Describe Stokes theorem

Conclude irrotational field. With mathematical proof
Conclude solenoidal field, with mathematical proof
Describe divergence theorem

How to treat discrete sources? Discuss

Discuss properties of Dirac-Delta function
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16. Where can you use matrices?

17. Explain solving simultaneous equations using matrices

18. Find out inverse of matrix

19. Give physical significant of divergence and Stokes theorem.

20. An infinitely long filament on the x-axis carries a current of 10 mA in the a,
direction. Find the magnetic field intensity H and its magnitude at P(3,2,1).

Ans: —0.31a,, + 0.637a, = 0.712 mA/p

a) A current filament of 3a,A lies along the x-axis. Fine the magnetic field intensity
HatP(—1,3,2)

b) Acurrent sheet K = 8a, A/m flows in the region —2 < y < 2 meters in the plane
z = 0O.calculate H at P(0,0,3)

c) A current filament on the z-axis carries a current of 7 mA in the a, direction, and
current sheets of 0.5a, A/m and —0.2a, A/m are located at P = 1 cm and P =
0.5cm respectively. Calculate H at P = (a) 0.5 cm (b) 1.5 cm (c) 4 cm (d) what
current sheet should be located at P = 4 cm so that H = O forallp > 4 cm

d) Express the value of H in cartesian components at P(0,0,2) in the field of a
current filament 2.5 A in the a, directionatx = 0.1,y = 0.3.

21. A 4 coulomb point charge is moving through a uniform electric field E = 3U,, V/m
at t = 0, the point charge is located at the origin and has a velocity of 5a, m/s,
Assuming a mass 1kg, use the force equation and Newton's laws to obtain the
appropriate differential equations. Calculate at t = 2sec

(a) The position of the charge P(x, y, z), (b) its velocity (c) its kinetic energy
Ans. (a) (24a, + 10a,) meters, (b) (24a, + 5a,)m/s, (c) (300.5 Joules)

22, A point charge Q = 18nC has a velocity of 5 x 10> ™/ in the direction, a, =
0.6a, + 0.75a,, + 0.30a,. Calculate the magnitude of the force exerted on the charge by
the field

(@) B = —3ay + 4a, + 6a,mT (b) E = —3a, + 4a, + 6a, kV/m (c) both E and B acting
Ans. 660 X 107°N, 140 X 107°N, 670 x 107°N

23. A point charge Q = —0.3uC and m = 3 x 10~ kg, is moving through the field

E = 30a, V/m, Develop the appropriate differential equations and solve them, subject
to the initial conditions at t = 0;V = 3 x 10°a, ™/, at the origin. At t = 3us find (a)
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the position P(x,y,z) of the charge. (b) The velocity, V. (c) the kinetic energy of the
charge.

24, If the charge stated in equation 3 above is moving through the magnetic field B =
30a,mT solve as in 3a, b, c above given the same data.

25. A point charge for which Q = 2 x 1071%C and m = 5 X 1072¢ kg Moving in the
combined fields E = 100a, — 200a,, + 300a, V/m and B = —3a, + 2a, —a, mT. If
the charge velocity at t = 0 is V(0) = 2a, — 3a,, — 4a, /s (a) give the unit vectors

showing the direction in which the charge is accelerating at t = 0. (b) find the kinetic
energy of the chargeatt =0

26. Two differential current elements
I,dL; = 3 X 107°A.m at P,(1,0,0)

And L,dL, = 3 x 107°(—0.5a, + 0.4a, + 0.3a,)A.m at P,(2,2,2) are located in free
space. Find the vector force exerted on

(a) I,dL, by I;dL, (b) I;dLy by LdL,
Ans  (a) (—1333a, + 0.333a, — 2.67a,) X 1072°N

(b) (4.67a, + 0.667a,) x 10720N
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CHAPTER 3

ELECTROSTATICS

3.0 Coulomb’s Law and Electric Field Intensity

Coulomb’s law: the force between two very small objects separated in a vacuum or free
space by a distance, which is large compare to their size, is proportional to the charge on
each and inversely proportional to the square of the distance between them.

10>

F=k

3.1

And Q1 Q2 can be positive or negative charge quantities, R is the distance separation and
K is constant of proportional. R is in meters, and F in newton for S| system.

k = 47116 , Where € is called the permittivity of free space;
0

1
€, = 8.854 x 10712 = %10—91:/111 (C?/N.m?)

Q102

- 4AmeyR?

3.2

He said force acts on the line joining the two charges: Like charges repulse, while unlike
charges attract each other.

Figure 3.1 Two Like Charge Q, and Q, at a Point Source
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In Fig. 3.1 Q; and Q, charges are like, hence the direction of the arrow depicting

132. The vector 7, locates Q; and r,locates Q,.7 — 71 = §12 is the directed line segment
from Q4 to Q,.

B = Q:1Q2

2 = aqn
41eyR?

3.3

Ry R moer
And Gy, = 2 =Sz 27T

12 = == =—"— is the unit vector in R, direction.
IRzl Riz  |72—74]

Example 3.1: Locate a charge of Q; =2 X 10™* C at A (1,2,3) and a charge of Q, =
—10"*at B(2,0,5) in a vacuum. Determine the force exerted on Q, by Q,

Proc: Ry, = — 7, = (2 — Da, + (0 - 2)a, + (5 — 3)d,

=a, — 24, + 24, = |Ryy| =12 +22+22=3

dy — 28, + 24,
3

— alZ =

. (2x10%)x 107 (ax —2a, + zaZ>
* 7 an(1/35m)1079 x 32 3

0 (ax - 2a3y + 2a2> v

Where 20N is the modulus (magnitude) of the force.

N 20 40 40

A

Fz = —?ax —?ay +?a2
20 —-40 40
components — ?N'TN and ?N

In x, y, z directions respectively.

Similarly, since the charge repulse,




Increasing Qg, results in increasing F; by the same proportion because coulomb’s law
obeys the law of linearity. So, also when several charges act on a charge, the result is the
sum of the different, charges acting individually.

Example 3.2: Three-point charges, qg; = —4nC, q, = 5nC, q3 = 3nC are faced as
shown

If r, = 0.5m and r; = 0.8m, find force on g2 due to other two charges.
Solution: we first find force on g, due to g1

G Xq;  9x107x4x10°x5x107°

F;=kX =72x%x10"'N
1 12 (0.5)2
Which is directed to left. The force on g2 due to gz is found as:
k 9x10°x3x10°x5x107°
Fy =129 _ =2.11x 107N

2 (0.8)2
Which is also directed to left. Thus, the total force on q3 is given by
72%x1077 +2.11x1077=9.31 x 10°’N

Thus, the total force g2 is 9.31 X 10~7N directed to left.

Example 3.3: A charge Q; =3 X 10™* is located at A(1,2,3) and a charge Q, =
—2 X% 107* is located at B(2,0,5) in vacuum. Determine the vector force exerted on Q;
by Qu.

Solution: Given A(1, 2,3) and B(2,0,5).
Ry =% =7 =(2—1Dd,+ (0—2)d, + (5 —3)a,

= a, +2a, - 2a,

|Rip] =12+ 224+ (=2)2=1/9=3
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Ry _ Gx—2dy+2a,

The unit vector d, = R = -
12
F. = 3x10”*x(-2x107%) (dx—zay+2az)
217 4rx—x10-9x32 3
361
a, — 24, + 2a
= —60 < F 7 Z)N
3
= Fy; = (—20a, + 404, — 40a,) N

The force expressed by Coulomb’s law is a mutual force, for each of the two
charges experiences a force of same magnitude, although of opposite direction, we can
write.

- > Q10> Q10>
Fi=-F=—t2 g =<1 4 3.4
1 2 47T€0R12 421 4‘7T€0R12 412

Example 3.4(a): What happens when one of the charges is negative?

Solution: Look at coulomb’s Law! If one charge is positive and other is negative, then the
product Q; Q, is negative. The resulting force vectors are therefore negative they point
in the opposite direction of the previous (i.e., both positive) case in Fig. 3.2

-0 O
Figure 3.2 Coulombs Law

Example 3.4(b): The charges Of 0.25uC are placed at vertices of an equilateral triangle
whose side is 100mm. determine the magnitude and direction of result force on one
charge due to other charges.

Solution:
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B C
0.25uC 100mm 0.25uC

Figure 3.3
P Q:Q2  9x10%x(0.25)% x (107"?)
BA ™ Ame Ry, (100)2 x 106
= 56.25 X 1073N

_ 5.625x107* x 10° _ 5.625 x 100
B (100)2 ~ 100 x 100

= 5.625 X 1072N

FCA - 5625 X 10_2N
ﬁ - ﬁBA + ﬁCA
V3
=2X5.625x 1072 cos30° = 2 X 5.625 X 1072 X -
F =9.7425 x 1072N in direction perpendicular to BC

3.1 Electric Field Intensity

For a text charge Q, there exist a force field associated with charge Q;, and a force on
the test charge given by

g @@ o

t = 4-7'[60R2 At 3.5

On per unit charge basis, this force delivers electric field intensity given by
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N

_ L . 3.6
170, 4me r2 it

Called the vector force arising from charge Qi acting on a unit positive test charge. For
the general defining expression:

BN
Q: C
arising from all other charges in the vicinity-with the exception of the test charge itself.

the vector E is the electric field intensity evaluated at the test charge location

The unit of E, Newton per coulomb, can be converted to a more practical expression
involving the volt (Newton-meters per coulomb), by diving by the meter:

N/C = (N-m /C)/m = volts/meters (V/m)

For a Qi arbitrary located at the counter (origin) of a spherical coordinate system, the
unit vector then becomes coincidental with radial unit vector @,, R becomes r, giving rise

toF =

Ql A .
neral expression.
egr? d,as a general expressio

Figure 3.4

For a general charge not at the origin, no spherical symmetry comes to the rescue and
we are forced to resort to rectangular system. Q is located at (x, y, z), that is,

i ¢ R _Q#-m

Ameo|R|? |R| Ameolr — 7|3

_ Q[ = x)a, + & =y, + (2 - 2)a,]
dmeolx — ¥)2 + (v = ') + (2 — 2)?]5
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Linearity principle, again, holds with respect to electric field intensity:

X

Figure 3.5 Rectangular Coordinate System

For the diagram on the proceeding page, charges Qi and Q; are located 4, and 7, from
the rectangular origin respectively originating from the point P at with the electric field
intensity is to be evaluated.

A

r — 1"\‘1 — "Rlll,f\. — f\.z — "RZH

Total electric field intensity resulting from the two-point charges Qi1 and Qg is the sum of
the charge acting individually:

3.7

For n, point charges

n
= z : Qm
E(r) = —a
™) Aey | — B2
m=1

Example 3.4: Determine E at P(1,1,1) caused by 4 identical 2-nC charges located at P,
(1,1,0),P2(-1,1,0), P3(-1, -1, 0), P4 (1, -1, O) see Fig. 3.6
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Figure 3.6

(This is a rough “Pyramid” Egyptian or not 1 cannot tell!l However, it lacks symmetry as P
does not lie on z-axis)

7=0a,+a,+a,# =a, +a,H =—a,+a,
3= —Gy — Ay, fy = 8y — 4,
|7 =71l = 18] = |; | = 2] = |28, + a,] =5

7 -7 = |28, + 28, + a,| = 3;|F — 4] = |28, + &,| = V5

Q 2x107°

- —17.97 V.
dme,  amx 1012 L797V.m

1 2a,+a4, 1 2a,+d,+a,1 2a,+a, 1

. a,

E=1797 |2 =
- IECRIN N 3 NN
= 4.55a, + 4.558, + 21.87d, V/m

3.1.1 Field from a Continuous Volume Charge Distribution

For a continuous distribution of charges, disregarding irregularities or ripples in
the field owing to electron-to-electron idiosyncrasies, we take a macroscopic view of
things and ignore the internal, microscopic phenomena.
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For volume charge distribution pr,with the units of coulombs per cubic meter
(C/m3), for a small amount of charge.

AQ = P,V,, where Ay stands for a small volume.

Mathematically defined,

_ i AQ
Pr= W AN

Total charge within a finite volume
Q = fpv dN.Vol indicating a Triple integration.

Vol

Example 3.5: Determine the total charge contained in a 4.cm length of an electron in Fig.
3.7.

p, = —5e—102p C/m3

|——»2z=6cm

——— z=2cm

p=1cm y
X
Figure 3.7
Charge density is given as = p,, = —5e7102° C/m3 = —5x 1076 ~102r C/m3
0.06 27 0.01
Q= f J f —5x 107%e~192P pdpdpdz
002 0 0

110



With respect to 0,

0.06 0.01
(w.r.t.z) Q= f f —10"5e™1% pdpdz
0.02 0.5
0.01 z=0.06
B f —10"37e~10 4
0 2=0.02

Note that you have to multiply the above integration equation by ;

0.01
10~ 107 (¢72000 — g =6000pY
0

o ~2000p  ,—6000p 0.01
.T.t. :Q =-10" —
(w.r.t.e) +Q ’t<—2000 —6000)0

= 107207 (s — =)
2000 6000

2
- toon(2)
"\6000
T
=—10"12 (%) = —0.105 pC (picocoulombs)

For an incremental charge AQ at 7, the incremental contribution to the electric field

intensity produced is:

AQ

4‘77:60'? - f'llz

R a1

o T
AE(T) = E

eVAv =7
e, | — 7|2 |7 =7

In the limiting edge,
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o eV()dv 7-7
E@) = —— 3.8
4 2
vol TL'EOIT‘—T‘ll |T—T‘|

Which is a triple integral, with vector r from the origin locating the field point where Eis
being determined, while vector 7, extends from the origin to the source point where
ev(r)dv is located. (7 — 7)/|r — 7| is a unit vector. In the direction from source point to
field point, with the variables of integration being “X” Y, Z of rectangular coordinates.

Example 3.6: Calculate electric field E at a point N (3, -4, 2) in free space caused by

(@) Acharge Q; = 2uC at P; (0,0,0)
(b) A charge Q, = 3uC at P, (—1,2,3)
(c) Both charges Q, and Q,

Solution: the vector from point P; to point N is
7= (3= 0)d, + (-4 —0)a, + (2 - 0)a, = 3d, — 44, + 24,
|F1| =29

Unit vector from P; to N

Field at N due to charge at P;

Q1 . 9x10°x2x107° 3a, —4ad, + 24,
arq = X

= 345@, + 4604, + 2304, V/m

N
En, =

A1y |7 |2

(b) the vector from point P, to N is

7, = (3 +1a, + (-4 —2)a, + (2-3)a, = 4a, — 64, — a,

|?2| =‘/§

112



Field at N due to charge at P,

Q, 4 _9x109x3x10‘6_4&x—6&y+az
4meg |7,]? T 53 V53

= 280a, — 4194, — 69.9a, V/m

5
Eyn, =

(c) the total field at point N
EN = ENl + ENZ
= (345a, — 4604, + 2304,) + (2804, — 4194, — 69.9a,)
625a, — 8794, + 160.11a, V/m
3.2 Field of a Line Charge

For a cylindrical charged conductor of very small radius, it is convenient to treat the
charge as a live charge with charge density ¢; C/m.

Assuming a straight-line charge extending along the z-axis in a cylindrical
coordinate system (an obvious choice) from —co to oo, we desire the electric field

intensity E at any and every point resulting from a uniform line charge density e; see
Fig. 3.8

(0,0,2)

y

Figure 3.8
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Keeping e and z constant, and varying @, the line charge does not change, indicating
arithmethal symmetry. Also, axial symmetry allows the line charge to not charge with
charges in z. as e charges (increases), however, the line charge also charges (becomes
weaker) so the field is only a function of e elements of charges produce no EQ@
components (above and below), leaving only E, that depends on e. For a point P(0,y,0)
(on the y axis same direction as e,) to find the incremental field due to the incremental
charge dQ = ¢, dz,

dE =

e, dz T —
7

R B

dmeo|F — 7y |* |

With f =ya, = ed,

-~ e dz(pa, — zd eed
— dE:LZ(pe :Zgz)ﬁ L 23 — Ee
4meq(e222) >/, 4meq(e222) 2/,

As only the Ee component is present

er

2TEYp

So, for a line charge, the intensity varies only inversely with the distance, as opposed to a
point charge where it varies inversely with the square of the distance.

Discarding symmetry, however, let’s look at a case where an infinite line charge is
parallel tozaxisatx=y,y=6.

Figure 3.9

114



To find E at the general field point P(x,y,z), e =radial distance between the line
charge and point,

P,R=(x—4)?+ (y — 6)%4, = az

= e
= FE= L a,
2megy/(x — 4)% + (y — 6)2
R (x-va,+@u-6a,
aR = — =

IRl J(x —4)2 + (y — 6)2

el (x —4)a, + (y — 6)a,
ency  JG—47?+(y—6)?

= E= independent of z

3.3 Field of a Sheet of Charge

For an infinite sheet of charge with a uniform density of e, C/mz (s indicating

surface), such a charge distribution may often be used to approximate that found on the
conductors of a strip transmission line or a parallel plate capacitor (static charges exist on
the surfaces of conductor and not in the interiors.

A

—»7__4— dy'

J y

P(x,0,0
(,00) R=x?+y?

X

Figure 3.10

In Fig. 3.10, a sheet of charge is placed in the y-z plane. The field is independent of
changes in y and/or z, and the y and z components from differential elements of charge
symmetrically located with respect to the point at which the field is evaluated will cancel.
So, the only component present is Ex and this depends on x along.
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FromE = Z:EL . d., Used in made of the field of infinite line charge by dividing the

infinite sheet into differential width strips. Shown at the end of the proceeding page. The
density of the line charge (charge per unit length) is e, = e;dy’, and the distance from

this line charge to a general point P on the x axis is R = \/x? + y?2. From the diferential
width strip the contribution to Ex is:

e.d e xd
dE, = aed cosf = — 24

2megy/x2 + Y2 2mey x? +y?

For the entire range of strips,

f [Xdy == tan_lz]oo e
Ex ~ 2me x2+y?% 2me, xl_ zeg

And for point P on the negative x axis, E, = — 2% because the field is always directed

away from the positive charge.

For a unit vector dy,normal to the theet and directed outward (away) from it,

E=— 3.10
2€, N

This shows that the field is constant in magnitude and direction, that is a constant vector!

For a second infinite sheet of charge with a negative charge density e located in the
planex = a

The total field is found by adding the contribution of each sheet. In the region x > a.

- s €s
E E=——a4, =E=E+E=0
1 — ZEOax 2 X 1
Forx <0, El— ax,E——;ax=>E E1+E—0
0
For0 < x <aq,
5 - e
E=—a4,E=-=a
260ax 260ax
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34 Streamlines and Sketches of Fields

er, A
Qe
2Tege

Field about a line charge, E=

f
~. |
AN /
length 'l \ T / AN T o~
[ ] - - o — —
E  magnitude l \ more symmetry /4\
[
/ v N
A
f
\ T S Streamlines arrows
AN o show directions
-~ - —_ - >
¢ \ A
strength proportional to thickness of line continuous lines, everywhere tangent to E.

= azimuthal symmetry

Figure 3.11

For streamline sketch, the magnitude of the field is inversely proportional to the
spacing of the streamlines for special cases. Therefore, the closer together the
streamlines, the stronger is the field. Bet it noted that for a point charge, the field does
also vary into and away from this book, and so sketching is limited to two dimensional
fields.

For E; = 0, the streamlines are limited to lanes for which z is constant, and the sketch is
the same for any such plane.

For the several streamlines indicated below.
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Figure 3.12

With Ex and E, indicated at a general point Z—z = Z—z, solved by a form of the functions Ex
and E,.

Example 3.6: For the field of a uniform lime charge with ¢, = 2meo, E= éde

In rectangular coordinates,

- X y
E=x2+y2ax x2+y2ay
dy Ey vy dy dx
—_— ) — = —
dx Ex x y x
= Equation of streamlines y = Cx * %

To find the Equ ** of a streamline passing through P(3,—5,12), we substitute the
coordinates of that point into our equation and then evaluate C.

—5=C(3) = C=—-°/3=-1667 =y =—1.667x

For every streamline there’s an associate value of C, and he radial lines of the last
diagram on the top right corner of the proceeding page are obtained with C =

1 . . . . .
0,1,—1and ~ = 0, meaning for the last one that C increases without bound, C just being

the gradient of the straight line passing through the origin in x- y coordinates.
3.5 Electric Flux Density

Electric flux ¥ (psi) and the total charge on an inner sphere, enduced by charged
outer sphere, is given in Faraday’s experiment by 1 = Qcoulombs
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Metal conductor
sheres

Insulating
dielectric metal

Figure 3.12

On the diagram of the preceding, an inner sphere has a radius of a, and the outer
sphere has a radius of b, will charge of +Q and —Q respectively. Electric flux i extend
from the inner sphere to the outer sphere and the paths are indicated by the
symmetrically distributed streamlines drawn radially from the inner sphere to the outer
sphere.

The inner sphere has surface area of 4ma?m?, and charge of Q =c is
Q

4ma? 4ma?

distributed uniformly over it, giving rise to flux density of C/m3 = D, a vector

field. D has a direction at a point which is the same as that of the flux lines, at that point
and the magnitude is given by the number of flux lines crossing a surface normal to the

lines divided by the surface area. In the Fig. 3.12, D is in the radial direction, with a value

of
__Q .
ly=q = Tz for inner sphere
5|r=b = I0h? a, for outer sphere

In the limit as the inner sphere becomes smaller and smaller while retaining the charge
of Q, it results in a point charge y but the electric flux density at a point r meter from the
point charge is still

119



Became Q lines of flux are symmetrically directed outward from that point and pass
through an imaginary spherical surface of area 4mr?.

—

- ~ . . D - — -
From E = Lme(‘?mar, derived earlier then —= E = D = €yE for only free space. For a
0

general charge distribution in free space,

B f e, dv l

= | Iner? ag, for only free space.
vol

e, dv _

Similarly, f AnR? ag,

vol

Be it noted that, for a point charge embedded in an infinite ideal dielectric medium, the
equation (expression at the bottom of the proceeding page still holds, and therefore the

volume integral expression for D above still holds also. The expression before it relating

Eis only however, for free space. In free space, Dis directly proportional to E, with the
constant of proportionality being the permittivity of free space €o.

3.6 The Electric Force

Say a charge Q is locate at some point in space, a point denoted by position
vector, r. Likewise, there exists everywhere in space an electric field (we neither know
nor care how this electric field was created).

(Charge)

Figure 3.13 Vector at point r
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The value (both magnitude and direction) of the electric field vector at point r is
E(7) asin Fig. 3.13.

Example 3.7(a): Our “Field theory” of electromagnetic says that the electric field will
apply a force on the charge. Precisely what is this force (i.e, its magnitude and direction)?

Solution: fortunately, the answer is rather simple! The force Fe on charge Q is the
product of the charge (a scalar) and the value of the electric field (a vector) at point
where the charge is located:

F, = QE(F) [N] 3.11

» F, (Fe when charge q

E. is positive)
L >
(Fe when charge q F, «
is negative)
Figure 3.13

Note therefore, that the force vector will be parallel (or antiparallel) to the electric field!

Q > O (charge is negative) so F, points in the opposite direction as the electric field as in
Fig. 3.14

Note the magnitude of the electric force will increase proportionally with an increase in
charge and/or increase in the electric field magnitude.

Example 3.7(b) Calculate the force of attraction between Q; =3 x 1078 and
Q, = 2 x 1075 and spaced by 10cm apart in vacuum. What is force if it is placed in
kerosene whose &, = 27

00, 2x4x10713
" 4meyr? 4w x 8.854 X 10712 x (10 x 1072)2
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— 9
W—9X10

F=0.72
In kerosene  F = 0'22 = 0.36 N Ans

3.7 Coulomb’s Law of Force
Consider two-point charges, Q; and Q, located at positions r1 and r, respectively.
We will find that each charge has a force F (with magnitude and direction) exerted on it.

This force is dependent on both the sign (+ or -) and the magnitude of charges
Q, and Q, as well as the distance R between the charges.

Charles Coulomb determined this relationship in the 18% century! We call his
result Coulomb’s law:

1 Q10
= ——a,,|N 12
1 4me, R d,1[N] 3

This force F1 is the force exerted on charge Q,. Likewise, the force exerted on
charge Q,is equal to:

1 0.0z
2 = 4-7'[80 ?a’ZI [N] 3.13

In these formulae, the value g is a constant that describes the permittivity of free space
(i.e vacuum).

C*>  farads
Nm?  m

gy = permittivity of free space = 8.854 x 10712 l

Note the only difference between the equations for force F1 and F, are the unit

vectors d,; and ;5.

Unit vector d;, points from the location of Q,(i.e.,7,) to the location of charge

Q,(i.e., ).
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1 0102

= —a
V7 4me, R2 TH

Likewise, unit vector d,, points from the location of Q,(i.e., ;) to the location of
charge Q,(i.e., 7).

_ L 0%,
4me, R?2 - T
1 02,
= (argy - 0a1) = >

Note therefore, that these unit vectors point
in opposite directions, a result we express

mathematically as:

Figure 3.14 ﬁl and ﬁz are Equal and opposite

Look! For F1 and F; have equal magnitude, but point in opposite directions!
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Example 3.8: what happens when one of the charges is negative?

Solution: Look at coulomb’s Law! If one charge is positive and other is negative, then the
product Q; Q, is negative. The resulting force vectors are therefore negative they point
in the opposite directions of the previous (i.e., both positive) case in Fig.3.5.

3.8 Electric Field and Electric Field Strength (Intensity) E

Electric field strength is defined as force per unit test charge.

E=R (V/m)

4TIE R2

Where R is the distance between the charge and the observation point, R is the radial
unit vector pointing away from the charge.

o S W N
- -« = i—:>—>—>
o R\

Figure 3.15 Force per unit Test
Electric field due to charge distribution:

The electric potential of a point at distance R from a point charge ‘Q’ referred to
that at infinity is given as.

R
f 4nsOR2

Which gives

- 4'7T€0R
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Above is a scalar quantity and depends only on distance R and charge ‘q’. Thus,
potential difference between any two points P, and P; at distance R, and R; respectively
from ‘q’ is

Figure 3.16 Path of Integration

Vo1 = sz - Vp1

47‘[60 Rz R,

Surprisingly, shown in Fig.3.16 above results is true even is P, and P;may not lie
on the same radial line through ‘q’.
Here sz - Vpl = Vpl

You will conclude that choosing path of integration from P; to P3 and them from P3 to P;
will give the result. as no work is done in moving a charge on equipotential surface, thus

from P; to Ps Edi=o.

The electric potential at R due to system of n distance point charges q4, g5 .....q, located
at Ry, R, .... R, is by superposition, the sum of potential due to individual charges.

4-77,'80 Z |R Rkl

Hereby, V is a scalar sum, so E = —VV than vector sum

125



The electric potential due to continuous distribution of charge confined in a given region
is obtained by integration the contribution of an element of charge over the charged
region.

VOLUME CHARGE DISTRIBUTION = f,D_u dv (V)
4mey ) R
14
1
SURFACE CHARGE DISTRIBUTION V= fp—_f ds' (V)
4mtey ) R
1
LINE CHARGE DISTRIBUTION V= f& dl' (V)
4rteg ) R
L

3.8.1 Example: Electric field due to two-point charges in Fig 3.8

Two points charges q; = 2 X 107°C and g, = 2 X 107>C are located in free space at (1,
3,-1) and (3, 1, -2), respectively, in a Cartesian coordinates system.

1 q1 (R—R1)+QZ (R—Ry)
3m-g| IR—R.I? |[R—R,|*

E:E1+E2:

If a small probe charge "Aq" is located at any point near a second fixed charge “q” the
probe charge experience a force,

AF = qAq/4m er?

_aF__«d 3.15
 Aq  4mer? '
Now, let us calculate E for different charge distribution

3.9 Electric Potential (V)

In order to bring two charges near each other work must be done. In order to separate
two opposite charges, work must be done.

w
V=

W) 3.16

Qmoved
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Work or energy can be measured in Joules and charge is measured in Coulombs so the
electrical can be measured in Joules per Coulomb, which has been defined as a volt.

The differential electric potential energy dW per unit charge is called the
differential electric potential (or differential voltage) dV.

That is:

The potential difference between any two points Py, P, is obtained by integrating.

P2

V21=V2—V1=—f E-dl 3.17

P1

Along any path between them.

Where dl is the vector differential distance.

Example 3.9: An electric field is expressed in rectangular coordinates by E= 6x%d, +
6y a, + 44,V /m. Find:

(a) Vmn if points M and N are specified by M (2, 6, -1) and N (-3, -3, 2)
(b) VmifV=0atQ(4,-2,-35).
(c) VnifV=2atP(1,2,-4).

Solution:

(a) =139V
(b) — 120V
(c) 19V

Example 3.10: A nC (point charge is at origin in free space. Calculate V1 if point P1 is
located at P1 (-2, 3,-1)and (a) V=0 at (6, 5, 4)

(b) V =0 at infinity

(c) V=5Vat (2,0, 4).
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Solution:

(a) 20.67 V
(b) 36 V
(c) 10.89V

Example 3.11: An infinite charge sheet with surface charge density o,c/m? has a circular
hole of radius “a”. the sheet is placed in xy plane with its centre at origin. Using
Coulomb’s law or otherwise. Find the potential V and electrical field density E at any
point distance ‘z’ away from the origin and along the positive z-direction.

Figure 3.17

Solution:

for cases where we have a hole in conducting sheet having surface charge density g5 we
can imagine the hole having surface charge density of —agg and solve the problem by two
parts.
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/}5(0, 9,7)

R =+/r% +z2

dQ = psrdrd®

Figure 3.18

l. Electric field due to infinite conducting sheet with surface charge density +og

c/m?2.

Il. Electric field due to hole on charge sheet with surface charge density —a
c¢/m? which can be separately considered as a circular sheet of radius “a”

centered at origin with charge density —a, ¢/m?2.

Os A
So, from text, |. E; = iz
0

2m ra g ordrdQza
IL. f dE, = f f J 028,
0=0Yr

3
=0 4mrey(r? + z2)2

B —O'Ssz”fa rdrd®
= ————a
27 4me, 90 Jroo (T2 +22)3/2 7%

_ —05Z J‘a rdr o A
- 471'80 . 3 [¢]O a,

=0(r2 4+ z2)2

L —o0gz.2m (¢ rdr
, =
r

= a
drey )y (r2422)3/2 7

—05 Z J“ rdr .
=  ——— )
3 Yz

2mey Jyog (r2 + z2)2

But
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| or 2r dr = 2t dt

lorrdr =tdt

= E;, = a,= [t_l]?=0 a,

R —aszfa tdt +05 z
3 =
r=0 (t2)3/2 z 2 <c"0

2 &

_+O'SZ[ 1 ]a

2 Wrz+z2]l _,
5 +O’SZ[ 1 17
- = —_—
7 2¢ WaZ¥zZ 72 “
B, =% [1 z ]A v/
= - d, V/m
27 2¢ Vaz + 22177
So, net Epet = E1 + E;
E 5T a4z v
=——az V/m
2 ggVa? + z2

v ffinalg _l) jz 05z p
= — . — —  —— VA
init 0 2&Va? + z2

—os (? 05z

= dz
2¢& Jy Va? + z2

3 —asjvazﬂztdt_ -0,

280 a \/t_z 250 a

V=_—US[\/aZ—+ZZ—a] %

2&

(let a® + z? = t? 2z dz = 2t dt)

Jm

dt—_—as[\/az—-l-zz—a]

C 2¢

Example 3.12: We wish to find Din region about uniform line charge of 4 nC/m lying
along z-axis in free space.

Solution: the E field

P 4x10° 719
% = S (8BE x 1012y, % =, % V/m

E =
2mEyp
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At p=3mE =23.97a,V/m
Associated with E field we find

pp_4x107°  0.6365x107°

D= a, = a, = 5 a,C/m?

2mp 2w p

Thevalueat p =3mis D =0.212 a, nC/m

3.10 Lines of Force
Lines of force is a curve drawn so that at every point it has direction of electric field

The number of lines per unit area is made proportional to magnitude of electric field
strength ‘E’

3.11 Lines of Flux

Lines of flux is a curve drawn so that at every point it has direction of electric flux density
or displacement density, the number of flux lines per unit area is used to indicate the
magnitude of displacement density, ‘D’

3.12 Gauss Law

Mr. Gauss was perhaps, history’s, greatest mathematician, inventing the summation
theory by the age of ten!).

The electric flux passing through any imaginary spherical surface lying between
two conducting spheres in equal to the charge enclosed within that imaginary surface.
The enclosed charge is either distributed on the surface of the inner sphere, or it might
be concentrated as a point charge at the center of the imaginary sphere. Because of the
relationship between electric flux and charge (equality) the actual geometrical
configuration of the space occupied by the charges, is immaterial since the result is the
same.

Gauss Law: the electric flux passing through any closed surface is equal to the
total change enclosed by that surface.
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s normal

o]

Figure 3.19 Charge in a Closed Surface of Arbitrary Shape

In the above diagram, total charge Q is enclosed within a closed surface of arbitrary
shape. According to Gauss’s law, then Q coulombs of electric flux will pass through then

closed surface. The electric flux density vector D will have some value 55 in general
varies from point to point on this surface, in magnitude and direction.

We have an incremental area AS that approximates a position of a plane surface,

and is a vector quantity having magnitude and direction pointing normal away from the

Ill

said incremental “plane” a plane tangent to the surface at that “point”.

Taking an incremental element of surface AS at any point P, and letting Bsmake
an angle 8 with AS, the flux crossing AS is then the product of the normal component of

55 and AS, AY = Flux crossing AS = Dy, norm AS = D cos 8 AS = BS.AS.

Total flux passing through the closed surface, is the sum of all each of which cross
AS,

Y = fdl/) = f D,.ds, 3.18
closed surface

Which is a closed surface integral, a double integral being the integral of element
involving an area which has two dimensions.

Gauss’s law: Q = 993 l_))S.E = charge enclosed = @
Q= f dL for aline charges, or
€L
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Q= fes ds for a geenral surface charge, or
S

Q= J. ev dv for a volume charge distribution
ve

= Gauss's Law: jgﬁs_cg =f ev dv

s vol

Sl

Figure 3.20 A Point Charge on a Spherical Coordinate System

In the preceding page, a point charge is at the origin of a spherical coordinate system and
by choosing a closed surface of radius a.

- Q
b= amrz
At the surface of the sphere,
— Q|
Ds = amaz

ds =r2sinf do dd = a?sin6 df dp = ds = a®sin 0 d6 dp a,

D;.ds = yr— a?sin0d 0d ¢a,.a, = 4%sin 0 do dp

0=2mw ,O0=m Q
= f —sin 6 df do
p=0 Jo=p 4T
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21 Q 2 Q
J. —(—cos0);do = f — d@ = Q, consistent with Gauss's law
o 4m o 2T

3.13  Electric Flux Density (3)

In addition to the electric field intensity E, we will often find it convenient to also used a
related quantity called the electric flux density D, given by

D =¢E (C/m? 3.19
Invacuum D = g E
E = f(Magnitude, position of charge g and dielectric constant of medium)

D # f (medium)

3.13.1 “Faraday’s Experiment” (with concentric spheres)

Electric displacement from charge on inner sphere through the medium to the
outer sphere as in Fig. 3.21.

— @ —

Hollow sphere filled by Outer sphere — Inner sphere removed and

inner sphere of charge ‘q’ grounded Charvg\;lgsonmgztsirr:ghere

Qouter = —Qinner

Figure 3.21. Faraday’s experiment
The amount of this displacement (W) depends only upon the magnitude of charge Q.
= Y =0 3.20

For the case of an isolated point charge ‘q’ remote from outer bodies the outer sphere is
assumed to have infinite radius.
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The electric displacement per unit area at any point on a spherical surface of radius ‘r’
centered at isolated charge g will.

Y q . Coulomb

p— p— r
Anr?  4Amr? sqm

Vector Quantity. Its direction being taken as that direction of normal to the surface
element which makes the displacement through the element of area of maximum.

Above is true for isotropic media

For anisotropic dielectric

D, €11 €12 €13
Dy| =21 €2 &2
D,

€31 &32 €33

Ey

E, 3.21

E,

3.14 Alternative Statement of Gauss’s Law

Gauss'slaw: §.D -da = [ paVv

Applying divergence theorem
$,V-Ddv=[ pdV 3.22
V-D=p, 3.23

(As volume considered is reduced to an element volume)

At every point in a medium the divergence of electric displacement density is equal to
the charge density

3.15 The Use of Gauss’s Law

For a known charge distribution, given Q = gﬁsmj ds, 55 can be determined even

though it’s the quantity appearing in the integral! But the, therein lies the advantage that
the law of Gauss provides. To proceed a closed surface has to be chosen so that:
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1. 55. cfs is everywhere either normal so that it becomes simply Dsds or its tangential
so that it is zero;

2. Where 55. c?s is not zero, Ds = constant, so that only ds can then vary.
= Q= Ds.ds = $ Ds ds = Dy §.ds 3.24
For normal arousing:

For a point charge, spherical coordinates are conveniently chosen so that the two

conditions above would be satisfied since BS has the same value throughout the entire
surface (symmetry is obvious).

Going further, therefore from the Eq (3.24) we have that:
0=2m
Q=D5§ds=Dsf r?sinf d@ d@ = 4nr?D,
s ?=0

And we have “performed” a seemingly intractable integral without breaking a sweat.

So,

Q

D. =
S 4mr2

Since 0 < r < o, and because of the outwardly radial nature of 55, then:

S_ 0 . s__Q

=—a, , 3.25
a2 & 2meor? r

As earlier shown. Limitations, however are towards symmetry.

For a line charge, the only component present is the radial, obviously for uniform line
charge.

Showing that D, (a scalar) depends only on p.
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Figure 3.22 A close right circular cylinder of radius ‘p’ fromz=0to z =L, and closed line
surfaces normal to z-axis

szgﬁs.d_s’zusf ds + 0 ds+0f ds
N sides top bottom

L 2m
= Dsj j ed® dz = Dy 2mplL
z

=0 @:O
Q
= D,=D, =—— 3.26
PP 2mplL
But then, Q is equally pL % x lenghts
pLL
= pL=D=
P 2mtpL
_ PL _ _pL
So, Dp =2 = Ep = Py
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Conducting
cylinders

Q = 2mpLD;

N

Figure 3.23

Linear conductor

L 27T
Q= j j psa dP dz = 2malLps
z

=0 (D:O

a
= D¢2mp, = 2malps = Dg = %

For inner conductor, charge per unit length

Q 2mapsL
=1 = 2maps = pL
Q 2mal(ps) a arpL PL
=Dy=5—= == () =—(3=) = 5=
2mpL 2mpL p p \2ma 2mp
=  PL
D=——
2mp @

3.16 Total Charge on Outer Cylinder

For a Gaussian surface of cylinder with radius p > b, the total charge would be zero since
there are opposite and equal charges on the inner and outer conducting cylinders.

So, D2nplL =0=Ds, =0 forp>b
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Also, for p > a, same result, logically, so that charges are enclosed only between the two
conductors for an infinite length of coaxial cable. Even for a finite length, the result still
holds as long as the length is many times greater than the radius B, such that the non-
symmetry at the ends do not appreciably affect the result.

Example 3.12: To determine the charge densities and Eand D of the cylinders of a
coaxial cable with an inner radius of Imm and outer of 5mm, with the space in between
assumed to be filled with air. The total charge on the inner conductor is 40nC and the
length of the cable is 80cm.

Solution:

Q inner cyl 40 x107°

_ - _ = 7.96 z
ps inner cy 2mal, 2m(1073)(0.8) we/m
t I__ 40x10-° _ _ Lsouc
ps,outer cyl = 2m(5x1073)(0.8) m?
(Internal fields):
_aps  1073(7.9x10) c
D, = 7 _ > = 7.96u /mz
899 v
g _De_ 796x10 V.
= =—_= -
P g, 8.854x10-12p m P

3.17 Differential Volume Element

“Special” surface as a cube or a cylinder not having the length appreciably greater than
the radius (and therefore, the diameter), lack symmetry, and therefore the application of
the Gaussian principle cannot hold. To circumvent this difficulty, however, a very small
size of these can be chosen, so that in the limiting case, symmetry is almost achieved.

Applying Taylor’s-series expansion for D using the first two terms a nearly correct result
is achieved as the volume inside the Gaussian surface decreases.

In anticipation of one of Maxwell’s four equations (basic to all electromagnetic
theory), let’s consider a point P located rectangularly inside a cube (its reluctant to say
“middle of” since the cubes dimensions >>> zero.
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Az| ——F=
Ax

Figure 3.24 A differential sized gaussian of a ‘P’ surface used to determine the space rate
of change of D in P neighborhood
For the above differential sized cube, D at point P(x,y, z) may be expressed as:

D, = Dy, @ + Dy, 8y + Dy, 4, 3.27

Gauss's law: §, D.ds=Q

il I W B S B
front back left right top bottom

f = DfrontASfront = Dfront-Ay Az a, = Dy frontAy Az
front
With D, approximated at the front face, which lies a distance of Az—xfromP.

Ax
= Dy, front = Dy, +— > X rate of change of D, with x

Ax 0D, .
Dxfront = on + 7 ox x0

And partial derivatives are employed twice D, also generally varies with y and z.

f (D Ax 0D )A A
= = y Az
front 2 0x
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= J. = Dpack-DSpack = Dpack- (_Ay Az ax) = _Dx,back Ay Az
back

Ax aD,
Dyback = on - 7 Ox

—f —( D +AanﬂA A
- back_ o 2 0x Yo

oD,
= f + f = Ax Ay Az
front back 0x

Similarly,

aD,
f + f =— Ax Ay Az
right Jiefe 0¥

oD,
j + j = Ax Ay Az
top bottom 0z

Collectively,

oD, dD aD
:Q:< x-|— y-|— Z)AN 3.28

So, “almighty” result:

, oD, 9D, aD,
charge enclosed in volume AN = b

ax oy "oz

Example 3.15: To find the total charge enclosed in an incremental volume of 10 m3

located at the origin of D = e* siny @, —e *cosy d, + zd, C/mz

Proc:
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T 2e"**siny
aD
6_yy =e *siny
aD,
=1
dz
oD, dD, aD,
At P(0,0,0 igin), =—=0, =1
( ) (origin) % 3y Ep
= jﬁﬁ.% ~1Av=1x10"% = 10nC
Cc
3.17.1 Divergence and Maxwell’s First Equation
In the limit on AN shrinles to zero
oD, 0Dy 9D\ _ D.ds _ . " domsit 229
5 Oy ") T A N T Q= e (chargedensity) 3
For any vector A equally,
0A, 0A, 0A, A.ds
= li
<6x oy Tz ) T B ) AN
Di "Yof A=divA = li A.ds 3.29.1
ivergence ( " )of A=divA = Jim AN 29.

To wit, “the divergence of the vector flux density A is the outflow of flux from a

small closed surface per unit volumes the volume shrinks to zero.

A divergence > 0 (positive) for any vector quantity indicates that, that point is a
source, whereas a sink is indicated for divergence < 0 (negative).
04, 04, 04,

o + 3y + az) rectangular

divD=<
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1 oD@ ODZ

divD = —(pr) 6(2) +— (cylmdrlcal)
di D—la(zD)+ 0 9D9+ 0o (sph D 3292
v =257 r“Dr 7 ag(sm ) 06 90 spherica 29.

Be it noted that, despite the appearance of three components in the expression for
divergence, it is strictly still a scalar and the above three expressions appear without any
associative, directional unit vectors. It merely tells how much flux is leaving a small
volume on a per-unit volume basis.

So, the divergence div D of the example in the preceding page is

. —- 0Dx 0Dy 0dDz o o o c
divD = o + 3y + 57 = —2e*siny+ e *siny+1=1atorigin (10n /m3)

Maxwell’s first equation: divD = Py, applicable to electrostatic and steady magnetic
fields. “Electric flux per unit volume leaving a vanishingly small volume unit is exactly
equal to the volume charge density there. “Called the “point form of Gauss’s law,”
relating the flux leaving any closed surface to the enclosed charge, similar to Maxwell’s
first equation that makes the same statement on a per-unit volume basis for a
vanishingly small volume or at a point.

Maxwell’s (differential equation) = Gauss’s integral for div D in the region about
a point charge Q at the origin.

- Q .

D:4T[T2 A
-~ 199 oD®
divD = —— (r2D 1 —
= aw r2or (r r)+rsm0 00 (1sin )+rsin0 510)

- 1d , @
D9=D¢=0=>dlvD——ZE( 4nr2>:O' forr#0

oy .= 1dQ
forr =0 (origin),divD = g (—) = 00,

The expression how being a full derivative of a constant term (Q).

143



The vector operator V and the divergence theorem

.= _3aDpx 9Dy _ aD . .
Something. D = a_xx+a_yy+a_zz’ to investigate what this “something” is

It has to be a dot operation not dot product, leading to an operation involving a

vector
ﬁ—a”+ 4, + —a, Defined as dot t
‘aya" (’)yay 5, 4z Defined as dot operator
Y R N X A .
V_D=(@ax+@ay+Ea2).(Dxax+Dyay+Dzax)
0Dx 0Dy 0Dz - = —
o vy T = 4w (D)

Used with (against) any scalar field u.

., 0 0 ou . Op_  Op
V,uz(aax+@ay+a— Z),uzaax+@ay+£az

And the result is a vector for cylindrical coordinates

VB_(10( )+ 10D9 (’)Dz>
- AT
f& ds =Q
S
But Q=j evdv=J V.D dv
vol vol
fﬁ% = f V.Ddv  the Divergence theorem: 3.30
vol

N

The integral of the normal component of any vector field over a closed surface is equal to
the integral of the divergence of this vector field throughout the volume enclosed by the
closed surface.
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Stated another way, the divergence theorem says,

The total flux crossing the closed surface is equal to the integral of the divergence of the
flux density throughout the enclosed volume.

Closed surface ‘S’

Figure 3.25

As can be discerned from the above diagram, a volume v shown on cross section for each
differential-sized volume, the flux that diverge from it enters the adjacent cell, unless the
cell contains a portion of the outer space, so that the divergence of the flux density
throughout a volume leads to the same result as determining the net flux crossing the
enclosed surface.

Example 3.16: For the field D= 3xyd, + 2x? a, C/mz and the rectangular

paralldepiped formed by the planesx = 0and 1,y = 0 and 2,and z = 0 and 3, show.
The validity of the divergence theorem (by evaluating both sides of the equation).

Solution:

Dis parallel to the surfaces at z = 0 and 3 (since D has no solution when plugging into

it those values of z). = D.ds = 0 there. For the remaining four surfaces we have

= iﬁ.% = fog foz(ﬁ)xzo « (—dydza,) + f: f:(ﬁ)x:l e (dy dz &)
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[ [0, Carway+ [ [ (@), @rara)

= —f; fOZ(D)x:o(dy dz) +f03 .[:(D)x=1(dy dz)

3 -1 3 .1
—fo .[;(Dy)yzodx dz+f0 fO(Dy)y:dedZ

But
(Dy)x=0 = 0,3xy| =0, (D,y)y=0 = 2x%|y-o = (D,y)y=2 = 2x?%|y-, = 2x?
D—a(3 )+0(2)_3 d dS = dyd
=55 3y ayx—yan = dydz
N 3 r2 3 2
= ng.ds=f f (Dx)x=1dydz=j j 3y dydz
s 0 Y0 0 Y0
332 2 3
= f —| dz = f 6dz =18
0 2 0 0
But

3
dz=6f dz = 18
0

3 02 1 3,2 32 2
= f f f By)dxdy dz = f f 3ydydz = 3f —
0o Jo Jo 0o Jo o 2

0

3.18 Vector Analysis of Gauss Divergence Theorem

In vector analysis, of the theorem is,

jgﬁ-ﬁdaz f V- Edr 3.31
S

volume

Known as Gauss’s Divergence theorem
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Now Qencloseda = f pdT

volume

p: charge density and dt: volume element

=N Qenclosed
f E: ida = ————

€o
Becomes
N 1
f V-Edt =— f pdt
€o
volume volume
v-E=L 3.32
€o
Or

eojgﬁﬁdaz f Py dv
s

Volume
= %eoﬁ-ﬁda= f py dv
S Volume
= %Dda = j py dv 3.33
.S Volume

The net outward displacement through a closed surface is equal to charge contained in
the volume enclosed by the surface.

Example 3.16 Given the field D= 2xy a4, + x? a, C/m? and the rectangular

parallelepiped formed by planesx=0and 1, y=0and 2 and z = 0 and 3. Evaluate left
hand side of Gauss divergence theorem.

Solution: we know that D ia parallel to surfaceatz=0and z=0, so D.ds = 0 there. For
remaining four surfaces.

We have

147



However, [Dy]x=o = 0 and [D,],—o = [Dy], =2 which leaves only

o 3 (2 3 (2
j‘SD .dS = f f [Dy]x=1dydz + f f 2y dydz
0 Y0 0 YO0

3
=f 4dz =12
0

VeD =2 2y + 2 (x?) = 2
_ax xy ax(x)_y

The volume integral becomes

3 .2 (1 3 (2 3
jg VeDdv = f f f 2ydxdydz = f f 2y dydz = f 4dz =12
vol 0o Jo Jo o Jo 0

3.19 Conditions for Applications of Gauss Law
Gauss law is always true, but it is not always useful only 3 kinds of symmetry work:

(a) Spherical symmetry: Make your Gaussian surface a concentric sphere
(b) Cylindrical symmetry: make your Gaussian surface a coaxial cylinder
(c) Plane symmetry: Use a Gaussian “Pillbox” which straddles the surface

Example 3.16. Let us select a 100cm length of coaxial cable having an inner radius of
1mm and an outer radius of 4mm. the space between the conductor is assumed to be
filled with air. The total charge on the inner conductor is 30 nC. We wish to know charge

density on each conductor, and the E and D fields.
Solution: we begin by finding the surface charge density n inner cylinder,

Qinner _ 30 x 1077

- = 4.775 uC /m?
2mal  2mx 103 x 1 ue/m

psinner cylinder =

The negative charge density on inner surface of outer cylinder is

. Qouter —-30 x107°
] = = = —11 2
ps outer cylinder 2mbl ~ Zn X (A X 103 X 1 95 uC/m

The internal field may therefore be calculated easily:

148



Aps 1073 x 4.775x 107® 4.775
Poop p

2

And

5 _Dy_ 4775x107° 5395
P=%, T BBsAx10 12, V/m

Both of these expressions apply to region where 1 < p < 4mm. for p < 1mm or p >

4mm. E and D are zero.
3.20 Coulomb’s Law for Charge Density

Consider the case where there are multiple point charges present. What is the resulting
electrostatic field? (Fig. 3.26).

Figure 3.26 Coulomb’s Law

The electric field produced by the charges is simply the vector sum of the electric
field produced by each (i.e., superposition)
Q1 r—r Q; =T

E(F) = 1 — 2 2 3.34
) = e T=Fif  dme, =R

Or more generally, for N point charges.

Consider now a volume V that is filled with a “cloud” of charge, described by
volume charge density p,, (7). (Fig 3.27)
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Figure 3.27 Cloud of Charge

A very small differential volume dv, located at point 7, will thus contain charge
dQ = p, (MNdv.

This differential charge produces an electric field at point 7 equal to:

py (M) dvr —7'

Ame, |7 — 73 3.35

dE(i) =

The total electric field at 7 (i.e., E (¥) is the summation (i.e integration) of all the
electric field vectors produced by all the little differential charges dQ that make up the

py () T—7'
W T 3.36

Note: The variables of integration are the primed coordinates, representing the

charge cloud.

locations of the charges (i.e sources).

Similarly, we can show that for surface charge:

E(F) =ﬂ ps M dvi =7 3.37

s 4mey [T =73

And for line charge:

dvr —71'
cAmey |7 — 7|
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Point to remember

The potential at a point ‘p’ due to number of charges is obtained as a simple
algebraic addition or superposition of the potential at a point by each of the charge
acting above.

If g1,92, 95 ...q, are charges located at distance R;, R,, Rs .... R, respectively,
from point p, the potential at p is given by

n
1 a1 q qn> 1 ZQi
_ I AT 1 I N {1 39
4me (R1+R2+ R, 4re —1Ri 33

If charge is distributed continuously throughout a region, rather than being
located at a discrete number of points, the region can be divided into elements of
volume AV each containing charge +AV

n
1 pi AV;
= 3.40
4re Z R;
1=

Where R; is distance to p from the ith volume element.

As the size of volume element chosen is allowed to become small.

1 pav 3.41
~ 4me v R '
Its often written in form
V= fp Gdv 3.42
v
In which

_ 1
"~ 4meR

The function G is the potential of a unit charge and is often referred to as
electrostatic Green’s function for an unbounded homogeneous region
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Example 3.17: A Charge configuration in cylindrical coordinates is given by p =

15re~2" C/m3. Use Gauss’s law to find D.
Solution: since r is not a function of @ or z, the flux Q is completely radial.

Using Gauss’s law
Qinc = fﬁ g
L p2m ,pr
f f f 15re™ %" r drd@dz = D(2nrL)
= 15 7L [ Zr<r —r——) ] D (2rrlL)

- 1
Hence, D=—|z—e" T(r2+r+5)]dr (C/m?)

2xy a x? yz,\

Example 3.18 For E = ——=a, +z2+1 y + a, mV/m calculate the total charge

enclosed in a tiny sphere of radius 1um that is centered at a point with coordinates (5, 8,
1).

Solution: Given that

2xy 3x2  2x%yz
ZZ+1ax+ZZ+1ay+zz+1az

E =
From Gauss’s law we can write as
Qenclosed = %5 I{
Using D= & E (for only free space)

= Qenclosea = €o f E -ds= & % E ds = &E 4nr?

(as % ds = 4mr? )

152



Taking magnitude of E, substituting (x,y,z) = (5, 8,1)

B = <2x5x8)2+<3x25)2+(2><25><8><1>2
N 141 1+1 1+1

=1600 + 1406.25 + 40000 = V43006.25

|E| = 207.38 V/m
Now putting |E| is Qenciosea = €oE (4m1?)
Q =8.85x 10712 x 207.38 X 10° X 4 X 3.14 X (1076)2
= 23061.95 x 10718
Q = 0.0231.pC

Example 3.19 Determine an expression for volume charge density associated with each

D field following:

= 4xy . 2x% . X%y A
(a) D —Tax+7ax—z—2 a,

(b) D = 2zsin@d,+zcos¢p dgy +rsing a,
(c) D = sinf@sin¢ a, + 2 cos 0 sin ¢ dg + cos Ppdy

Solution: (a) Gauss divergence theorem V. D= Pv
4xy E) (—XZJ’>
d (T) d ( z A\

dx + dy + dz P

4y
Py = 2—3(22 +x%)

= 1_.d , 1_d d :
(b) V.D—;XE(Zrzsm(Z))+;xd—®(zcos®)+z(rsm®)

153



1 _ 1
=—(2zsin@) ——(zsin@) + 0

oo zsin @
V.D=p, = Ans
© m_1d, 5. ) 1 d ) ) 1 d
(c) V.D==5—(r smHsm(Z))+rsin9d9(251n9c05951n(25)+rsin9d®(cos®)
3 12 0 sind + 2 sin@d . 29 —sin@
T2 rsmesin rsing 2 d9(sm )rsinH
2sin@sin @ sin @ sin @
N T +2rsin9(2C0820)_rsin0
2sin@sin® sin® sin @
= + (—4cos?6 +2) -

r rsin @ rsin @

_ZsinHSin(Z) 2sin® sin® 4sin@sin®

r rsinf@ rsinf r

—

- sin@® 2sin@sin®
V.D= -

rsin r = Py- Ans

Example 3.20 A charge distribution with spherical symmetry has volume charge density
pr={po 0<r<a
{0r>a
Calculate:

(a) The electric field intensity at all points
(b) Potential at all points
(c) Total energy stored in electrostatic field

Solution: considering Fig 3.20 and apply Gauss’s law for r < a, we have

Jﬁ@:fpv-w
S

%4
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D- 4nr? == nr? p,

r = a, Gauss’s law

D.4nr? = = wa3 p,

Figure 3.28

a3 p0

D =
3r2

3

a
E Po sa,V/m r=za

3¢yt
Atr=a

_Poa .

E—3—anr V/im r=a

(b) The potential at any point can be obtained from
V=- J E.di
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forr Z2a

Atr =00, LetV =0, So,A=0

For

Atr=a

Po az_

3 &

y =P

(c)

The energy stored is

3
Po a
,fSErzdr

atr = a

—r?)

1
WE :_fEO EZdV
2 v

Considering both region E,

,02 a T 2T
= "J j j r2-12sin6 dr d do
18 €0 ).y Jg

=0Y0=0

a6 o] s 27T 1
Fo f J J — - r2sin0 dr d6 dp
0Jr=a

9=0Jp=0T
_ _po@ - p§ a®
18 €, 5 18 €,
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W = 4mpiad®
E™ 15¢,

J

Example 3.21: A dielectric sphere of radius ‘b’ and permittivity ' € ' is situated in
vacuum. It is charged throughout its volume by a charge density p, = Sr—b, r being the

distance from the center of sphere. Determine the electrostatic energy of system.

Solution: For D outside sphere

Using Gauss’s law

Figure 3.28

X b bis 211'5b 5
D.4nr =j J J —7r°sin@ dr dO6 d@
r=0J9=0Jg=0 T

= 5b3 X 2m = 10mh3

~ 10mb® 5b3
D:W:ET—ZCLY- b<r<ow

D Inside sphere by Gauss’s law at any radius r

r T 2n5b '
D.4m‘2=ff f —1r?sinf dr df do
0o Jo=0Jtg=0 T
2

r
5b.?- 4 = 107 br?
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Total energy of system

W, —lede
F7),2¢
1 co T 271'25b6 b ,m 277:25
= [.f f f : r?sin@ dr do do +f f f —b?r?sin @ dr d6 do
3¢ [Jr=p Jo=0tp=0 47T 0 Jo=0Jg=0 4
_ [z, 1], 2400, | _son
T 3g,| 4 Tl a3 | T T e,

Wg = 5.914 x 102 b5 ]
3.21 Introduction to Electric Potential (V)

Recall that a point charge Q, located at the origin (¥ = 0) produces a static electric field:

Q

E(r) = 3.43
™) 4eyr? 4
Now, we know that this field is the gradient of some scalar field:
E(@) =-VV(7) 3.44

Example 3.22: What is the electric potential function V () generated by a point charge
Q, located at the origin?

Solution: We find that it is:

Q

4mregr

V(F) = 3.45

Example 3.23: Where did this come from? How do we know that this is the correct
solution?

Solution: We can show it is the correct solution by direct substitution
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E(F)z—VV(f)=—V( ¢ ):—E(L)aﬁo— ¢ .

4dmeyr or \4me, r " Ameyr?
The correct result.
Example 3.24: What if the charge is not located at the origin?

Solution: Substitute r with | — 7| and we get:

V() = # 3.46
dey | — 7|

Where, as before the position vector 7 denotes the location of the charge Q, and the
position vector 7 denotes the location in space where the electric potential function is
evaluated.

Example 3.25: Given the field E = 40 xy £ + 20x2% $ + 152, calculate Vpq given
(1,—-1,0) and Q(2,1, 3).

Solution: Given vector is
E = 40 xy% + 20x%9 + 152

In Cartesian coordinates, we can write Vp, as

P—) —_—
Q
E odl = [40 xy @, + 20x? &, + 15@,] * [dx 4, + dy &, + dz &,]

1 -1 0
=—U 40xydx+J 20x2dy+J15dzl
2 1 3

2 1

40><x X
2 y

+20x%y|35, + 15(—3)]

x=2
= —[20 x*y|y=p + 20 x?y|;L, — 45]
= —[-60y — 40x? — 45]
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for Q(2,1,3)
= —[-60 — 160 — 45]

Example 3.26: If we take the zero reference for potential at infinity, find the potential at
(0,0, 2) caused by this charge configuration in free space.

(@) 12nC/monthelinep =2.5m,z=0
(b) Point charge of 18nCat (1,2,—1)
(c) 12nC/monliney =2.5,z=0

Solution

(a) 529V
(b) 43.2V
(c) 67.4V

3.22 Electric Potential Function for Charge Densities

Let us look at a review on superposition principles. Recall the total static electric field
produced by 2 different charges (or charge densities) is just the vector sum of the fields
produced by each:

E(r) =E (F) + E, () 3.47
Since the fields are conservatives, we can write this as:
E(r) = E1(7) + E; (7)
V(@) = =V (r) — VI, (1)
—W() = -V(h@ +V, (M)
Therefore, we find

V(@) =V, (F) + V, (F) 3.48
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In other words, superposition also holds for the electric potential function. The
total electric potential field produced by a collection of charge is simply the sum of the
electric potential produced by each.

3.22.1.Sign for work done

If a body acted upon by force is moved from one point to another, work will be
done on/by body.

If there is no mechanism by which energy represented by this work can be dissipated,
then field is said to be conservative.

Energy must be stored in either potential/kinetic form. If some point is taken as a
reference/zero point, the field of force can be described by the work that must be done
in moving the body from the reference point up to any point in the field.

A reference point that is commonly used is a point at infinity.

If a small body charge ‘q’ and a second body with small test charge 'Aq’ is moved from
infinity along a radius line to a point 'p’ at a distance R from the charge 'q’, then work
done on the system in moving the test charge against the force F will be.

R
work = f F, dr 3.49

Work done on test charge

—qAq jR 1 qAq
= — dr =
dmte  )_ 1? 4mte R

Work done on test charge per unit charge is

q

V= 3.50
4meR

V is potential is only magnitude and on dir’ — Scalar potential
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3.22.2. Conversation field

When work done in moving from one point to another is independent of path
then field is called as conservative field (fig 3.22)

There is no mechanism for dissipating energy corresponding to positive work
done and no source from which energy could be absorbed, if work were negative.

A dW =dV = —E - ds
Or (Z—de+g—;dy+g—2dz)=—ﬁ-ds
2 P,
P;

Figure 3.29 Conservative Field

SOV LV | LAV o N . =
Or (x£+y$+25dz)-(xdx+ydy+zdz)=—E-ds
Or VW.ds = —£-ds
= E=-vw 3.51

Points to remember are that:

1. Electric field strength at any point is just the negative of the potential gradient at

that point.
2. The direction of electric field is the direction in which the gradient is greatest or in
which the potential charges most rapidly.

Once we find the electric potential function V (). We can then determine the
total electric field by taking the gradient.

E(r) =-VV (1)
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Thus, we now have three (!) potential methods for determining the electric field
produced by some charge distribution p,, (7).

1. Determine E () from coulomb’s law.
If p, () is symmetric, determine E (") from Gauss law.

3. Determine the electric potential function V () and then determine the electric
field as E(7) = —=VV (7).
Which of the three should be use?

To a certain extent it does not matter! All three will provide the same result (although
ps () must be symmetric to use method 2!)

However, if the charge density is symmetric, we will find that using Gauss’s law
(method 2) will typically result in much less work!

Otherwise (i.e., for non-symmetric p,, (7)), we find that sometime method 1 is
easiest but in other cases method 3 is a bit less stressful (i.e you decide).

Example 3.27 Given the potential field, V = 2x2y — 4z and point P(—4, 3, 6), we wish
to find several numerical values at point P, the potential V, the electric field intensity E,
the direction of E, the electric flux density D, the volume charge density p,,.

Solution: The potential at P (—4, 3, 6) is
Vp=2(—4)2><3—4><6=72V
We may use gradient operation to obtain the electric field intensity
E=-VV =—4xya, — 2x* 4, + 44,
The value of E at point P is

E, = 484, — 32d, + 44, V/m

And |E,| = V482 + 322 + 42 =57.83V/m

The directions of E at P is given by unit vector
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. 48a,-32a, +44,
Ap = 57.83

dg p = 0.83d, — 55a, + 0.069a,
If we assume these fields exist in free space, then
D = ¢,F = —35.4xy 4, — 17.71x2 a, +44.3ad, pC/m3

Finally, we may use divergence relationship to find volume charge density that is the
source of the given potential field.

p, =V.D = —=354ypC/m3
At p, = —106.2 pC/m3

Example 3.26 A spherical charge distribution is given by
P = Po (1—1) When r <a
a

p=0r1r>a
Calculate

i The electric field intensity inside and outside the charge distribution
ii. The value of r for which the field is maximum
iii. The electrostatic potential at the center

Solution: The volume density of a spherical charge at a distance R < a from the center is
given by

= (1 R) 3.52
P = Po e .
i Consider a spherical shell of radius R and thickness dR inside the charge

distribution. The electric field strength at a point distant r< a from the center
due to the small charge dqg on shell is given as.
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1 dgq

dE = —
A1rey 12

3.53

And dg = (4T R* dR)p

The electric field intensity due to the whole charge distribution at any point inside the
sphere distant r from the center is obtained by integrating Eq (3.53)

ii. Between the limitOtor.

r

1 ("dg_ 1 J‘r(4nR2dR)p
0

dmey ), 12 4me r?

! ifr(émRz dR) - p, (1 - g) [from equation (3.52)]
0

:47'[807‘2
:P_o " RZ_R_3 dR = Po R_3_R_4r
gr? ), a &r?| 3 4al

_po [P e[ T
&r?|3 4a|l & |3 4a

The electric field intensity at any point distance R > a from the center of spherical charge
distribution is given as

1 fa (4m R? dR)p
0

E, =
0 4‘7T€0 Tz

1 e(4mR?dR)p (1 —g)
J—

4,

a R3 R3 R4-a
=€—O <R2——>dR= Po ———l
0 0

r2g, a &r?| 3  4da
_ Po R? a® _ poa’
Cr2gg\ 3 4 ) 12g,r2

ii. the electric field intensity at any point distant r from the center is
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r r?
Y
& \3 4a

The field will be maximum for the value of r, for which Z—f =0

d [po (r 772 _ 0o
dr|e,\3 4a)|

po(l Zr)_o
g \3 4a)
Or r=2—a

3

iii. The electric field intensity at any point distance r from the center is

E_Po roor?
i_eo 3 4a

The potential V at a point distant r from the center is given by

2 2 3

= Po (T T Po (T r

Ve | B -@=-|Ear=22(l-)ar=-2(L - T_
fl " flr feo<3 4a) r £0<6 12a)

At the center of the spherical charge r = 0
The potential at the center of the spherical distribution is zero

Example 3.29 A charge g coulomb is distributed uniformly throughout a non-conducting
spherical volume of radius R meter. Show that the potential at a distance r from the
center where r < R, is given by

1 qBR*-1?)
 4me, 2R3

Solution: Let a charge g coulomb is distributed uniformly throughout a non-conducting
sphere of radius R meter. The electric intensity at any point distant r < R from the
center of the spherical charge is
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Fp=— 17
0" dme, 127

The electric potential at the surface of spherical charge is

R, R1 ¢ .
Vsz—fooEo-drz—foo 4n€0r—2vr.dr

R
q 1 gq
= — . — dr = - = 3.54
4me, ,foo rz 4 4mey R
The intensity at any point distant r (CLR) from the center is
- 1 qr
E, = C =D
7 4me, R2
The potential at a point distant r (< R) from the center is
- — 1 gr, - 1 qr
V=—|Edr=-— — U, = — dr
j e 147130 R3 UrGr 4me, fR3
L. 3.55
47150 2R3 '

Where Cis an integration constant.

But Equ (3.54) given the electric potential at the surface of the sphere

1 1
a__ 1 4. ..
4meg R 4mey 2R
1 3q
47150 2R
Putting this value in Equ (3.55), we get
1 qr? 1 3 r?

4'77:80 2R3 47TSO ZR 4'77:80 2R3
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1 q(BR*-1?%)

= pr, SR3 Proved

3.23  Electric Field Due to Surface Charge

Let surface charge density be 'p,’ coulombs per square with enclosed an element of
surface in a volume of “pillpox” shape with its flat surfaces parallel to the conductor
surface, depth d < diameter in as in the case of a conducting pathway of an Electric
circuit.

Electric displacement through its edge surface « Electric displacement through its flat
surface.

conductor

dielectric

Figure 3.30 (a) boundary between conductor and dielectric

. AN

YA

Figure 3.30 (b) conditions at Boundary

Electric displacement through top and bottom surface gets cancelled as they are equal
and opposite

There can be displacement through the left-hand surface submerged in conductor
sec in Fig 3.30.

= D, da = ps da 3.56
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= DnzpsorEn=%

The electric displacement density at the surface of conductor is normal to surface
and equal in magnitude to surface charge density.

OR

The electric field strength is normal to surface and is equal to surface charge
density divided by dielectric constant.

3.24 Method of Electrostatic Images

The method of image involves the conversion of an electrostatic field into another
equivalent field.

The applications of above method reflex to following distributions:

a. Combination of concentrated charges and planes: electrons in space close to
essentially plane conductors is its known example as seen in Fig 3.30

b. Replacing the conductor by one or more-point charges: it will be seen that it is
possible to replace the conductors by one or more-point charges in such a way
that the conductor surfaces are replaced by equipotential surfaces at the same
potential.

c. Combination of several cylindrical conductors: This combination of several
cylindrical conductors is taken with reference to earth as large conducting plane.
An open wire transmission line is a very typical example of above.

Note: Therefore, the application of method of electrostatic images would require a
knowledge of the surface charge density distribution on large conduction plane.
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+Q

Actual
charge
h
P I ¢ | Q
\ l\ ? /’/ Infinite
v=0 M\ h ;! Conducting
\ o\ ;7 plane
\.{k%
——-Z Q == Electrical
- image

Figure 3.31 Electrical Image Method

Conclusion: Image methods permits

1. The determination of the electric field behavior in dielectric without knowing the

actual charge distribution on the plane.

2. The determination of electric field behavior in the vicinity of concentrated or line

charge close to a plane boundary between two different dielectric media.

3. The determination of relationship involved between two external spheres by an

extension of this method as a series of images.

With reference to the above Fig. 3.31, the fictitious charge

—Q shown below the

conducting plane is usually referred to as electrostatic or electric image similar to optical

image that is why the name is method of images.

This method has the following steps.

1. Firstly, the mirror image of the conductor in ground plane is taken

2. The image conductor is assumed to carry a negative of the charge

3. The ground plane is then removed

Obviously, then the electric field of the two conductors obeys the right boundary

conditions at the actual conductor and by symmetry has an equipotential surface where

the ground plane was.

Hence, this field is the field in the region between the actual conductors and the

ground plane.
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If —Q charge is placed "2h" unit below actual charge +Q the plane PQ has potential of
zero. Thus, the upper portions of two fields are identical and equivalent configuration
can be used to determine all field quantities in the upper half space.

Q -Q?———b————b——?+Q
| |
[

a a

I
I
f
I
I

a
I

I
I
I
|
I
I
a I
I

————f———

b b -Q

|
+Q‘

Figure 3.32 (Left) rights angle conducting plane charge system (Right) equivalent image
configurations

With reference to Fig 3.32, let a point charge +Q be brought near a right-angle
corner between two conducting plane boundaries at zero potential in Fig. 3.33 (a). by
adding a single image charge directly below the original charge will make the potential of
plane OP zero but will not satisfy zero potential condition in plane 0Q. However, a
system of three image charges in Fig 3.33 (b) will satisfy the condition on both planes OP
and 0Q.

Example 3.31. Point charge near an infinite grounded conducting plane.

* +Q

: l

Fig 3.33 (a) point charge near a grounded conducting plane
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+Q Q

a1

Fig 3.33 (b) the conducting plane replaced image charge —Q

Solution: Follow the steps as:

1. The conducting plate is of infinite extent, its potential must be constant at |l
points on it. Assume this potential to be zero, whatever be the charges induced
on it.

2. Earth has a large capacitance of 4mey R = 600uF and hence addition or
substraction of even large amounts of charge has a negligible effect in its
potential.

3. Remove the rounded conductor and replace it by a charge - Q, at a distance 'd’
behind the plane, then every point of the plane will be equidistant from +Q and
from - Q and hence be at zero potential as in Fig 3.33 (b).

4. The charge - Q is said to be image charge +Q in the plane

The potential V at point P whose coordinates are r, Q is given by

/=y (171)

Where,

2 =12+ (2d)*+2.2drcos8

ro = /T2 + 4d? + 4 dr cos 6
Now, the components of electric field intensity at p are component of VIV

- _dV N
E,= 7 Gr 3.58
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g = 1. 3.59
6= " 40 '

Solving above Equs (3.58 and 3.59)

Q 1 (r +2dcos )
E,. = 2 — = 3 3.60
T 1T" (2 + 442 + 4dr cos 0) 2
2dQ sinf
Eg = 3.61

3
Atreg(r? + 4d? + 4drcos9) 2

Let us draw the lines of force as in Fig 3.34

|
|
| E
r I Eq
h
|

P S — p— S

Figure 3.34 Lines of Force

The electric field intensity En at surface of grounded conducting plane is
calculated from fields of +Q and — Q.

= =

R
E,, is vector sum of E,. and E is normal to surface

E, =E,.cosf0 — Egsinf 3.62

Q 1 r+2dcos@ 2dsin@\
=4n€ o cos B — 3 sin @
0 0 0

Q [COSH rcos@_ﬁ =0 (ﬁ)

r2 r3 r3]  4meg,

r3

Or
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—Qd

= 3.63
" 4meyr3
By Gauss’s law
+
E, = Ps
€o
_Qd
ps = gy 3.64

Conclusion: surface charge density varies inversely as cube of distance of the position on
the plate from charge +Q. Hence, amount of charge induced on conducting plane is
greatest near the foot of perpendicular O.

Figure 3.35 Annular Ring

Assume as in Fig 3.35 'ds’ area of infinite simally small element of surface which
may be taken as annular ring between circles of radii ‘x" and ‘x + dx' on plane with O as
centre.

ds = m(x + dx?) — w(x)?
= 2mx dx (Neglecting dx?)

Thus, total induced charge is

sz psdsz—f 2mx dx
0 0 2

mr3
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©x dx *® dx
= Qdf S =-0d| ——
0 0 (x2 +d?)2

_—Qd.[‘°° 2x dx
2 ), (x2+d?)3/2

Q' =-0Q 3.65
This shows that total charge induced on planeis’ — Q'.
Similarly, there are number of problems which can be solved by image method.

Example 3.32. Find surface density at P(2,5,0)on the conducting plane z = 0 if there is a
line charge of 30nC/m located at x = 0,z = 3 as shown Fig 3.36.

N
<

Figure 3.36

Solution: Remove the plane and install an image line charge of —30nC/matx =0,z =
—3, as illustrated in Fig. 3.37

The field at P may now be obtained by superposition of known field of line charge to P is
R, = 2a, — 3d, while R = 2a, + 3a,

Thus, the individual fields are
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z
»
R4
>
P
/— 30nc/m ?1
x
Figure 3.37
. pr . 30x107° (2a,-3a,

B,=-Lr G, = x
t T 2megRy YT 2meg13 V13

L 30x107° y (2a, — 3a,
T 2meyV13 V13

Adding these results, we have

-180x107°4a, -

2meq(13) a,V/m

This then is the field at (or just above) P in both configuration

D= 805 = —2.204, C/m? (Directed towards the conducting plane)

2.20nC

3 atP

Ps =
3.25 Exercise

1. A point charge Q; = 300 uC located at 1, —1, —3) m experience a force ﬁl =
8X — 89 + 4Z N due to a point charge Q, at (3, —3, —2)m. Determine Q..

2. Apoint charge Q; = 10 uC is located at a point P; (1, 2, 3) in free space while
Q, = —5uC as at P, (1, 2,10). Find: (a) Force extended on Q, by Q;. (b) the
coordinates of a point at which a point charge Q5 experiences no force.

3. Find the force on a point charge 'q’ located at (0, 0, h)m due to charge of surface
charge density p; ¢/m? uniformly distributed over the circular disc7 < a.z =
om.
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0, 0. P

Figure

4. (a)Acircular disc of radius 'a’ is situated in the xy plane at z = 0, with its center
at the origin. Charge density on disc is p; = constant C/m?. Calculate the field at
any point (0,0, h) in cylindrical coordinates system.

(b) Extend the result of part (a) for calculating the field at any point due to infinite
uniform plane sheet of charge density p; C/m.

5. (a) Develop on expression for electric field intensity at a general point P due to an
infinite straight-line charge with charge density p; C/m
(b) Find the field intensity at point if the line is having semi-infinite length.

6. Consider a line charge distribution with charge density p; C/m along the line
between (0,0, —a) and (0, 0, a) in cylindrical coordinates. Obtain expression for
electric field intensity at (1, @, 0).

7. Find the general equation of flux lines which represent the field

E= 471507"3 (2cos O 7 + sin 6 B)

In spherical coordinate system, when 'p’ dipole moment

Formulas to be used”
dz rd® _ dz rd0 _ rsinf dg

dx _dy _ dz dr _rdp _ dz ar _rdb _
(a) Ex Ey Ez (b) Er E®  Ez (c) Er  E@ EQ

8. Three coaxial cylindrical sheets of charge are present in free space; p; = 5 ¢/m?

3
atr = —2mp, = 2c/m? atr = 4,and p; = —3% at r = 5m. Find the

displacement flux density D at (Yr =1m (ii)r = 3m (iii))r = 4.5m (iv)r = 6m
9. Determine the charge density due to each of following electric flux densities
(@)D = 6xy 2 +4x29 (b)Drsin® # + 2rcos® @ + 3z% 2

10. In a spherical coordinate system, the volume charge density is
3/2

P s R
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i How much charge lies in sphere of radius ‘a’?
ii. Find the electric flux density at r = a.
11. A volume charge distribution is represented as
p(ri0,z2) =0;0<r<a
=por;a<r<b
=0b<r<o
Find electrical field intensity at all points using Gauss’s law in integral form
12. Calculate the field due a line charge considering it a special Gaussian surface.
(keep it along z-axis)

5072 cos @

13. A potential field is expressed by IV = ( —

)V. Given a point A4 (4,30,2) in
free space. Calculate:
a. Potential at A
b. EatA
c. Volume charge density at A
d. Unit vector in the direction of potential gradient

14. Given a field E = (— %) X+ (s)fi + 52 % Calculate 'V, given A (—5,2,1) and
B (6,1,2).

15. A circular line charge of density p, % of radius 'a’ is lying in xy value with its
centre at origin, calculate the potential at point (0,0, h).

16. Calculate potential at point (0, 0, i) due to circular disc of radius is having a
surface charge density of P, C/m? with its centre at origin. Calculate the field at
point P (0,0, z).

17. Find the potential that gives rise to E= 2xy X + x%9 — 2.

18. Given cylindrical electric fields

- 5
E=;7“"V/m 0<r<2m

E=25#V/mr=>2m
Find the potential difference V45 for A(1,0,0)and B(4,0,0)
19. (a) State Coulomb’s law.
(b) Point charges 1ImC and -2mC, are located at (3,2, -1) and (-1, -1, 4)
respectively (i) compute the electric force on a 10nC charge located at (0,3,1)
(ii) determine the electric field intensity at that point.
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20.

21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.
40.
41.

FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM
(a) State Gauss Law
(b) Given that D=zpcos?@a,C/m?, determine the charge density at

(1,m/4,3).
(c) (i) Use the point form of Gauss law to determine the total charge
enclosed by the cylinder of radius 1m with -2 < z < 2m.

(ii) determine same using integral form of Gauss law (3pts)
FEDERAL POLYTECHNIC OKO, HND 2 SECOND SEMESTER 2014 EXAM
Discuss coulomb’s law of force with diagrams:

Define electric field strength, how do you define electric force?
Discuss electric potential with reference to various charge distribution
What is electric flux density?
Dow does Faraday’s experiment infer you to result of electric flux density?
Define electric line of flux and lines of flux
Why can’t lines of force and flux cross each other over a single point?
What is green function?
State Gauss’s law
Prove Gauss’s law taking any closed surface in context.
Write the integral form of Gauss’s law
Write Gauss divergence theorem
Give the condition for application of Gauss law
Give coulomb’s law for charge density
Give electric field strength for following charge distributions.
a. Volume charge
b. Surface charge
c. Line charge
What is Green’s function?
Relate Green’s function to electric potential
Define electric potential
Discuss superposition principle with reference to electric potential function
What do you mean by conservative field? Explain with example
Explain sign used for work done ‘on’ or ‘by’ the body
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CHAPTER 4

CAPACITANCE OF CAPACITOR

4.0 Explanation of Term Capacitance
Consider two conductors with a potential difference of V volts as in Fig 4.1

e Since there is a potential difference between the conductor, there must be and
electric potential field V (¥), and therefore and electric field E (7) in the region
between the conductors.

o Likewise, if there is an electric field, then we can specify an electric flux density
D (), which we can use to determine the surface charge density ps () on each
of the conductors.

e We find that if the total net charge on one conductor is Q then the charge on the
other will be equal to - Q.

Figure 4.1 Capacitor

In other words, the total net charge on each conductor will be equal but opposite

Recall that the total charge on a conductor can be determined by integrating the
surface charge density p, () across the entire surfaces S of a conductor:

Q=#ps+(f)ds=#ps—(17)ds 4.1
s

S
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But recall also that the surfaces charge density on the surface of a conductor can be
determined from the electric flux density D (7).

ps (F) = D(7) - &, 4.2
Where @, is a unit vector normal to the conductor

Note that this does not mean that the surface charge densities on each conductor
are equal (i.e., ps 4 () # ps _(7)). Rather, it means that:

ps+({@)ds=—9pp;, —(F)ds =Q 4.3
i i

Where surfaces S, is the surface surrounding the conductor with the positive charge (and
the higher electric potential), while the surface S surrounds the conductor with the
negative charge.

Example 4.1: How much free charge Q is there on each conductor, and how does this
charge relate to the voltage Vo?

Solution: We can determine this from the mutual capacitance C of these conductors!

The mutual capacitance between two conductors is defined as:

Q Coulombs

= v VoIt = Farad] 4.4

Where Q is the total charge on each conductor, and V is the potential difference between
each conductor (for example, V=Vo).

Q = #D(f)dnds = —#D(f) - d,ds
s

S
=ifD(F)-%=—gD(f) - ds

Where we remember that ds = a,, ds.

Hey! This is no surprise! We already knew that:
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Q= # D(¥)-ds 45
S
Note since D (¥) = €E(¥) we can also say:
Q= # eE(T) - ds
S
The potential difference V between two conductors can likewise be determined as:
V= f E(7)-dl
c
Where Cis any contour that leads from one conductor to the other.

Example 4.2: why any contour?

Solution: we can therefore determine the capacitance between two conductors as:

_Q . eE(P) - dl

“=v= JLE(@® - dl

[Faraday] 4.6

Where the contour C must start at some point on surface S, and end at some point on
surface S.
Note this expression can be written as:

Q=CVv 4.7

In other words, the charge stored by two conductors is equal to the product of
their mutual capacitance and the potential difference between them.

Therefore, the greater capacitance, the greater the amount of charge that is
stored.

By the way, try taking the time derivative of the above Equ 4.7.
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@@ s
.1 '
-~ dt

Look familiar?
By the way, the current | in this Equ 4.8 is displacement current.

Example 4.3 A 100 uF capacitor is charged to a potential of 100 V and the charging
battery is then disconnected. this capacitor is then connected in parallel with second
capacitor. If the potential difference drops to 50 V; calculate the capacitance of second
capacitor.

Solution: The charge on first capacitor
Q=0CV 4.9
= (100 x 107 F)(100V)
Q=10"%C

When C; is connected is parallel to C, the capacitance of combination between C; + C,.
The total charge is still Q. Therefore, the potential difference across the combination

would be

C1+C;
50 = ¢
C,+ G,
1072
= 50 = (100X10-6)+C,
= 5 x 10734+ 50 C, = 1072
100 1000 1000
== CZ = L —_
1000 ~ 50
1
=i Cz = 1ot
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= CZ ES 10_4F
4.1 Capacitance of Various Distributions

Consider Capacitance of a Spherical Capacitor. Fig. 4.2 shows a spherical shell capacitor
formed by two concentric spherical shells A and B of radii ‘a’ and ‘b’ charged with +6 and
-0 respectively. Twise charge attract each other, and spread out uniformly on outer
surface of inner shell and inner surface of outer shell. They produce an electric field E
between two shells, radially outwards. Consider a Gaussian surface which is concentric
spherical surface of radius ‘r’. the electric flux through it is

®=f§-£=j£Eds(EdscosO=Eds)
N

(D=Ej[>-ds=E-4rrr2

7
7
7
7
7
7
7
7
7
7
7
7

Figure 4.2

. , . 1.
According to Gauss’s law, the electric flux @ must be equal to - times the charge
0

contained within surface.
¢ =E(4mr?) =2
€o

= E—Q

41E T2

Eis radially outward and dlis inware, therefore E.dl = E dl cos80° = —E dl
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Also, V= —fbaE dr
=g (7), = 7 ap)
"~ 4mgy \r /, 4mey\a b
= e (), o)
4mey \ 1/,  4meg\a b

b —
V= ()
4mey \ ab

But capacitance C = %

ab
= C =4mey —
b—a

4.1.1 Capacitance of an Isolated Conducting Sphere

The above expression may be written as

B ab  4me
C—4ne0b_a—(l_%)
a

If radius of outer sphere is infinite (i.e,b = o), then we have an isolated conducting

sphere
Putting b = oo, we can get capacitance of an isolated sphere

4rre,
C=———=4nga

1 1
(-5)
4.1.2 Spherical Capacitor Appreciates to Parallel Plate Capacitor

Capacitance of a spherical capacitor is given by

ab
b—a

C = 4me,
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aZ

b—a

C = 4me,

2

The surface area of sphere is 4wa? = A (say), then C = %o

o
Q

the capacitance of parallel plate capacitor with plate separation (b — a).
4.1.3. Capacitance of a Cylindrical Capacitor

Fig. 4.3 shows a cylindrical capacitor formed by two coaxial cylinders A and B of
radius ‘a’” and ‘b’ respectively and each of length. They are charged with +6 and -6.
These charges attract each other and spread out uniformly on outer surface of inner
cylinder and inner surface of outer cylinder they produce an electric field E between two
shells, which is radially outward. Consider a coaxial. The flux through the plane faces of

ends of this surface is zero because E and ds are perpendicular.

Figure 4.3

¢=1E-£=E3€ds=E(2nr1)

- EQrr) =2
€o
2meg Tl
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a a
—-Q dr ') Q b
V=—| E-dr= —=—1 P = log, —
J; 4 2negl ), v 2megl lloge Tl 2meg | %Be
2meg L
Capacitance C = 9 =0
%4 b
log (3)

4.1.4 Parallel Plate Capacitor with Dielectric

Fig. 4.4 shows a parallel plate capacitor whose plates are charged with charges
+(Q and - Q. Let E, be electric field in air between two plates. The weaker field within

the dielectric is E. Consider Gaussian surface PQRS with wall QR in air. The electric flux
through PS is zero (as field within the conductor is zero). The electric flux through PQ

and SR is zero (EO is L to area vector of these surfaces).

Thu, electric flux through the entire Gaussian surface is flux through the surface QR only

P Q N o
=
Nz
+Q Eo Z Q
Z
bR s
S| R q
Figure 4.4

Q):ﬁﬁo'%:EoA

Where A is area of plate
By Gauss’s law (Z)=}E_?)0-ds=E0-A=2

Or EOZL

Now consider P'Q'R'S’ with wall Q'R’ in dielectric where field E is weber.
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Similarly, feg E -ds=2

€o
= &E = 2
€o
Or E=-2
Er&p A

The potential difference 'V’ between plates is work done in density in carrying a
unit charge from one plate to other in field to other length (d — b) and in field E.

Over length b.

V =E,(d—b)+Eb

=L w-m 2

&0 A &-& A

()
V=—sld—b+—
g A +sr

b

_Q_ oA
Vv, b
d—b+g—

r

A

Czerd—b(er—l)

Special cases:

1. If no dielectric (b = 0 or t, = 1) is present

oA
C=—
d
2. |If dielectric fills ensure space between plates (b = d),
A
C =
d

3. Itis clear from above equations that when plates of electric materials of thickness
‘b’ is placed between the plates of capacitor the thickness of air medium is

1 . .
reduced by b {1 - 8—}, S0 capacitance increases.

T
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4. Capacitance with copper slab: As electric field inside capacitor is zero, therefore
for conductor (copper slab of thickness b) between plates of a capacitor with
plate separation 'd’, effective separation will be only (d — b) in air.

oA
d—b

C =

4.1.5 Spherical Capacitor with Two Dielectrics

Figure 4.5

vy = Q j‘rdr+j‘bdr
4 TP T amey ), v )L g2

r b

-1

TE,

1

&,T

Q

41e,

a

_Q '1(1 1)+1<1 1)
CAmegle, \a 1) & \r b

1 2

L@ 1 1\ (1 1
Y N G €,a &b

r

And ¢ = 2
Vag

1/1 1 1 1\
= C=4n |- |——— |+ -
r\&, & &,a &b
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4.1.6 Surface Charge Distribution Capacitance Between Two Isolated Conductors

Let us first visualize two conductors merged in a homogenous dielectric medium
with conductor C; carrying positive charge (q) and C, carrying equal and positive charge
(—=qg). This means the total charge of the system is zero and there are no other charges
present.

Dielectric meduim

Figure 4.6 Dielectric medium with two oppositely charge conductor

Surface charge density is when the charge is carried on the surface. We know that
electric field inside a conductor is zero and the electric field is normal to the conducting
surface. Thus, we can say that each conductor acts moreover like an equipotential
surface.

Let’s now evaluate the direction of electric flux. We know that flux is directed
from positive to negative charge i.e. from C; to C, as C; is at more positive potential.
Thus, work must be done to carry a positive charge from C, to C;. We say that the
potential difference between C; and C, is V. Thus, capacitance of a two-conductor
system is defined as ratio of the magnitude of total charge on either conductor to the
magnitude of potential difference between conductors.

Or we can determine g by surface integral over positive conductor and we find V, by
carrying a unit positive charge from negative to positive surface.

. € E-ds

C_

—[TE-dl
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. . , . . 4
Where numerator is defined from Gauss’s law and denominator by relation that E = T

y A

Conducting surface
I

+pPs /Z=O

Figure 4.7 Parallel Plate capacitor

Conducting surface

Thus, from the above equation one con infer that capacitance is sheerly a
function of physical discussion of the system of conductors and of permittivity of the
homogenous dielectric. It is independent of potential and total charge, i.e., if charge
density is increased by some factor, then Gauss’s law indicates that electric field intensity
also increases by same factor, so does the potential difference.

Let us apply the above definition of capacitance to a simple two conductor system as
shown in Fig 4.7.

We choose the lower conducting plane at z = 0, having uniform sheet of surface
charge +ps and upper conducting plane at z = [, having uniform sheet of charge —p;.
This leads to uniform field.

F="
€
This is from boundary condition where 5,, =psniorD=pZ
Where € is permittivity of homogenous dielectric
on lower plane
Dy =Dz = ps

(equal to surface charge density is negative of that on lower plane)
On upper plane
Dy = —D, (The surface charge density is negative of that on lower plane)
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Thus, potential difference between two planes is

lower [
V, = — f E-El’:—f%e&:%z
upper l
V0:&l

Example 4.3 Calculate capacitance of parallel-plane capacitor having mica dielectric,
€,= 6 and plate area 5m? and separation of 0.02m

Solution: S =6x%(0.0254)? = 3.23 x 1073 m?
[ =0.02 x (0.0254) = 5.08 x 10~* m?
Where S — area of conducting plate
l —seperation

_C_ES_eoer5_8.854><10—12><6><3.23><10—3
R 5.08 X 104

C =3.377 x 1071°F
Or C=034nF. Ans
4.2 Energy Storage in Capacitors

Recall in a parallel plate capacitor, a surface charge distribution ps, (7) is created on one
conductor, while charge distribution ps_(7) is created on the other, as in fig 4.8

L N R L T T T E T T e rar s s

Vo E(F)

+ z=10

v z
Figure 4.8 Parallel Plate capacitor
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We learned that the energy stored by a charge distribution is

W%fffp ") V Pdv

For the parallel plate capacitor, we must integrate over both plates:

W, =2 §h oss VLS + - §f o Vs

2
S S

But on the top plate (i.e., S+) we know that:

Viz=-d)=V,
While on the bottom (i.e., S.):
Viz=0)=0
Therefore
Vs _ 0 _ Vo _
W, =28 por (s + 54 oo (Vs = § pos (s
Sh s S

But the remaining surface integral we know to be charge Q.

Q= # ps— (Mds
S

Therefore, we find,

But recall that:
Q=cCv
Where V is the potential difference between the two conductors (i.e., V = V).

Combining these two equations, we find:
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1 1 1
We=35VoQ=5 Vo (CV) =5 CV?

The above equation shows that the energy stored within a capacitor is
proportional to the product of its capacitance and the squared value of the voltage
across the capacitor.

Recall that we also can determine the stored energy from the fields within the

Z%fvﬂD ) E F)dv I

Since, the fields within the capacitor are approximately:

dielectric:

v

E() = —a, D) = 7 a,

We find:

- o0 s o=

_lev? B Vol
=57 fff v= 5? (Volume)

Where the volume of the dielectric is simply the plate surface area S time the dielectric
thickness d:

Volume = sd
Resulting in the expression:

2
LeV? oy 185

We = 2 d? 2d

Recall, however, that the capacitance of a parallel plate capacitor is:



Therefore: W,==—V2==CV?

The same result as before!

Workdone = Vdq = %dq 4.10
Q 2
q 1Q 1 1
—dg==—==V.Q ==CV?
fo =77z =;3

Work done in charging a capacitor to Q coulomb/total energy stored charged capacitor.

Example. 4.4 Calculate the energy stored in capacitor of capacitance 20 uF charged to
potential of 90 volts.

Solution: the energy stored in capacitor is given by

U—1CV2
2

1
=3 X 20 X 107% x (90)% = 81000 x 107°

£=81x10"2%]

Example 4.5 A parallel plate air capacitor of 2F capacity having a plate separation of 1
mm. Can this capacitor would have been constructed in laboratory?

Solution: Capacitance of a parallel plate capacitor is

C=2F,d=1mm=10"3m

cd  2x107°
g 8.854 x 10~12

=2 x 108 m?

In laboratory, it is not possible to construct a parallel plate capacitor of such a large plate
area.
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4.3 Electrostatic Energy

Energy necessary to establish a given charge distribution surface is called electrostatic
energy.

Suppose that all of space is initially field free and N point charges are brought in form
infinity and located at specific point as in Fig 4.9

Figure 4.9 System of Charges

The energy expanded in locating the it charge at point ri,

i=1
qi q;
l v 4mie 2 RU
j=1
No energy is used up is locating the first charge
N L N i-1
qi9q;
Total energy = W = W-=—ZZ
ota &Y 4 l 4ie 4 RU
i=2 =2 ]=1
1 N N
q:q; .
W = _Z Z_ + 4.12
477.'8_ . R” ' f
=1 j=1
_ 1 p(M)dv: p(r)'dv’ _ o
Or W = — fV fV'—Ri (R=|r-=7'))
_ 111 [p(r)p)xavav’
Or w=3J, [4ne fV[ R; ”
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As V(r) = ﬁ f, @ 4.13

Identity V.(WD)=VD-D+D-VW

Or

1
W = fdeV =>EfV(v-D)dV

14 14

N| =

—1 D D. d
_EJW(V)—-.VH v

1 —
=—fVD-da+

1fDEdV
> .

2
S %4

1
0”<lf5_)oo'f‘r'_3_)0>

L eE2 dV 4.14

= W= Efallspace

From these Equs (4.13 and 4.14), electrostatic, electrostatic energy is said to be

1. “Associated with electric charge”
2. “Associated with the electric field”

Example 4.6 A parallel plate capacitor has internal separation ‘d’ between plates. A
dielectric slab with &, of thickness ‘a’ is placed on the lower plates of capacitor. Show
that electric intensity in dielectric is

—°
&rd—a (g—-1)
b. Electric field intensity in the air space is gy = €, &

a. E; = where @ = potential difference between the plates

c. Capacitance of capacitor is
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5

Figure 4.10

Lg

Solution: As the normal component of flu density is continuous. That is

&kEy =& E;
& Ey ( 31)
E = = E = —
0 80 ErLq | & 80
E - vV
d

@' =¢&a and @y = Ey (d — a)
V:VO‘l‘Vl:EO(d_a)+E1a:€rE1(d_a)+E1a
=¢&& d—-¢eEa+Ea

|4

Ef=——77—
= 17 e(d—a)+a

|4
erd—a (g,+1)

Hence E, =
Total capacitance

Cr = Cy in series with C;

GGy
T7C,+¢
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oA &4

\

Cozd_a and Cl:T
A &4 g0y A
C _goglAz (god—a)x(d)_ (d—a)a
L £ A _I_M T gy Ayt & Ad — g Ad
d—a a (d—a)a
_ &l A _ & A
Caleg—&) +ed  ga+e (d-a)
c &4 & _sOA/ &
;= =
d |\ 2 a d
d (1-2) keo (d 80( 7)
g A &
Cr = o al- Ans
4 e (1-2)+3

4.4 Charge on Conducting Surface

Equation of work done relating charge on conducting surface is given by:
W= % V [, psds

As charge is assembled on surface of conductor

= W =2Qv

Total charge on it potential of surface

4.5 Force on a Charged Conductor

Equation of work done relating force on a charged conductor is given by:

AW = WAs Al
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(if an elemental area AS on a charged conductor is depressed at distance Al, the
increase in stored energy is denoted by AW)

If depression must be carried out against force F, then,
AW = FAl = fAS Al 4.18

Where F is force per unit area = W (energy density)

1 1 1
= F =— E2=—D2=_ 2
2% T2 2¢ Ps
+ps +ps
—Ps
~— —Ps
E:% E=o0 E=% E =0
Figure 4.11
1 1 psn2 1
F=—¢E’=—egx (=) =— p?
2 & T3¢ (e) 2¢ 5

Example 4.7 We are given the non-uniform field E = ya, + xda,, + 2a,. And we are
asked to determine the work expended in carrying 2C from B (1, 0, 1) to A (0.8, 0.6, 1)
along shorter arc circle.

Solution. We use W = Q4 fBE-m,whereE is not necessarily constant. Working in

rectangular coordinates, the differential path diis dxa, + dya, + dza, and the integral

becomes.

—

W=—QAf§- I
B
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A
= —ZJ. (ydx + xd, + 2&2) . (dxdx + dya,, + dz&z)
B

0.8 0.6 1
=—2f ydx—Zf Xdy—4f dz
1 0 1

Where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variables of integration. Using the equation of circular path
(and selecting the sign of the radical which is correct for quadrant involved), we have

0.8 0.6
W=—2f \/1—x2dx—2f J1—y%2dy—0
1 0

0.8 0.6
=—[ \/1—x2+sin_1x] —[y\/l—y2+sin_1y]
1 0
= —(0.48 +0.927 — 0 — 1.571) — (0.48 + 0.644 — 0 — 0)
— _0.96]

Example 4.8 Again, find the work required to carry 2C from B to A in the same field,
but this time use the straight-line path from B to A.

Solution. We start by determining the equations of straight line. Any two of the following
three equations for planes passing through the line are sufficient to define.

Y=Ys =L (x — xp)
Zy — Zg
Z—2Zzp =3’A—)’B (v —s)
X — Xp —Z_x: (z — zp)
For first equation, we have
y=-3(x—-1)

And from the second equation we obtain, z=1
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Thus,

0.8 0.6 1
W=- f ydx—Zf xdy—4f dz
1 0 1

0.8 0.6

—6 (x—1)dx—2f (1—%)(13/

1 0

W =-096]

Example 4.9 Calculate the work done in moving a 4C charge from B (1, 0, 0) to A (O, 2,
0) along the pathy =2 — 2x,Z = O is field E =

a. 5a, V/m
b. 5xd, +5ya, V/m
AV
c. 5xa,
Solution:
a. 20]
. 10]
c. —30]

4.6 Poisson’s and Laplace’s Equation

We know that for the case of static fields, Maxwell’s equations reduce to the
electrostatic equation:

VXE() =0 and V-E(F) = ”g—(” 4.19
0

We can alternatively write these Equ 4.19 in terms of the electric potential field, using
the relationship

E(F) = WV ():1

py (1)

&o

—VXxVW(@E) =0 and —V-VV (i) =

Recall that this operation (second equation) is called the scalar Laplacian:
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V- V=V? 4.20

Therefore, we can write the relationship between charge density and the electric
potential field in terms of one in Equ 4.22a.

Py (7)

€o

4.22a

V2V(7) = —
Equ 4.22a is known as Poisson’s equation and is essentially the “Maxwell’s equation” of
the electric potential field.
Note that for points where no charge exists, Poisson’s equation becomes:
V2V (7) =0 4.22b
Equ 4.22b is known as Laplace’s equation

a Although it looks very simply, most scalar functions will not satisfy Laplace’s
Equation. Only a special class of scalar fields, called analytic functions will satisfy
Laplace’s equation.

Laplace equation expanded in Cartesian coordinates

_ov o o

2
vV dx? +(’)y2 + 0z

4.23

This is a second order partial differential equations relating the rate of change of
potential in the three component directions.

4.6.1 Procedure for solving Poisson’s and Laplace’s equation

Both the equations are subjected to “UNIQUENESS THEOREM” i.e, if a function IV

is found which is a solution of V2V = ;—p (or special case AV = 0) and if solutions also
0

satisfy the boundary conditions, then it is the only solution.

e Solutions of Laplace’s equation are known as harmonic functions. The several
procedures of solving Laplace’s equation is to construct a linear combination of
harmonic functions so as to satisfy the boundary conditions of given procedures.
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e For Poisson’s equation, once we have any solution of the equation, then other
solutions (including the one which obeys boundary conditions) can be obtain by
adding to it solution to the corresponding Laplace’s equation. The procedure for
finding the correct solution to Poisson’s equation is thus to obtain an initial
solution to the equation which will most likely not satisfy boundary conditions.
Next one adds to the solution corresponding Laplace equation until the final
result does satisfy the boundary conditions. It will be clearer when you solve
some numerical. Following steps should be performed, i.e.,

1. From given condition, interpret whether you have to use Laplace’s or Poisson’s
equation.

2. From equation, find out the general solution of 'V’ (potential) for given
coordinate system.

3. Make this several solutions of 'V’ particular by using boundary conditions. Thus,
determine the final expression for 'V’.

4. Calculate E from E = —VV,if V is known

Calculate D from D = ¢F

6. Calculate D at either capacitor plates, depends on geometry given since D =
Bs = 5)n iy
7. Recall p; = Dy,

Calculate Q by surface integration over capacitor plates Q = fps ds

9. Finally, C =%

V.E=0 [as E = —VV] 4.24

In @ homogenous charge free region, the number of lines of electric field strength
emerging from a unit volume is zero (or in such a region). Lines of electric field strength
are continuous.

Hence, we can generalize the procedure in following steps:

(1) Solve Laplace '@ (if p, = 0) or poission '@ (if p, # 0) equation either using
direct integration (when V is a function of one variables) or separation of
variables (if V is function of more than one variable) the solution is expressed at
this point in terms of unknown integration constants and is not unique

(2) Hereby we find the unique solution for V by applying boundary condition

204



(3) After obtaining V, find EasE=-vV,D=€E andffromf =€ E.
(4) If required, find charge '8’ unduced on conductor using 8 = p ds, where p, =
Bn and 5n is normal to conductor also we can find C = 68 /v, i.e., capacitance and

R =V/I wherel = ff ds i.e., resistance.
4.6.2. Separation of variables

Determine the potential function for region inside the rectangular trough of
infinite length whose cross-section is as shown in Fig 4.12.

Figure 4.12 V(x,y)
Here the potential depends on x and y thus Laplace’s equation becomes

d*v  d*v
= — 4 —
dx? = dy?

VZy

Subjected to boundary conditions
Vx=00<y<a)=0
Vix=bh0<y<a)=0
V0<x<by=0)=0
Vi0<x<by=a)=V,
We will seek a product solution of V by assuming
Vix,y) =X()Y (v)

So, Laplace’s equation becomes
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2 2
d(Xfy+d(XY)=O

dx? dy?
d?x  Xd*x
—_— + —
dx?  dy?
Dividing throughout by XY, we get
1d?X 1d%Y

Xa2 Tvayr 0

()
2
+5 (ifB2>08&— A2 <
0
1d%X
———— = A2
X dx?
2
= X _ 42X =0
dx
= X = Alezx +Aze_ax
Or cosh ax =2 e
edx _ p—ax
sinh ax =
inh a >
= e =cosh ax +sinh ax

e % =cosh ax —sinh ax

X (x) =pB,cosh ax + B, sinh ax

Where B1=A4,+ A,
B, =4, — A,
Apply B. C
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We get B, =0

And X(x =b)=pB,sinhab =0
= B,=0asa #0&b #0
X=0

Is a trivial solution we conclude that —A? can’t be less than zero

1d%X
X dx?2

2

X +B?X=0
dx? -

X = Cye®F* + Ge=*P*
ye®P* = cos fx + j sin fx

e~*BX = cos Bx — jsin Bx

= X = gocos fx + g, sin fx
Where Jo = CO + C1
g1 = Co —aly

Apply B .C we get

X(x=b)=0=g,;sinfb
= p=—
Wheren=1,2,3

Note: Unlike sin hx which is zero only at x = 0, sin x = 0 at infinite number of points

QU

2
y‘; = M?Y = X,(x) = gn sinn%

~le
QU
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Which is similar to solution obtained (in case 1 of X)
i.e. Y(y) = mycosh My + m,sinh My
apply B.C
Y(y=0)=0=my=0
Hence, v (y) = m, sinh %

Combining both we get

nm nm
V,(x,y) = g, my sin by sin h by

This shows that there are many possible solutions Vi, V2, V3, V4 and so or for n =
1,2,3,4 ..

4.7 Field Inside Parallel Plate Capacitor

Field inside a parallel plate capacitor can be calculated using Laplace’s equation.

Solution = V=Ax+B
(A and B const.of integration)
Whenx=0, V=0=0=0+B=B=0

Whenx=d,V =V,

Vi

= V0=Ad+0=>A=;°
So, V=%x 0<x<d 4.25
L = -V . Vo .
e Electric field E = —VV=Ex=7x0<x<d 4.26

e Surface charge density
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[ps]x=d = [D]x=0 X = _82]/0 XX = %VO 4.27
A —-6Vy A ~ —&q0
[Psly=a = [Dlx=0 " (%) = ( — x) (%) = % 4.28

Fringing
effect

Field lines

Figure 4.14 Fringing Effect

Example 4.10 Find the potential and electric field intensity for region between two
concentric right circular cylinders. Where V. =0ar, = ImmandV =100V atr, =
20mm. Neglect fringing.

Solution: V = f(r) i.e., potential in a function of radius

1d ( av ,
So, ?E(r E) =0 (From Laplace equations)

Integrating once, r Z—Z =A
Integrating again, V =Alnr + B
Boundary again, V =0atr, =20mm and
V=100V atr, = 20mm
Conditions 0=AIn0.001+B
100 =A1In 0.020 + B
= A =33.36; B =230.49

V =33.36Inr+ 230.49
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V=100V

Y

Figure 4.15

E=-w="%p
dar

~22 ¢ v/m 4.29

= E

Example 4.11 For the configuration of Fig. 4.15, find Vand E for 8 < @ < a using
Laplace’s equation. Hence, find capacitance of system.

insulating

gap

planes

Figure 4.15

Solution: Since the potential is constant w.r.t. ‘r’ and ‘Z’. Laplace’s equation is

1 0%y
s X 307 =0
Integrating twice,
V=A0+B
B.C V=0at®p=0 = B=0
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Vo
V=Viatd=a= AZE

So, V=V,0/a 4.30

Taking the gradient,

E=-vy=—t2 (V Q)@—av" o
B B ww\%al” " ar
- D,=-24 4.31
ar
Find average density on plates
Vs
ps =Dp = —-DQ = H

Total charge on platesfor= 0tohand r =r; + r, in (b)

eV eVOh Ty
Q = fps ds-f f — In =
rn Ta a 2
c=2=2p2 4.32
VO a T1

Example 4.12 Since no new problem are solved by choosing fields which very only with
y or with z in rectangular coordinates. We pass on to cylindrical coordinates variations
with respect to Z are again nothing new, we next assume variation with respect to p only.

Solution: Laplace’s equation becomes

1d ( dV)

R — p_ —

pdp\" dp
Nothing the p in denominator, we exclude p = 0 from our solution and then multiply by
p and integrate
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v _
P =

Rearrange and integrate again

V=Alnp+B

The equipotential surfaces are given by p = constant and are cylinders and the problem
is that of the coaxial capacitor or coaxial transmission line. We choose a potential
difference of V; by lettingV =V, atp = a,V = 0atp = b, b > a and obtain.

_ ., In(b/p)
~ "% In(b/a)

V1

From which

T

eV,
O p=a) = )

a
_ eVy 2mal
aln (g)
_ 2mel

()

Example 4.13 Solve the above example 4.12 in cylindrical coordinates

Solution: let us assume that I/ is function only of @ in cylindrical coordinates. See that
equipotential surfaces are given by @ = constant. These are radial planes. Boundary
conditions mightbe V =0at® = 0,V =V, at @ = «, Laplace’s equation is now.

1 d?v
p? dp?

We exclude p = 0 and have
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d?v _ 0
de?
= V = AQ + B is solution

The boundary conditions determine A and B and

Taking gradient of above produces electric field intensity

_VO a@

@p

It is interesting to note that E is a function of p and not of @
Example 4.14 Solve example 4.12 using spherical coordinates.

Solution: Turn to spherical coordinates, dispose immediately of variations with respect to
@ only as having just been solved, and treat first V = V(7).

The potential field is

So, capacitance =

However, when we restrict potential functionto V = V(8), we get

1 d ( 9dV>_0
“Zsinfdode \°""ae) "

We exclude r = 0 or r and have
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The second integral is then

Ado
V= f —+B
sin @
Which is not as obvious as previous ones.
0
V = Aln (tani) +B

4.8 Dirac Delta Representation for an Infinitesimal Dipole

Potential due to infinitesimal dipole found by evaluating the far field of finite dipole as:

1 l
p(r) =26(x)6(y) [5 (z — E) -6 (z + E)] 4.33
“Find a representation so that for field approximations become unnecessary?”

Such a distribution may be derived by writing an expression for charge density
with finite spacing and then letting the spacing approach zero.

s -gfasosio o (e-2)-o(e )

[p(z-3)-8(z+3)

!

= lim 4 ql8(x)5(y)

p(e+)-5(:-}

= I Derivative of Dirac — Delta

If dipole moment ‘p’ is defined as p= llir{)l ql

Then the charge density of an infinitesimal dipole is

p(r) = —pd(x)6(y)6'(2) 4.34

Frequently the dipole moment of p is expressed as a vector p by assigning to it
the direction of a line drawn from the negative point to the positive point charge.
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= p=2Zp 4.35

FORMULAS TO BE USED

VZy azV+62V+62V tesi dinat
= r n rdina
922 ayz 972 cartesian coorai es

_16(6V)+16V a%v lindrical dinat
— " a«,« ar > a(z)2 azz Cy 1indarical coordinates
B 10 ( OV)_I_ 1 d ( 96V>
=725 " ) Y rZsimo a8 5059

2
+ — (smzé))2 352 Spherical coordinates

4.9 Exercise

1. Calculate the capacitance between concentric metal spheres of radius r; and 7,
with charge Q placed or the outer surface of inner shell.

2. The potential field at any point in a space containing a dielectric material of
relative permittivity 2.1 is given by V = 5x%y + 3yz? + 6xz V, where x,y, z, are
in meters. Calculate the volume charge density at point P(2, 5, 3)m.

3. Three-point charges 3,4 and 5 coulombs are situated in fill space at 3 corners of
an equilateral triangle with sides 5cm. find the energy density due to electric
fields in the triangle.

4. (a) consider a parallel plate capacitor occupying planes x = 0 and x = d and is
kept at potential v = zero and V = V, respectively. The medium consists of two
dielectrics: €, for 0 < x < t and ¢, and for t < x < d. Find the potential and
electric field intensities in two regions using Laplace’s equation.

(b) Taked = 4cm: ey = 2,0<x < 2; £, =4,2 < x <4,vy, = 100V. Find
voltage and field intensities in two regions. Calculate capacitance per unit surface
area of system.
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x—4 V=100V

TRUANN
Il W ,8“ / /// / // [ ey

Fig 4.25 Fig 4.26

5. Aboundary exists at z = 0 between two dielectrics, €., = 2.5 region =< 0, and
& = 4 region z > 0. The field in region &, is El = —-30x 50y =702V /m. Find
Normal component of El

Tangential component of El

o L

The angle a; < 90° between El and normal to surface
Normal component of 0,

Tangential component of D,

D,

Polarization in &,., material

S @ o o 0

. Angle a, between E, and normal of surface.
6. The potentlal distribution at mouth of slot is given by:

-q—b‘/—b»
x=0,V=0

Figure 4.27
V=V= Vlsin’;—y+vzsin“°’”7y forx=a0<y<b
Where V; and V, are constants. Find the solution for potential distribution in slot.

7. Explain the term capacitance
8. Relate charge and potential by an expression
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24,

25.
26.
27.
28.

29.
30.
31.

Derive expression for energy stored in capacitor
Give alternative expressions for energy stored in capacitor
Derive expression foe electrostatic energy in system charges
Find force on charged conductor
Explain charge and discharge of capacitor
Define Poisson’s equation
Define Laplace’s equation
Prove Poisson’s equation
Prove Laplace’s equation
Relate Laplace equation to Maxwell’s equation
Conclude from Laplace’s equation that “Lines of electric field strength are
continuous
Derive expression for field inside parallel plate capacitor
What do you understand by boundary conditions?
Explain “perfect metals are equipotential”.
Discuss conditions for metals.
Derive following boundary conditions:
a. Dielectric-dielectric
b. Conductor-dielectric
c. Conductor-conductor
Conclude boundary relations from Gauss’s law and Faraday’s law
What do you mean by Dirac-Delta representation of point charge?
Relate Dirac-Delta representation with impulse function
Derive Dirac-Delta representation for volume charge density and surface charge
density
Relate Green’s function and Dirac-Delta distribution
What do you mean by Dirac-Delta representation for an infinitesimal dipole?
Discuss properties of Dirac-Delta distribution
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CHAPTER 5

ELECTROMAGNETIC INDUCTION

5.0 Faraday’s Law of Electromagnetic Induction

Faraday’s law of electromagnetic induction state that “The induction e.m.f. (e volts) is

equal to the negative rate of change of flux”
5.1

ag
dt

Note: the negative sign was introduced by Lenz. The sign indicates the direction of e.m.f

induced

Faraday’s law can be put in the differential equation for as

Figure 5.1 Coil in an increasing Magnetic Field

=§E-di=[(VxE)-fida

N

e
5.
(here ‘e’ is denoting potential)

And

QU
Sy
| &
ne—
ol
>
QU
Q
Il
nee—
Q|
2
>
QL
Q
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T
. B
foE-ﬁda= — - fida
ot
S S
. B
VXE=—— 5.3
ot

Whenever there is a change in the number of magnetic field lines passing through a loop
of wire a voltage (or emf) is generated (or induced) in the loop of wire. This is how an
electric generator works. The phenomenon is known as electromagnetic induction and is

explained by Faraday’s law of induction:
V =-dg¢/dt 5.4

Where @ is the magnetic flux given by the closed integral of the dot product B. dA.

Figure 5.2

_ Vinduced

I, R
= R is total resistance in galvanometer circuit

According to Faraday’s law, if there is no change (with time) in the number of
lines of B field, or magnetic flux, through a closed loop(s) there will be no induced, or

generated, voltage set up in the loop(s).
Note: When flux is increased in the +ve direction”, the induced voltage is —ve
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= 0= lydt== [ Vdt 5.5

According to Faraday’s law as the strength of a magnetic field (B) passing through
a loop of wire increases, there will be an increase in the number of magnetic field line,
and therefore an induced voltage, or emf set up in the wire loop. If the strength
decreases there will be also an induced emf set up in the loop but with the opposite
polarity. Lenz law indicates the polarity of the induced emf.

Example 5.1. Calculate the inductance of co-axial capacitor

ol
r

=

B =

ag

N

Solution: Consider the space between r = a and r = b is free space. If [ is length of cable,

then
(Z)m=¢B-ds=f
0

by il il b
f Fol g a1 =Hot In(r)b = Fol 1 (—)

q 2Tr 2nr 2nr a

5.1 Magnetic Flux Density

Another important vector is magnetic flux density B. it is related to H via:

\ 4
A 4
* Y
Y'Y y

Megnetic Flux Per Unit Area

<

Figure 5.3
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The flux associated with a magnetic field is therefore a measure of the number of
magnetic field lines penetrating some surface.

e The above pictures show the spherical case of a plane area S and a uniform flux
density B. the normal to the field is at an angle with the field. In this case, the
flux is given by

®,, = BScos@ 5.7

If B is the value of the flux density

VN
Figure 5.4 ® = f (orientation of loop; its area = B = VECTOR

e Generally, if an element of area Ds on an arbitrarily shaped surface, has a
magnetic field running through it, the magnetic flux through this area is BdS, if B
is the value of the field at this element. The total magnetic flux is:

®,, = [(B-idS 5.8

e Magnetic field lines are continuous and form loops. This is illustrated in the
solenoid in the Fig. 5.5.

Figure 5.5 Electromagnetic Field Lines
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e For any closed surface the number of lines entering that surface is equal to the
number leaving it, as shown above in red. That means that the net flux is zero.
This is called Gauss’s law it is expressed thus:

jg B-7dS=0
e Therefore, at any point:

V-BE=0 5.9

Example 5.2: Calculate flux density at center of square loop of 10 turns, 2m on side
carrying 10amp. The loop is in air media.

Solutions: =1, = pop, = 4w X 1077 H/m

[ = 10amp; N = 10;a = 2m

B_MINZ\/§_47I><10‘7><10><10><2\/§

=42 x 1075T
(104 T X2

= 5.656 X 107> T or Wb/m? |4Ans

Example 5.3. Calculate the magnetic flux density at center of a current carrying loop
when radius of loop is 2cm, loop current is ImA and loop is placed in air.

-7 -3
Solution: £ = 2N = 10710 x 107 =x 10° T
q ul 4w x1077 x 1073 .
Bienter = % = 2 % 10-2 =2nr X 10
=6.28%x 1078 T

5.2 Definition of the Telsa and the Weber

The Telsa is defined as the density of a magnetic field such that a conductor carrying one
ampere at right angles to the field has a force of one Newton per meter acting on it.

The Weber can be defined in two ways:
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1. The amount of flux, when cut at a uniform rate by a conductor in one second,
generates an emf of one volt.

2. The magnetic flux linking one turn induces in it as emf of one volt when the flux is
reduced to zero at a uniform rate in one second.

The flux and Flux density are related by the following formula.
(phi) =Bx A
Where
(phi) is the flux in Webers. Wb.
B is the flux density in Teslas, T

A is the cross-sectional area, meters squared the induced voltage in a coil therefore
depends on the total flux, the number of turns, and the time for the field to be reversed.

conversion of neper into decibel

101 (Po)_ 10 ; PO_ 20 (az)
%910 \p) T 23026 " P~ 23026 ¢
= 8.686 (az)
1Np = 8.686 dB

5.3 Magnetic Field Strength

The magnetic field strength, H is the magnetomotive force per unit length in a magnetic
circuit. It is given by:

H = mmf /I
Where, H = magnetic field strength, A/m
mmf = magnetomotive force, A

I =length of magnetic current 1
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10A
10A

Figure 5.6

Example 5.4: A filamentary current of 10 A is directed in from infinity origin on the
positive x-axis and then back out to infinity along the y-axis. Use the Biot-Savart law to

find H at p(0,0,1).

Solution: we show that the current 10A is directed from infinity to origin on positive x-
axis and then back out to infinity positive Y-axis in Fig 4.1. We consider current which lies
on x-axis and we write the expression.

IEZX&12

H =
d 4mtd?

b IdIR
~ 4AnR3

—

dl = dxad,,point — 2(0,0,1)and
Point 1 (x,0,0)

R12 = —X@x-l- aZ
d = |§12| = '\[XZ +1

dH =

10 dx a, o —x Gy + dz]
Am (x2 + 1)3/2

dH =
41 (x2 + 1)3/2
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On integrating, we obtain the firm as

u —10.[‘0 dxa, —10[ x ]0 R
= 3= ay
I R R A N S 1
— _10 ~ ~
H = E [0 - 1]ay = 0.796 ay

Similarly, for current which lied on Y-axis then we write the expression as

— 10dya, (—y a, + c’iz>
X

dH =
(4m\Jy* +1) 72 Jyz+1

— 10dy a
7 10dyd,
At (y? + 1)

Integrating we obtain the form as

_10 " _dydy _1_0[_3/ ]ma
4m J, (y2+1)% 4m lyx2 + 14, *

s}

H= 10 [1—0]a
4m O
H =0.796 4,

Hiota = 0.796@, + 0.7964, A/m
5.4 Magnetomotive Force

A magnetic circuit consisting of a coil wound on either a magnetic or non-magnetic
former can be compared with the electric circuit. In the electric circuit:

Current = emf/resistance
Or
[=E/R
In the magnetic circuit:
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Flux = mmf/Reluctance
Or
(phi) = F/Rm

Magnetomotive force is measured in amperes, A and is produced by the current
in the magnetizing current where

mmf = NI
where
mmf is the magnetomotive force in amperes A
N is the number of turns

[ is the magnetizing current in amperes A

5.5 Points to Note

Note

Experiment shows that for homogeneous medium B is related to current I,

I
B = ad r distance from wire

r
1 — permeability of medium = U= Ul
Uo = absolute permeability of vacuum = 47 X 1077 H/m
WU, = relative permeability
Proportionality factor = i
B = i X 1 X U
2 r
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Where

_ 1
”_Zm‘
B=uH

Note 2

Magnetic field strength H is thus defined in terms of current which produces it
and the geometry of system.

It’s a vector quantity, having same dir" as B (in isotopic media).

* H#f(u B=f(w
= H=E and B=D
Note 3

Magnetomotive force
b-1 1
f—fa H'dS—gsz—T[rdS—l 5.10
This result will be obtained for any closed path about the current
= called Ampere’s work Law/Ampere’s Circuital law.

Note 4

I. For any closed path C around the core inside the winding, the MMF

Figure 5.7 Toroidal Coil
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= f = nl

n — no. of turns

The no. of times the path links with the current [

= f nl nl
H=—

SRR T Aturns/m (D < R) 5.11

[ = length of coil

Note 5

Magnetic field strength is nearly uniform throughout the cross-section of the core
and is equal to the ampere turns per unit lengths.

z
A

D C

o 4 ----- -
: H,,
[——— [ Sp——

> > > i B

-}-P--)--j--)-—)- _
%, %

X

Figure 5.8 Parallel Plane Conductors
Il. Two closed spaced parallel planes carrying equal and oppositely directed currents

Magnetic Field: f (confined to region between places UNIFORM (except area
edges)).

# f(distance apart of planes)

e Current is assumed to be flowing in the positive 'x’ dir (upper plate outwards)

Jsx current per meter width
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CHAPTER 6

ELECTROMAGNETIC EQUATIONS

6.0 Maxwell’s Equations
The electromagnetic equations are called Maxwell’s equations.

Each differential equation has its integral counterpart; one from, may be derived
from other with help of Stokes Theorem/Divergence Theorem (dot superscript indicating
partial derivatives w.r.t. time).

1. VxH=D°+] > ¢H-ds=[(D°+]) da > Ampere’'s circuital law 6.1
2. Vxe=-B° §E-ds=—[B°- da - Faraday'slaw 6.2

3. YxD=p —>45D-da=fpdV—> Gauss's law 6.3

4, VXB=0 —->¢B-da=0->
No isolated magnetic charge or monopole 6.4

Contained in the above is the Equ 6.4 of continuity.
V-]=-p° §]-ja=—[p°av 6.5
Statement of Laws used in Deriving Maxwell’s Equation

(1) Ampere’s Circuital Law: This law states that the circulation of magnetic
field intensity around any closed path is equal to the sum of free current and
displacement current flowing through the surface bounded by path.

D . . .
The term 1S displacement current density:

Maxwell’s Equation-Modified Ampere’s law

. dB
From Faraday’s experiment, VXE =— p

Ampere’s circuital law applied to steady magnetic fields gives
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VXH=]
Taking divergence on both sides
V- (VXH)=V.]

ButV X H = 0 for static

V.] = % (from equation of continuity) 6.6

Let us take an arbitrary ‘G’ quantity for solving above unrealistic limitation of % =0
VXxH=]+G
Taking divergence
V- (VXH)=V-]4+V-G
= V-G=-v- ="t
We know that V.D = p, (Gauss’s law)
= V:G=—((V-:D)=V-—
We get G =—

Thus, Ampere’s law becomes

VXH= +dD
=J dt

It also agrees with continuity equation
(2) Faraday’s law of electromagnetic induction:

This law states that an emf is nearly a voltage that arises from conductors movingin a
magnetic field or from changing magnetic fields. (Fig 6.1 a, b)
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do
emf—Ve——E

A B (increasing) A B (increasing)

/_ Loop
7
k E

Figure 6.1 (a) Emf induced in an open circuited loop (b) Current induced in Loop

¥ Field by 1

The emf induced in loop (V},) is equal to emf producing field E (associated with
induced current) integrated around the loop.

Vesz-dl

The total flux through the circuit is equal to integral of normal component of flux
density B over the surface bounded by circuit.

(szB-ds

d . , .
Thus, V,=¢E-dl = — fsB - ds (transformer induction equation)

Faraday’s law in integral form:

3€E dl = JdB d
- ) ae ™

By Stokes’s theorem we get differential form of Faraday’s law:

VXE = db
T dt
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(3)

Gauss’s law states that the total outward electric flux over any closed surface is

equal to the total free charge enclosed in the volume surrounded by surface.

(4)

It is postulate of magnetostatics which states that there are no magnetic flux

sources, and magnet flux lines always close upon themselves. It is the law of

conservation of magnetic flux (no monopole)

Word statement of the field equations:

The magnetomotive force around a closed path is equal to the conduction current
plus the time derivative of electric displacement through any surface bounded by
path.

The electromotive force around a closed path is equal to time derivatives of the
magnetic displacement through any surface bounded by path.

3. The total electric displacement through surface enclosing a volume is equal to
total charge within volume.
4. The net magnetic flux emerging through any closed surface is zero.
Analogies:
1. Electric current = both conduction and displacement currents
2. Time derivative of electric displacement = electric current
3. Time derivative of magnetic displacement =magnetic current
4. Electromotive force = electric voltage
5. Magnetomotive force = magnetic voltage
Restatement:
1. The magnetic voltage around a closed path is equal to electric current through
the path.
2. The electric voltage around a closed path is equal to magnetic current through

the path.
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Maxwell’s equation for fields varying harmonically with time when the fields are
harmonically varying with time, we write

E = E, cos(cos +0)
Or E = E, e/(€0s+9) (35 phasor)

Differentiating w.r.t time

dE )

d_t =ja) Eoef(“’”@) =ja)E
d .
prand

Rewriting Maxwell’s equations using Stokes’s and Divergence theorem we get,

Differential form Integral Form!

(1) VXE=—jwB $.E dl = —jo [(B-ds (6.7)
(2) VXH=j+jwD §.H dl = (0 + jwE) [ E - ds (6.8)
(3) V-D=np, $.Dds = [, p,dV (6.9)
(4 V-B=0 gﬁsB-dszo (6.10)

Example 6.1: A coaxial capacitor has parameters a = 10mm, b = 15mm
l= 20cm, e, =8, 6 =107%0/m.If], = %sin 10t @, A/m? then find out
i. The maximum instantaneous value of displacement current density.

j. Total displacement current

Solution. (i) The conduction current density is expressed as

Q|5

Joc =0E; E=
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~ We can write as

8x8.854x10712 2 6 6 A
= 10-6 x;x 10® X cos 10°t a,

> 141.664
Jp = Tcos(lO%)dr A/m?

At r = 10mm = 0.1m the (]p)max is obtained as

B, 14.1664 o
(Eo)max = #cos(lo t)ar

(), =14166.4 cos(10°t) G,

(ii) the total displacement current in terms of displacement current density
expressed as

ID=T'IS:

14.1664
= f (— cos(106t)dr) - (r d@ dz)a,
2m r

21 (0.2
:f f 141.664 cos(10°t) d@ dz
o Jo

= 141.664 cos(10°t) [@]3" [z]3?

A2
= 178.02 cos(10°t) - Answer

Example 6.2 Calculate the value of K so that each of the following pairs of fields
satisfies Maxwell’s equations in a region at 0 = 0 and p,, = 0.
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i. E=(k,—100¢8)a,V/m, H=(x+20t)d, A/m,ifp=0.25u/mande =

0.01F /m

i. D=5xdy—2ya,+Kza,uC/m? B =2aymT,p=pgande =g,

iii. E=60sin10° tsin0.01zd, V/m, H = 0.6cos10° tcos0.01zd, u =

k and ¢

solution. The differential form of Faraday’s law is expressed in form as

vx o 9B
X E=——
dt

On taking the left-hand side of the Equi (i)

—

o d d
VX E=—-——(k,—100¢) a, + — (kx — 100)a, = ka,
dz dx

From the right side of Equ (i), we can write as

dﬁ— dﬁ—OZS 20)a, = 5a
E_’HE_ 25 (20)a, = 5a,

On substituting these values in Equ (i), we obtain as

ka, = —5a,
k = —5V/m?
Now we write differential form of Gauss’s law for electric field as
V:-D=p,=0

Db, dD, dD,
 dx + dy + dz =0

=(5-2+K)(1079
=0
K=-3%x10"5C/m3
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C3
K= —3/16

(iii) Again, from the differential form of Faraday’s law we can write as
VXE=—— iii
First take left hand side of Equi (iii) then we obtain as
VXE = % (60 sin(10° t) sin(0.01 )@, — (60sin(10°t) sin(0.01 2)a,
= 0.6sin(10° t) cos(0.01z) a,,

Now we take R. H. S. of Equi (iii)

dB _

I ud—IZ = K (0.6)(—10°) x sin(10° t) cos(0.01 z)a,
= —K x 6 x 10° sin(—10° t) cos(0.012)a,
On substituting these values in Equi (iii), we obtain
= 0.6 sin(10° t) cos(0.012)a,
= K X 6 x 10° x sin(10° t) cos(0.01z)a,,
0.6 =K X 6x 105
K =10"5 H/m

— dB

Example 6.3  Given the field E = E, sin(wt — Bz)d,, in free space. Find out D,E,ITI)

Solution. First write the expression for D interms of E as,
5 = 80 E

D= g Ep (0t — pz)a,
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The Maxwell equation is also expressed as,

ay a, a,
G 2 o| 0B
ax dy az| ot
0 Epsin(wt—pz) 0
0B
e BE,, cos(wt — Bz)ad,

On taking integral of the above expression to obtain the value of B as,

-

Em

B=- F sin(wt — Bz)a,

Now, we obtain the value of H by the relation as,

—

§=’u0H
. B
H==—

Ho

Therefore, we obtain the value of H in the form as,

=

~ B
H=-—"=1
w

sin(wt — Bz)a,
0

We note that E and H are mutually perpendicular
6.1 Derivation Conditions at Boundary Surface

Maxwell’s equation which exits within a continuous medium are represented by
differential equations.

Maxwell’s equation used to determine what happen at the boundary surface
between different media are represented by Integral equations.

At surface of Discontinuity (Fig. 6.2)
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(a) Tangential component of 'E" is continuous at surface

(b) Tangential components of 'H" is continuous across a surface except at the surface
of a “perfect conductor”. At surface of perfect conductor, the tangential

component of 'H' is discontinuous by amount equal to surface current per unit
width.

¢) Normal components o B’ is continuous at surface discontinui v
(c) N | ts of ‘B’ t t surface d tinuit
(d) Normal component of 'D’ is continuous if there is no surface charge density.

(9

Eq
—
-

——
qQoE
~—
.
'\\\ﬁ
&

4 # = e
| a0 A
e

Figure 6.2 Surface of Discontinuity

Otherwise D is discontinuous by an amount equal to surface charge density.
Suppose: Surface of discontinuity is plane x = 0
Consider: Rectangle width Ax, lenght Ay
Two media (1) and (2)

$E-ds=—[ B° da 6.11
Applying above for elemental rectangle:

Ax Ax Ax Ax
Ey,Ay —Ey, > —E _EylAy+Ey37+Ey47

> ny = —B° Ax Ay
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Where "B," is average magnetic flux density through rectangle Ax X Ay.

Conditions: 1. Area of rectangle is made of approach zero by reducing width ‘Ax’ of
rectangle, always keeping the surface of discontinuity between the sides of rectangle.

2. it is assumed that B is always finite, then RHS =0

3. (%x) terms of LHS=0

= E, Ay—E, Ay=0
EYz = EY1

Tangential component of E is continuous

Similarly, $H-ds=[(D°+])-dd 6.12
Ax Hy Ax Ax Ax
HYZAy_HYZT_ > HylAy+4x37+Hx4_7

= (D°; +J,)Ax Ay

(A) Consider. (1) Rate of charge of electric displacement D° and current density J are
both considered to be finite.

= H, Ay =H, Dy =20
Or H, =H,,
Tangential component of H is continuous. 6.13

Note: “Current sheet” — as conductivity (of conductor) increases depth of penetration of

electric field (E) reduce a high frequency current will flow in this sheet near the surface
= finite current per unit width 'J. ampere per meter.

1A1)g})t]Ax =]Js| A/m

(B) Consider: (1) if current density '/, becomes ‘Infinite’ as Ax = 0, RHS = 0
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So, Hy, Dy — H,, Ay = Js; Ay

= H

yi H)/z —Jsz (-~ Mx=0= .= ]sz) 6.14

“if electric field is zero within perfect conductor, the magnetic field must also be
zero”.

= Hy1 = —Jsz

Current per unit width along surface of a perfect conductor is equal to magnetic
field strength (H) just outside the surface.

Magnetic field and surface current will be parallel to surface, but perpendicular to
each other.

= Jsz=AXH 6.15

nmaAan

7" is unit vector along outward normal to surface.

6.2 Conditions on Normal Components of BandD

jg D- da= fp dV  (From Gauss's law)
S 14

D ’

u,e,c, da

2

A—

u, £,G,

Dz,

Figure 6.3 Pillbox
With reference to three surfaces of pill-box in Fig 6.3 we can rewrite above as
= Dy, da — Dp,da + Yeqge = p Ax da

Where lpedge’ is outward electric flux through the curved edge surface of pill box.
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As Ax = 0, Yeqge 2 0
= Dy, da — Dy, da =0
Dy, = Dy, 6.16
If there is no surface charge the normal component of D is continuous across the surface.

(A) Consider: p Ax = ps

In use of metallic surface, charge resides “on the surface”. If this layer of surface charge
has a surface charge density p; c/m? the charge density 'p’ of surface layer is given by

p= Z—; 6.17
= gmi(;cpr = ps = Ax = 0, charge density approaches infinity.
xX—
Dn1 = pPs 6.18

Normal component of displacement density in dielectric’ is equal to surface
charge density on conductor.

Similarly, in case of magnetic flux density B, since there are no isolated “magnetic
charge”.

B

ny

=B

n;

6.19

Normal component of magnetic flux density is always continuous across
boundary surface.

6.3 Exercise

1. Ana.cvoltage source v = V, sin wt is connected across a parallel plate capacitor
C. verify that the displacement current in capacitor is same as conduction current
wires.

2. Astraight conductor of 0.4m lies on x-axis with one and at origin. The conductor
is subjected to magnetic flux density B = 0.08y T and velocity v =
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2.5sin 103 t 2 m/s. Calculate motional electric field intensity and emf induced in
conductor.

. The magnetic flux density in given is cylindrical coordinate by

_[4BycoswtZ r<a

B
0 r<a

Where B, and w are constants. Calculate the induced electric field at all values of
r.

Fig. 6.4 is a rectangular loop moves toward origin at velocity v = =200y m/sin a

magnetic field B = 0.75 e %5Y2 T. Find current at the instant coil sides are at y =
0.5mand 0.6 m, if R = 3Q)

Figure 6.4

. Two regions are separated by a surface 3x —2y + 5z = 0. Region 1 has
permeability u; = 2uy and region 2 has u, = 5uy. The point P(2,2,2) lies in
region 2. For a field H; = 4X + 6y — 3Z A/m. find H,.

. There exists a boundary between two magnetic materials at Z = 0, having
permittivities u; = 4uy H/m for region 1 where z > 0 and u, = 7uy, H/m for
region 2 where z < 0. There exists a surface current of density K = 60 X A/m at
boundary Z = 0. For a field B; = 2X — 39 + 22 mT in region 1. Find value of flux
density B, in region 2.

What are Maxwell’s equations?
Write Maxwell’s equation in differential and integral form
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10.
11.
12.

13.

14.
15.

16.

Write corresponding electromagnetic laws used for derivation of Maxwell’s
equation.
State all four Maxwell’s equation
Rewrite Maxwell’s equation for harmonically varying field.
Which theorem help to convert differential to integral form of Maxwell’s
equation.
What is physical significance of differential (Maxwell’s) equation?
What is physical significance of integral (Maxwell’s) equation?
At the surface of discontinuity, derive relation for
a. Tangential component of &

b. Tangential component of H
c. Normal component ofB

d. Normal component of D
Which Maxwell’s equation is used for derivation of above continuity expression in
Q.15 (a), (b), (c), (d)?
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CHAPTER 7

ELECTROMAGNETIC WAVES ANALYSIS
7.0 Constitutive Relations of E.M Waves
Relations that concern the characteristics of medium in which field exists are called

Constitutive Relations, given below are true

D =¢E (Permittivity) (7.1)
B = uH (Permeability) (7.2)
] = oE (Conductivity) (7.3)

Provided the medium is assumed to be homogenous, isotopic and source free.

i. In homogeneous medium, &, 4 and o are constant throughout medium.

ii. In Isotopic medium, if € is a scalar constant, DandE everywhere have the
same direction.

iii. In source-free regions, there are no impressed voltages or currents. (No
generators).

7.1 Solutions for Free Space Conditions
From free space condition, ¢ = 0 (source free) and p = 0 (no free charges
]=oE 7.4
= J=0
From Maxwell’s equation:

VxH=D - Taking time derivative on both sides we get
a —> — — —
E(VXH)=V><H=D=5E

From Maxwell’s equation
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VxE=-B- Taking curl on both sides we get V X V X E= —uV X H= —,u(eﬁ) 7.5

From assumed conditions we infer,
V-D=0
V-B=0

From Maxwell’s equation Using vector identity

— — — — - 1
VxVXE=V(V-E)—V%E = —ueE V-E=_V-
V2E = pek Law that E must obey
Parallelly VZ2H = ,usﬁ “Wave equations”

E and H must satisfy “wave equations”

7.6

7.7

7.8

7.9

Example 7.1 Let us express E,, (z,t) = 200 cos(108 t — 0.5z + 30°) V/m as phasor.

Solution: We first go to exponential notation.
E_y) (z,t) =R, [200 ej(108t—o.5z+3o°)]
And then drop R, and suppress e/(19° ©) obtaining the phasor
Eys (Z) — 2006—j0.52+j30°

7.2 Uniform Plane-Wave Propagation

A uniform plane wave is a particular solution of Maxwell’s equations with E assuming the

direction, same magnitude and same phase in infinite planes perpendicular to direction

of propagation (same applies to ﬁ). A uniform plane wave does not exist in practice

because a source infinite in extent would be required to create it, and practical waves

sources are always finite in extent. But if we one for enough away from source, the wave
front (surface of constant phase) becomes almost spherical and a very small portion of
the surface of a giant sphere is very nearly a plane. The characteristics of uniform plane
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waves are particularly simple, and their study is of fundamental and theoretical, as well

as practical, importance from equation EzAsin(a)t—Bz) we can infer following
characteristics:

1. It is time harmonics because we assumed time dependence of form e/®t to arrive
at above equation.

The amplitude of wave is A has same units as E.

3. The phase (in radius) of wave depends on time 't’ and space variables z, it is the
form (wt — Bz).

4. The angular frequency w is given in radians per second; 3 is phase constant or
wave number is given in radians per meter.

7.2.1 Wave Equation

E and H are considered to be independent of two dimensions, y and z.

90%E 0%E 0%E
So, we can write V’E = — = — = ye — Wave equation
dx? 0x2 H oat2 ( q )

For uniform-wave propagation in the x direction, E may have components
E, and E,

0%E 0%E
y y
dxz M ae
For above differentials is equation,
General solution isE = f, (x —vot) + £, (x+ vyt) 7.11

—_

=
\

L

=l

~

Y

(er}

t=1tl

i - vgly)

Yy

~— (1> - 1)
(€2
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Figure 7.1 Uniform Plane Wave

If a physical phenomenon that occurs at one place at a given time is reproduced
at other places at later times, time delay being proportional to the space separation from
first location, then group of phenomena constitute a wave as in Fig 7.1 (a).

For fixed time t, . vyt;and vyt, are constant
f, and f, are functions of 'x’ only
Displacement of curve to right = v, (t, — t;)

Phenomenon has travelled in the positive 'x’ direction with velocityv. (f, (x — vq t;))
Fig 7.1(b)).

f, (x — vot) wave traveling in —ve x direction

General solution of wave equation consists of two waves, one travelling to right
(away from source) and other travelling to left (back from source).

If there is no reflecting surface present to reflect the wave back to source solution
is given by

E = fl(x - vot)

Example 7.2 Given the complex amplitude of the electric field of a uniform plane wave,

A~

F?o = 1004, + 20 < 30° d, V/m construct the phasor and real instantaneous fields if
the wave is known to propagate in forward z direction in free space and has frequency of
10 MHz.

Solution: We begin by constructing the general phasor expression:
E, (z) = [100a, + 20e/3°°a, |e~/*o2
Where
B = Y 0.21
=5 =0

The real instantaneous form is them found through rule
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- - - 7 . 0 . . 7
— —j0.21z ,j2mXx10" 5 j30% ,—j0.21z ,j 2mX10’ 5
Es = Re[100e e ay +20e/3% e a,|

=100 cos(2m x 107 t — 0.212) @, + 20 cos (2w x 107t — 0.21z + 30°)a,,

Proceeding further for uniform plane wave, we get

E= fi(x —vot) (From Equ 7.12)

Equ 7.12 says that E # f(y,z)
E=f(x0)

Such a wave is called uniform plane wave.
0°E  ued?E

Rewriting wave equation, =—
8 a oz ot

In terms of components of E, (i.e., E,, E, and E, along X, Y and Z axis

respectively)

0%E, O0°E

92 = F ue 7.13
9%E,  92E

= e 7.14
92E, 92E

Ox2 = 'LLSW 7.15

We know that V. E = i (V 5) = 0 (From Gauss’s law)

aEx+aEy+aEZ 0 16
= _ |
Ox dy 0z
ASE = f(x,0)

% = 0 = there is variations of E, in x direction
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0%E
8x2x = 0 = E, = 0/Constant in time/increasing with time

Important. Uniform plane wave progressing in x direction has no x component of E and H

Uniform plane electromagnetic waves are transverse and have component of E
and H only in directions perpendicular to the direction of propagation.

7.3 Relation Between E and Hin a Uniform Plane Wave

We know that by retaining components variations along x direction and keeping E,, = 0,
we get

VXE = aEZA+6E”
T T ox ) T

oH,  OE,
UxH=——29p4+-23
ox T ox ?

Expanding Equ (7.17) and Equ (7.18), we get

) My o s My (g, OBz, Vxﬁ—@ 7.19
ox ? T ax 2T e Y T 2\ T '
) PP aHyA+aHZ“ Vxﬁ—d—g 7.20
ax? Tox T M YT 7))\ T '

Therefore, by comparing coefficients in Equs (7.19), (7.20) we get

—0H, OE

=€ aty 7.21
aaiz = % 7.22
% = EZI:Z 7.23
% =—u a; = 7.24
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1
E, = fi(x —vpt); vy = \/ﬁ (where v, is speed of light) 7.25

Differentiating w.r.t time we get

0E,  0f, 9d(x—vot) of,
ot d(x — vyt) Jt B voa(x—vot)
OE , d(x — vyt) ,
—2 = fie = vot) ———= = —vof{ (x — 1)
Where
_0fi (x —vot) ,
filx —vot) = ECET of fi

= Putting Equ (7.25) in Equ (7.21) we get

oH, _ OE
= — =£a—:=E(—v0f1’(x—v0t))
dH,
= p voef] 2.26

Then after integration w.r.t. x,

H, = \/% [fldx+C 7.27

Where C is constant of integration

% — fl a(X—Uot) — fl

Now, ox 1 ox 1

e cdf] £ '
Hence, HZ=\Efa—xldx+C=\/£ff1+C

=\/§ff1’dx+6

[C indicates that field independent of x would be present]
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= H, = \/% E, 7.28

Parallelly L2 —\/E 7.29
Hy, £

And 2= \/% 7.30

Also, E= /Eg +E2 and H= /HZZ + H2

E and H are total electric and magnetic field strength

E U
—= |- 7.31
H £

Equ 7.31 is called Characteristics impedance/intrinsic impedance.

In a travelling plane, EM wave there is a definite ratio between amplitude of E

and H and that this ratio is equal to square root of ratio of permeability to dielectric
constant of medium.

E 41 X 1077
- T —oaime ™ 3770 or 120w 7.32
Example 7.3. Show that Ey = E, sin(wt — fz)and ﬁx =— %sin(a)t — B2) travels with
0

velocity of light in free space. Also find S ratio.

Solution: % = % where w/f is velocity of light

E 1

— = X —

I Ho e
E Ho
—= |—=n=377Q
H &o 7
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From Maxwell’s equations

— = dﬁ 0
VXE = Ho = —uxmcos(wt—ﬁz)Xa)
0
E
= HoPEo cos(wt — Bz) X w
Who

Expanding L. H. S.

|7 j k1

d d d —de, ~ (de,

JE— R — =1 —AO +k _0 _0
dx dy dz l<dx> J(0 <dx() )
0 ¢ 0

=1E,cos(wt — fz) X8
= BE, cos(wt — fz)

Example 7.4. Find magnetic field intensity for a TEM wave with electric field intensity of
4 uV /min air, lossless dielectric with g, = 5.

Solution: % =1 = 377Q in free space or
_ H
1 €
E E
H= — =10.6 Xx107° A/m

n 377

Lossless dielectric with €, = 5

—\/ﬁ—3771686
n=Jz= & 108

p=So 1 ax106=2372x10°A
= — = X = .
1 1686 /m
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7.4 Wave Equation for a Conducting Medium

In a conducting medium, ] = oF i.e., conduction current is present. Therefore, from
Maxwell’s equation:

VxH=¢E+] () (=0E) 7.33
VXE=—uH 7.34
(1) Vxﬁ=—£E+0E(as]=0E)
(1) VxVxE=uV><ﬁ=—u(sE+aE))=—u(eE+aE)
= —,usﬁ+ua§

(By taking curl of Equ (7.34) and substituting Equ (7.33)

= V(V. E) — V2E = —,usE - ,uaE

(Using identity on L.H.S) (VXVXE=V(V-E)—V?E)
= Vé (V-E)—V2§=—us§—,ua§ (D = €E)

= V- V2E = —,ueﬁ — ,uaﬁ (E in conductor is zero)

= V2E = —ueH + pakE wave equation for E 7.35

ParaIIeIInyVXﬁzerE+0V><E=eV><E—,uaH

(Taking curl of 7.33 and substituting 7.34)

= v(v- 17) —V2H = —ueH — paH (Using identity on L.H.S)

V2H = ueH + paH wave equation for H 7.36

7.5 Sinusoidal Time Variations

Any time/periodic variations can always be analyzed in terms of sinusoidal variations
with fundamental and harmonic frequencies
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Imaginary
axis

Ex = | Ex| &
!

Real axis

Figure 7.2 Sinusoidal Time Variation
E = E,coswt
E = Eysinwt
Or E(r,t) = Re{E(r)e/®t} 7.37
(~) time varying quantity to distinguish it from phasor quantity.
E, (r,t) = Re {E,(r)e/*t} 7.38
E, (r) is a complex number (represented as point r in complex plane)

Multiplication by e/®? results in rotation through angle ‘wt’ measured from '¢’
shown in Fig 7.2

As time progress, the point Exej“’t traces out a circle with center at origin.
E, = Re {|E,| e/? e/} = |E,| cos(wt + ) 7.39
E, is Peak value
[\/f |E,| = rms Value]
Maxwell’s equations using phasor notation.

In time varying form,



= V x Re (H e/*) = — Re {De/*'} + Re {Je)"}
{for sinusoidal steady state}

= Re {(Vx H — joD —J)el®t} = 0

= Vx H = jwﬁ +f required differential equation in phasor form

It means that

Py Jjw,|Rewritting Maxwell’s equations we get,

VxH=jwD+] ¢H-ds=[(joD+]) da 7.40

VxE =-wjB §E-ds=—[jwB-da 7.41

VxD=p $D-da=[pav 7.42

= VUxB=0 $B-da=0 7.43
And  V.]=—jwp or gﬁ=]>.;l>=—fjwpdV 7.44

[Equation of Continuity]

2

If% = jw, then % = —w?, putting in
“Helmholtz equation”: V2E = —w2cE
In a conducting medium: V2E + (w?ue — jouo)E =0 7.45

Example. 7.5. In free space, E (z,t) = 103 sin(wt — pz)d, (V/m). Obtain H (z,t) and
determine the propagation constant y.Given that the frequency is 90MHz.

Solution: wt — fz phase (shows that the direction of propagation is + z)
Since E X H must also be in the + z direction,

H most have the direction —Qy.
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Consequently

Y o, — 0
_n_|277;“
Or

3

H. =
* 120w

sin(wt — Bz) (A/m)

Y = Vjou (6 + jwe)

In free space, o = 0, so that
Y = Jjw /o€

_.2nf
V=7

w = 2nf
1

c =
v Ho€o

27 (90 x 10)
V=) 73108

a+jB = j(1.884)

= j(1.884)m™?

Hence, attenuation factor a =10
Phase shift constant B = 1.884

7.5.1 Time Harmonic Fields

A time-harmonic field is one that varies periodically or sinusoidally with time.

Let first discuss phasor representation of vector fields. A phasor is a complex
number that contains the amplitude and phase of a sinusoidal oscillation. A phasor z as a

complex number, is given by
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z=x+jy=r<9 (rectangular form)

Or z=rel? =rcos@®+x,sin® (Polar form)

Where j = vV—1 and x is neat part and yis imaginary part w,
r= ol =y 172
and @ is phase of z, ® = tan" 1y /x
given complex numbers,
z=x+jy=r<0,z,=x;+jy, =1 <0,

And 22:x2+jy2:r2<¢2

Figure 7.3 Representation of phasorz=x+jy=r <0
The following properties can be inferred as

Addition: z; + z, = (7 + x5) +j(y1 + y2)
Subtraction: z; — z, = (x; — %) + j(y1 — V)
zy =23 =111, 01 — 0

2T
priell Zal

Square root: vz = \r < 9/2
Complex conjugate: z? = x —jy=r<-—-0= rel?

o vk~ wnN e

Let us now introduce time element,
D=wt+80
Where 8 may be function of time or space coordinates or a constant.

rel? = rel® rejwt
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Re (re/®) = rsin(wt + 0
I, (re’®) = rsin(wt + 6)
Let us consider a complex sinusoidal current I(t)as I,e’?. e/®t, where
I,=1e°%=1,<06 - Phasor current
And I1(t) =1, cos(wt + 0) has instantaneous form
I1(t) = Re (I;e/*t)

In general, phasor can be scalar or vector. If a vector /T(x, Y, z,t) is time harmonic
field, then phasor form is

A = Re (Ase®t)

dd _ d it . ot

= - = ke (A;e7@t) =R, (jwAgel® )
Showing that taking the time derivative of instantaneous quantity is equivalent to
multiplying states that the algebraic sum of all magnetic fluxes flowing of out of a

junction in a magnetic circuit is zero.
7.6 Polarization

Polarization refers to time varying behaviour of electric field strength vector at some
fixed point in space as shown in Fig 7.3.

1. IfE, = 0 and only E, is present
POLARIZED IN ‘X’ DIRECTION

2. IfE, = 0andonly E, is present
POLARIZED IN ‘Y’ DIRECTION

3. Ifboth E, and E, are present and in phase
LINEARLY POLARIZED
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y

/

Figure 7.4 Polarized in z dir"

Direction is dependent on relative magnitude

E
Angle is what the direction makes with x-axis tan™* (E—y)

X

(constant with time)

Uniform plane wave

4. If E, and E'y are not in phase, they reach their maximum values at different

instant time.
In Fig 7.4, locus of END POINT = CIRCLE
= ELLIPTICALLY POLARIZED
U if £, = E, = <90°
Fig 7.5 (a) ellipse Fig 7.5 (b) Circle
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In Fig 7.5, LOCUS of END POINT = CIRCLE
= CIRCULARLY POLARIZED
The electric field of a uniform plane wave travelling in ‘Z’ direction
E(z) = Eje /P 7.46
In time varying form as E(z,t) = Re {E e /F% eJ®t}
E(0,t) = Re {(E, + JE)) e/°t}

E(0,t) = E, cos wt — E; sin wt 7.47

E not only charges its magnitude but also changes its direction as time varies.
7.6.1 Circular Polarization
If y component leads x by 90°

Eo,=(®+j9)E, = E(0,t) = (% coswt— ysinwt) E,

E, =E, coswt
E, = —E,sinwt
7.48

2+ B2 = E2

= Endpoint of £(0, t) traces out a circle of radius 'E},
Ey = x _jj})Ea
7.6.2 Elliptical polarization

E,=%A+j9yB = E(0,t) = A cos wt — B sin wt

E, = Acoswt g—x2+1§y2_1
E, = —Bsinwt] 4 B
7.49
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Endpoint of £ (0, t) traces out of ellipse
7.6.3 Resolution in Different Polarization

The instantaneous field of a plane-wave travelling in negative z direction may be
given as

E(z,t) =E, (z, )R + E, (z,t) 7.50
In complex notation, Equ (7.50) is written as

E, (z,t) =R, [Ele—j(wt+ﬁz)]

= |E1(z, t) = E; cos(wt + Bz + 6x)| 7.51
[[ly E,(z,t) = E, cos(a)t + Bz + 6y) 7.52
Where E; = Maximum amplitude of x component

E, = Maximum amplitude of y component
6 — time phase
(n Linear Polarization

For wave to have linear polarization, the time phase difference between two
components must be

§=6,—-6,=nm
Where n=01234..

A linearly polarized wave can be resolved into a light hand circularly polarized wave and
left-hand circularly polarized wave of equal amplitude.

To prove the above statement let’s consider a linearly polarized plane wave

propagating in z direction, we can assume, with no loss of generality, that Eis polarized
in x direction. In phasor notation.
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E(z) = Eje /P2
But this can be written as

E (2) = Ee(2) + Ec (2)

Where E..(2) = % (& — jp)e IP?
And Eie(2) =3 @ - j9)e /P
Where Em is RHCP wave and

E,. is LHCP wave
. . Eo
Having amplitude Y

The converse statement that sun of two oppositely rotating circularly polarized
waves of equal amplitude is a linearly polarized wave is true.

(m Circular Polarization

This can be achieved when magnitudes of two components are same and time
phase difference between them is odd multiples of 7 /2 i.e.,

|El| = |EZ| orky =E,

§=06,-8,=

Wheren=0,1,2.....

In case direction of propagation is reversed (i.e., + z direction) the phase in above
two for CW and CCW can be interchanged.

(r Elliptical Polarization
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This is achieved only when the time difference between the two components is
odd multiple of /2 and their magnitude are not the same or when the time difference
between two components is not equal to multiples of /2 (irrespective of magnitudes)

i.e.
|E,| # |E;| or By # E,
1
+(E+2n)n ...... in CW
§ =0, — 0 = 1
—<§+2n)n ...... in CCW
Where n=20,12....
Or
nT (>0 for CW
=0, — +—
§ =&, 5X¢—2{<0 for CCW

Here, the curved traced at a given position as a function of time is a tilt, ellipse for
elliptical polarization ratio of major to minor axis is called axial ratio (AR) i.e

AR = major axis _ OP
~ minoraxis OR

AY

Fig 7.6. Polarization ellipse at an angle.

AR lies between 1 to o
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1
OoP = jz{Ef +EZ + \/Ef‘ + E; + 2E?EZ cos 26}

And

1
0Q = \/E{Elz +EZ + JEf + EJ + 2EZEZ cos 26}

And tilt of ellipse is (w.r.t. y-axis)

T 1 L {2E1E2 cos 6}

= - ——tan"
7272 E? — B2

When ellipse is aligned with principal axis then T = nz—” n=0,1,2,...)
7.7 Mathematical Analysis

Let E, = instantaneous electric field of horizontal polarized wave
(component)

E, = instantaneous electric field component of vertically polarized

wave (component)

Then, electric field (Fig 7.6) components as a function of time and distance in x
and y directions are:

E, = E; sin(wt — fz)
7.54

E, = E; sin(wt — fz + §) 7.55
8 is time phase angle by which E, loads E
Now E=E 2+ E, ¥ = E; sin(wt — fz)X + E; sin(wt — fz + 6)Y
At z =0 (egn 7.54)

E, = E; sinwt and E,, = E, sin(wt + §)

264



Or

So,

E, = E;(sinwt cos§ + cos wtsing

E .
—= = sin wt
Eq

coswt =41 —sin"lwt = 1_<_

2

E ] ,
E—y = sin wt cos & + cos wt sin &

Putting values of cos wt sin wt) we get

E, E
2 = Zcos b +
E; E

Rearranging and squaring

(

As

Ey

2

sin?8 + cos?6 =1

E,

Dividing throughout by sin? §, we get

1= (£) xsins
E1 Sin

E\? E 2E.E, cos &
y) +(—x) cos?§ — ——2 ——
Ey EjE,

<Ey)2 _ 2EyEycos$ (Ex
E,E;

E; 2E,Ey cosé

E
= si 25_( d
Sin E

E_1) = sin% ¢

EZsin?8 E,E,sin?8 ' EZ2 sin?6 B

Or

a Ef —bEyE, + cEj =1

Where

1
E? sin2§

a =

= E,E,sin2d

2cosd
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1
C =—7/F——
EZ sin?§

OP —semi-major axis, 0Q —semi-minor axis

(1)

Or

Or

Let E,, be in phase or 180° out of phase with E,, then § = KA,K = 0,1, 2.

2 2
E 2E.E E
X + xX=y + ( x) — 0
E E.E, \E,

y
E E
Z=m= 7.57
E; Eq
E2 .
E,, = mE, where m = —= or slope of line
y X Eq

Hence when two linearly polarized waves are in phase or out of phase the

resultant wave is a plane polarized wave with Eie. If E; = 0, the wave is polarized iny

direction or if E, = 0, wave is polarized in x direction or when E; = E, and § = 0 where

is still linearly polarized but at 45°.

()

Let

E1=Ezand6=i900

E2 ExE, c0s90°  Ej ,

= -2 22—+ 2 =5in90°

E? E1E; E?

E} | Ej

ptp=1

El El

EZ +E} =Ef|or |Ef+E; =Ej 7.58

Hence when too linearly polarized components are in time phase quadrature of

90° and also are equal in magnitude, then resultant wave is circularly polarized.

Hence, when E; = E; and § = + g the wave is circularly polarized

Also,

6 = +90° - Light circularly polarized

6 = —90° — Right circularly polarized
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7.8

10.
11.
12.
13.
14.
15.
16.

17.

Exercise

A uniform plane wave in free space is given by E = (200 < 30°)e/250%) V/m
find:

a. Phase constant (b) angular frequency (c) frequency (d) wavelength (e)

intrinsic impedance (f) magnetic field intensity (g) E at x = 8mm,t =
6 x 107 %
Given E(x,t) = 103 sin(3 X 108 t — fx)y V/m in free space, sketch the wave at
t = 0 and t;, when it is travelled 1/4 along the x-axis. Find t;,  and A.
A lossless dielectric medium has ¢ =0,u, =1 and ¢, = 4. An eM wave has
magnetic field components expressed as
H = —0.1 cos(wt — z) & + 0.5 sin(wt — 2) y A/m

Find the components of electric field intensity of wave.
A normally incident electric field has amplitude E = 1V/m in free space just
outside sea water in which & =80,u,. =1,0 =2.5S/m. for a frequency of
120MHz at what depth the amplitude of E be 1073 V/m
A perpendicularly polarized wave propagates from a region having &, = 4, u,, =
1,0 = 0 to free space with angle of incidence of 30°. the incident field is 1 u V/
m, find reflected and transmitted electric field; incident, reflected and
transmitted magnetic field.
A parallel polarized wave propagates from air to dielectric at Brewster angle of
8.5°. calculate relative dielectric constant of medium.
What are constitutive relations of electromagnetic waves?
What are constitutive relations of eM waves in homogeneous medium?
What are constitutive relations of eM waves in isotropic medium?
What are constitutive relations of eM waves in isotropic medium?
Assuming free space conditions, derive wave equations?
Explain uniform plane wave propagation
What do you understand by uniform plane waves?

- —
Derive relations between E and H in a uniform plane wave.
Derive expression for intrinsic impedance.

Derive wave equation for electric field (E) in conducting medium.

Derive wave equation for magnetic field (ﬁ) in conducting medium.
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CHAPTER 8

WAVE PROPAGATION IN A LOSSLESS MEDIUM

Given a uniform plane wave case with no variation in the direction y or z, the wave
equation in phaser form will be:

0%E 0%E

ALY 9°E _ _p2
oz = W HeE or —— = —B°E 8.1
— ’B:(}J\”lg

Solution for different equations gives

E, component = |E, = C,e/P* + C,elP?| (C,, C, are arbitrary constants) 8.2

= E,(x,t) = Re {E, (x)e/**}
= Re {Clej (wt-Bx) 4 Czej (wt+ﬁx)}
= C, cos(wt — Bx) + C;, cos(wt + fx) 8.3
Equ 8.3 can be interpreted as:

Sum of two waves traveling in opposite directions.

If C, = C, = STANDING WAVE|

. w dx w
Wave velocity V=g [wt —Bx=a= il E]

Phase constant  measure of phase shift in radians per unit length.

Wavelength A distance over which sinusoidal waveform passes through a full cycle of 2n
radians.

8.0 Wave Propagation in a Conducting Medium

Helmholtz equation: VZE—-y?2E=0 8.4
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[~ v? = jou (o + jwe)]

Propagation constant y=a+jp

(as it has a real part — attenuation and imaginary part — phase shift

2

Uniform plane wave traveling in x direction: fo =y2E
E(x) = Eoe_yz
Time varying form:  E(, ;) = Re {E,et/@t~7*}

= e~% Re {Ege/ @FDY}  (ny=a+jB)

Equ 8.6 is equation of wave travelling in x direction and attenuated by e

a+jB =+jou (o + jwe)
a? — B2+ j2af = jou (o + jwe)

iou X j (1+ a) 2 [1+ 7
= € — | = —w ue —
JOR 7O jwe # jwe

Equating real and imaginary parts

= a, — f? = —w? ve
And Zaﬁ—jzwzﬂw— jwUo
jouo
- —_—
B 2a

Now, putting value of 5 we get

, 2
wuo
@~ (Gg) =—one

12,322 2

2 __JTwtuto 2
= a? ———— = —w?us
4q? 1
= 4a? + w?u?c? = —w?ue (4a?)
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= 4a? + w?ncdo? + wpa? =0

2 _ 4w? pet \/(4w? pe)2+4x4xw?u2o?
= a = 2x4
4w? ue + J16w* p2e? + 16w2u2o?
B 8
_ 4o’pet V(w2e? + 62) 16w2p?
B 8
4w? pe + 4w?ue (1 + 0—2)
T w? (2¢2
- 2% 4
2
4w? petw?pe (1+%)
= a?=-— =L

2

Therefore, we get,

From above two equations we get;

o= e (frr@ 1)
p= j— (J1+(2)+1); x

8.1 Conductors and Dielectric
(i) is ration of conduction current density to displacement current density
GOOD CONDUCTORS: é > 1 (constant over frequency)

GOOD DIELECTRICS: i K1 (o,& = f (frequency))
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Dissipation factor D is power factor of dielectric
P.F.=sin®
Where @ =tan 1D
Where D = é i.e ratio of conduction to displacement current
8.2 Wave Propagation in Good Dielectrics

For dielectrics, denominator will be greater in i Refer to Equs (8.7) and (8.8), we get

LK1 - 1+a—2’:(1+l az)(fr m Binomial nsion)
— o = = > =25z (from Binomial expansio

8w?2 g2
8.11
_ jou
n= \‘0'+j‘°t
8.12
1
(1+762)

(1 + = ) intrinsic independence of good dielectric a = 0.
2jwe
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Example 8.1 For a non-magnetic material drawing &, = 2.25,0 = 10™*s/m find (i)
loss tangent (ii)attenuation constant (iii) phase constant (iv) intrinsic impedance for a
wave having a frequency of 2.5MHz. assume the material to be good dielectric.

Solution: (i) Loss tangent = i

1074

= = 0.38
2m X 2.5 X 10® x 2.25 X 8.854 x 10~12

o
—<1
wEe

(ii) Attenuation constant

2\Ne 2

o [u_ 107" 41 X 107
*= 2.25 X 8.854 X 10-12

= 0.01256 Np/m

(iii) phase constant

0.2
B = o [1 =2 82]

=21 X 2.5 % 10°

0.320\2
X /4 x 107 X 2.25 X 8.854 x 10-12 x l1 + (T) l

= 0.0796 rad/m

(iv) Intrinsic impedance

n=\/§(1+j%)

B 41 x 107 (1 N ,0.320)
= |2.25x8.854 x 10-12 I
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=[254.35 < 9.09° Q|

8.3 Wave Propagation in Good Conductor

For good conductors, numerator will be greater in (i)

As—> 1 :-y:\/(iwua) (1+)%) = JGoro) = Voo < 45°

azﬁz\/@

8.13
@ _ |2
v—ﬁ— .
8.14
n= /jw_ﬂ: /%<45°
g o
8.15

We conclude that for good conductor g >, so, a > and § > v K and Z <

Example 8.2 A uniform plane wave in medium having ¢ = 1073 s/m € = 80 g, and
U = Ug is having a frequency of 10kHz. Calculate the different parameters of the wave.
1073 1073

. g
Solution: —= — = — =2248>1
we 2mx104x80x8.854x10~12 4.448x105

The medium is a good conductor, so attenuation constant

a =1 f po =1 x10* x 47 x 10-7 x 10-3
=27 x 1073 Np/m
a=LF=2rx1073 N@/m

Intrinsic impedance
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Ay 2w X 10% x 4 x 10~7 )
n= 7<45°= 103 <45° =2 (1+))

Wavelength A= %" = 100m

. w 2mx10%
Velocity of wave =—=—"—=107 m/sec
B 2mx1073

8.4 Depth of Propagation
In a good conductor at ratio frequencies, the rate of attenuation is very great.

Wave may penetrate over a small distance before being reduced to a negligibly
small percentage of original strength.

8.5 Depth of Penetration (&)

Depth of penetration (&) is the depth in which wave is attenuated to G) or

approximately 37% of its original value (as shown in Fig 8.1).

1
§=al= 8.16

JTTfuo

Electromagnetic waves, j, E, B, only penetrate a distance § into a metal. Check

the magnitude of § in lab and web exercises.

The wave equation for match simplifier to

0*Ey,(2)
—%5— = jwo py By (2)
0z
. 1+j
The solution E,(z) = exp (— %Z)

Where ‘d’ the skin depth is given be

WOl
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Strength
of wave

E >
)

Figure 8.1 (a)

incident electric field, E
—nicident electric fie

LN
j(0) =0 E(0)
3
Metal
z
A 4

Figure 8.1 (b) Skin Depth

8.5.1 Impedance per square

By integrating the formula for the electric field inside a metal,

E,(z) = exp (— ! ;jz>

To find the current per unit width I we defined the impedance per square as

1+ /ﬂllf .
Z; = E,(0)f; = 5 00 a1+

For a wire of radius, a length L and circumference 2ma, we obtain
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Example 8.3 A 160 MHz plane wave penetrates through Al of s = 10°mho, &, = p, =
1. Calculate skin depth and also depth at which the wave amplitude decreases to 13.5%
of initial value.

Solution: Skin depth = loops tangent = i

10° o 10°
2m x 160 x 10° x 8.854 x 10712 ~ 0.008896

> 1

2 1
wpo \/n Fuo V160 x 106 x 472 X 107 x 105

= 0.000125886 m

Given, e = = 7.407
0.135

a, = In(7.407) = 2.0025

2.0025 wuo
where o = —

X =

Example 8.4 The electric field intensity of a linearly polarized uniform plane wave
propagating in the positive z direction in sea water is E =100 cos(107 mt) @, V/
m atz = 0. The parameter of sea waterare e, = 72, = 1,and 0 = 4 s/m.

i. Determine the attenuation constant (a), phase constant (), intrinsic
impedance (1), phase velocity (Vp), wavelength (1), and skin depth (§).

ii. Find the distance at which the amplitude of E is one percent of its value of z =
0.

iii. Write the expression for E(z,t) and H(z,t) at z = 0.8m as a function of t.

Solution: Electric field at z = 0 is
E =100 cos(107 nt)d, V/m
w = 107 m rad/sec

w = 2nf
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w 107w

=— =5x10°H
f 2T 2T z
In this case
o o 4
_ — = I =200>1
WE  WEE g7y [% X 10—9] X 72

Hence, we have to use the formulae for good conductor:

(i). Attenuation constant

a = Jmuof = x5 % 106 X 47 x 10-7 X 4

= 8.88 Np/m
Phase constant: B =a=888Np/m
Intrinsic impedance: n = /% < 45%o0r (1+)) %

|mx5%x10°x4mrx 1077 x 1
n=a+j 2

=(1+/)(2.22)

2.22 +j(2.22)

= 3.14 < 45°Q
Phase velocity
_2_ 0 = 0.707
=5 %88 " m/sec
. 1 1
Skin depth: 6 =—=——=0.1126
a 888

(ii). The distance Z; at which the amplitude of wave decreases to one percent of its value
atz = 0.
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e~ %1 =0.01

1
—az = _—__ =100
¢ 0.001

7 = Y1n100 = X695 _ 5186
1= MY T ggg T oM

(ii).  The value of electric field in phasor notation is given as;

E(z) = 100e% e /F7 a,
Then the instantaneous expression for Eis expressed as

E(z,t) = R, [E(2)e/®t] = R,[100e%* e/(@t=F7g, |

= 100e~% cos(wt — fz)

At z = 0.8m, the above expression can be written in the form as,
E (0.8,t) = 100e~98%¢ cos(107 it — 0.88)d,
= 0.082 cos(107nt — 7.11)a, V/m

A uniform plane wave is a TEM wave with E perpendicular to H and that both are

normal to the direction of wave propagation @,. Thus H = Hya,,.

Ex( !t)

Hence Hy, (z,t) = x5
E.(z) .
) = R, [
n
In this case
100e780% /086 ,082¢ /71
H, (0.8) = T T rein/4
= 0.026¢ /161
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As both angles must be in radians before combining the instantaneous expression

for H at z = 0.8m is then expressed as
H(0,8,t) = 0.026 cos(107mt — 1.61)a, A/m
8.6 Properties of Uniform Plane Wave

It is necessary to write the expression for plane wave i.e., travelling in some arbitrary
direction w.r.t fixed set of axes.

This is done in terms of direction cosines of the normal to plane of wave

By definition of uniform plane wave, the “equiphasic surfaces” are “planes”

E(x) = E, e/B* 8.17

(for wave travelling in x direction)

>y
Figure 8.2 Direction Cosines
The planes of constant phase are given by, x = a constant
The equation of plane:
n.r=a 8.18

Constant see Fig 8.2

Where r is radius vector from origin to any point P on plane i is unit vector normal to
plane (wave normal)
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.7 is projection of radius vector 'r’ along normal to plane

Constant value OM for all points in plane

= fi.r =xcosA+ycosB + zcosC 8.19

X,y,z are components of vector r, and cos A, cos B, cos C are the components of unit

vector 71 along x, y and z axes.

A, B, and C are the angles that unit vector 7 makes with positive x,y and z axes,
respectively. Their cosine are termed the ‘direction cosine or direction components of

vector.
= E(r) = EjelPr = Ey e JB(xcosA+ycosB+zcosC)
In time varying form: E, = E, + JE;

E(.p) = Re {Ege~/(BRT-wD)

E, cos(Bi.r — wt) + E; sin(fii.T — wt) 8.20

Wavelength |Uniform plane wave expression:

e M \where 8.21

'h" is some real constant

"u’distance measured along a straight line : Z} for distance 1

21
Au = 7
Phase velocity Vy = % 8.22
21 A
Parallelly Ay = FeosA — cosd 8.23
And v, =2 =2 8.24

x L cosA " cosA
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As long as angle A is not zero, both wavelength and phase velocity measured
along x axis are greater than when measured along wave normal.

For small angles '8’ in Fig 8.3 velocity v, with which a crest moves along y axis,

becomes very great,

vy =0 asf =0

\:

/

A 0
). »
L Lr—/
Figure 8.3 Uniform Plane Wave

8.7

Reflection of Uniform Plane Waves by Perfect Dielectric-Normal Incidence

When a plane EM wave is incident normally on the surface of a perfect dielectric,
part of energy is transmitted and part of it is reflected. Fig 8.4

A perfect dielectric is one with zero conductivity so that there is no loss of power
in propagation through the dielectric. Consider. Plane wave travelling is x direction

Incident on a boundary i.e., parallel to x = 0 plane
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@O Hier ;e D
L
A L
#
pi E -~
g /

| E

-~ o
pr A o
4
E” L
-
L
x=0

Figure 8.4 Normal incidence

Medium: n = \/g 8.25
1

(1) Medium: n = |2 8.26

€2

Relationships for electric and magnetic fields

El =n; H 8.27
Ef = —; HF 8.28
Et =1, Hf 8.29

Continuity of tangential components of E and H require that

H'+H" =HY, E'+E" = Et 8.30
= H' +H' = ('~ E7) =~ (E'+ £7)
= n(E'—E") =m(E' + E)
(A) Reflection coefficient
ET —
== Zz - Zi 8.31

(B) Transmission coefficient
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T = — = : = 1 —+ — =
E E E T]1+T]2
H' _  E" _ m-12
_ PR PR 8.33
H E nN1+12
Ht Et 2
And — = | 2 8.34
H'  nzE! N1+72
And Mo Lo
€o

(C) For perfect dielectrics, ; = U, = U

E_VE-VE B WE W _JE-VE H_ 2E
B VetV B Vatve H Vatve H VotV

Note: Important points

e 1+I'=1
e [ and t —»dimensionless and may be complex
e 0<|I<1
If medium 2 is perfect conductor,n, =0=T=—-1landt=0

E"=—E'andE* =0
Incident wave will be totally reflected and standing wave will be produced in

medium (1)

(D) Cases: (@)T' >0 (my, >ny) » SWin(1)
(b) T'>0 (2 >n1) » SWin (2)

-

Example 8.5 Determine the amplitude of reflected and transmitted E and H at the
interface between two regions. The characteristics of region 1 are &. = 0,ur; = 1 and

oy = 0; region 2 is free spaces.
The incident E,; in region 1 is of 4.5 V/m.

Assume normal incidence also, find average power in two regions. (Fig 8.5).
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Ho, 8e,

I,

oF

£5
TE

(o) o

or

AR

Figure 8.5

solution:

\/Z /—4”“0_7_12 = 13330
8X%8.854%10
\/7 3770

(172 M ) 377 —133.3
0i =

X 4.5 = 2.148 V/m

N1+ 1, 377 +133.3
(2"2) 2X3TT 45— 6648 V
= =————Xx45=6.
) B T 37751333 /m
E,;
H,; =-2=339%10"2 A/m

X 3.39 X 1072

n
Ny — M4 133.3 — 377
HOT' = ( )HOl Tmm » 1 e
N1+ 1, 133.3 4+ 377
=—-16.2%x 1073 A/m
( 214 ) 2% 133.3
= 0i

= =—— " x349x1072=17.7x1073 A
T\ 4, 133.3 + 377 /m

The incident average power densities in two regions
1
Poi = EEOL' Hoi =7.63 X 10_3 W/I’I’l2

1
—E,  H,, =174 x107? w/m?

P, =
r 2
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1
Pit ES Pzi ES EEO,A_- HOt ES 5.88 X 10_2 U)/mz

8.8 Reflection by a Perfect Dielectric-Oblique Incidence

When a plane wave is incident upon a boundary surface i.e, not parallel to plain

containing E and 17, B.C. are more complex, see Fig 8.6.

Part of wave will be transmitted and part of it is reflected, but in this case the
transmitted wave will be refracted: i.e, direction of propagation will be altered.

Medium 1
g
Tncident
ray 0, Reflective rays
& C 12
- Ll - - < - - -
A\ B
—> )
Medium 2 D
&

Transmitted rays

Fig 8.6 Oblique Incidence
Incident ray travels distance CB
fxa ray travels distance AD
Reflected ray travels from Ato E

v, and v, are velocities of medium 1 and 2
CB Rz
AD v,

CB = AB =sinf; and AD = AB sin 6,

CB . AD .
= — =sin6y; — =sin#6,

AB AB

sin 91 CB %1
So, —_— === 8.35

sin 0, T ap T vy
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- VH1€&1 - v Ho&1 ’ VH2E2 [ Uo&;

sinf; &
sinf, |e&
We, have AE = CB
SO, sin 91 = sin 93 = 91 = 93 8.36

Angles of incidence = angle of reflection
8.9 Snell’s Law
Snell’s law relates angle of incidence with angle of refraction

By conservation of energy:

. 1 2 1 2
— E%2 cos; =— E"" cosf; + — E'" cos 9,
M1 M T2

2

ET mE® cos 6,
E?* n,EP cosf,

2 2
E" 1 V&2 Et" cos 6,
Ei? 1, Ei? cos 6,

8.37

Example 8.6 the amplitude of E; in free space (region 1) at the interface with region 2
is1V/m.ifH,, = —1.41 X 1073 A/m, &,, = 18.5 and 0, = 0, find ur;.

Solution:

EOT

= —120r QA = -3770Q

or

Eoi _ M2 _ 127377

And =
Hoi  M1tn2 M2+377
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E,; 1.0 —377(377 + 1,

H, —-141x103  1n,-377
Or 1, = 1234Q
nuTy _
Then ﬁ = 1234
= ur, = 198.4
(i) Horizontal polarization

Figure 8.7 Horizontal Polarization

Electric field vector ‘I’ is parallel to boundary surface or L to plane of incidence in
horizontal polarization as shown in in Fig 8.7.

Horizontal Polarization:

Example 8.7 A perpendicularly polarized wave propagates from region 1 (&,4 =
8.5, U1 = 1,01 = 0) to region 2, free space, with an angle of incidence 15°.

Given E,; = 1uV/m. find E,,., H,,, 0;, Hy;, Eo¢ and Hyy.

Solution: The intrinsic impedances are:
_ M 12T _ 199330
& &1 V85 .
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nz = no = 377.0.

And the angle of transmission is given by

sin15% € 0. — 48.99°
sind,  |8.5¢, or e =50

Eor mycos8; —mnycosf; 120 mcos15° — 129.33 cos 48.99°
E,; mn,cosB; —n,cosB, 120w cos15° + 129.33 cos 48.99°

= 0.623
Or E,” =0.623x1.0uV/m
=1.623uV/m

E,; 2n, cos 0; 2 X 1207 cos 15°

E,; mpcosB; —ncosb; ~ 1207 cos 15° + 129.33 cos 48.99°
= 1.623

= 1.623 x 1uV/m

=1.623uV/m
. _Eoi _ 1 uv/m
Finally, H, = . = 12933 = 7.732nA/m
E,- 0.623 uV/m
oL = o 129.33 nA/m
Similarly, H, = 431 nA/m|

(ii) Vertical Polarization

(I1) Magnetic vector is parallel to boundary surface and electric vector is parallel
to plane of incidence in vertical polarization as shown in Fig 8.8
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MATHEMATICAL EXPLANATION
)] Horizontal polarization
E'+E" = Et (B.C

Tangential component of Eis continuous)

Et E”
oLt
B g m st E_T)Z
Or Eiz 1 V&L cosfy 1+ El
t 2 2
- 1- (%) =\/?—2(1+E—.) cos b,
E! &1 E! cos 64
= 1—ﬂ= & (1+E—T)ﬂ
E! &5 E'J cos 64

ET _ yJg;cos0;—E;cos68;
El V€1 c0S 01 ++/€5 cOs O,

8.38
(1) Vertical Polarization
(EY —E") cos 0, = E* cos 6,

(B.C. . tangential component of Eis continuous)

Et ( Er) cos 6,

E' E') cos B,
T 2 T 2
= (E—) =1- [Zx (1 + E—.> £osfy
Et &1 Et cos 6,
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Figure 8.8 Vertical Polarization
ET\? _ e ET\? cos 6,
= 1_(5) _\/8:1 (1_Ei) cos 6,

Et € E™\ cos®
E! &1 E'J) cos@,

E_T (1+@ cosel) NED) cosf;

El Ve cos0,) & cosb,
E_T __ +&3cos6;—E;cos6, 8.39
El T \E{cosB,+yE5coS05 .
ET £,c0860; — /&g (1 —sin? 6
— = ver 1= Ve 2) (Using cos? @ + sin® 6 = 1)
E VEL cos By +/&,(1 —sin? 6,)
Also, sin? 6, = i—lsin2 0,
2

& & .
g—zcos 0,— (—2)—sm2 0,
1

E_ o1 8.40

.=
E £2 cos 0,4+ /(8—2)—sin2 61
&1 &1

No Reflection /e, cos 8; — +/&; cos B, = 0

sin @ £
sin 92 &1
£
Or tan @, = 8—2 8.41
1
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Equ (8.25) refers to Brewster’s angle

_EY 2+/€1 cos 64
T El T J£; oS0, ++/E1COS 0,

T (Transmission coefficient) 8.42

Example 8.8. A normally incident E field has amplitude Ey; = 1.0 V/m in free space
outside of sea water which €, = 80,1, = 7 and ¢ = 2.5 s/m. for a frequency of 30MHz,

at what depth will the amplitude of E be 1.0 m/V?

Solution: Free Space Sea Water
Region 1 Region 2
771 = 377Q 7]2 = 9.73 < 4‘3-SOQ

Then the amplitude of Ey; just inside the sea water is E;

& _ 21,
Eoi m+mn2
Or Eor = 5.07x1072V/m
From vy =jeu(o+jwe)
a = 24.36 cos 46.53°
= 16.76 Np/m
Then 1073 = (5.07 x 1072)e 16762

EZ — EOt e—16.76Z

z=0.234m

8.10 Reflection by a Perfect Conductor-Normal Incidence

Wave is entirely reflected se Fig 8.9

E|ﬁ can’t exist so none of the energy of incident wave can be transmitted no
energy is absorbed by perfect conductor (lossless).
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E of incident wave EteJ (@t=jBx)
Expression of reflected wave = E” e/ (®t+JB%) (charge in direction of power flow)

Tangential component of E must be continuous across boundary and E is zero
within conductor

Figure 8.9 Free Space
= E'+E" =0
[Tangential component of E just outside conductor must be zero]
= E" = —E"
(at odd multiples of /4 E,,4, = 2E* at multiples of 1/2 zeroes)
= Er = Et eJ (Wt=FxX) 4 ETel (@t+fz) 8.43
= Et [ej(wt—ﬁx) —el (wt+Bx)]
= —2j E'sinpx e/ ©*
With E' to be real = E; = 2E*
sin fx sin wt standing wave
Parallelly,  Hyp = H' e/ (Wt=Fx) 4 [Tel (@t+5X)]

= Hi [e] (wt—px) + e]((})t+ﬁx)]
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Hy = 2H! cos Bx e/®t

With E* in phase with H® = |H; = 2H" cos fx cos wt 8.44

(max at surface and multiples of 1/2)
E; and Hy are 90° out of time phase = of factor 'f".
8.11 Surface Impedance of Conductor

Surface impedance of conductor is defined as ratio of tangential component of electric
field strength on the surface of conductor to the linear surface current density k

_ Et

Z. =
S T K,

8.45

Current density at face of conductor (J = oE) decreases exponentially with distance.

J=Joe™*
Jo conduction current density

Average surface current density

KS=J ]dz=j Jo e? dz
0 0

= Ks=]o foooe_rz dz = ]70
And Et ={:0
o _r
%5 = Thum — 545

For perfect conductors r = /Jwuo

Z= [t =
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or Z = /"j’T" < 450 8.60

R, = % 8.61
And X, = % 8.62

Skin effect resistance per unit length

ol ©@
L\
' o

'y O

z

Figure 8.10 Surface Impedance

Skin depth 8.47

(o7}
I
=
%)
I
I

wWUo ) ad

8.12 Poynting’s Theorem

The Derivation of Poynting Theorem i.e., “Rate of energy transfer” refers to Poynting’s
Theorem as can be seen in Fig 8.11 shows power from a source to three receivers at
different location

Source > Ry

x

x3

Fig. 8.11 Shows power flow from a source to three Receiver at Different Location

M.M.F. (magnetomotive force) can be written as:
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] =V x H — ¢E (Using Maxwell’s modified Ampere’s law
Dimension of current density
Taking dot product with electric field of Equ (8.25)
E-J=E-VxH-—¢E-E
Dimensions of power per unit volume
Identity: V-EXH=H-VXE—-E-VXH
Using above identity in Equ (8.2) we get
E-J=-V-EXH+H-VXE—¢E-E
Also, VXE =—uH
(Using faraday’s law in Maxwell’s equation)
We get
E-J=—uH-H—¢E-E—-V-EXxH

Now we can write

Integrating over volume,

U

d £
fE-]de—— (—H2+— E2>dV—f(V-E><H)dV or
%4 %4

ot J, \2 2
(Using divergence theorem) in R.H.S we get

-a
= JE-1av=22f (5 H2+2 E?) dV — §.E x H-da
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The Poynting theorem explanation of terms |, Il, Il in Poynting equation (8.69) are:
(n (Instantaneous) Power dissipated in Volume ‘V’ Joule’s law
A conductor of cross-sectional area A, carrying current |,

Powerless of El watts per unit length
Power dissipated per unit volume = % = EJ watts per unit volumeor E .|
Total power dissipated in a volume V — fVE Jdav

Or dissipated at ohmic (I?R)loss

Note: if'E"'is due to to source of power, e. g., batter, then f E -] dV would be used up in driving
the current against the battery voltage CHARGING BATTERY NEGATIVE

(m égE2 stored energy (electric) per unit volume ELECTROSTATIC; % uH? stored

energy (magnetic) per unit volume MAGNETOSTATIC (—ve time derivative of this
represents rate at which stored energy in volume is decreasing).

() Law of conservation of energy rate of energy dissipated in volume V must equal
rate at which stored energy in V decreasing plus rate at which energy is entering the
volume V from outside.

- gﬁsﬁ x H - da rate of flow of energy outward through the surface of volume.

- gﬁsﬁ x H - da rate of flow of energy inward through the surface enclosing

volume.
P=FExH

It is Poynting’s theorem that this vector product at any point is a measure of the
rate of energy flow per unit area at that point.

Example 8.9 Infree space E (x,t) = 150 cos(w; — f8,) 4, V/m. find the average
power crossing a circular area of circuit 5m in the plane Z =constant.
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Solution: In complex form E = 150 ¢/ (@t=52) a, V/m
n = 120m Q
With propagation in Z direction

1207

ej (wt—P2z) ax A/m

Average pointing vector

1 o o 150
Pav =5 R.(E x H)W/m? = = (15 )( )

120w

With flow normal to area

Average power,

150
~ 5 (150) (1) 7 (577 = Ans

Example 8.10 A medium has the following characteristics: Propagation Constant r =
520 + j2443.5 per m and intrinsicimpedance n = 50 < 12°() at a wave frequency of
f = 300MHz. the electric field is given by Ex = 200 e** cos(6m 108 t — Bz)d,.
Calculate the expression for magnetic intensity and the average power/m? at Z = 1mm,
given by electromagnetic wave.

Solution: Given that:

E, =200 e cos(6m 108 t — Bz)a,
y =520+ 24435 =a+jp
a =520 Np/m, § = 2443.5 rad/m
n =50<12°Q,Bz = 2.443.5rad
a, = 520Np

E, =200 e=°520 cos(6m 108 ¢t — 140°)a,

=1118.9 cos(6m 108t — 140°)a, V/m
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- 200
H, = =0 e 0520 cos(6m 108 t — 140° — 120°)a,

n=1Inl <6,and|[n| =50

H, = 2.378 cos(6m 10® t — 152°)a, A/m

The pointing vector in Z direction
P, = ExH,

= 282.74 cos(6m x 108t — 140°) cos(6m x 108t — 152°)

cos(A+B)+cos(A-B)

Using the identity AcosB = .

_282.74

P, = ExH, = 227 cos(12m x 108t — 292°) + 2222

2

cos 12°

=[138.28 + 141.37 cos (12w x 108t — 292°) w/m?

Average power
Note that on interpretation of E x H: Radiation problems
CLASSIC ILLUSTRATION: Bar magnet on which electric charge is placed.

Static electric field crossed with static magnetic field and Poynting’s theorem
seems to require a continuous circulation of energy around magnet.

Note: surface integral is over closed surface surrounding volume. If any closed surface is

taken about bar magnet, ExHis always zero.
Net power flow away from magnet is zero
$(EXH+F)-da=¢(EXH) da+ [V-FdV =¢(EXH) -da"?3° 8.72

Although ExH correctly gives power flow “at each point?”
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It is seen that it may be possible to write an expression that gives correctly the
net flow at power through closed surface, it is still not possible to state first where the
energy is

Note: (vp) Phase Velocity: is velocity of particles that constitute a wave
(vg)group Velocity: is velocity of wave or the entire envelop

Vp XV = c? where cis speed of light and (¢ = 3 x 108 m/s)

2

P, =l =2 997 co5
w2 nl !
1 (200)2 Loa

=— 2 et 12
> g9 © cos

= [138.28 W/m?

8.13 Power and Energy Relations

Consider a region of space represented by an array of field cell transmission lines
of total width W and total height H as in Fig. 8.12 with a plane wave traveling from left to
right. The electric field E,, is vertical and the magnetic field Hz is horizontal. The voltage
V = E,H and the current I = H,W. By analogy to circuits, the power conveyed is

P=VI=E,H,HW = E,H,A (W) 8.73
Where A = HW = area of field-cell array. The power (surface) density is then
_P_ -2
S—Z—EHZ (Wm™*2) 8.74

Equ 8.74 relates the scalar magnitudes. The power flow is perpendicular to E and H and it
can be shown that in vector notation the power density is given by.

S=ExH (Wm™2) Poynting vector 8.75
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Turning E into H and proceeding as with a right-handed screw gives the direction of S
perpendicular to both E and H. S is a power surface density called the Poynting vector. Its
value in 8.75 is the instantaneous Poynting vector. The average Poynting vector is
obtained by integrating the instantaneous Poynting vector over one period and dividing
by one period. It is also readily obtained in complex notation from.

Sav = 3Re E X H =~ % |E,||H,| cos§ (W m™2) 8.76

Array of
6x3=18
field cell
transmission

z

Wave traveling left to
right through area A of
width W and height H

Power through area = E, H- Hy, = SA
Figure 8.12

Power flow of wave traveling left to right through area of width W and height H is equal
to Ey H, HW.

Where S., = XS = average Poynting vector W m
E =9E, = 9|E)|e/*t, v m™!

H

2Hz = 2|Hz|e 7@t 4 m™1
¢ = time phase angle between E,, and H, rad or deg

H is called the complex conjugate of H, where
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H = 2Hz = 2|Hz|e/@t=9 4 m™1

The quantities H and its complex conjugate H have the same direction but they differ in
sign in their phase factors. Note that if E, and H, in 8.76 are rms values instead of
(peak) amplitudes, the factor % in 8.76 is omitted.

The magnitude of the average Poynting vector.
1 1 —
Sav = ReE,H, =3 |E, ||H,| cos & (W m™2) 8.77

The relation corresponding to 8.77 for the average power for a travelling wave on a
transmission line is.

Py =5Re VI =2 |V||I|cos® W) 8.78
Where IV =voltage between conductors of transmission line, V
I = current through one conductor, A
I* = complex conjugate if |
6 = time phase angle between V and I, rad or deg

Since the intrinsic impedance of the medium

E _|E|

Ly =— <
TE |H| <¢= |Zo| ¢

The magnitude of the average Poynting vector can also be written

Sav = 3 ReH,H;Zo = < |H,|?ReZ, (W m™2) 8.79

Or

Sav =1 EyEy 2|E |2Rez—10 (W m~2) 8.80
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Equ (8.79) is very useful, since if the intrinsic impedance Zo of a conducting medium and
also the magnetic field H; at the surface are known, it gives the average Poynting vector
(or average power per unit area) into the conducting medium.

Example 8.11 Power into copper sheet. A plane 1-GHz traveling wave in air with peak
electric field intensity of V m™ is incident normally on a large copper sheet. Find the
average power absorbed by the sheet per square meter of area.

Solution. From (8.76-8.88-8.85), the intrinsic impedance of copper at 1GHz is

’(1)
ZO = _M < 4‘50
o

For copper i, = &, = 1 and 0 = 58 MU m™1. Hence the real part of Zo is

2m X 10° X 4w x 1077
R.Zy, = cos 45° =8.2m0

5.8 x 107

Next, we find the value of H at the sheet (tangent to the surface). This is very nearly
double H for the incident wave. Thus,
E 2x1

H=27=35

-1

Am

From 8.79, we find that the average power per square meter into the sheet is tiny:

2

S 1( 2 ) 8.2 x 1073 = 115n(W m~2)
= —| — 2 X =
aw = 5\377 W m

Class work: Poynting vector into aluminum sheet. A 3-GHz wave is incident on a large
sheet of aluminum (o = 3.5 x 1077 U/m). If the field E = 15 V/m, find the average
power absorbed by the sheet (W/m?). Ans. 366n W/m?2.

The relation corresponding to 8.79 and 8.80 for the average power of a traveling
wave on a travelling wave on a transmission line are.

P, =<Rell"Z, = §|I|2Re Zo, (W) (8.81a)

L)
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1, W _liyizRel
Puy =5 Re == 1VI*Re w) (8.81b)

When Zo is real (¢ = 0) and E and H are rms values, we have for the traveling space
wave.

2
Sav = EH = H?Zy = — (W m™2) 8.82

0

And for the traveling wave on a transmission line (6 = 0 and V and I rms)
P,=VI=1?Zy=— (W) 8.83
From Equs (8.74-8.81) the energy density w, at a point in an electric field is
W, = % cE? (Jm™3) 8.84
Where & =permittivity of medium, FM™* and E = electric field intensity, Vm™

From Equs (8.74-8.84-8.89) the energy density wn, at a point in a magnetic field is
W, = %,qu Jm™3) 8.85

Where u =permeability of medium, H m%, and H = magnetic field, A m™?
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Figure 8.13

Total electric and magnetic energy densities at three instants of time for a pure standing
wave. Conditions are shown over a distance of 14 (Bx = 2m). There is no net
transmission of energy in a pure standing wave, but locations of energy oscillate back
and forth. The situation here (pure standing wave) is identical with that in a short-

circuited transmission line or in a resonator.

In a traveling wave in an unbounded lossless medium

E_ |k 8.86

Substituting from H from 8.86 in 8.85, we have
1 0 1 o
szzuH =E€E =W, 8.87

Thus, the electric and magnetic energy densities in a plane traveling wave are equal and
the total energy density w is the sum of the electric and magnetic energies. Thus,
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W=Ww,+wy, = %sEZ + %/JHZ (Jm™3  Energy density 8.88

Or
w=¢eE? =uH? (Jm™3) 8.89

Two waves of equal magnitude traveling in opposite direction produce a standing wave.
There is no net transfer of energy in a pure standing wave but energy does oscillate back
and forth like water slops in a pail. At one instant the energy is all electric as in Fig 8.13a
with maximum at point A. one quarter of a period later, the energy is all magnetic, as in
Fig 8.13c, with maximum at B, which is at a distance 4/8 from A. one quarter period later
the energy is all back at A. at intermediate times the energy is moving and is half electric
and half magnetic as in Fig 8.13b.

8.14 Linear, Elliptical, and Circular Polarization

Consider a plane wave traveling out of the page (positive z direction) as in Fig 8.14a, with
the electric field at all times in the y direction. This wave is said to be linearly polarized (in
the y direction). As a function of time and position, the electric field is given by

E, = E; sin(wt — fz)

(@) (b) ©
Figure 8.14
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(a) Linear, (b) elliptical, and (c) circular polarization for left circularly polarized wave
approaching

Electric field is given by

E, = E, sin(wt — f2) 8.90

In general, the electric field of a wave traveling in the z direction may have both a
y component and an x component as suggested in Fig. 8.14b. in this more general
situation, with a phase difference 6 between the components, the wave is said to be
elliptically polarized. At a fixed value of z the electric vector E rotates as a function of
time, the tip of the vector describing an ellipse called the polarization ellipse. The ratio of
the major to minor axes of the polarization ellipse is called the axial ratio (AR). Thus, for
the wave Fig 8.14b, AR = E, /E,. Two extreme cases of elliptical polarization correspond
to circular polarization E1=E; and AR = 1, while for linear polarization E1 = 0 and AR =co.

In the most general case of elliptical polarization, the polarization ellipse may
have any orientation, as suggested in Fig. 8.15. The elliptically polarized wave may be
expressed in terms of two linearly polarized components, one in the x direction and one
in the y direction. Thus, if the wave is traveling in the positive z direction (out of the
page), the electric field components in the x and y direction are

E, = E; sin(wt — Bz) 8.91

E, = E;sin(wt — pz + 6) 8.92
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N
“\os" POLARIZATION ELLIPSE

Figure 8.15 Polarization ellipse at tilt angle T showing instantaneous components Ex and
Ey amplitudes (or peak values) E;1 and Ea.

Where E; = amplitude of wave linearly polarized in x y direction
E, = amplitude of wave linearly polarized in y direction
& = time-phase angle by which E,, leads E
Combining Equs (8.91 and 8.92) gives the instantaneous total vector field E.
E = XE; sin(wt — fz) + YE, sin(wt — Bz + §) 8.93
Atz = 0,E, = E; sinwt and E,, = E;, sin(wt + §). Expanding E,, yields

E, = E;(sinwt cos § + cos tsin§) 8.94

From the relations for Ex we have sin wt = E, /E; and cos wt = /1 — (E,/E;)?.

Introducing these in Equ 8.94 eliminates wt, and on rearranging we obtain
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E} 2ExEycosé E}

B + 2sin?§ 8.95
E? E.E, E2
aE; — bELE, + cEj =1 8.96
Or
Wh 1 2cosé 1
ere a=—5——— =" =
EZsin%§ E,E,sin2§ E2sin28

Equ 8.96 describes a (polarization) ellipse, as in Fig 8.15. The line segment OA is the
semimajor axis, and the line segment OB is the semi minor axis. The tilt angle of the
ellipse is T. The axial ratio is.

AR = Z—z (1 < AR < ») Axial ratio 8.97

If E; = 0, the wave is linearly polarized in the y direction. If E, = 0, the wave is
linearly polarized in the x direction. If § = 0 and E; = E,, the wave is also linearly
polarized but in a plane at an angle of 45° with respect to the x axis (t = 45°).

If E; = E, and § = +90°, the wave is circularly polarized. When § = +90°, the
wave is left circularly polarized, and when § = —90°, the wave is right circularly
polarized. For the case § = —90° and for z = 0, and t = 0, we have from Equs (8.91
and 8.92) that E = 9$E,, as in Fig 8.16a. one quarter cycle later (wt = 90°), E = XE,, as
in Fig 8.16b. thus at a fixed position (z = 0) the electric field vector rotates clockwise

(viewing the wave approaching). According to the IEEE definition, this corresponds to left

circular polarization. The opposite direction (§ = +90°) corresponds to right circular

polarization.
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.R —>
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Figure 8.16 Instantaneous orientation of electric field vector E at two instants of time for
a left circularly polarized wave which is approaching (out of page).

If the wave is viewed receding (from negative z axis in Fig. 8.16), the electric
vector appears to rotates in the opposite direction. Hence clockwise rotation of E with
the wave approaching is the same as counterclockwise rotation with the wave receding.
Thus, unless the wave direction is specified, there is a possibility of ambiguity as to
whether the wave is left or right-handed. This can be avoided by defining the polarization
with the aid of an axial mode helical antenna. Thus, a right-handed helical antenna
radiates (or receives) right circular (IEEE) polarization. A right-handed helix, like a right-
handed screw, is right-handed regardless of the position from which it is viewed. There is
possibility here of ambiguity.

The institute of Electrical and electronics engineers (IEEE) definition is opposite to
the classical optics definition which had been in use for centuries. The intent of the IEEE
standards committee was to make the IEEE definition agree with the classical optic
definition, but it got turned around so now we have two definitions. In this book we use
the IEEE definition, which has the advantage of agreement with helical antennas as noted
above.

8.15 Poynting Vector for Elliptically and Circularly Polarized Waves

In complex notation the Poynting vector is
1 *
S = 5 ExXH 8.98

The average Poynting vector is the real part of (1), or
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Sav =Re S =-Re E x H*

8.99
We can also write
1 E?+E? 1 E? .
Sqv ==2————==2-  Average Poynting vector 8.100
2 Zy 2 Z

Where E = \/E? + EZ is the amplitude of the total E field.

Example 8.12 Elliptically polarized wave power. An elliptically polarized wave traveling
in the positive z direction in air has x and y components.

E, = 3sin(wt — fx) Vm
E, = 6sin(wt — Bx + 75°) Vm™1)

Find the average power per unit area conveyed by the wave.

Solution. The average power per unit area is equal to the average Poynting vector, which
from Equ (8.100) has a magnitude
g 1E? B 1EZ + E?
w27z 2 Z
From the stated conditions, the amplitude E; =3 Vm™1

6 Vm™1. Also, for air z = 377Q. Hence

and the amplitude E, =

13246% 145

S, = = ~60m Wm™2 A
aw =5 Tagy T3y YOV M T ARS

Class work:  EP wave power. An elliptically polarized (EP) wave in a medium with
constant 0 = 0, u, = 2, & =5 has H-field components (normal to the direction of
propagation and normal to each other of amplitudes 3 and 4 A/m. find the average
power conveyed through an area of 5 m? normal to the direction of propagation. Ans
14.9kW.
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8.16 The Polarization Ellipse and the Poincare Sphere

In the Poincare sphere representation of wave polarization, the polarization state is
described by a point on a sphere where the longitude and latitude of the point are
related to parameters of the polarization ellipse (see Fig. 8.17) as follows.

Longitude = 21 8.101
Latitude = 2¢

Where 7 = tiltangle, 0° < 7 < 180° (see footnote)and & = tan™! (1/FAR), —45° <
& < +45°. The axial ration (AR) and angle ¢ are negative for right handed and positive for
left handed (IEEE) polarization.

Polarization state
M(g %) or P (1.0)

(Great-Circle
angle)
2y

2¢ (latitude)

(Equator-to-
great-circle
angle)

27 (latitude)

Figure 8.17 Poincare sphere showing relation of angles ¢, 1,6,y

The polarization state described by a point on a sphere here can also be expressed in
terms of the angle subtended by the great circle drawn from a reference point on the
equator and the angle between the great circle and the equator as follows.

Great circle angle = 2y
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Equator — to — great — circle angle = & 8.102

Wherey = tan™?! (?) ,0° <y <90°and § = phase difference between E,, and E, —
1
180° < § < 180°.

The geometric relations of 7,& and y to the polarization ellipse is illustrated in
Figure 8.18. The trigonometry interrelations of 7, &,y and & are as follows:

COS 2y = COS 2€ €COS 2T

tan 6 _ tan2¢
sin 2t Polarization parameters 8.103

tan 27 = tan 2y cos §
sin 2e = sin 2y sin §

Knowing T and € can determine y and dor vice versa. It is convenient to describe the
polarization state by either of the two sets of angles (&, 1) or (y,8) which describe a
point on the Poincare sphere (Fig. 8.18). Let the polarization state as a function of
€ and 1 be designated by M (¢, 1), or simply M and the polarization state as a function of
y and § be designated by P(y, &), of simply P, as in Fig. 8.19.

As an application of the Poincare sphere representation (see Fig 8.20) it may be
shown that the voltage response V of an antenna to a wave of arbitrary polarization is

given by
M Mg
V =k cos — Antenna voltage response
8.104
Where MM, = angle subtended by great circle line from polarization state M to
Ma
M = Polarization state of wave
M, = Polarization state of antenna
K = Constant

The polarization state of the antenna is defined as the polarization state of the wave
radiated by the antenna when it is transmitting. The factor k in (4) involves the field
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strength of the wave and the size of the antenna. An important result to note is that, if
MM, = 0°, the antenna is matched to the wave (polarization state of wave same as for
antenna) and the response is maximized. However, if MM, = 180°, the response is zero.
This can occur, for example, if the wave is linearly polarized in the y direction while the
antenna is linearly polarized in the x direction; or if the wave is left circularly polarized
while the antenna is right circularly polarized. More generally we may say that an
antenna blind to a wave of opposite (or antipode) polarization state.

Minor axis

Polarization ellipse

Figure 8.19 Polarization ellipse showing relation of angles ¢, y,and 7,
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M (wave)

My (wave)

T

Match angle
MM 4

Figure 8.20 The match angle MM, between the polarization state of wave (M) and
antenna (M,). for MM, = 09, the match is perfect. For MM, = 180°, the match is zero.

Referring to 8.104 a polarization matching factor F (for power) is given by
8.105

Thus, for a perfect match the match angle MM, = 0° and F = 1 (states of wave and
antenna the same). For a complete mismatch the match angle MM, = 180° and F = O (Fig.
8.20).

MMa _ A7 and 8.105 reduces to

For a linearly polarization,

F =cos?At 8.106
Where At difference between the tilt angles of wave and antenna.

In the above discussion we have assumed a completely polarized wave, that is
one where Ey, Ey, and § are constant. In an unpolarized wave they are not. Such a wave
result when the vertical component is produced by one noise generator and the
horizontal component by a different noise generator. Most cosmic radio sources are
unpolarized and can be received equally well with an antenna of any polarization. If the
wave is completely unpolarized, F =% regardless of the state of polarization of the

antenna.
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Example 8.13 Polarization matching. Find the polarization matching factor F for a left
elliptically polarized wave (w) with (AR) = 4 and 7 = 15° incident on a right elliptically
polarized antenna (a) with AR=-2 and 7 = 45°.

From (1), 2 (w) = 28.1° and 2¢ (a) = 53.1°. Thus, the wave polarization state M is at
latitude +28.1° and longitude 30° while the antenna polarization state M, is at latitude
——53.1° and longitude 90°. Locate these positions on a globe and measure M M, but
also illustrate the geometry. Then compare this result with an analytical one as follows:
From proportional triangles obtain 2t(w) = 20.7° along the equator and 27(a) = 39.3°
further along the equator. Next from (3), obtain 2y(w) = 34.3° and 2y(a) = 62.4°.
Thus, the total great-circle angle M M, = 2y(w) + 2y(a) = 96.7° and the polarization
matching factor.

, (96.7
F =cos (—) = 0.44
2
Or the received power is 44 percent of the maximum possible value. Ans

Class work:  Antenna response. Find the relative voltage response for an antenna
oriented to receive

a wave traveling in the +x direction if the wave is given by E = Zsin(wt —
Bx) mV(rms)/m and the parameters for the antenna are: (a) AR = -1; (b) AR =
0,7 = 0° (with respect to y direction); (c) AR = oo,7 = 45%; (d) AR = 0,7 =
90°; and (e) AR = 1.5,7 = 67.5°. Ans (a) 0.707; (b) 0; (c) 0.707; (d) 1; € 0.79.

Class work:  Polarization matching factor. Find the polarization matching factor F for
the following

cases: (a) wave VLP, antenna HLP; (b) wave SLP (7 = 60°), antenna HLP; (c) wave
RCP antenna REP; (d) wave RCP antenna VLP; (e) wave RCP, antenna HLP; (f) wave
RCP, antenna REP (AR = —3,7 = 0°%) and (g) wave LEP AR = 4,7 = 0°), antenna
REP AR = —4,71 = 450). VLP = vertical linear polarization, HLP = horizontal linear
polarization, SLP = slant linear polarization, RCP = right circular polarization, LCP =
left circular polarization, REP = right elliptical polarization and LEP = left elliptical
polarization. Ans (a) 0; (b) 0.25; (c) 0 (d) 0.5 (e) 0.5; (f) 0.8 (g) 0.39.
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8.17 Oblique Incidence: Reflection and Refraction

consider a linearly polarized plane wave obliquely incident on a boundary between two
media as shown in Fig. 8.21. The incident wave (from medium 1) makes an angle of 6;
with the y axis, the reflected wave (medium 1) makes an angle of 6, with the y axis and
the transmitted wave make an angle 6, with the negative y axis.

Consider two cases: (1) the electric field perpendicular to the plane of incidence
(the xy plane) and (2) the electric field parallel to the plane of incidence. These waves are
said to be perpendicularly polarized and parallel polarized, respectively. The field vectors
shown in Fig. 8.21 are for the case of perpendicular polarization. It is clear that any
arbitrary plane wave can be resolved into perpendicular and parallel components.

Perpendicular Case (E)

From the boundary conditions.

M1 Sin6; = n,sinf, = n, sin 6, 8.107
. y
Y . i Phase fronts

Incident

Medium 1:&;, 1y, S, Z;, M,

-

Medium 1:82> Hz: 029 Zza nz

Angel of E
refraction }
n

Transmitted
Figure 8.21 Geometry in the plane of incidence (x-y plane or plane of the page) for
linearly polarized wave at oblique incidence and for perpendicular polarization. The z

direction is outward from the page.
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From the first equality
0, = 6; 8.107.1

i.e., the angle of reflection is equal to the angle of incidence. From the second equality.

sinf; = Z—l sinf; Snell's law 8.108
2

Where 1, and 1, are the indices of refraction of medium 1 and medium 2, respectively.
Equ (8.108) is known as Snell’'s law and is a relation of fundamentals importance in
geometrical optics. For a lossless medium the index of refraction 1 can be written as
equal to u,.&, and Snell’s law becomes.

sin 6, = \/“1—81 Snell’s law 8.109

Uz&2

Example 8.13 Polystyrene-air interface. Polystyrene has a relative permittivity of 2.7. if a
wave is incident at an angle of 8; = 30°from air onto polystyrene, (a) calculate the angle
of transmission 6; and (b) interchange polystyrene and air and repeat the calculation.

Solution. From air onto polystyrene &; = €y, 41 = o, &2 = 2.7 &y and U, = Uo. From (3)

1
sinf, = |—(0.5) = 0.304

0, = 17.7° Ans (a)
From Polystyrene onto air &, = 2.7y, 1 = Uo, &2 = & and Uy = Uy
sin 6, = v2.7(0.5) = 0.822
0, = 52.2° Ans (b)

We have also
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z
—cos; + p, cos; = —TZ—lcost9t
2

8.110
And 1+p, =1, 8.111

And on substituting Equs (8.111 into 8.110) and solving for the Fresnel reflection
coefficient p,, we have

__ Zpcos0;—Z1cos b
Z, cosBOi;+Z, cos 6,

pL 8.112
Where Z; and Z, are the impedance of medium 1 and medium 2, respectively. It is seen
that the previously derived reflection coefficient for normal incidence, Equs (8.108-113-
8.118). Is obtained as a special case; when 8; = 0.

If medium 2 is a perfect conductor Z, = 0 and p, = 1. If both media are lossless
nonmagnetic dielectric (6) becomes.

cosf;— <6i>—sin29i
pL= 1 Reflection coef ficient 1 8.113

cos0;+ (8—2)—sin2 0;
£1

Provided medium 2 is a denser dielectric than medium 1 (&, > &;), the quantity under
the square root will be positive and p, will be real. If, however, the wave is incident from
the denser medium onto the less dense medium (g; > &), and if sin®8; = &, /¢, then,
p, becomes complex and |p, | = 1. Under these conditions, the incident wave is totally
internally reflected back into the denser medium. The incident angle for whichp;, =1 <
00 is called the critical angle 8;.. From 8.113 it is seen that this happens when the radical
is zero, so that

0;c = sin™1 \/? Critical angle 8.114
1

Defines the critical angle. For all angles greater than the critical angle, |p,| = 1. Using
Snell’s law, we see that when 6; = 0,. thensin 8, > 1, and cos 8; must be imaginary,
i.e.
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cos 0, = /1 — sin20, = jA 8115

Where A = \/(el/ez)sinzﬁi — 1is areal number

The electric field in the less dense medium can now be written

E: = 21, Ey exp(—ay) exp(jB2x sin 6;) 8.116
Where a = BrA = w\Uy¢, z—l sin?6; — 1 8.117
2

Thus, E| in the less dense medium has a magnitude 7, E,, decaying exponentially away
from the surface (y direction) and propagating without loss in the x direction. Waves
whose fields are of the form of Equa (8.116) are called surface waves. These results can
be summarized by the principle of total internal reflection as follows. When a wave is
incident from the denser onto the less dense medium at an angle equal to or exceeding
the critical angle, the wave will be totally internally reflected and will also be
accompanied by a surface wave in the less dense medium.

Example 8.14 Total internal reflection with surface wave. Referring to Fig. 8.22, a
linearly polarized plane wave is incident from water onto the water-air interface at 45°.
Calculate the magnitude of the electric field in air (a) at the interface and (b) A/4 above
the surface if the incident electric field E; = 1 Vm™1. Take the water constants to be
those of distilled water: ¢, = 81, u,, = 1,0 = 0.

319



Attenuation curve
for E of surface
wave in upper medium (air)
A
e Y 4
Yy Hy
Surface Air
Medium 2
wave g » Hrx
11 1 y N X
S
-— -
=SS =2 .
==S H, H;
E(Vm-1) = @/
X Water

Incident
Reflective Wave

Wave at 0; > 0 ic
Figure 8.22 Total internal reflection of incident wave with accompanying surface wave

which attenuates exponentially above surface (y direction) as shown by graph at left. No
power is transmitted in y direction (up).

Solution. From Equ (8.101), the critical angle

o1
0;c = sin™! T 6.38°

Thus, the angle of incidence ;. (= 45°) exceeds the critical angle and the wave will be
totally internally reflected (see Fig. 8.22 From 8.100

sinf; =+/81 (0.707) = 6.36

From Equ (8.115)

cosf; = jA=+1—-6.36% = j6.28
From Equ (8.117)

2m 39.49
a=p,A=—6.28 = Npm™?!
Ao Ao

From Equs (8.102 and 8.104),
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0.707 — ET‘QS
L =14p, =1+ - = 142 < —44.64°
0.707 + g7 - 05

Therefore, the magnitude of the field strength is
(a) At the interface:
|E;] =142V m™?

(b) A/4 away from the interface:

39.49 1, )
—) =732uVmt Ans (a)
1, 4

|E;| = 1.42 exp (—

Thus, the field 1/4 above the surface is

73.2x 107°
20log—————=—-85.8dB Ans (b)

1.42
Less than the field at the surface. Recalling that a power ratio of 1 billion equals 90dB, it
is evident that the field attenuates very rapidly above the surface (in the y direction) (see
Fig. 8.22), meaning that the surface is very tightly bound to the water surface. Note that
sin 6, is greater than 1 but real, while cos 8; is imaginary, from Equ (8.116)

E, = 21, Eje~(B2A)y gjB2x sin by 8.118
And
P Eo p—B200y pipaxsing,
H, = —E+ysm9t Ti,€ 280V elP2 8.119
] 2

Where A = —/sin?6, — 1.

From Equs (8.118 and 8.119), the average Poynting vector of the wave in the y direction
in air (above the water surface) is
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1 1
Sy(av) = > ReE X H* = yEEtZHtx sin ¢ cos ¢

Where ¢ =space angle between E and H (= 90°) and 8 =time phase angle between E
and H.

The exponentials in Equs (8.118 and 8.119) are identical. However, H;, has a factor
where E,, does not, indicating a 90° time phase difference between E and H. hence, 8 =
90°, and since sin 8 = sin90° = 1,

Sy(av) = 5 EezHex c0s 90° = 0 8.120

Thus, no power is transmitting in the y direction (wave reactive). Both E; and H; decay
exponentially with y. similar waves, called evanescent waves, exist in hollow conducting
wave guides at wavelength too long to propagate through the guide

The wave in medium 2 (air) involving E;, and H;, propagate without attenuation
as a surface wave in the x direction with a velocity V, equal to the wave velocity in the
water (medium 1) as observed parallel to the x axis (v, = vy,qter/ Sin B;). The traveling
wave is simply the matching field at the boundary. Total internal reflection with a surface
wave can also occur for E||, but the details differ.

8.17.1 Parallel case (E||)

Consider now the case of parallel (| |) polarization. The geometry is the same as in Fig.
8.21 but with E;, E, and E; parallel to the plane of incidence as would be obtained by
replacing H; by E;, H, by E,. and H; by E;. By matching boundary conditions, as before,
it is found that the angle of incidence equals the angle of reflection and that Snell’s law
(2) holds. It can also be shown that

cos 6¢

cos6;

The Fresnel reflection coefficient is found to be

Zycos0y—Z, cosO;

8.122

P =

Z1 cos0;—Z, cos 6,
Which for lossless nonmagnetic dielectrics becomes
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- —2 cos 0;+ 22 —sin29-
Py = Reflection coef ficient || 8.123
cosB i+ / 8—2 —sin? 6;
51
And reduces to p; = —1 if medium 2 is a perfect conductor.

It is of especial interest that, for parallel polarization, it is possible to find an
incident angle so that p; = 0 and the wave is totally transmitted into medium 2. This
angle, called the Brewster angle 6,5, can be found by setting the numerator of Equ
(8.123) to zero, giving.

o ain—1 &/81 -1 (&2
0;5 = sin ’—1+(82/81) = tan \/; Brewster angle 8.124

The Brewster angle is also sometimes called the polarizing angle since a wave composed
of both perpendicular and parallel components and incident at the Brewster angle
produces a reflected wave with only a perpendicular component. Thus, circular polarized
wave incident at the Brewster angle becomes linearly polarized on reflection.

Example 8.15 Brewster angle. A parallel polarized wave is incident from air onto (a)
distilled water (&, = 81), (b) flint glass (&, = 10) and (c) paraffin (¢, = 2). Find the
Brewster angle for each of these cases.

Solution
0,5 = tan~14/81 = 83.7° Ans (a)
0,5 = tan"1V10 = 72.4° Ans (b)
0;5 = tan"1V2 = 54.7° Ans (c)

Example 8.16 Effect of ground reflection on antenna patter. A linear in-phase antenna
in free space radiates equally in all directions perpendicular to its length. Above ta
perfectly conducting ground the field may double or go to zero depending on the relative
phase of the direct and ground-bounce waves. If the antenna height h = A, what is the
field patter?
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Solution. Referring to Fig. 8.23a the antenna is horizontal and perpendicular to the page.
The pattern is the same as that of the antenna and its image as given by

h
E(6) = 2E, sin (2nzsin 9)

Where E, = free space field, V. m™ and h =height above ground, m. no mutual coupling
antenna and image is assumed. In practice this is small when h is large (> 1/2).

Free-space
field

Direct wave

Grougd-bounce

Antenna

v Groun
1//
= “Image
(a) (b)
Figure 8.23(a) The pattern is shown in Fig 8.23 (b)

Class work:  angle of maximum field. Find the angles for which the field in Fig. 8.23b is
maximum.

Ans 14.5° and 48.6°.

Class work:  Angle of maximum field. Find the angles for which the field is maximum if
h = 2A. Ans. 7.2° 22.0° 38.7% and 61.0°.

8.18 Exercise

1. For alossy dielectric material having u, = 1, &, = 48,0 = 20S/m, calculate the
attenuation constant, phase constant and intrinsic impedance at a frequency of
16GHz.
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2. Auniform plane wave in a medium havingg = 1073 S/m, ¢ = 80 gy and u = p,
is having a frequency of 10KHz. Calculate the different parameters of wave.

3. For a non-magnetic material having &, = 2.20,6 = 10~* s/m. fine (i) loss tangent
(i) attenuation constant (iii) phase constant and (iv) intrinsic impedance for a
wave having a frequency of 5MHz. assume material to be good dielectric.

4. Find skin depth S at frequency of 1.8 MHz is aluminum, where ¢ = 34 MS/m and
U, = 1. Also find propagation constant and wave velocity.

5. A travelling electric field E in free space with an amplitude of 200V/m strikes
a sheet of silver of thickness 6um as shown in Fig 8.14. by taking conductivity
of silver ¢ = 61.5 MS/m and a frequency 250 MHz find the magnitude of

E;, E; and Ey.
Mo
/ N
1
s SN ¥
— TEt R
/ N
02 3 J 4
Y/ N
/ N
/ N
Y/ N
/ N
Y/ N
< bpm Fig 8.12

6. The electric field intensity in the radiation fields of an antenna located at origin of
a spherical coordinates system is given by
sin 6

E (r,0,0) = E, - cos(wt — fz)0

Where Ey, w, and ﬁ(= w%) are constants. Find

i Magnetic field associated with E

ii. Poynting vector

iii. Total power radiated over a spherical surface of radius ‘r’ centered at
origin
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7. Atravelling E field in free space of amplitude 100V/m strikes a perfect dielectric
as shown in Fig 8.15. find the electric field strength in medium 3

XU N € Mo
L/ N
L/ N
/ N
/ A
i L/ N el
R e I
o =1
/€ =208 N
/ N
/ N
Med. 1 |/ N Med. 3
/ N
L/ N
/ Med.2 N
|< 0.001 m >|

Fig 8.13

8. A medium has following characteristic: Propagation constant r = 528 +
j 244m~1 and intrinsic impedance n = 50 < L12°(Q at a wave frequency of f =
350 MHz. The electric field is given by E,, = 200e~% cos(2mr X 108t — Bz)X.
Calculate the expression for magnetic field intensity and the average power/m? at
z = 1mm, given by electromagnetic wave.

9. Explain wave propagation in lossless medium

10. In lossless medium, derive expression for a, .

11. Explain wave propagation in conducting medium.

12. In conducting medium, derive expression for «, 8

. . .. g
13. Explain significance of term (E)

14. What are standing wave?

15. Explain wave propagation in good dielectric

16. Define depth of penetration

17. Define depth of propagation

18. What are direction cosines? What is their significance?
19. Define equiphasic surface.
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20.

21.
22.
23.
24,
25.
26.
27.
28.
29.

30.
31.
32.

33.

34.

35.

36.

37.

Derive the expression for reflection of uniform plane waves by perfect dielectric
for
a. Normalincidence
b. Oblique incidence
What is Snell’s law?

Derive condition for horizontal and vertical polarization.

Derive the expression for reflection by perfect conductor of uniform plane wave.
Define surface impedance of conductor
Derive expression for surface impedance of conductor
What do you understand by Poynting Vector?

Derive the expression for Poynting’s theorem
Explain significance of term (E f)

What do you understand by electrostatic and magnetostatics’ energy in

Poynting’s equations?

Write note on interpretation of E xH.

Explain why there is negative sign in terms on R.H.S. of Poynting equation.
Attenuation in lossy medium. A medium has constant ¢ = 1.112 x 102 U/

m, U, =5—j4,and & = 5 — j2. At 100MHz find (a) impedance of the medium
and (b) distance required to attenuate a wave by 20dB after entering the
medium.

Index of refraction. The measured phase velocity of a dielectric medium is 186
Mm/s at f; and 223Mm/s at f, find: index of refraction at the two frequencies
Field intensity. Find the magnetic field intensity for a TEM wave with electric
field intensity of 1 uV /min (a) air (b) lossless dielectric with €, = 5, and (c) a
lossless dielectric with g, = 14.
medium impedance. What is the impedance of a medium with ¢ = 10720/m,
& = 3,and u, = 1 (a) at 1MHz (b) at 50MHz and (c) at 1GHz?

Medium impedance. Find the impedance of a conducting medium with o =
10742,

m

Uy =14j0.5and &, = 12 — j4 at a frequency of 800MHz.

Poynting vector. A plane wave is traveling in a medium for whicha = 0, u,, = 1,
and ¢, = 3. If E(peak) = 5V/m find (a) peak Poynting vector, (b) average Poynting
vector, (c) peak value of H, (d) the phase velocity and (e)the impedance Z of the
medium.
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38.

39.

40.

41

42.

43.

44,

45.

46.

47.

48.

Poynting vector. A plane 200MHz wave is traveling in a medium for which ¢ = 0,
U, = 2,and &, = 4. If the average Poynting vector is 5W/m? find (a) rms E; (b)
rms H; (c)phase velocity; and (d) the impedance of the medium.

Phase velocity. What is the relative permittivity of a nonferrous medium for
which the phase velocity is 150Mm/sec?

Poynting vector. A plane traveling wave has a peak electric field Eg = 15V m™ if
the medium is lossless with p,. = 1, and g, = 12. find (a) velocity of the wave, (b)
peak Poynting vector, (c) the impedance of medium.

. Poynting vector. A plane traveling 800MHz wave has an average Poynting vector

of 8m W/m?. If the medium is lossless with u,. = 1.5, and &, = 6. find (a) velocity
of wave, (b) wavelength, (c) impedance of medium (d) rms electric field E and
(e)rms magnetic field H.

Poynting vector. A plane wave propagating in free space has a peak electric field
of 750m V/m. find the average power through a square area 120cm on a side
perpendicular to the direction of propagation.

Energy density. Find the energy density in a plane traveling wave with electric
field intensity E = 5 V/m in a nonmagnetic medium with impedance Z = 100Q.
Angles of reflection and transmission. A plane wave is incident from air onto a
medium with &, = 5 at an angle of 30°. Find (a) the angle of reflection and (b) the
angle of transmission (c) repeats with the materials interchanged.

Reflection coefficient, perpendicular polarization. Find the reflection coefficient
for a plane wave with polarization perpendicular to the plane of incidence from
air onto a medium with permittivity &, = 5 at an angle of 30°.

Critical angle. If the media Exercise 45 were interchanged, find the critical angle
at which total internal reflection occurs.

Reflection coefficient, parallel polarization. Repeat Exercise 45 for parallel
polarization.

Brewster angle. Find the Brewster angle for the conditions of Exercise 45
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A

Absolute permeability (167)
Ampere (165)

Ampere circuital law (170)
Ampere work done (168)
Amplitude of wave (183)
Angle (189)

Angle between two vectors (4)
Angular frequency (183)
Angular velocity (17)

Annular ring (123)

Antenna voltage response (232)
Area of plate (136)
Attenuation (200)

Axial rotation (230)

Axial ratio (228)

Average density (153)

Average poynting vector (222,229)

B
Binomial expansion (202)

Biot-savart (166)

Boundary (30)

Boundary condition (120,139,149)

INDEX
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Boundary surface (175)

o

Capacitance (131,142,150)
Capacitor (130)

Capacitor plate (149)

Cartesian coordinate (25,28,32,158)
Cartesian base vector (34)
Characteristic impedance (187)
Charges (67,80,130)

Charge distribution (83,108,140)

Charge density (99,104,131,156)

Charge enclosed in volume (98)
Charge of flux (161)

Charge on conductor surface (145)
Closed path (168)

Closed surface (21)
Closed system (92)
Circulation close surface (57)
Circular path (147)

Circular polarization (195)

Circular rotation (16)



Coaxial cylinders (134)

Complex number (191)
Compressible fluid (15)
Conducting plane (122)
Conducting sphere (134)
Conducting current density (218)
Conducting surface (139)
Conductivity (182)

Conservative field (25,113)

Conservation of energy (213)

Converting vector (48)

Copper slab (137)

Coulomb’s law (68)
Circular cylindrical (2)
Circular polarization (226)
Counter clockwise (17)
Critical angle (236)

Cross product (9)

Cross vector (5)

Cube (36)
Curl (16,17,20)
Current density (170,217)

Cylindrical capacitor (134)

Cylindrical coordinate (18,19,28,37,153)
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Cylindrical conductor (119)

Cylindrical surface (63)

D

Decibel (165)

Density (15)

Dept of penetration (204)
Dielectric field (187)

Dielectric fills (137)
Dielectric medium (80)

Differential area (27,33)
Differential length (25,32)

Differential surface vector (27,28)

Differential volume (28,32)
Dipole (156)

Dipole moment (157)

Dot product (162)

Dot superscript (170)

Dir (16)

Dirac-delta (156)
Divergence (16,99,)
Divergent (170)
Divergenceless (20)
Divergence theorem (21,60)

Dot product (3)



E
Effective separation (137)
Electric charge (144,221)

Electric displacement (116)

Electric flux (61,79)
Electric flux density (130)

Electric field (1,135,144,187)

Electric force (80)

Electrostatic energy (143)

Electrical field intensity (14,67,115,144)

Electric field strength (114,192)
Electric generation work (162)
Electric potential (83,111,148)
Electric potential field (130)
Electromagnetic (1)
Electromagnetic induction (161)
Electromagnetic wave (204)

Electrostatic (14)
Electrostatic energy (110)
Electrostatic field (108)

Electrostatic green (106)

Electrostatic images (118)

Electrostatic potential (111)
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Element (106)

Elliptical polarization (194,226)
E.M.F (161)

E.M waves (182,187)

Energy (143,222)

Energy density (146,226)
Energy storage in capacitor (140)

Energy transfer (218)

Equipotential surface (14)

F

Faraday experiment (88)
Faraday law (131,161,170,219)

Flux (16,167)
Flux crossing (92)

Flux emerging (29)

Flux density (60,76,163)

Flux diverging (29)

Flux strength (165)
Field of line charge (74)
Field theory (80)

Finite volume (29)

Force (113)

Force on a charge conductor (145)



Free space (112,163)
Free space conductor (182)

Fresnel reflection coefficient (236)

Function (111)

G
Gaussian surface (96,132)

Gauss’s divergence theorem (30)
Gauss law (91,100,133,139,164,170)
General solution (183)

Good dielectric (202)

Gradient (13,153)

Grad (13)

Gradient of scalar (13)

Group velocity (221)

H

Harmonics (183)

Harmonics field (191)

Harmonics field (191)
Homogenous dielectric (138)
Harmonic s frequency (189)
Helmholtz equation (190,200)
Homogenous medium (167,182)
Horizontal polarization (213)

Incident wave (216)

Infinitesimal (15)

Infinitesimal dipole (156)

Infinite plane (183)

Instantaneous electric field (196)
Instantaneous poynting vector (222)

Integral (147)

Intensity (83)

Intrinsic impedance (187)
Irrotational (17)

Isotopic medium (168,182)
Isolated sphere (134)

K

Kinetic (113)

L

Lamellar field (25)
Laplace’s equation (148)
Lenz’s law (161)

Linear polarization (194,226)
Line charge (92)
Lines of force (91)

Line of flux (91)
Lossless medium (200,234)

N



Nominal component (176)
Nonmagnetic material (202)

Non solenoidal (18)

Non uniform field (31,146)
Null identities (19)

M

Magnetizing current (167)
Magnetomotive force (165)
Magnetic field (1,161,167)
Magnetic field strength (168)
Magnetic flux (162)
Magnetic flux density (178)
Surface charge density (178)

Maxwell’s equation
(97,148,170,183,189,219)

Medium (138)
Modulus (3)

Monopole (170)

(o)
Oblique incidence (212,234)

Opposite charge conductor (138)
Outflow of flux (99)

P

Path link (168)

Parallel plane capacitor (140)

Parallel plate capacitor (134,139)

Parallelogram (9,28)
Parallelepiped (15,28)
Permeability (167, 182)

Permittivity (67,139)

Perpendicular vector (37)

Phase (192)

Phase angle (196)

Phase constant (183)

Phase velocity (208,221)

Phasor (191)

Physical phenomenon (184)

Plane travelling wave (194)

Plate separation (134)

Pill pox (116)

Polar (191)

Polarization (192)

Polarization angle (240)
Polarization parameter (231)
Polarization matching factor (234)
Polarization state of antenna (232)
Polarization state of wave (232)

Poincare sphere (230)



Point charge (120)

Point function (26)
Poisson’s equation (148)
Positive charge (138)
Potential (14,113)
Potential difference (130)
Potential distribution (125)
Potential field (156)
Potential function (156)
Power (222)

Power density (211)
Poynting equation (219)
Poynting’s theorem (218)
Poynting vector (222)
Propagation (183)
Propagation constant (190)
Pyramid (7)

R

Radiation problem (221)

Radius (96,134)
Rectangular (2,191)

Rectangular coordinate (7)

Rectangular vector (35,37)

Reflection (234)
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Reflection coefficient (236)
Reflected wave (216)
Refraction (234)

Relative permeability (167)
Resistance (150,167)
Resultant vector (11)
Rotational motion (16)

S

Scalar field (2)

Scalar triple vector (10)
Scalar potential (113)

Shaded surface (29)

Separation of variable (150)

Sheet of charge (76)

Skin dept (204)

Sink (16)

Sinusoidal variation (189)
Snell’s law (213,235)
Solenoidal (15)

Solenoidal vector field (27)
Source free medium (182)
Standing wave (200,217)
Steady state (190)

Straight line (147)



Stokes’s theorem (22,24,30,31,56,170)
Store energy (141)

Space variable (183)
Spherical (99)
Spherical capacitor (132)

Spherical coordinate (2,28,38,63,156)

Spherical to rectangular coordinate
system (46)

Shrineless (99)

Superposition principles (112)
Surface boundary (170)

Surface charge density (122,178)

Surface impedance (217)
Surface integral (92,142)

Surface integral contour (56)

Surface layer (175,178)

Symmetry (96,114)

T

Tangential component (175)
Telsa (165)

TEM (206)

Thickness (144)

Total flux (60)
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Total internal reflection (237)
Total magnetic flux (164)

Transformer induction equation (171)
Transformation differential volume (46)
Transform to a vector (37)

Transform vector cartesian coordinate
(48)

Translational motion (16)
Transmission coefficient (216)
Travelling wave (200)

Triangle (10)

Tylor’s series (97)

U

Uniform flux (163)
Uniform plane wave (183)
Uniform transmission line theory (1)
Uniform plane wave (183)
Unit vector (5, 6, 9,27,67)
Unique solution (150)
Unigueness theorem (149)
\'

Vector (27,164)

Vector addition (7)

Vector component (5,10)



Vector field (2, 3,25)
Vector normal to plane (11)
Vector product (4)

Vector quantity (13,89,168)
Vector sum (25,84,112)
Velocity (16,184)

Velocity of light (187)
Vertical polarization (214)

Volume (21)

Volume enclosed (31)
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Volume integral (28)

w

Wave propagation (200)
Wavelength (208)
Weber (165)

Weaker field (135)
Work done (112,142)

z

Zero reference (112)
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